JP2005509130A - 時間遅延干渉計および適合ビームコンバイナを使用するコヒーレント検出受信器 - Google Patents

時間遅延干渉計および適合ビームコンバイナを使用するコヒーレント検出受信器 Download PDF

Info

Publication number
JP2005509130A
JP2005509130A JP2002572758A JP2002572758A JP2005509130A JP 2005509130 A JP2005509130 A JP 2005509130A JP 2002572758 A JP2002572758 A JP 2002572758A JP 2002572758 A JP2002572758 A JP 2002572758A JP 2005509130 A JP2005509130 A JP 2005509130A
Authority
JP
Japan
Prior art keywords
component
light
optical
adaptive
receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002572758A
Other languages
English (en)
Inventor
ペッパー,デイヴィッド,エム.
ダニング,ギルモア,ジェイ.
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HRL Laboratories LLC
Original Assignee
HRL Laboratories LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HRL Laboratories LLC filed Critical HRL Laboratories LLC
Publication of JP2005509130A publication Critical patent/JP2005509130A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Instruments For Measurement Of Length By Optical Means (AREA)
  • Optical Communication System (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

入力光ビームのコヒーレント検出の光学装置。該装置は、入力光ビームを第1成分と第2成分とに分割するビームスプリッタと、第2成分を受信するように構成され、入力光ビームの第2成分において意図した遅延を課す光遅延装置と、光遅延装置によって課された遅延を有する第2成分を受信するように結合された適合ビームコンバイナと、ビームスプリッタからの第1成分とを含む。適合ビームコンバイナは、それによって受信した第1成分と第2成分との差を表す第1出成分と、それによって受信した第1成分と第2成分との和を表す第2出成分との2つの出成分を有する。適合ビームコンバイナから第1出成分と第2出成分とを受信して検出する検出器の構成が提供される。

