JP2005527724A - Waste gas energy generator - Google Patents

Waste gas energy generator Download PDF

Info

Publication number
JP2005527724A
JP2005527724A JP2003551404A JP2003551404A JP2005527724A JP 2005527724 A JP2005527724 A JP 2005527724A JP 2003551404 A JP2003551404 A JP 2003551404A JP 2003551404 A JP2003551404 A JP 2003551404A JP 2005527724 A JP2005527724 A JP 2005527724A
Authority
JP
Japan
Prior art keywords
gas
power generation
carbon dioxide
generation system
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003551404A
Other languages
Japanese (ja)
Other versions
JP2005527724A5 (en
Inventor
スイ、シー・チュン
Original Assignee
スイ、シー・チュン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by スイ、シー・チュン filed Critical スイ、シー・チュン
Publication of JP2005527724A publication Critical patent/JP2005527724A/en
Publication of JP2005527724A5 publication Critical patent/JP2005527724A5/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/44Details; Accessories
    • F23G5/46Recuperation of heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • F01K25/08Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • F01K25/08Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours
    • F01K25/14Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours using industrial or other waste gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2206/00Waste heat recuperation
    • F23G2206/20Waste heat recuperation using the heat in association with another installation
    • F23G2206/203Waste heat recuperation using the heat in association with another installation with a power/heat generating installation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/52Heat recovery pumps, i.e. heat pump based systems or units able to transfer the thermal energy from one area of the premises or part of the facilities to a different one, improving the overall efficiency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/12Heat utilisation in combustion or incineration of waste

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Treating Waste Gases (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

WGEG(廃ガスエネルギ発生器:waste gas energy generator)は電力生成システムを有し、これは排気/廃気供給デバイス、エネルギ抽出チャンバ、EEC01を含み、EEC01は暗面と、補助チャンバ010とを有し、補助チャンバ010は二酸化炭素及び酸性ガス除去並びに水素生成のための金属散布器と、そのアンモニア含有物を加熱するように伝熱させる熱交換器HE010とを備えている。電力生成システムは少なくとも1つのタービンシステムを含み、このタービンシステムはその出口端に散水供給器及び端部液体回収チャンバ又は分留システム、又はその端部にアンモニア二酸化炭素凝縮のための凝縮チャンバを有する。これは溶剤が二酸化炭素等を吸収するように用いられたデバイスを含み、その溶剤は清浄化処理において高温ガスにより加熱されてそれらのガスを前進させるように解放し、アルミニウム/金属スクリーンを通過した後、回転スクリーニングデバイスを備えたタービンシステムへ直接に向かう。  The WGEG (waste gas energy generator) has a power generation system, which includes an exhaust / waste air supply device, an energy extraction chamber, EEC01, which has a dark surface and an auxiliary chamber 010. The auxiliary chamber 010 includes a metal sprayer for removing carbon dioxide and acid gas and generating hydrogen, and a heat exchanger HE010 for transferring heat so as to heat the ammonia content. The power generation system includes at least one turbine system, which has a sprinkler supply and end liquid recovery chamber or fractionation system at its outlet end, or a condensation chamber for ammonia carbon dioxide condensation at its end. . This includes devices where the solvent was used to absorb carbon dioxide etc., and the solvent was heated by the hot gases in the cleaning process to release the gases forward and passed through the aluminum / metal screen. Later, head directly to the turbine system with a rotating screening device.

Description

発明の詳細な説明Detailed Description of the Invention

本発明はWGEG(廃ガスエネルギ発生器:waste gas energy generator)に関する。   The present invention relates to a WGEG (waste gas energy generator).

火力発電所はElニノ(El nino)及び循環問題に寄与するガス及び熱廃棄を被り、二酸化炭素及び他のガス放出の制御についての切迫した要請がある。1つの手法は熱及び汚染物質放出を有益な物質及びエネルギに変換することである。従って本発明は化石燃料プラントからの放出物を再使用する。   Thermal power plants suffer from El nino and gas and heat waste contributing to circulation problems, and there is an urgent need to control carbon dioxide and other gas emissions. One approach is to convert heat and pollutant emissions into valuable materials and energy. Thus, the present invention reuses emissions from fossil fuel plants.

