JP2005528203A - Cutting edge coating method - Google Patents

Cutting edge coating method Download PDF

Info

Publication number
JP2005528203A
JP2005528203A JP2004508968A JP2004508968A JP2005528203A JP 2005528203 A JP2005528203 A JP 2005528203A JP 2004508968 A JP2004508968 A JP 2004508968A JP 2004508968 A JP2004508968 A JP 2004508968A JP 2005528203 A JP2005528203 A JP 2005528203A
Authority
JP
Japan
Prior art keywords
cutting edge
blade
coating
fusible material
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004508968A
Other languages
Japanese (ja)
Inventor
レイ グィモント
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Everedy Battery Company incorporated
Original Assignee
Everedy Battery Company incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Everedy Battery Company incorporated filed Critical Everedy Battery Company incorporated
Publication of JP2005528203A publication Critical patent/JP2005528203A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B26HAND CUTTING TOOLS; CUTTING; SEVERING
    • B26BHAND-HELD CUTTING TOOLS NOT OTHERWISE PROVIDED FOR
    • B26B21/00Razors of the open or knife type; Safety razors or other shaving implements of the planing type; Hair-trimming devices involving a razor-blade; Equipment therefor
    • B26B21/54Razor-blades
    • B26B21/58Razor-blades characterised by the material
    • B26B21/60Razor-blades characterised by the material by the coating material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/02Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by baking
    • B05D3/0254After-treatment
    • B05D3/029After-treatment with microwaves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D5/00Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
    • B05D5/08Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures to obtain an anti-friction or anti-adhesive surface
    • B05D5/083Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures to obtain an anti-friction or anti-adhesive surface involving the use of fluoropolymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/14Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to metal, e.g. car bodies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B26HAND CUTTING TOOLS; CUTTING; SEVERING
    • B26BHAND-HELD CUTTING TOOLS NOT OTHERWISE PROVIDED FOR
    • B26B9/00Blades for hand knives
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/001General methods for coating; Devices therefor
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/28Surface treatment of glass, not in the form of fibres or filaments, by coating with organic material
    • C03C17/32Surface treatment of glass, not in the form of fibres or filaments, by coating with organic material with synthetic or natural resins
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/46Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with organic materials
    • C04B41/48Macromolecular compounds
    • C04B41/4838Halogenated polymers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/82Coating or impregnation with organic materials
    • C04B41/83Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/12Aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/08Coating starting from inorganic powder by application of heat or pressure and heat
    • C23C24/10Coating starting from inorganic powder by application of heat or pressure and heat with intermediate formation of a liquid phase in the layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00
    • C23C26/02Coating not provided for in groups C23C2/00 - C23C24/00 applying molten material to the substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • C23C30/005Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process on hard metal substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/02Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by baking
    • B05D3/0218Pretreatment, e.g. heating the substrate

Abstract

本発明は、ストリップが生分解性ポリマー、好ましくは表面浸食・非バルク浸食である生分解性ポリマーを含むウェットシェービングシステムにおいて使用する潤滑ストリップを提供する。  The present invention provides a lubricating strip for use in a wet shaving system where the strip comprises a biodegradable polymer, preferably a biodegradable polymer that is surface eroded and non-bulk eroded.

Description

本発明は、刃物及び他のカッティング器具、例えばカミソリブレード、ナイフなどの製造に関する。さらに詳しくは、本発明は上記刃物及びカッティング器具のカッティングエッジへの被膜の付与方法に関する。   The present invention relates to the manufacture of blades and other cutting instruments such as razor blades, knives and the like. More specifically, the present invention relates to a method for applying a coating to the cutting edge of the above-mentioned blade and cutting tool.

本出願は、ワーナー・ランバート社名で2002年5月30日に出願された米国仮出願番号第60/384,322号に開示された必須の主題への利益が与えられ、当該主題を参照により包含する。   This application is given the benefit of the essential subject matter disclosed in US Provisional Application No. 60 / 384,322, filed May 30, 2002 in the name of Warner Lambert, which is incorporated by reference. To do.