Description

本発明は、光ビームにおいて位相変調信号を検出するのに効果的であるが、光ビームが異常経路を横断するときに誘起される雑音には比較的影響されない光検出器に関する。異常経路は、(i)乱流大気、(ii)相対プラットフォーム運動、または(iii)信号の比較的周波数の低い逸脱を誘起する他の人為物によって生じる。逸脱は、近DCから数百キロヘルツの範囲にわたることがあるが、所望の位相符号化データまたは他の情報は、数GHzの範囲にある可能性がある。本発明は、材料を試験するための機械および方法、通信システムおよび方法などを含めて、多くの応用分野および方法において使用することが可能である。
本発明の光検出器は、レーザ通信、遠隔感知、および非破壊試験の応用分野において使用することができる。遠隔感知および高帯域幅(数GHz)の光通信受信器は、極端なビームワンダ、静的および動的光学ひずみ(乱流、スペックル、マルチモードファイバにおけるモード分散)、および/または相対プラットフォーム運動の条件化で動作することができる光検出器を必要とする。固定リンクが必要とされる応用分野に対して、傍受および検出の可能性が低い二重フィルタシステムを使用することができる。
製造分野では、重要構成要素の光学試験およびプロセス制御が必要である。レーザベース超音波(LBU)は、これらの必要性に応じる実行可能な手法を表し、従来の技術の光起電力センサは、そのような診断システムの重要な構成要素を形成することができるが、本発明により、そのようなセンサをさらにより良好な性能で実施することが可能になる。LBUシステムは、検査時間を著しく低減して、製品の信頼性を増大することができ、本発明を使用するとき、厳密に制御された実験室環境の他に、劣悪な工場環境において動作することができる。これは、本発明が、工場内の振動、相対プラットフォーム運動、および/または温度および粒子の濃度の変動を補償することができるということによる。
従来の技術は、単一空間モード光チャネル(ファイバネットワークなど)に適している単一モード光ファイバ遅延線を含む。そのような従来の技術のシステムは、特にマルチモードビームの場合、妥当な効率では機能しない。
マルチ空間モードシステムについて、従来の技術は、ファブリ−ペロー干渉計を含む。これは、大型で高価であり(特に大きな視野が必要である場合)、光位相偏向のためにサーボ制御を必要とする。
従来の技術は、ホモダイン干渉計を開示している、Kleinらへの米国特許第5,900,935号を含む。この従来の技術のシステムでは、光ビームは、2つの経路を介してホログラフィ要素に向けられる。経路の一方は、光ビームを反射するサンプルを含む。2つの経路の光路長は、サンプルを照明するために使用するレーザのコヒーレンス長未満に維持されなければならず、これにより、サンプルが試験装置から取ることができる距離に対して厳しい制限が課される。
本発明は、大型の従来の技術の干渉計を、実時間波面整合要素と統合されたコンパクトなマルチモードファイバ遅延線と置き換える。この遅延線は、最大直角位相検出のために、自動的に偏向される(したがって、サーボ制御システムは必要とされない)。
従来の技術は、隔離された2波ミキサ、ならびに隔離された二連ポンプ位相共役ミラーをも含み、両方とも、実時間ビームクリーンアップ(または波面整合)要素として使用される。これらのシステムは、振幅が大きい位相偏差の場合、性能が低下するが、その理由は、実時間格子は、この場合消去されることがあるからである。
従来の技術は、マルチモード光ファイバ時間遅延線125と光起電力センサ139との統合をさらに含む(図1および米国特許第5,684,592号を参照されたい)。このコンパクトなシステムは、非常に逸脱したマルチ空間モードビームをコヒーレントに検出することもできる。しかし、光起電力センサの帯域幅は、約100MHzに限定されており、これにより、数GHzの帯域幅チャネル能力が必要とされる可能性がある多くの通信システムにおいて使用するには、システムの有用性が限定される。さらに、検出感度は電子雑音により限定され、ショット雑音の限度より鋭敏ではない大きさの程度である。
本発明は、高性能適合光学組合せ要素をマルチ空間モードファイバ遅延線と統合することによって、これらのすべての制限を克服する。さらに、1対のそのような遅延線を使用することによって、短コヒーレンス長の源を使用することができる。従来の技術は、この点に関して、光起電力センサを含む。このセンサは、二重ファイバ遅延線(図3参照)と統合されており、したがって、正味のシステムは、帯域幅が限定される。最後に、マルチモード光ファイバ遅延線は、利得が追加されているために、増幅マルチモード光ファイバ(Erドープガラスなど)の形態とすることができる。本発明は、短コヒーレンス源の使用と、極端な仕掛かり品(すなわち仕掛かり品の多くの光波長)の揺れおよびビームワンダと、低反射率仕掛かり品(または他の伝播経路損失など)と、レーザ振幅の揺らぎ(仕掛かり品の反射率の変化、揺れなどによる)とを含めて、様々な劣悪な工場条件において実施することができる頑強なセンサを提供する。本発明は、センサが受信強度レベルの揺らぎを許容しなければならない遠隔感知およびレーザ通信の応用分野のための頑強なセンサをも提供する。
簡単かつ一般的には、本発明は、入力光ビームのコヒーレント検出を行う光学装置を提供する。該装置は、入力光ビームを第1成分と第2成分とに分割するビームスプリッタと、第2成分を受信するように構成され、入力光ビームの第2成分において意図した遅延を課す光遅延装置と、光遅延装置によって課された遅延を有する第2成分を受信するように結合された適合ビームコンバイナと、ビームスプリッタからの第1成分とを含む。適合ビームコンバイナは、2つの出成分を有する。第1出成分は、適合ビームコンバイナによって受信された第1成分と第2成分との差を表し、第2出成分は、適合ビームコンバイナによって受信された第1成分と第2成分との和を表す。適合ビームコンバイナから第1出成分および第2出成分を受信して検出する検出器の構成が提供される。
本発明の第1実施形態は、図2に示すように、(1)レーザ18などの光源と、(2)本明細書では検出遅延線と呼ぶことがあるマルチモード光ファイバ遅延線125と、(3)1対の従来の光検出器160、165と、(4)適合ビームコンバイナ140との4つの基本的な要素を有する。本発明の第2実施形態は、(1)空間モードの数を第1(すなわち検出)遅延線と整合させる必要のない本明細書では伝送遅延線と呼ぶことがある、第2光ファイバ遅延線と、(2)検出時間遅延線のどちらかのレッグまたは両方のレッグにおいて使用することができるファイバ増幅器との追加の光学要素を含む。