本発明によれば、排気/廃ガス供給源へ導管及び排気抽出デバイスにより接続された系(例えば、放出及び抽出制御デバイス、復水容器、及び排水系を備えた排気筒)が与えられる。排気/廃ガス供給源は、有機溶媒を用いて予備洗浄された排気/廃ガスにおける有機汚染物質を除去するように有機洗浄室へ接続され、次いでガスは可溶性無機物を除去するように水洗室を通過する。その間に、二酸化炭素は溶媒により吸収される。ここで清浄ガスは、暗面及び/又は温室カバー(ヘリオスタットにより供給されたエネルギを有する)を有するエネルギ抽出チャンバ(EEC:energy extraction chamber)へ入り、このEECは、熱を受けた際に膨張するようにアンモニア/アンモニア流体を包含する熱交換内部ドラム(HE)を有する。溶媒から熱を受け取るアンモニア流体についての熱交換系もある。HEへ到達する前に、清浄ガスは前述の溶媒から回復された二酸化炭素ガス及び酸性ガス廃棄物の流れ(例えば、高温ガスを第1溶媒へ直接に射出する制御デバイスを用い(加圧下)、その結果のガスを導管系を介して第2の溶媒へ向かわせ(加圧下)、金属スクラップ及び水を散布するデバイスを含む区画を通過しながら、溶融アルミニウムペレット/ナトリウム又はカルシウムペレットが制御された導入機構により湿ガスへ散布される。その結果のガス頭はここで保存ドラム(太陽エネルギ吸収デバイスを有し、且つ熱交換器HE)へ入る。加熱アンモニアガスは熱交換器を通過してタービン(T)へ入る。タービンを離れると、ガスは散布デバイスから散水された水に交わり、(特殊な導管及び溶液回収器を介して)ドラムへ向かいながら、ガスアンモニア物が前進して、導管により沈殿チャンバ(PC)10ヘ供給された二酸化炭素ガスに交わり、部分的な真空/真空低減がもたらされる。 In accordance with the present invention, a system is provided that is connected to an exhaust / waste gas supply source by a conduit and an exhaust extraction device (e.g., an exhaust stack with a discharge and extraction control device, a condensate vessel, and a drainage system). The exhaust / waste gas source is connected to an organic cleaning chamber to remove organic contaminants in the exhaust / waste gas that has been pre-cleaned with an organic solvent, and then the gas is connected to the washing chamber to remove soluble minerals. pass. Meanwhile, carbon dioxide is absorbed by the solvent. Here, the clean gas enters an energy extraction chamber (EEC) having a dark surface and / or a greenhouse cover (with energy supplied by a heliostat), which expands when subjected to heat. A heat exchange internal drum (HE) containing ammonia / ammonia fluid. There are also heat exchange systems for ammonia fluids that receive heat from the solvent. Prior to reaching HE, the clean gas is a stream of carbon dioxide gas and acid gas waste recovered from the aforementioned solvent (eg, using a control device that directly injects hot gas into the first solvent (under pressure), The resulting gas was directed through a conduit system to a second solvent (under pressure) and the molten aluminum pellets / sodium or calcium pellets were controlled while passing through a compartment containing metal scrap and a device for sprinkling water. The introduction mechanism is sparged into the wet gas, the resulting gas head now enters a storage drum (having a solar energy absorption device and a heat exchanger HE), and the heated ammonia gas passes through the heat exchanger and passes through the turbine. Entering (T) Upon leaving the turbine, the gas mixes with water sprinkled from the spraying device and does not go to the drum (via a special conduit and solution collector). Et al, and forward the gaseous ammonia product intersects the precipitation chamber (PC) 10 * F supplied carbon dioxide gas by conduit partial vacuum / vacuum reduction is effected.