ナイフ、メス、カミソリブレードなどの刃物は、一般には金属、セラミック、ガラス又はガラス質材料で作られており、少なくとも一つの略V形状のカッティングエッジを有する。カミソリブレードの場合、カッティングエッジは通常約1000オングストロームより小さい半径(radius)を有し、かつ30度より小さいテーパ角を有する。シェービング動作が激しくなると、その結果ブレードエッジにダメージを与え得る。それ故、カッティングエッジの硬さ及び/又は耐腐食性を高めるためにカミソリブレードのカッティングエッジに一つ又はそれ以上の被膜を与えてユーザの心地良さを増大しつつシェービングを楽にし、及び/又はその他の有利な効果を得ることは、よく行われる手法である。   Cutting tools such as knives, scalpels, and razor blades are generally made of metal, ceramic, glass or glassy material and have at least one substantially V-shaped cutting edge. In the case of a razor blade, the cutting edge typically has a radius less than about 1000 angstroms and a taper angle less than 30 degrees. When the shaving operation becomes intense, the blade edge can be damaged as a result. Therefore, one or more coatings may be applied to the cutting edge of the razor blade to increase the user's comfort and / or ease of shaving to increase the cutting edge hardness and / or corrosion resistance, and / or Obtaining other advantageous effects is a common practice.

カッティングエッジ、特にカミソリブレードのカッティングエッジをコーティングするために、これまでに使用されてきた及び/又は提案されてきたコーティング材料を挙げてみると、ポリエチレン、ハロゲン化ポリマー、テロマー(低分子量ポリマー)などのような熱可塑性材料である。これに関しては米国特許第3,224,900号、第3,518,110号、第3,658,742号、第5,263,256号及び第5,985,459号を参照のこと。これらはカミソリブレードのカッティングエッジ用の種々のポリマー被膜を開示し、またカッティングエッジへの被膜の付与方法を開示する。これら特許の内容は、参照によりここに含めておき、本出願の開示の不可欠な部分としてここに併合する。   Examples of coating materials that have been used and / or proposed to coat cutting edges, particularly razor blade cutting edges, include polyethylene, halogenated polymers, telomers (low molecular weight polymers), etc. Is a thermoplastic material. See U.S. Pat. Nos. 3,224,900, 3,518,110, 3,658,742, 5,263,256 and 5,985,459 in this regard. These disclose various polymer coatings for the cutting edge of a razor blade and also disclose methods for applying the coating to the cutting edge. The contents of these patents are hereby incorporated by reference and are incorporated herein as an integral part of the disclosure of this application.

カミソリブレードのカッティングエッジへの熱可塑性コーティング材料の付与方法の一つは、コーティング材料を分散させた懸濁液をエッジ上にスプレーし、その後非酸化環境下でそのブレードを加熱して、ポリマーの材料を溶融させてブレードエッジ表面に均一に広げることを含む。カミソリの冷却で、コーティング材料は固化し、カッティングエッジに付着して残る。この溶融のためのカミソリの加熱は、一般に、カミソリに対して、例えば約200℃から約400℃で赤外線加熱、誘導加熱、又は抵抗加熱によりなされる。上記コーティング方法の例は、前記米国特許第3,224,900号、第3,518,110号、第3,658,742号、第5,263,256号及び第5,985,459号に開示されている。   One method of applying a thermoplastic coating material to the cutting edge of a razor blade is to spray a suspension of dispersed coating material onto the edge and then heat the blade in a non-oxidizing environment to create a polymer coating. Including melting and evenly spreading the material over the blade edge surface. Upon cooling of the razor, the coating material solidifies and remains attached to the cutting edge. This heating of the razor for melting is generally performed on the razor by, for example, infrared heating, induction heating, or resistance heating at about 200 ° C. to about 400 ° C. Examples of the coating method are disclosed in the aforementioned U.S. Pat. Nos. 3,224,900, 3,518,110, 3,658,742, 5,263,256 and 5,985,459. It is disclosed.