マルチモード光ファイバ遅延線125は、受動遅延線とすることができ、または、マルチモード光ファイバ増幅器によって提供することができる。遅延線の一実施形態では、遅延は、遅延線として役立つマルチモード光ファイバの規定長によって生じる。他の実施形態では、このファイバは、増幅光学要素の形態とすることができ、したがって、ビームがファイバを横断する際に、信号を増強することができる。例として、ファイバは、エルビウムドープファイバ増幅器(EDFA)とすることができ、雑音の抑制と信号の増強とに備えるのに必要な長さを有する(ファイバ長の選択については以下を参照)。ファイバ増幅器は、使用する場合、光ポンプ源(通常、レーザダイオードまたはファイバレーザ)をも必要とする。他の実施形態では、遅延線は、1組のマルチモードファイバループを備え、組の各ループは、同じ点を接続し、さらに、各ループは、異なる物理長を有する。選択したループは、電気光学的に適所に適切に切り替えることができる。どのループを切り替えるかの選択は、作業の所望の超音波周波数と、システムによって抑制すべき背景位相雑音の最大カットオフ周波数とに依存する。
ファイバ長は、超音波信号(最小信号周波数成分を有する)がファイバを通過するのに要する時間より長くあるべきである。さらに、ファイバ長は、位相雑音(最高雑音周波数成分を有する)が同じファイバ長を通過するのに要する時間より短くあるべきである。所望の超音波周波数の範囲は、通常、100kHzから1GHzの大きさなので、これは、ファイバ長(L=(c/n)t、cは高速、tは最低周波数成分の逆数、nは光ファイバの誘導モードの実効屈折率である)が、それぞれ、約2kmから20cmの範囲、またはそれ以上にあるはずであることを意味する。また、雑音周波数成分は、<1Hzから約50kHzの範囲にあるので、ファイバ長は、4km未満の範囲にあるはずである。したがって、これらの条件の両方とも、同時に満たすことができる。これらのすべての場合において、ファイバは、受動または能動に関係なく(EDFAなど)市販されている。光ファイバ切替えネットワーク(1組のファイバループの場合)も利用可能である。
図4に関して記述する第3実施形態では、光源19は、レーザ18(割愛することができる)によって提供されず、光源19は、データを光で伝送する光通信システムの送信器とすることが可能である。当然、適切なレーザを光通信システム送信器の構成要素として使用することが有望である。
本発明の第1実施形態について、時間遅延干渉分光法を使用して超音波を検出するシステムおよび方法に関連して記述する。しかし、本発明は、通信システムなど他の応用分野にも使用することができるので、この応用分野に限定されるものではない。
第1実施形態のレーザ18(図2参照)は、位相変調情報をレーザビーム上に符号化する空間16の領域(遠隔ファイバセンサ、高帯域幅位相変調器、または非破壊試験における仕掛かり品10の振動表面など)を探査する。変調の周波数は、MHzの領域から数GHzの領域にわたることがあり、位相の深度の偏差は、数波長から波長の断片(0.001波長未満)の範囲にある。レーザビームは、乱流大気、非常に異常なプレート、マルチモード光ファイバセンサ、または相対プラットフォーム運動など、すべて雑音を生じる高度に異常性の経路(ビームワンダ、スペックルなどを誘起することがある)を横断した可能性がある。この雑音は、数百万の空間モードまたはスペックルの形態にあることがある。異常性の時間スケールは、近DCから数百KHzの範囲にわたることがあり、位相偏差は、数波から数百万波の範囲にある。
仕掛かり品10において非破壊試験の応用に使用するとき、レーザ18からの探査ビーム20は、好ましくは偏光ビームスプリッタ(PBS)であるビームディレクタ36にミラー34によって向けられる。このディレクタは、1つの偏光成分を伝送して、直交成分を反射する。例示のために、探査ビーム20の偏光は、探査ビームがPBS36によって表面16に向かって反射されるように選択されている。探査ビーム20は、拡大され、レンズ38および40によってコリメートされて、4分の1波プレートであることが好ましい偏光回転子42を通過する。この回転子は、直線偏光を円偏光に変換する。焦点レンズ44が、探査ビーム20を仕掛かり品10の表面16上に収束させる。米国特許第5,684,542号においてより完全に説明されているように、超音波パルスまたは波12が、好ましくはレーザ超音波励起パルス11を仕掛かり品10の異なる表面上に照射することによって、仕掛かり品10において生成される。レンズ44の焦点距離は、読出し表面16における探査ビーム20の直径が、超音波誘起表面振動の一様部分(通常1mm未満)と同等またはそれ未満であるように選択されることが好ましい。
仕掛かり品10は、非破壊試験を受ける物体とすることができ、または仕掛かり品10は、探査ビーム20による調査を受ける任意の物体とすることができる。たとえば、仕掛かり品10は、車両を備えることができ、車両を検査する目的は、その性質を認識し、および/またはそれを識別することである。車両は、通常、使用時に振動する1つまたは複数のエンジンを有する。エンジンの振動は、車両の本体に伝達され、探査ビーム20によって感知することができる。第2振動は、仕掛かり品10を識別する、または識別するのを補助することができ(たとえば、仕掛かり品がある種の車両である場合)、または仕掛かり品の欠陥を感知するのを補助することができる(たとえば、仕掛かり品が、製造されている物体である場合)。仕掛かり品が、使用時に自然に振動する場合、励起パルス11で励起する必要がない可能性がある(使用時に振動している間に検査することを想定する)。仕掛かり品10が、通常、検査されるときに振動しない場合、探査ビーム20による検査を実施するために、好ましくは超音波励起パルス11によって、超音波で振動される。いずれにしろ、仕掛かり品10は振動し、探査ビーム20を使用して、その振動を感知する。上述した「最小信号周波数成分」は、そのような実施形態では、対象とする最低振動周波数である。仕掛かり品10は、仕掛かり品10の振動の性質をサンプリングするために使用することができる表面16を有する。