(代替的に、排気/廃ガスは洗浄室を離れて、コンテナ内の二酸化炭素吸収材(例えば、水酸化カルシウムを包含する)に交わり、HEによる熱抽出の後、窒素抽出のために通過し、溶媒から離れた二酸化炭素は、例えば高温ガス射出デバイスを介して分離チャンバ内で、個別に再加熱/放出されて、上述の処理のためのガス頭となり、その結果、水素のみが抽出のために現れる)。
(代替的に、特にアンモニアガス供給のために液体アンモニアが使用されたときには、Tを離れるガスはガス圧縮チャンバへ引き込まれるので、Tへ吸引が与えられる。)
(Alternatively, the exhaust / waste gas leaves the cleaning chamber, intersects with the carbon dioxide absorber (eg, including calcium hydroxide) in the container, passes through for heat extraction with HE, and then for nitrogen extraction. The carbon dioxide away from the solvent is individually reheated / released in the separation chamber, for example via a hot gas injection device, to become the gas head for the above-described process, so that only hydrogen is extracted To appear).
* (Alternatively, when liquid ammonia is used, particularly for ammonia gas supply, gas leaving T is drawn into the gas compression chamber, so suction is provided to T.)

WGEGの特定の実施形態について図面を参照して以下に例示する。図1はEECをその側面から見て且つ外壁を除去した透視図を示す。EEC01は、流体導管011によって遮蔽廃水/下水供給源へ接続された補助チャンバ010、その上部の金属ペレット散布システム012、排気ガスを内側へ供給する排気供給導管04とを含み、その結果のガスは041にてEEC01の次の部分へ入り、流体導管03を通じて包囲体内のアルミニウムスクリーン(反応金属ペレットを包含する)を通り、区画上の流体導管に沿って移動してタービン(図示せず)へ向かうか、或いは熱交換システム(図示せず)へエネルギを供給する。(スクラップ金属パイルのような付加的な酸除去設計が選択的に存在する。その結果、ガスは例えば分留凝縮により冷却されて、圧縮窒素及び水素ガス又は混合体を生成し、圧縮抽出処理がタービンへの順方向抗力を形成する。   Specific embodiments of WGEG are illustrated below with reference to the drawings. FIG. 1 shows a perspective view of the EEC viewed from its side and with the outer wall removed. The EEC01 includes an auxiliary chamber 010 connected by a fluid conduit 011 to a shielded wastewater / sewage source, a metal pellet dispersal system 012 at the top thereof, and an exhaust supply conduit 04 for supplying exhaust gas inward, the resulting gas being At 041 the next part of EEC01 is entered, through the fluid conduit 03, through the aluminum screen (including the reactive metal pellets) in the enclosure, along the fluid conduit on the compartment and towards the turbine (not shown). Alternatively, energy is supplied to a heat exchange system (not shown). (There are optionally additional acid removal designs such as scrap metal piles, so that the gas is cooled, for example by fractional condensation, to produce compressed nitrogen and hydrogen gas or mixtures, Creates a forward drag on the turbine.

同様に図2は散布ドラムを示す。図1を参照すると、WGEGは、排気/廃ガスが供給されるEEC01、ID02(導管、バルブなどを有する熱交換ドラムであり、Tへの流路連接部、タービンシステム(図示せず)を含む)。(図2も参照)。タービンは2つの部分を含み、その第1は出口端における水冷システムであり、また、拡散ドラム00へ導かれる輸送導管を有する液体回収器もあり、その結果の推進ガスは例えば高温ガス又はヘリオスタットにより再加熱され、出口端において冷却材により冷却された第2タービンシステムへ再び入る。その結果の流体は拡散ドラムへ入り、第1凝縮及び流体供給器(図示せず)から水と交わる。新たなアンモニア液体(調整デバイスによる凝縮調整後)が熱交換ドラムID02へ運ばれる(補助チャンバ010内の流体導管013は、端部排気/排水流体を排出/再利用目的のために逃がすことを可能とする)。   Similarly, FIG. 2 shows a spreading drum. Referring to FIG. 1, the WGEG is an EEC01, ID02 (heat exchange drum with conduits, valves, etc.) to which exhaust / waste gas is supplied, including a flow path connection to T and a turbine system (not shown) ). (See also FIG. 2). The turbine includes two parts, the first of which is a water cooling system at the outlet end, and there is also a liquid collector with a transport conduit leading to the diffusion drum 00, the resulting propellant gas being for example a hot gas or a heliostat And re-enters the second turbine system cooled at the outlet end by the coolant. The resulting fluid enters the diffusion drum and crosses the water from the first condensing and fluid supply (not shown). New ammonia liquid (after condensing adjustment by adjusting device) is carried to heat exchange drum ID02 (fluid conduit 013 in auxiliary chamber 010 allows end exhaust / drain fluid to escape for exhaust / reuse purposes And).