抵抗加熱及び誘導加熱は、相当高いエネルギー消費を伴い、またポリマーを溶融するために必要な温度までブレードを加熱するのにかなり長い時間を要する。このような加熱操作はブレードキャリアを含むブレード本体全体を加熱することになるので、ブレードのエッジに制限されたポリマーだけを溶融するのに必要とされる熱量よりもより大きな熱量を要する。赤外線加熱は、抵抗加熱又は誘導加熱(12インチのブレード積層体の加熱に約60−90分を要する)よりも幾分早いが、それでもまだポリマー粒子を溶融温度まで加熱するのにかなりの時間を必要とし、溶融したポリマー粒子を固化するためにブレードボディを十分に冷却するまでかなり長い時間を必要とする。   Resistance heating and induction heating are associated with a considerable energy consumption and require a considerable amount of time to heat the blade to the temperature required to melt the polymer. Such a heating operation heats the entire blade body, including the blade carrier, and therefore requires a greater amount of heat than is required to melt only the polymer confined to the blade edges. Infrared heating is somewhat faster than resistance heating or induction heating (which takes about 60-90 minutes to heat a 12 inch blade laminate) but still takes a significant amount of time to heat the polymer particles to the melting temperature. It takes a considerable amount of time to cool the blade body sufficiently to solidify the molten polymer particles.

上述したコーティング方法に関する高いエネルギー消費及び処理時間に加えて、上記加熱はブレードの硬度に悪い影響を及ぼし得る。   In addition to the high energy consumption and processing time associated with the coating methods described above, the heating can adversely affect blade hardness.

マイクロ波エネルギーは、従来、種々の基材表面へのポリマー材料の付与に使用されている。これに関しては、米国特許第5,422,146号、第5,804,801号及び第5,879,756号を参照のこと。これらの特許の内容は、参照によりここに含めておき、本発明の開示の不可欠な部分としてここに併合する。しかしながら、マイクロ波エネルギーが、カミソリブレード又はその他のカッティング器具のカッティングエッジに与えられる可融性コーティング材料を溶融するためものとしては、これまでに開示されていないと考えられる。   Microwave energy is conventionally used to apply polymer materials to various substrate surfaces. In this regard, see US Pat. Nos. 5,422,146, 5,804,801, and 5,879,756. The contents of these patents are hereby incorporated by reference and incorporated herein as an integral part of the present disclosure. However, it is believed that no microwave energy has been previously disclosed for melting the fusible coating material applied to the cutting edge of a razor blade or other cutting instrument.

本発明の目的は、刃物のカッティングエッジに可融性ポリマー材料を含む被膜を与え、熱源としてマイクロ波エネルギーを用いてポリマーを融解(溶融)することにより、上述した従来技術のコーティング方法の改良を提供することである。   An object of the present invention is to improve the above-described prior art coating method by providing a coating containing a fusible polymer material on the cutting edge of a blade and melting (melting) the polymer using microwave energy as a heat source. Is to provide.

本発明によれば、カッティング器具のカッティングエッジに対する可融性材料を含む被膜を付与し、可融性材料を、カッティングエッジに付着する実質的に均一な被膜に融解するようにマイクロ波エネルギーの熱源を用いて可融性材料を加熱することを含む本発明方法によって上記目的及び他の目的が達成される。   In accordance with the present invention, a microwave energy heat source is applied to provide a coating comprising a fusible material to a cutting edge of a cutting instrument and to melt the fusible material into a substantially uniform coating that adheres to the cutting edge. The above and other objects are achieved by the method of the present invention comprising heating a fusible material using a slag.

本コーティング方法の結果、エネルギーの必要量、並びに可融性材料を溶解して固化するのに要する加熱及び冷却時間をかなり削減できる。   As a result of this coating method, the required amount of energy and the heating and cooling time required to dissolve and solidify the fusible material can be significantly reduced.