表面16から反射されたとき、探査ビームは、超音波12によって読出し表面16上に生じたまたは誘起された振動によって位相変調される。表面16は、反射探査ビーム46がその円偏光をほぼ維持するように十分小さいと想定される。反射探査ビーム46は、レンズ44、40、および38と、やはり4分の1波プレート42とを再び通過して、この円偏光を再び直線偏光に変換する。この直線偏光は、探査ビームの当初の直線偏光状態がPBS36を励起しているので、それと直交する。反射ビームの偏光は、この段階で回転されるので、この回転により、反射探査ビーム46は、PBS36を通過することが可能になる。
反射ビーム46は、所望の位相変調情報を含むが、経路の異常性のために動的にひずんだマルチ空間モードとなる可能性が非常に高い。ビーム46の光の一部(約50%)は、ビームスプリッタ120によってビーム分割されて、入射ビームの空間モードの数と同等あるいはそれより多いモードの数を有するマルチモードファイバ遅延線125に結合される。レンズ172を使用して、光を光ファイバの内外に結合する。遅延線125の長さは、検出されることが望ましい最低周波数の逆数の大きさである。たとえば、10MHzの低周波数カットオフでは、ファイバ長は、約20メートル(cx100nsec/1.5)の大きさである。ここで、n=1.5であり、これは、ほぼ、光ファイバにおける誘導モードの屈折率である。ファイバ遅延線125の出力は、遅延ビーム135であり、これは、ビームスプリッタ120からの基本基準ビーム130と共に、適合ビームコンバイナ140に向けられる。適合ビームコンバイナ140は、2波ミキサ、二連ポンプ位相共役ミラー、または閉鎖ループ適合光システム(サーボ制御幾何形状に構成された波面エラーセンサを有する空間光変調器など)を備えることができる。これらの場合のすべてにおいて、それぞれ電場振幅SおよびSを有する2つのマルチモードビーム130、135は、組み合わされて、出力ビーム150、155の波面整合対となる。ビームコンバイナ140から出現するビームは、共伝播平面波とすることができ、または両方とも異常波として出現することができるが、同じ波面と伝播方向とを有する。ビームのこの対は、それぞれ、コヒーレント検出のために従来の2乗光検出器160、165に当たる。ビーム150、155の対の間の相対位相は、適合ビームコンバイナ140の作用によって直角(最大感度について)であるように設定される。このシステムの結果として、緩慢に変化するひずみは、事実上、遅延線の共通モード態様によって消去されるが(すなわち、遅延線の伝播時間は、大きく偏位している場合でも、緩慢に変化するひずみより迅速である)、急速に変化する微分位相情報は、ビームコンバイナ140を通過し、そこで、波面整合ビームの1つの上に出現する。次いで、検出器の2乗応答は、位相情報を復調し、検出器およびその増幅段階からの所望の出力信号となる。適合ビームコンバイナ140は、また、時間遅延ファイバの振動(マイクロホニックス、熱効果など)ならびにビームワンダなど、緩慢に変化する非微分位相変化を追跡する。したがって、システムは、非常に頑強である。非遅延ビーム130と遅延ビーム135の両方の検出について、随意選択のファイバ増幅器が示されている。
適合ビームコンバイナ140は、大型の光屈折結晶(GaAs、InP、CdTe、チタン酸バリウム、BSOなど)、または薄い非線形媒体(光屈折多重量子井戸(MQW)装置、ポリマーなど)の形態とすることができる2波ミキサである。後者の場合、ブラッグ条件は、非常に寛大であり、したがって、装置に形成された実時間格子によって、1ギガヘルツを超える帯域幅を回折させることができる。半導体の場合では、移動度は比較的高く、したがって、100kHzの雑音(この大きさでの動的振動)を追跡または補償することができる。また、これらのビームコンバイナの感度は、ショット雑音限度の2倍であり、非常に鋭敏で頑強なコヒーレント検出器となることが、別々の実験において示されている。
従来の技術のシステムについては、すでに議論しているが(図1参照)、従来の技術は、本発明の適合ビームコンバイナ140および光検出器160、165の代わりに、検出要素として光起電力センサ139を使用しており、その結果、本発明と比較して、検出感度と検出帯域幅とが劣っている。
図2では、1対の整合検出器160、165が提供されており、それぞれ、ビームコンバイナ140のゼロ次および1次の回折出力「ポート」の各々から組み合わされた(すなわち波面が整合された)信号を検出し、それにより、共通モード(追加の雑音)を補償することができる。検出器160、165の出力は、増幅器/プロセッサ170において組み合わされる。レンズL(図6参照)を適合ビームコンバイナ140とそれぞれの検出器160、165との間で使用して、適合ビームコンバイナから出るビームをそれぞれの検出器に収束させることができる。
図2に示す基本的なシステムの他に、図4によって示す本発明の第2実施形態では、送信器セクションにおいて、第2光遅延線175を使用することができる。遅延線125、175の長さが整合されている(すなわち、2つの遅延線が同一の時間遅延を有する)場合、非常に短いコヒーレンス長のレーザ源19を使用することができ、その結果、システムのコストはより安くなり、ならびに傍受または検出することが非常に困難になる。従来の技術のシステムについては、すでに議論したが(図3参照)、従来の技術は、本発明の適合ビームコンバイナ140および光検出器160、165の代わりに、検出要素として光起電力センサを使用しており、その結果、検出感度と検出帯域幅とが劣っていた。本発明により、より高い検出感度(1桁大きい)および帯域幅(3桁大きい)が可能になる。
図2に示すような光増幅器173を所望であれば使用することができる。たとえば、時間遅延レッグ135または遅延されていない基準レッグ130である、光増幅器を受信レッグの1つにおいて使用することが可能である。前者の場合では、マルチモードファイバ遅延線自体は、マルチモードファイバ増幅器の形態とすることができる。後者の場合では、非遅延レッグは、短い光増幅器を含むことができる。他の変形形態は、両方のレッグ130、135が、それぞれ、さらにより優れた性能のために光増幅器173を含むものである。この場合の利点は、システムの補償帯域幅が改善されることであるが、その理由は、(ビームコンバイナ装置140の)光屈折応答が、その要素に関する光の強度の関数であるからである。この修正の欠点は、自然雑音と、ファイバ増幅器によって生じるモード雑音とが追加されることにある可能性がある。この場合、非遅延レッグにおいて単一モードファイバ増幅器を使用して、空間モードの損失をより高い利得増幅器で補償することができる。次いで、追加の利得を使用して、ビーム組合せ要素がより迅速に応答し、システムのモード自然雑音をより小さくすること可能にすることができる。