注意:1.凝縮容器/排水システム072は排気筒内に存在する。(図3参照。この図3は排気筒の一部の垂直面透視図であり、対向する壁の図を除去してある)。
2.模式図の符号/図の説明:001は図示しない供給源へ接続された流体拡散デバイス、05,06は流体バルブ、07は排気筒の一部である。
3.EEC01からのガス頭は最終的にはTへ直接に向かわせるために使用され、タービンシステムは、清浄化を促進するように設計された特殊な回転スクリーンを有し、Tへ入る前に微量の粉末を除去する。ガス頭は、ガス送入システムにより引き込まれた(予備清浄化された)高温ガス流と交わり、(清浄化目的のために流体流入及び排出設備を有する)鉄/金属捕捉器内に閉じ込められた古い金属パイルを有する回転デバイス08へ入る。図4は回転デバイスの透明透視図であって、その内部包含物(例えば、回転パドル上に搭載された古い金属スクラップ)は図示せず、流体輸送導管09へ接続されている。(金属スクラップのための装填及び装填解除デバイスは図示してない。)
4.図4はPC10の側面透視であり、凝結回収及び除去のための特殊な底部を有し、保守扉は図示してない。
Note: A condensation vessel / drainage system 072 is present in the exhaust stack. (See FIG. 3. This is a vertical perspective view of a portion of the exhaust stack with the opposing wall view removed).
2. Schematic symbols / descriptions: 001 is a fluid diffusion device connected to a source (not shown), 05 and 06 are fluid valves, and 07 is a part of an exhaust pipe.
3. The gas head from EEC01 is eventually used to direct directly to T, and the turbine system has a special rotating screen designed to facilitate cleaning, and a small amount of trace before entering T. Remove powder. The gas head intersects with the hot gas stream drawn (precleaned) by the gas delivery system and is trapped in an iron / metal trap (with fluid inflow and exhaust facilities for cleaning purposes) Enter the rotating device 08 with the old metal pile. FIG. 4 is a transparent perspective view of the rotating device, with its internal inclusions (eg, old metal scrap mounted on the rotating paddle) not shown and connected to the fluid transport conduit 09. (Loading and unloading devices for metal scrap are not shown)
4). FIG. 4 is a side perspective view of the PC 10, which has a special bottom for collecting and removing the condensation, and the maintenance door is not shown.