本発明の方法は、可融性ポリマー被膜で被覆される少なくとも一つのカッティングエッジを有するカッティングツール及びカッティング器具に適用可能である。本発明の方法は、特にカミソリブレードのカッティングエッジの被膜に適用可能である。”カッティングツール”及び”カッティング器具”の用語は、上記ツール/器具が製造される際のカッティングエッジ部品と同様に、ツール/器具それ自体を含むと理解されるべきである。カミソリブレードの場合において、”カッティングツール”は、その製造において使われるいずれかのカッティングエッジ前駆体、例えば少なくとも一つのカッティングエッジを特徴にしている連続リール(continuous reel)と同様に完成したカミソリブレードを含む。   The method of the present invention is applicable to cutting tools and tools having at least one cutting edge that is coated with a fusible polymer coating. The method of the present invention is particularly applicable to razor blade cutting edge coatings. The terms “cutting tool” and “cutting instrument” should be understood to include the tool / instrument itself, as well as the cutting edge part when the tool / instrument is manufactured. In the case of a razor blade, the “cutting tool” refers to any cutting edge precursor used in its manufacture, for example a finished razor blade as well as a continuous reel featuring at least one cutting edge. Including.

本発明におけるコーティングのためのカミソリブレードの前処理は、従来技術で使用されたものと同様であり、ブレード上に堆積したグリース及び汚れを溶解し、カッティングエッジに付与される被膜を受け入れる表面を準備するために、ブレードを最初に溶剤又は洗剤で洗浄する。   The pretreatment of the razor blade for coating in the present invention is similar to that used in the prior art, preparing a surface that dissolves the grease and dirt deposited on the blade and accepts the coating applied to the cutting edge To do so, the blade is first cleaned with a solvent or detergent.

種々の材料が複数のブレード本体を製造するために使用され得る。より一般的な材料の一つは、金属であり、特にステンレススチールである。その他の有用な材料は、セラミクス、ガラス及びその他のガラス質材料、例えば米国特許第3,543,402号、第3,607,485号、第3,805,387号、第3,831,466号、第4,807,360号、第5,018,274号、第5,048,191号、第5,056,227号及び第5,121,660号に開示されているようなもの、を含み得る。これらの特許の内容は参照によりここに含めておき、本出願の開示の不可欠な部分として併合する。   Various materials can be used to manufacture multiple blade bodies. One of the more common materials is metal, especially stainless steel. Other useful materials include ceramics, glass and other vitreous materials such as U.S. Pat. Nos. 3,543,402, 3,607,485, 3,805,387, 3,831,466. No. 4,807,360, 5,018,274, 5,048,191, 5,056,227 and 5,121,660, Can be included. The contents of these patents are hereby incorporated by reference and incorporated as an integral part of the disclosure of this application.

ブレードが洗浄され乾燥された後、可融性ポリマー材料、これまでカッティングエッジ、特にカミソリブレードのカッティングエッジへの付与のために使用され又は提案されたいかなる可融性ポリマー材料の分散又は懸濁前に、当該ブレードは初めにクロム又はいずれかのタイプの薄膜で被覆される。ハロカーボンポリマーが望ましく、E.I. du Pont de Nemorus and Company,Wilmington,DE製クライトックス1000が特に好ましい。   After the blade has been washed and dried, before the dispersion or suspension of the fusible polymer material, any fusible polymer material used or proposed so far for application to the cutting edge, in particular to the cutting edge of a razor blade In turn, the blade is first coated with chrome or any type of thin film. Halocarbon polymers are desirable, and Krytox 1000 from E.I. du Pont de Nemorus and Company, Wilmington, DE is particularly preferred.

ハロカーボンポリマーは、一般的には、アルコールのような好適な液体中で懸濁又は分散される粉体として存在する。分散系の懸濁液は、いずれかの好適な方法、例えばスプレー又は浸漬で、カッティングエッジに与えられ得る。ブレードの予備加熱は、ブレードのカッティングエッジへの懸濁液の付与を容易にする上で望ましい。   Halocarbon polymers are generally present as powders that are suspended or dispersed in a suitable liquid such as an alcohol. The dispersion suspension can be applied to the cutting edge by any suitable method, such as spraying or dipping. Blade preheating is desirable to facilitate application of the suspension to the blade cutting edge.