図5は、本発明の第3実施形態を示す。この実施形態は、図2の実施形態にある程度類似しているが、この実施形態では、光源は、図5の光通信システムおよび装置などの送信器とすることができる源19であり、通信受信器として機能する。受信信号21は、レンズ、光ファイバケーブル22などの適切な光学構成要素を介して結合することが可能であり、受信信号21が遅延成分(遅延線125を進行する)と非遅延成分(経路130を進行する)とに分割されるとき、ビームスプリッタ120に伝達される。この実施形態では、上述した「最小信号周波数成分」は、光通信システムにおいて対象とする最低周波数とすることが可能である。
受信信号は、大気を横断し、および/または作成された信号、またはさらに多くの空間モード(数千から数百万)を有することができる高度にマルチモードのファイバを横断する可能性がある。この状況では、位相変調ビームは、自由空間経路を横断して、または高度にマルチモードのファイバを伝播して、その後、図5の受信器に入る。受信器は、マルチモードファイバの形態の時間遅延レッグ125を使用するので、広い視野と、多くの付随する動的変動空間モード(たとえば、大気経路による波面のひずみによる)とに対応することができる。したがって、適合ビームコンバイナ140は、所望の位相変調で符号化され、ならびに大気によって(またはマルチモードファイバ22によって)ひずんだ2つのビームを見る。ビームの一方は、長さが時間遅延の単一ビットに等しいマルチモードファイバ125を通って伝播することによってさらにひずむ。たとえば、1Gb/sのデータ率では、遅延線のファイバ長は、約30cmである。これらの2つのひずみビーム(遅延されたビームと遅延されていないビーム)は、両方とも、適合ビームコンバイナ140(ちなみに、MQWまたは他の実時間ホログラフィックカプラの形態とすることができる)に当たる。次いで、ビーム150、155は、図5に示すように出現し、そこで、共通モード拒否(二重検出器160、165)システムを使用して検出される。2つの成分間の微分位相シフトを比較することによって、この例では送信器19によって受信信号に関して位相変調されている符号化データは、容易に復調される。本発明は、大気のひずみなどのために生じることがある空間の異常性を追跡する。図5に示す他の構成要素は、図2に示した対応する要素と同じであり、したがってすでに記述しているので、さらにまたはより詳細には記述しない。
図2、4、および5の実施形態では、適合ビームコンバイナ140および光検出器160、165の構成は、同じであり、実際、適合ビームコンバイナ140に当たるビーム130、135は、適切に偏光されているという暗黙の仮定に基づいている。この仮定は、すべての実施形態について適切であるとは限らない。実際、一般的には、2つのビーム130および135は、単一偏光を有さず、または精確に位置合わせされた平行な偏光状態を有さない可能性があることがしばしばであり得る。2波ミキサ140は、受信ビーム130および135が互いに平行な偏光を有するときに、通常最も効率的であり、そのような純粋に平行な平行位置合わせ偏光ビームからのあらゆる逸脱は、2波ミキサ140を出る2つのビーム150および155の結合効率および波面整合能力の損失をもたらす。そのような偏光平行の欠如は、いくつかの方式で生じることがある。たとえば、光ファイバ125が偏光を保存していない場合、その出力は、無作為偏光を呈示する可能性が高い。光ファイバが偏光を保存している場合でも、そのファイバとあらゆる他の光ファイバとが適切に位置合わせされていない場合、出力ビームは平行偏光配向を呈示せず、2波ミキサ140では結合が非効率的になる。
図6に示すように適合ビームコンバイナ140および光検出器160、165の構成を修正して、2波ミキサまたは適合ビームコンバイナ140が、平行偏光状態を有する純粋に偏光されたビームのみを「見る」ことを保証することが可能である。図6を参照すると、偏光ビームスプリッタPBSおよび90°回転要素は、各ビーム130および135の経路に配置される。経路130のPBS131と経路135のPBS136とは、1つの直線偏光のビームを通過させて、直線偏光状態が通過したビームに対して垂直である(すなわち、90°回転している)ビームを反射する。次いで、反射ビームは、経路130に関連付けられた90°回転要素132と、経路135に関連付けられた90°回転要素137とによって、通過ビームと同じ偏光状態に後方回転される。このようにして、90°回転要素を出るビームは、PBSを出る通過ビームと同じ偏光を有する。次いで、これらの4つのビームは、共通平行偏光配向のビームのみを「見る」ミキサ140において組み合わされる。ビームをミキサ140に向けるために、ミラーまたはプリズム133および138を必要に応じて使用する。また、レンズLを、必要に応じて様々な光路において使用することが可能である。たとえば、適合ビームコンバイナ140と関連する検出器160および165との間においてレンズを使用することが可能である。
本発明についてその好ましい実施形態に関して記述してきたが、当業者なら、この段階で修正を思いつくであろう。したがって、本発明は、添付の請求項によって要求される場合を除いて、以上の開示に限定されるものではない。
光起電力センサを使用する従来の時間遅延ファイバベース干渉受信器を示す図である。 適合ビームコンバイナを2波ミキサとして使用する時間遅延ファイバベースコヒーレント検出システムを示す図である。 光起電力を使用する従来の二重ファイバ時間遅延線システムを示す図である。 適合ビームコンバイナを2波ミキサとして使用する二重ファイバ時間遅延システムを示す図である。 通信応用分野において、適合ビームコンバイナを2波ミキサとして使用する時間遅延ファイバベースコヒーレント検出システムを示す図である。 適合ビームコンバイナと関連する検出器との代替構成を示す図である。