操作
1.高温排気ガス/廃ガスが(例えば摂氏120度)で入口バルブ04を介して補助チャンバ010へ引き込まれる。アルミニウムペレットは散布システム012を介して補助チャンバ010へ散布される。(アルミニウムペレットは、分配ディスク上の(熱供給パウダ/爆薬又は金属を包含する)弾丸状筒内に包含されて、補助チャンバ010へ制御された率で入るように速度制御される。床クッション機構は、ペレット/弾丸状筒がチャンバを損なわないようにする。排気/排気ガス供給の酸化湿性包含物と交わると、その温度は水素の解放により上昇する。その結果のガスはバルブ03を通じて進み、(反応金属を閉じ込める)アルミニウムスクリーンのパネルは微量の酸化物を除去させる。(スクリーンは流体/粒子回収及び除去デバイスを有し、特に遮断処理に対処する)。(アルミニウムスクリーンは、例えば1つ又は複数の保守入口扉を含む保守デバイスにより、検査されて、且つ交換/修理される。水素及び窒素含有物を抽出する分留液化/圧縮処理のために冷却システムへ接続された金属スクラップパイル(その出口端に冷却システムを有し、且つ液体回収システムを有する)のような付加的なスクリーンを通過した後、推進ガスはT(図示せず)を通過する。
2.湿気及び汚染含有物を増大させるように、清浄化された排気/排水が導管011を介して補助チャンバ010へ引き込まれ、且つ(制御された率及び時間で)導管013を介して離れて、上述した到来する排気/排気ガス(予備的粒子除去処理により清浄化されている)に交わる。
3.ID02内の流体含有物は気化して膨張する(例えばヘリオスタット点、即ち必要とあれば導管上の黒外面及び透明熱トラップを有する通路点更で更に加熱される)。Tの第1部分へ入ると、このガスは出口端にて水冷又は低温ガスにより冷却されて、液体回収器にて液体凝縮を沈殿させ、その後、拡散ドラム00へ向かい、一方、ガス包含物は前進を続ける。ガス包含物が(例えば高温ガス及びヘリオスタット技術)により再加熱され、第2のタービンシステムを通過して、冷却材により冷却されて、拡散ドラムの下方の液体凝縮に交わるように液体となる。代替的に、端部アンモニア液体はPC10へ入り、二酸化炭素に交わり、更なる吸引圧力がもたらされる。
Operation 1. Hot exhaust gas / waste gas is drawn into auxiliary chamber 010 via inlet valve 04 at (eg, 120 degrees Celsius). Aluminum pellets are dispensed into the auxiliary chamber 010 via a dispensing system 012. (Aluminum pellets are contained in a bullet tube (including heat supply powder / explosive or metal) on the distribution disc and speed controlled to enter the auxiliary chamber 010 at a controlled rate. Prevents the pellet / bullet tube from damaging the chamber, its temperature rises due to the release of hydrogen when crossed with the oxidative inclusions of the exhaust / exhaust gas supply, and the resulting gas proceeds through valve 03, A panel of aluminum screen (which confines the reactive metal) removes traces of oxides (the screen has a fluid / particle recovery and removal device, specifically addressing the blocking process). Inspected and replaced / repaired by a maintenance device containing multiple maintenance entrance doors, extracting hydrogen and nitrogen content After passing through an additional screen such as a metal scrap pile (having a cooling system at its outlet end and a liquid recovery system) connected to the cooling system for the distillate / compression process, the propellant gas is Pass T (not shown).
2. Cleaned exhaust / drainage is drawn into auxiliary chamber 010 via conduit 011 and away via conduit 013 (at a controlled rate and time) to increase moisture and contaminant content, as described above. To the incoming exhaust / exhaust gas (which has been cleaned by a preliminary particle removal process).
3. The fluid content in ID02 evaporates and expands (eg, further heated at the heliostat point, ie, the passage point with the black outer surface on the conduit and a transparent heat trap if necessary). Upon entering the first part of T, this gas is cooled by water or cold gas at the outlet end, precipitating liquid condensation in the liquid collector and then going to the diffusion drum 00, while the gas inclusions are Continue moving forward. The gas inclusions are reheated (e.g., hot gas and heliostat technology), pass through the second turbine system, are cooled by the coolant, and become liquid to meet liquid condensation below the diffusion drum. Alternatively, the end ammonia liquid enters the PC 10 and crosses the carbon dioxide, resulting in additional suction pressure.

注意 2つの並行液体推進システムについて説明した。液圧の制御も複数のバルブ/スロットによりなされる。存在する全ての必要な圧送制御、補助的な流路及び抽出デバイスは図示していない。   Caution Two parallel liquid propulsion systems have been described. The hydraulic pressure is also controlled by a plurality of valves / slots. All necessary pumping controls, auxiliary flow paths and extraction devices present are not shown.