可融性ポリマー材料の分散系又は懸濁液は、ブレード材料の連続ストリップがブレード1個の全長に対応した個々の長さに切り分けられる前に、ブレード材料である当該連続ストリップのエッジに付与され得る。あるいは、当該分散物又は懸濁液は、積層されたある数のブレードのカッティングエッジに付与され得る。そのカッティングエッジが上記分散系で被覆された後に、可融性ポリマー材料を溶融し又は融解するために当該エッジが加熱される。この加熱操作は、カッティングエッジの表面に、連続した薄膜として、融解したポリマーの実質的に均一な被膜を与える。本発明によれば、可融性ポリマー材料の融解は、そのポリマー材料をマイクロ波エネルギーにさらすことにより達成される。   A dispersion or suspension of fusible polymer material is applied to the edge of the continuous strip of blade material before the continuous strip of blade material is cut into individual lengths corresponding to the entire length of one blade. obtain. Alternatively, the dispersion or suspension can be applied to the cutting edges of a number of blades stacked. After the cutting edge is coated with the dispersion, the edge is heated to melt or melt the fusible polymer material. This heating operation provides a substantially uniform coating of the molten polymer as a continuous film on the surface of the cutting edge. According to the present invention, melting of the fusible polymer material is achieved by exposing the polymer material to microwave energy.

好適な電力密度のマイクロ波エネルギーは、いずれかのいくつかの既知である既存のマイクロ波発生器によって提供され得る。ここで使用され得るそのような発生器を挙げてみると、10,000KW/inch又はそれ以上に達する電力密度を提供できるジャイロトロンである。本発明の方法を実施するにあたり有利に利用され得るジャイロトロンは、Gyrotron Technology,Inc.,Bristol,PAから市販され、その会社のパンフレットに記述されている。当該パンフレットの内容は参照によりここに含めておき、本出願の不可欠な部分を形成してここに併合する。 A suitable power density of microwave energy may be provided by any of several known existing microwave generators. An example of such a generator that can be used here is a gyrotron that can provide power densities reaching 10,000 KW / inch 2 or higher. Gyrotrons that can be used to advantage in carrying out the method of the present invention are commercially available from Gyrotron Technology, Inc., Bristol, PA and are described in the company brochure. The contents of the pamphlet are hereby incorporated by reference and form an integral part of this application and are merged here.

マイクロ波エネルギーの他の発生源又は発生器は、それらに限定されるものではないが、本発明の実施において有用である上記のような種類のポリマー可融性材料を溶融することのできる種々の周波数を提供できるクライストロン及びトワイストロン(twystron)を含み得る。。そのようなマイクロ波エネルギーの発生源の例は、例えば前述の米国特許第5,879,756号に開示されている。   Other sources or generators of microwave energy include, but are not limited to, various types of polymer fusible materials of the type described above that are useful in the practice of the present invention. It may include klystrons and twystrons that can provide frequencies. . An example of such a source of microwave energy is disclosed, for example, in the aforementioned US Pat. No. 5,879,756.

