JP2005503552A - Equipment for testing aramid fiber elevator cables - Google Patents

Equipment for testing aramid fiber elevator cables Download PDF

Info

Publication number
JP2005503552A
JP2005503552A JP2003529106A JP2003529106A JP2005503552A JP 2005503552 A JP2005503552 A JP 2005503552A JP 2003529106 A JP2003529106 A JP 2003529106A JP 2003529106 A JP2003529106 A JP 2003529106A JP 2005503552 A JP2005503552 A JP 2005503552A
Authority
JP
Japan
Prior art keywords
cable
receiver
aramid fiber
transmitter
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003529106A
Other languages
Japanese (ja)
Other versions
JP4128529B2 (en
Inventor
スミス,ローリー
Original Assignee
ティッセン エレベーター キャピタル コーポレーション
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ティッセン エレベーター キャピタル コーポレーション filed Critical ティッセン エレベーター キャピタル コーポレーション
Publication of JP2005503552A publication Critical patent/JP2005503552A/en
Application granted granted Critical
Publication of JP4128529B2 publication Critical patent/JP4128529B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B7/00Other common features of elevators
    • B66B7/12Checking, lubricating, or cleaning means for ropes, cables or guides
    • B66B7/1207Checking means
    • B66B7/1215Checking means specially adapted for ropes or cables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/07Analysing solids by measuring propagation velocity or propagation time of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/08Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/003Generation of the force
    • G01N2203/005Electromagnetic means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0058Kind of property studied
    • G01N2203/006Crack, flaws, fracture or rupture
    • G01N2203/0062Crack or flaws
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/022Environment of the test
    • G01N2203/0244Tests performed "in situ" or after "in situ" use
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/026Specifications of the specimen
    • G01N2203/0262Shape of the specimen
    • G01N2203/0278Thin specimens
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/026Specifications of the specimen
    • G01N2203/0262Shape of the specimen
    • G01N2203/0278Thin specimens
    • G01N2203/028One dimensional, e.g. filaments, wires, ropes or cables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/02827Elastic parameters, strength or force
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/26Scanned objects
    • G01N2291/262Linear objects
    • G01N2291/2626Wires, bars, rods

Landscapes

  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Acoustics & Sound (AREA)
  • Indicating And Signalling Devices For Elevators (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

本発明は、エレベータ(3)を駆動するアラミド繊維ケーブル(7)を検査して、当該アラミド繊維ケーブル(7)の残留強度を計算する装置であって、それにより当該ケーブル(7)の交換が必要な時期を求める、検査および計算する装置に関する。本装置は、アラミド繊維ケーブル(7)に沿って進む音波を伝える送信機(22)と、音波がケーブル(7)の指定部分を横断した後に音波を受け取る受信機(24)とを備える。送信機(22)および受信機(24)は、音波が送信機(22)により送信される時刻を示す信号、およびその後受信機(24)により受信される時刻を示す信号を供給する。これらの信号から、システムのプログラムが波速度、アラミドケーブル(7)の弾性率、およびアラミドケーブル(7)の残留強度を計算する。The present invention is an apparatus for inspecting an aramid fiber cable (7) driving an elevator (3) and calculating a residual strength of the aramid fiber cable (7), whereby the replacement of the cable (7) can be performed. The present invention relates to an inspection and calculation device for obtaining a necessary time. The apparatus comprises a transmitter (22) that transmits sound waves traveling along an aramid fiber cable (7) and a receiver (24) that receives the sound waves after the sound waves have traversed a designated portion of the cable (7). The transmitter (22) and the receiver (24) supply a signal indicating the time when the sound wave is transmitted by the transmitter (22) and a signal indicating the time after which the sound wave is received by the receiver (24). From these signals, the system program calculates the wave velocity, the elastic modulus of the aramid cable (7), and the residual strength of the aramid cable (7).