Claims (7)

高温工業排気/廃ガスを用いて冷媒をガス化して膨張させタービンを駆動するデバイスを有することを特徴とする電力生成システム。 A power generation system comprising a device that drives a turbine by gasifying and expanding a refrigerant using high-temperature industrial exhaust / waste gas. 請求項1の電力生成システムに記載の方法において、タービンシステムの後の減圧システムを有することを特徴とする電力生成システム。 The power generation system of claim 1, further comprising a decompression system after the turbine system. 請求項2の電力生成システムに記載の方法において、化学的沈殿ドラムを包含する減圧システムを有することを特徴とする電力生成システム。 3. The power generation system of claim 2, further comprising a vacuum system that includes a chemical precipitation drum. 請求項3の電力生成システムに記載の方法において、金属及び水を反応物として用いる二酸化炭素及び酸性ガス除去デバイスを有することを特徴とする電力生成システム。 4. The power generation system according to claim 3, further comprising a carbon dioxide and acid gas removal device that uses metal and water as reactants. 請求項4の電力生成システムに記載の方法において、前記タービンの入口において金属スクラップを包含する回転デバイスを有することを特徴とする電力生成システム。 5. The power generation system of claim 4, comprising a rotating device containing metal scrap at the turbine inlet. 請求項5の電力生成システムに記載の方法において、溶液から二酸化炭素を生成する高温ガス射出システムを有することを特徴とする電力生成システム。 6. The power generation system according to claim 5, further comprising a hot gas injection system for generating carbon dioxide from the solution. 請求項6の電力生成システムに記載の方法において、熱交換器からでもストリームボイラーからでもない高温ガスを直接駆動力として用いるタービンシステムを有することを特徴とする電力生成システム。 The method according to claim 6, further comprising a turbine system that uses a high-temperature gas that is neither from a heat exchanger nor from a stream boiler as a driving force.
JP2003551404A 2001-12-11 2002-12-06 Waste gas energy generator Pending JP2005527724A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GBGB0129607.8A GB0129607D0 (en) 2001-12-11 2001-12-11 Exhaust eater energy generator
PCT/IB2002/005159 WO2003050393A1 (en) 2001-12-11 2002-12-06 Waste gas energy generator

Publications (2)

Publication Number Publication Date
JP2005527724A true JP2005527724A (en) 2005-09-15
JP2005527724A5 JP2005527724A5 (en) 2006-01-26

Family

ID=9927396

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003551404A Pending JP2005527724A (en) 2001-12-11 2002-12-06 Waste gas energy generator

Country Status (7)

Country Link
US (1) US20050269820A1 (en)
JP (1) JP2005527724A (en)
KR (1) KR20040062988A (en)
CN (1) CN1602388A (en)
AU (1) AU2002351129A1 (en)
GB (1) GB0129607D0 (en)
WO (1) WO2003050393A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5131721B2 (en) * 2005-09-15 2013-01-30 独立行政法人物質・材料研究機構 Carbon dioxide immobilization method