可融性ポリマー粒子を溶融するためにマイクロ波エネルギーを使用することは、ブレードエッジの露出した外表面だけが加熱され、残りのブレード本体が当該加熱操作によっては概して影響を受けないといった事実に基づいて、既知の溶融技術を越えた重要な利点を有することになる。ブレードのカッティングエッジは、被膜に含まれた上記ポリマーの融点に急速に加熱され、一般にポリマー粒子の融解を達成するのに要求されるのと同じ程度の期間だけその温度に維持される。当業者によれば容易に認識できるように、上記マイクロ波発生器への加熱温度、加熱期間及び電力設定は、使用する個々の可融性ポリマーの特性及び量、ポリマー被膜の厚さ、並びに使用するマイクロ波発生器のタイプ、といった要因に依存する。もちろん、加熱温度と加熱期間は、ポリマーのかなりの分解を避け及び/又はブレードの硬度に与える悪影響を避けるような方法で調整されなければならないことを理解すべきである。加熱温度及び加熱期間は、簡単な実験に基づく手法を用いて特定のコーティング操作に対して最適化され得る。好ましいクライトックス1000ポリマーを含む多くのポリマーについて、約300℃から約390℃の加熱温度、好ましくは約310℃から約360℃の加熱温度と、約1秒から約60秒の加熱時間、好ましくは約5秒から約15秒の加熱時間とが使用されることができ、良好な結果が得られる。   The use of microwave energy to melt fusible polymer particles is based on the fact that only the exposed outer surface of the blade edge is heated and the remaining blade body is generally unaffected by the heating operation. Thus, it has significant advantages over known melting techniques. The cutting edge of the blade is rapidly heated to the melting point of the polymer contained in the coating and is generally maintained at that temperature for as long as required to achieve melting of the polymer particles. As will be readily appreciated by those skilled in the art, the heating temperature, heating duration and power settings for the microwave generator will depend on the characteristics and amount of the individual fusible polymer used, the thickness of the polymer coating, and the usage. It depends on factors such as the type of microwave generator to be used. Of course, it should be understood that the heating temperature and duration must be adjusted in such a way as to avoid significant degradation of the polymer and / or adverse effects on blade hardness. The heating temperature and duration can be optimized for a particular coating operation using simple experimental techniques. For many polymers, including the preferred Krytox 1000 polymer, a heating temperature of about 300 ° C. to about 390 ° C., preferably a heating temperature of about 310 ° C. to about 360 ° C., and a heating time of about 1 second to about 60 seconds, preferably A heating time of about 5 seconds to about 15 seconds can be used and good results are obtained.

上記ポリマーが融解した後、上記ブレードは当該融解したポリマーを固化するために冷却される。本発明の方法の一つの利点は、クーラーブレード本体がヒートシンクとして機能する傾向にあり、その結果、ものすごく急速な被膜の冷却及び凝固となり、その冷却及び凝固はブレード本体全体が加熱される従来の方法によっても可能である。必要に応じて、上記ブレードをより急速に冷却、例えば約5℃から約20℃の温度に冷却することによって上記冷却は促進され得る。   After the polymer has melted, the blade is cooled to solidify the melted polymer. One advantage of the method of the present invention is that the cooler blade body tends to function as a heat sink, resulting in extremely rapid cooling and solidification of the coating, which cooling and solidification is a conventional method in which the entire blade body is heated. Is also possible. If desired, the cooling can be facilitated by cooling the blade more rapidly, for example, to a temperature of about 5 ° C. to about 20 ° C.

Claims (8)

カッティングツールのカッティングエッジに被膜を付与する方法であって、前記カッティングエッジに対して可融性材料の分散系又は懸濁液を付与する工程と、前記カッティングエッジに付着する実質的に均一の被膜に前記可融性材料を融解するように、マイクロ波エネルギー源を用いて前記可融性材料を加熱する工程とを具備する方法。 A method of applying a coating to a cutting edge of a cutting tool, the step of applying a dispersion or suspension of a fusible material to the cutting edge, and a substantially uniform coating adhering to the cutting edge Heating the fusible material using a microwave energy source so as to melt the fusible material. 前記カッティングエッジは金属から作られる請求項1記載の方法。 The method of claim 1, wherein the cutting edge is made of metal. 前記カッティングエッジはセラミクス又はガラスから作られる請求項1記載の方法。 The method of claim 1, wherein the cutting edge is made of ceramic or glass. 前記可融性材料はハロゲン化ポリマーである請求項1記載の方法。 The method of claim 1 wherein the fusible material is a halogenated polymer. 前記可融性材料は低分子量ハロゲン化ポリマーである請求項1記載の方法。 The method of claim 1, wherein the fusible material is a low molecular weight halogenated polymer. 前記可融性材料は、約1秒から60秒の期間に亘り約300℃から390℃の温度に加熱される請求項1記載の方法。 The method of claim 1, wherein the fusible material is heated to a temperature of about 300 ° C to 390 ° C over a period of about 1 second to 60 seconds. 前記可融性材料は、約5秒から15秒の期間に亘り約310℃から360℃の温度に加熱される請求項1記載の方法。 The method of claim 1, wherein the fusible material is heated to a temperature of about 310 ° C to 360 ° C over a period of about 5 seconds to 15 seconds. 前記マイクロ波エネルギー源は、1平方インチ当たり約10,000KWに達する電力密度を与えるジャイロトロンである請求項1記載の方法。 The method of claim 1, wherein the microwave energy source is a gyrotron that provides a power density of up to about 10,000 KW per square inch.
JP2004508968A 2002-05-30 2003-05-30 Cutting edge coating method Pending JP2005528203A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US38432202P 2002-05-30 2002-05-30
PCT/US2003/017106 WO2003101626A1 (en) 2002-05-30 2003-05-30 Method of coating cutting edges