Claims (14)

  1. 入力光ビームをコヒーレント検出する光学装置であって、
    (a)最小信号周波数成分を備える情報内容を有する前記入力光ビームを第1成分と第2成分とに分割するビームスプリッタと、
    (b)前記第2成分を受信するように構成され、前記入力光ビームの前記第2成分において意図した遅延を課す光遅延装置と、
    (c)(i)前記光遅延装置によって課された遅延を有する前記第2成分と、
    (ii)前記ビームスプリッタからの前記第1成分と、
    を受信するように結合された適合ビームコンバイナであって、
    第1出光成分が、当該適合ビームコンバイナによって受信された前記第1成分と前記第2成分との差を表し、第2出光成分が、当該適合ビームコンバイナによって受信された前記第1成分と前記第2成分との和を表す2つの出光成分を有する適合ビームコンバイナと、
    (d)前記適合ビームコンバイナから前記第1出成分および前記第2出成分を受信し、検出する検出器構成と、
    を備える光学装置。
  2. 前記光入力ビームが、
    (e)探査レーザと、
    (f)超音波励起パルスの影響を受ける試験中の仕掛かり品と、
    (g)前記探査レーザから光ビームを受信して、前記レーザビームの第1成分を前記仕掛かり品に向け、仕掛かり品から反射された前記第1成分と共に第2成分を前記ビームスプリッタに向けるビームディレクタと、
    (h)前記レーザビームの前記第1成分の経路に配置された4分の1波プレートと、
    を備え、
    前記レーザビームの前記第1成分が、前記光ビームの前記第1成分に対応し、前記レーザビームの前記第2成分が、前記光ビームの前記第2成分に対応する、請求項1に記載の光学装置。
  3. 前記仕掛かり品が、超音波励起パルスによって振動される、請求項2に記載の光学装置。
  4. 前記光遅延装置によって課される前記遅延が、最小信号周波数成分の逆数より大きい、請求項1から3のいずれか1つに記載の光学装置。
  5. 前記光遅延装置が、ある長さの光ファイバである、請求項1から3のいずれか1つに記載の光学装置。
  6. 前記入力光ビームが、光通信システムの送信器によって生成される、請求項1に記載の光学装置。
  7. サンプリング表面を有する仕掛かり品の振動を検出する方法であって、
    (a)波長を有する光のビームを生成することと、
    (b)前記ビームを第1ビームと第2ビームとに分割することと、
    (c)前記第1ビームを前記サンプリング表面の上に向けて、最小信号周波数成分を有するデータで前記サンプリング表面によって散乱させることと、
    (d)前記最小信号周波数成分の逆数より大きい時間期間だけ、前記第2ビームを遅延させることと、
    (e)前記散乱された第1ビームの少なくとも一部と、前記遅延された第2ビームとを、適合ビームスプリッタに向けること、
    (f)前記第1ビームおよび前記第2ビームを光検出器に向け、前記振動サンプリング表面を表す電気出力信号を獲得することと、
    を備える方法。
  8. 前記生成された光のビームが、偏光されたコヒーレント光ビームであり、前記第1成分および前記第2成分が、共伝播して、前記適合ビームスプリッタに当たるとき、共偏光される、請求項7に記載の方法。
  9. 前記第1ビームおよび前記第2ビームが、前記第2ビームが前記遅延ステップによって遅延された直後に、共伝播せず、かつ共偏光されずに、前記第1ビームおよび前記第2ビームのそれぞれが、他のビームと同じ偏光を有することを保証するために、前記第1ビームおよび前記第2ビームが、偏光補正ステップを独立して受ける、請求項8に記載の方法。
  10. 前記振動が、小さい音表面偏向である、請求項7から9のいずれか1つに記載の方法。
  11. 前記振動が、超音波表面振動である、請求項10に記載の方法。
  12. 試験表面を有する材料に関する音振動を感知する装置であって、
    (a)所定の波長を有する光のコヒーレント共偏光ビームを生成するための光生成源と、
    (b)前記生成された光ビームを受信して、前記生成された光ビームを少なくとも第1光ビームと第2光ビームとに分割し、最小信号周波数成分を有するデータで前記第1ビームを少なくとも散乱させることができる試験材料試験表面に、前記第1光ビームを向けるためのビーム分割装置と、
    (c)前記第1ビームおよび前記第2ビームの少なくとも一方を、最小信号周波数成分の逆数より大きい遅延で遅延させる光遅延装置と、
    (d)前記受信表面に対して第1角度において前記散乱された第1光ビームの少なくとも一部を受信し、前記受信表面に対して、前記第1角度とは異なる第2角度において前記第2光ビームを受信し、前記第1ビームおよび前記第2ビームを干渉させて、前記第1ビームと前記第2ビームとの間に位相シフト差を導入し、前記受信表面によって受信された前記第1ビームの少なくとも一部と、前記第2ビームの少なくとも一部とを備える共伝播光波を生成するための受信面を有する適合ビームスプリッタと、
    (e)前記適合ビームスプリッタ手段から共伝播光ビームを受信して、前記振動試験表面を表す電気出力信号を生成するための光検出器とを備える装置。
  13. 前記第1ビームおよび前記第2ビームのそれぞれが、前記適合ビームコンバイナに当たるとき、他のビームと同じ偏光を有することを保証するために、偏光補正装置をさらに含む、請求項12に記載の装置。
  14. 前記偏光補正装置が、前記第1ビームおよび前記第2ビームに関連付けられた経路において直列に構成された偏光ビームスプリッタと90°ビーム回転子とを含む、請求項13に記載の装置。
JP2002572758A 2001-03-14 2002-03-13 時間遅延干渉計および適合ビームコンバイナを使用するコヒーレント検出受信器 Pending JP2005509130A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/808,472 US6819432B2 (en) 2001-03-14 2001-03-14 Coherent detecting receiver using a time delay interferometer and adaptive beam combiner
PCT/US2002/007978 WO2002073837A2 (en) 2001-03-14 2002-03-13 Optical coherent receiver using a time delay interferometer and adaptive beam combiner