Family Cites Families (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2083031A (en) * 1934-08-09 1937-06-08 Miami Copper Company Method of precipitating metals
DE1601003A1 (en) * 1966-12-02 1970-07-16 Gohee Mamiya Power generation system
GB1260667A (en) * 1968-08-27 1972-01-19 Charles Michael Dansey Peters Improvements in or relating to energy supply apparatus for a building
US4041708A (en) * 1973-10-01 1977-08-16 Polaroid Corporation Method and apparatus for processing vaporous or gaseous fluids
US4093868A (en) * 1974-04-29 1978-06-06 Manning John I Method and system utilizing steam turbine and heat pump
US4010378A (en) * 1974-12-20 1977-03-01 General Electric Company Integrated electric generating and space conditioning system
US4009575A (en) * 1975-05-12 1977-03-01 said Thomas L. Hartman, Jr. Multi-use absorption/regeneration power cycle
DE2602849C2 (en) * 1976-01-27 1978-02-02 Klöckner-Humboldt-Deutz AG, 500OKoIn Process for leaching and precipitating metal from solid metal containing metal
US4091613A (en) * 1976-07-30 1978-05-30 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Independent power generator
JPS5848733B2 (en) * 1976-08-11 1983-10-31 株式会社日立製作所 Small power generation plant using waste heat
US4340207A (en) * 1977-02-14 1982-07-20 Dravo Corporation Waste heat recovery apparatus
US4120157A (en) * 1977-03-02 1978-10-17 Tang Mou Lin Power generating and air conditioning system utilizing waste heat
JPS5477848A (en) * 1977-12-02 1979-06-21 Hitachi Ltd Compact type power plant utilizing waste heat
US4195485A (en) * 1978-03-23 1980-04-01 Brinkerhoff Verdon C Distillation/absorption engine
US4292808A (en) * 1979-04-02 1981-10-06 Lohmiller Edward W Energy converter
US4283211A (en) * 1979-04-09 1981-08-11 Levor, Incorporated Power generation by exchange of latent heats of phase transition
KR860000192B1 (en) * 1980-12-03 1986-03-03 아사히가세이 고오교오 가부시기가이샤 Method for recovering and utilizing waste heat
US4727930A (en) * 1981-08-17 1988-03-01 The Board Of Regents Of The University Of Washington Heat transfer and storage system
US4398392A (en) * 1981-09-10 1983-08-16 University Of Illinois Foundation System for separation of water from the working fluid in low temperature difference power plants
EP0081995B1 (en) * 1981-12-10 1987-03-11 Mitsubishi Gas Chemical Company, Inc. Regenerative gas turbine cycle
US4670242A (en) * 1984-11-09 1987-06-02 Monsanto Company Heat recovery from concentrated sulfuric acid
US4576813A (en) * 1983-07-05 1986-03-18 Monsanto Company Heat recovery from concentrated sulfuric acid
US4829763A (en) * 1984-02-01 1989-05-16 Fluor Corporation Process for producing power
AU7396287A (en) * 1986-05-19 1987-12-22 Yamato Kosan Co., Ltd. Heat exchanging system
US5077030A (en) * 1988-01-06 1991-12-31 Ormat Systems, Inc. Method of and means for producing power and cooling in manufacturing of ammonia and related products
JP2539486B2 (en) * 1988-05-25 1996-10-02 株式会社日立製作所 Heat storage device and operating method thereof
US4942736A (en) * 1988-09-19 1990-07-24 Ormat Inc. Method of and apparatus for producing power from solar energy
US5245874A (en) * 1992-04-10 1993-09-21 Rainwise, Inc. Total precipitation gauge with float sensor
US5406786A (en) * 1993-07-16 1995-04-18 Air Products And Chemicals, Inc. Integrated air separation - gas turbine electrical generation process
US5391925A (en) * 1993-09-10 1995-02-21 Trigen Energy Corporation Prime mover driven compressor/chiller with motor on common shaft for large cooling systems
US5417052A (en) * 1993-11-05 1995-05-23 Midwest Research Institute Hybrid solar central receiver for combined cycle power plant
AU7873494A (en) * 1993-12-10 1995-06-27 Cabot Corporation An improved liquefied natural gas fueled combined cycle power plant
US5392606A (en) * 1994-02-22 1995-02-28 Martin Marietta Energy Systems, Inc. Self-contained small utility system
US5444972A (en) * 1994-04-12 1995-08-29 Rockwell International Corporation Solar-gas combined cycle electrical generating system
US6018471A (en) * 1995-02-02 2000-01-25 Integrated Environmental Technologies Methods and apparatus for treating waste
CN1112505C (en) * 1995-06-01 2003-06-25 特雷克特贝尔Lng北美公司 Liquefied natural gas (LNG) fueled combined cycle power plant and LNG fueled gas turbine plant
US5775107A (en) * 1996-10-21 1998-07-07 Sparkman; Scott Solar powered electrical generating system
CA2315014C (en) * 1997-12-16 2007-06-19 Lockheed Martin Idaho Technologies Company Apparatus and process for the refrigeration, liquefaction and separation of gases with varying levels of purity
EP1051587A4 (en) * 1998-01-08 2002-08-21 Satish Reddy Autorefrigeration separation of carbon dioxide
US6170263B1 (en) * 1999-05-13 2001-01-09 General Electric Co. Method and apparatus for converting low grade heat to cooling load in an integrated gasification system
US6632846B2 (en) * 1999-08-17 2003-10-14 Rentech, Inc. Integrated urea manufacturing plants and processes
JP3631107B2 (en) * 2000-06-09 2005-03-23 株式会社日本製鋼所 Cogeneration system using micro gas turbine waste heat gas
US6506510B1 (en) * 2000-12-15 2003-01-14 Uop Llc Hydrogen generation via methane cracking for integrated heat and electricity production using a fuel cell
US6460360B2 (en) * 2001-02-20 2002-10-08 Sheng-Ming Hsieh Power-generating and energy-saving system
MXPA04011590A (en) * 2002-05-22 2005-07-05 Mfg & Tech Conversion Int Inc Pulse gasification and hot gas cleanup apparatus and process.