Publications (1)

Publication Number Publication Date
JP2005528203A true JP2005528203A (en) 2005-09-22

Family

ID=29712008

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004508968A Pending JP2005528203A (en) 2002-05-30 2003-05-30 Cutting edge coating method

Country Status (5)

Country Link
EP (1) EP1507602A4 (en)
JP (1) JP2005528203A (en)
AU (1) AU2003237299B2 (en)
GB (1) GB2404160A (en)
WO (1) WO2003101626A1 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4960643A (en) * 1987-03-31 1990-10-02 Lemelson Jerome H Composite synthetic materials
US5477756A (en) * 1993-09-22 1995-12-26 The Gillette Company Method of applying polymers to razor blade cutting edges

Also Published As

Publication number Publication date
AU2003237299A1 (en) 2003-12-19
GB0425674D0 (en) 2004-12-22
AU2003237299B2 (en) 2007-06-21
EP1507602A4 (en) 2005-06-15
WO2003101626A1 (en) 2003-12-11
EP1507602A1 (en) 2005-02-23
GB2404160A (en) 2005-01-26

Similar Documents

Publication Publication Date Title
CN106457301B (en) Method of treating razor blade cutting edges
RU2107556C1 (en) Method of applying polyfluorohydrocarbon coating on cutting edge of razor blade and coated cutting edge of razor blade
RU2119425C1 (en) Method of manufacture of razor blades with polymer coat
JPH06228769A (en) Film coating method and metal or ceramic body coated by said method
JP2009517540A (en) Razor blade and manufacturing method thereof
FR3062324A1 (en) PROCESS FOR MANUFACTURING PARTS PRODUCED IN METALLURGY OF POWDERS COMPRISING THE APPLICATION OF A COATING
KR20080015116A (en) Selective area fusing of a slurry coating using a laser
US6951668B2 (en) Method of coating cutting edges
JP2005528203A (en) Cutting edge coating method
JP6351070B2 (en) Method for forming functional self-fluxing alloy coating layer
JPH0265891A (en) Razor
JP5877391B1 (en) Spatter adhesion inhibitor
US6387458B1 (en) Reverse painting process
See et al. Ultraviolet-diode pump solid state laser removal of titanium aluminium nitride coating from tungsten carbide substrate
JP4089315B2 (en) Connecting member
US5198268A (en) Method for preparing a feed screw for processing plastics
CA2051879A1 (en) Powder coating method for metallic surfaces
JP4424913B2 (en) Antibacterial treatment method by thermal spraying of plastic products
Maleque et al. Abrasive wear response of TIG-melted TiC composite coating: Taguchi approach
Liu et al. Glass surface metal deposition with high-power femtosecond fiber laser
FR1379417A (en) Improved method of soldering metals, for example soldering copper, and means for doing so
JPH0256427B2 (en)
JPH08199322A (en) Molten metal member
JPH1143641A (en) Fluororesin coating agent for cutting blade
JP2001015256A (en) Curved surface heater body and its manufacture

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070626

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20070925

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20071002

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080311