Publications (1)

Publication Number Publication Date
JP2005509130A true JP2005509130A (ja) 2005-04-07

Family

ID=25198865

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002572758A Pending JP2005509130A (ja) 2001-03-14 2002-03-13 時間遅延干渉計および適合ビームコンバイナを使用するコヒーレント検出受信器

Country Status (5)

Country Link
US (1) US6819432B2 (ja)
EP (1) EP1382139A2 (ja)
JP (1) JP2005509130A (ja)
AU (1) AU2002306731A1 (ja)
WO (1) WO2002073837A2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009544038A (ja) * 2006-07-18 2009-12-10 ロッキード マーティン コーポレイション 超音波レーザー検査のためのファイバー・レーザー

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW565693B (en) * 2002-08-02 2003-12-11 Ind Tech Res Inst A scanning ultrasound device of dual-wave mixing interference
US7626179B2 (en) 2005-09-30 2009-12-01 Virgin Island Microsystems, Inc. Electron beam induced resonance
US7586097B2 (en) 2006-01-05 2009-09-08 Virgin Islands Microsystems, Inc. Switching micro-resonant structures using at least one director
US7791290B2 (en) 2005-09-30 2010-09-07 Virgin Islands Microsystems, Inc. Ultra-small resonating charged particle beam modulator
US7910356B2 (en) 2005-02-01 2011-03-22 Purdue Research Foundation Multiplexed biological analyzer planar array apparatus and methods
US7405831B2 (en) 2005-02-01 2008-07-29 Purdue Research Foundation Laser scanning interferometric surface metrology
US20070023643A1 (en) 2005-02-01 2007-02-01 Nolte David D Differentially encoded biological analyzer planar array apparatus and methods
US7443358B2 (en) 2006-02-28 2008-10-28 Virgin Island Microsystems, Inc. Integrated filter in antenna-based detector
US7876793B2 (en) 2006-04-26 2011-01-25 Virgin Islands Microsystems, Inc. Micro free electron laser (FEL)
US7646991B2 (en) 2006-04-26 2010-01-12 Virgin Island Microsystems, Inc. Selectable frequency EMR emitter
US7728397B2 (en) 2006-05-05 2010-06-01 Virgin Islands Microsystems, Inc. Coupled nano-resonating energy emitting structures
US7746532B2 (en) * 2006-05-05 2010-06-29 Virgin Island Microsystems, Inc. Electro-optical switching system and method
US7728702B2 (en) 2006-05-05 2010-06-01 Virgin Islands Microsystems, Inc. Shielding of integrated circuit package with high-permeability magnetic material
US7710040B2 (en) 2006-05-05 2010-05-04 Virgin Islands Microsystems, Inc. Single layer construction for ultra small devices
US7718977B2 (en) 2006-05-05 2010-05-18 Virgin Island Microsystems, Inc. Stray charged particle removal device
US7656094B2 (en) 2006-05-05 2010-02-02 Virgin Islands Microsystems, Inc. Electron accelerator for ultra-small resonant structures
US7723698B2 (en) 2006-05-05 2010-05-25 Virgin Islands Microsystems, Inc. Top metal layer shield for ultra-small resonant structures
US7986113B2 (en) 2006-05-05 2011-07-26 Virgin Islands Microsystems, Inc. Selectable frequency light emitter
US8188431B2 (en) 2006-05-05 2012-05-29 Jonathan Gorrell Integration of vacuum microelectronic device with integrated circuit
US7741934B2 (en) 2006-05-05 2010-06-22 Virgin Islands Microsystems, Inc. Coupling a signal through a window
US7732786B2 (en) 2006-05-05 2010-06-08 Virgin Islands Microsystems, Inc. Coupling energy in a plasmon wave to an electron beam
US7679067B2 (en) 2006-05-26 2010-03-16 Virgin Island Microsystems, Inc. Receiver array using shared electron beam
US7655934B2 (en) 2006-06-28 2010-02-02 Virgin Island Microsystems, Inc. Data on light bulb
US7659513B2 (en) 2006-12-20 2010-02-09 Virgin Islands Microsystems, Inc. Low terahertz source and detector
US7659968B2 (en) 2007-01-19 2010-02-09 Purdue Research Foundation System with extended range of molecular sensing through integrated multi-modal data acquisition
US7787126B2 (en) 2007-03-26 2010-08-31 Purdue Research Foundation Method and apparatus for conjugate quadrature interferometric detection of an immunoassay
US7990336B2 (en) 2007-06-19 2011-08-02 Virgin Islands Microsystems, Inc. Microwave coupled excitation of solid state resonant arrays
US7791053B2 (en) 2007-10-10 2010-09-07 Virgin Islands Microsystems, Inc. Depressed anode with plasmon-enabled devices such as ultra-small resonant structures
US8166825B2 (en) * 2007-10-30 2012-05-01 Tea Time Partners, L.P. Method and apparatus for noise reduction in ultrasound detection
US8134715B2 (en) * 2008-05-20 2012-03-13 Iphoton Solutions, Llc Adjustable interferometer for laser ultrasonic measurement
US8149421B1 (en) * 2008-06-23 2012-04-03 Optech Ventures, Llc Optical homodyne interferometer
US20110080311A1 (en) * 2009-10-05 2011-04-07 Michael Pushkarsky High output laser source assembly with precision output beam
US8649022B2 (en) 2011-05-06 2014-02-11 Harris Corporation Interferometric material sensing apparatus including adjustable coupling and associated methods
US8665451B2 (en) 2011-05-06 2014-03-04 Harris Corporation Interferometric biometric sensing apparatus including adjustable coupling and associated methods
US8649021B2 (en) 2011-05-06 2014-02-11 Harris Corporation Interferometric sensing apparatus including adjustable coupling and associated methods
US8675202B2 (en) 2011-05-06 2014-03-18 Harris Corporation Interferometric sensing apparatus including adjustable reference arm and associated methods
US8675204B2 (en) 2011-05-06 2014-03-18 Harris Corporation Interferometric material sensing apparatus including adjustable reference arm and associated methods
US8675203B2 (en) 2011-05-06 2014-03-18 Harris Corporation Interferometric biological sensing apparatus including adjustable reference arm and associated methods
FR3049135B1 (fr) * 2016-03-15 2020-02-14 Cailabs Dispositf de communications par fibre optique multimode avec composant de compensation de dispersion modale
CN114401089B (zh) * 2022-01-26 2024-04-26 杭州慧明量子通信技术有限公司 一种可调延时干涉仪及量子密钥分发系统