Also Published As

Publication number Publication date
CN1602388A (en) 2005-03-30
WO2003050393B1 (en) 2003-08-21
US20050269820A1 (en) 2005-12-08
KR20040062988A (en) 2004-07-09
AU2002351129A1 (en) 2003-06-23
GB0129607D0 (en) 2002-01-30
WO2003050393A1 (en) 2003-06-19

Similar Documents

Publication Publication Date Title
RU2135273C1 (en) System for production of special purpose gas, device to remove heat and acid gas on its basis and process of production of special purpose gas
US10782015B2 (en) Method and apparatus for commissioning power plants
AU670138B2 (en) Process for cooling and cleaning gas, particularly blast furnace or producer gas, containing ultrafine particles, and apparatus for performing the same
KR101104409B1 (en) System using thermal desorption for treating contamination soil and method using thermal desorption for treating contamination
WO2011132660A1 (en) Exhaust gas treatment system having carbon dioxide removal device
CA1336267C (en) Process and device for the reduction, in smoke containing condensable substances, of the non-condensable substances content in condensable substances
JPH08233249A (en) Improved heat-exchanger flue-gas treating device using steaminjector
RU2015107005A (en) PROTECTIVE PROTECTIVE SHELL SYSTEM FOR NUCLEAR TECHNICAL INSTALLATION AND THE APPROPRIATE METHOD OF OPERATION
CN105536484B (en) A kind of pollutant pre-corrosion tower based on flue gas condensing
GB2434330A (en) Removal of CO2 from flue gas
US20180200643A1 (en) Compact wastewater concentrator utilizing a low temperature thermal energy source
US20110000191A1 (en) Exhaust gas treatment system and method
WO2012172173A1 (en) Method and equipment for utilizing thermal energy
CN107725194B (en) Collection pollutant cleaning filtering is cooled in integrated gas turbine inlet air processing system with evaporation
CN101772373A (en) System and process for handling an co2 comprising waste gas and separation of co2
CN109945677A (en) A kind of efficient flue gas waste heat recovery tower with desulfurizing function
US8888897B2 (en) Method and apparatus for handling gases
JP2005527724A (en) Waste gas energy generator
JP2601633B2 (en) Shower tunnel type exhaust purification system with wastewater regeneration capability
CN103614509B (en) A kind of carbon steel converter dry cloth bag dedusting process of whole process recovery waste heat and device thereof
CN107101216B (en) Back-pumping leakage-proof original clean flue gas back-heating type heat exchange system and working method thereof
CN100467833C (en) Dual-purpose vacuum apparatus for industrial afterheat power generation and flue gas dust collection
WO2008118450A1 (en) Improved method and apparatus for commissioning power plants
CN103539215A (en) Sewage treatment system and process
CN208032295U (en) A kind of thermal power plant exhaust-gas treatment and cogeneration integral system

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051202

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080603

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20080903

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20080910

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081202