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4572949A (en) * 1982-04-14 1986-02-25 The Board Of Trustees Of The Leland Stanford Junior University Fiber optic sensor for detecting very small displacements of a surface
CA1287388C (en) * 1988-04-29 1991-08-06 Jean-Pierre Monchalin Broadband optical detection of transient motion from a scattering surface
CA2007190C (en) * 1990-01-04 1998-11-24 National Research Council Of Canada Laser optical ultrasound detection
US5131748A (en) * 1991-06-10 1992-07-21 Monchalin Jean Pierre Broadband optical detection of transient motion from a scattering surface by two-wave mixing in a photorefractive crystal
US5684592A (en) 1995-06-07 1997-11-04 Hughes Aircraft Company System and method for detecting ultrasound using time-delay interferometry
US5894531A (en) * 1997-03-11 1999-04-13 Karta Technology, Inc. Method and apparatus for detection of ultrasound using a fiber-optic interferometer
US5909279A (en) 1997-03-17 1999-06-01 Hughes Electronics Corporation Ultrasonic sensor using short coherence length optical source, and operating method
US6075603A (en) * 1997-05-01 2000-06-13 Hughes Electronics Corporation Contactless acoustic sensing system with detector array scanning and self-calibrating
US6057911A (en) * 1997-11-17 2000-05-02 Northrop Grumman Corporation Fiber optic fabry-perot sensor for measuring absolute strain
US5900935A (en) 1997-12-22 1999-05-04 Klein; Marvin B. Homodyne interferometer and method of sensing material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009544038A (ja) * 2006-07-18 2009-12-10 ロッキード マーティン コーポレイション 超音波レーザー検査のためのファイバー・レーザー

Also Published As

Publication number Publication date
US6819432B2 (en) 2004-11-16
US20020131050A1 (en) 2002-09-19
WO2002073837A2 (en) 2002-09-19
AU2002306731A1 (en) 2002-09-24
WO2002073837A3 (en) 2003-11-20
EP1382139A2 (en) 2004-01-21

Similar Documents

Publication Publication Date Title
JP2005509130A (ja) 時間遅延干渉計および適合ビームコンバイナを使用するコヒーレント検出受信器
Ing et al. Broadband optical detection of ultrasound by two‐wave mixing in a photorefractive crystal
US5694216A (en) Scanning heterodyne acousto-optical interferometers
US4966459A (en) Broadband optical detection of transient motion from a scattering surface
CA2007190C (en) Laser optical ultrasound detection
US5680212A (en) Sensitive and fast response optical detection of transient motion from a scattering surface by two-wave mixing
US5894531A (en) Method and apparatus for detection of ultrasound using a fiber-optic interferometer
US6008887A (en) Single beam laser surface velocity and displacement measurement apparatus
US7119906B2 (en) Optical remote sensor with differential Doppler motion compensation
KR20010104199A (ko) 집적 회로의 차분 펄스 레이저 빔 검사
US9212896B2 (en) Optical interferometer and vibrometer comprising such an optical interferometer
JP2007285898A (ja) レーザ振動計
US5909279A (en) Ultrasonic sensor using short coherence length optical source, and operating method
CN101799453A (zh) 一种新型的双波混合干涉检测超声振动装置
CA2416011C (en) Laser-ultrasonic testing system
US10533974B2 (en) Laser measuring device and laser ultrasonic device
CA2335338C (en) Method and apparatus for ultrasonic laser testing
US6657732B2 (en) Vibrometer system using a two input beam phase conjugate mirror
EP1456601A1 (en) Detection of transient phase shifts in any optical wave front with photorefractive crystal and polarized beams
JP2010038880A (ja) レーザ超音波検査装置およびレーザ超音波検査方法
JP3174985B2 (ja) 光ファイバ・アレイを用いた差動型へテロダイン干渉計
JP2001165612A (ja) レーザ干渉計
KR20240017284A (ko) 광섬유 간섭계 기반의 균형 광 검출기 및 이를 사용한 분포형 음향 측정 센서 시스템
CN115248083A (zh) 相干探测光路中使参考光垂直入射探测面的方法及装置
Scalise et al. Single-mode optical fiber interferometer for surface vibration measurement