Description

【技術分野】
【0001】
本発明は、エレベータシステムに関する。より詳細には、本発明は、エレベータシステムで用いられるアラミド繊維ケーブルが破損しており交換が必要である時期を求めるために、アラミド繊維ケーブルを試験する装置に関する。
[発明の背景]
【0002】
従来のエレベータ用スチールケーブルは、磨耗を容易に目視検査することができる。ワイヤが個別に破断するため、これらの破断を容易に確認することができる。アラミド繊維のエレベータケーブルは、目視検査を不可能にする保護外装で覆われている。ロープが外装されていない場合でもなお、ロープを交換するのに適した時期を求めることは困難であろう。これは、繊維が新しいか交換が必要かに関わらず、繊維の外見がほとんど同じだからである。
【0003】
1998年11月10日にDe Angelisに発行された米国特許第5,834,942号は、エレベータ用の合成繊維ケーブル(アラミドケーブルなど)を交換すべき時期を求める装置を開示している。この装置は、合成繊維ケーブルの少なくとも1つの炭素繊維における電圧を検出する電圧検出デバイスと、検出された電圧が所定の電圧閾値を超えた時を求める少なくとも1つの閾値デバイスとを含む。検出される電圧は、合成ケーブルの一部(特に合成ケーブル内の炭素繊維)の完全性(integrity)によって異なる。所定の電圧閾値を超えることは、ケーブルのその部分の破損を示す。従来技術のデバイスは、繊維を電気的手段により監視することができるように、ケーブル内に導電性繊維を配置するという手段を取っている。したがって、この装置は、導電性を帯びにくい(not readily conductive)合成ケーブルには適していない可能性がある。
【0004】
アラミドに精通した当業者は、アラミド材料を通る波の伝播の測定からアラミド材料の弾性特性を求めることができることを示している(M. Ferreira等著、「Nondestructive Testing of Polyaramide Cables by Longitudinal Wave Propagation: Study of the Dynamic Modulus」, Polymer Engineering and Science, Vol.40, No.7, July 2000を参照)。特に、異なる疲労状態のポリアラミドケーブルがそれぞれ固有の音波の縦波伝播速度を有することがわかっている。縦波は、アラミド繊維ロープを以下の式に従って進むことがわかっている。
=E/ρ (式1)
ここで、V=波の伝播の速度、E=動的弾性率または音波弾性率(sonic modulus)、およびρ=密度である。引張弾性率および音波弾性率(acoustic modulus)はいずれも、疲労に伴い同じ割合で変化するため、観測された波の伝播の値から引張弾性率を計算することが可能である。E(弾性率)をFr(残留強度)に対してプロットする、E=f(Fr)であることがわかった。換言すると、弾性率(速度から求められる)と残留強度との間には定量化可能な関係がある。
【0005】
エレベータシステムで用いられるアラミドケーブルについて、弾性率と残留強度との間に同様の関係を求めることができる。この関係は、ケーブルで用いられる特定のアラミド材料およびケーブルの寸法に基づいて変わる。関係が定まる、弾性率の複数の測定から残留強度を外挿することが可能となる。これは、エレベータシステムに関してはこれまで行われていなかった。
【0006】
したがって、ケーブルの交換が必要な時期を求めるために、アラミド繊維のエレベータケーブルを検査して、該ケーブルの残留強度を計算する装置を提供することが、本発明の目的である。
[発明の概要]
【0007】
本発明は、エレベータを駆動するアラミド繊維ケーブルを検査して、当該ケーブルの残留強度を計算する装置であって、それにより当該ケーブルの交換が必要な時期を求める、検査および計算する装置に関する。本装置は、アラミド繊維ケーブルに沿って進む音波を伝える(introduce)送信機と、音波がケーブルの指定部分を横断した後に音波を受信する受信機とを備える。送信機および受信機は、音波が送信機により送信された時刻(time)を示す信号、およびその後受信機により受信された時刻を示す信号を供給する。
【0008】
本発明は、第1の信号および第2の信号を処理する手段であって、それによりケーブルの残留強度を計算する、処理する手段を提供する。特に、本発明は、送信機および受信機に接続されたエレベータ制御システムを提供する。制御システムは、第1の信号および第2の信号の時刻に基づいて音波の速度を計算するプログラムおよび関連アルゴリズムを有する。この場合、プログラムは、ケーブルの弾性率を計算し、続いてケーブルの残留強度を求める。残留強度を求めることは、残留強度を弾性率の関数として示す格納されている式に基づく。格納されている式は、システムで用いられている特定のアラミドケーブルによって異なる。
【0009】
送信機および受信機は、ケーブルに沿って種々の場所に配置してもよい。しかしながら、好ましい実施形態では、送信機および受信機は、ケーブルに沿って同じ場所に配置され、エレベータシステムで用いられる綱車から基準距離(nominal distance:公称距離)だけ離れて位置する。この場合、音波の速度は、音波が送信機から綱車まで進み、受信機に戻るまでにかかる時間を測定することにより計算される。この実施形態では、送信機および受信機は、実際には1つのユニット内に収容されている。
【0010】
本発明はまた、エレベータシステムを駆動するのに用いられるアラミドケーブルを検査する装置を組み込んだエレベータシステムに関する。本エレベータシステムは、通常、エレベータかごと、かごに接続されたアラミド繊維ケーブルと、かごを移動させるためにケーブルを移動させる駆動モータを有する巻上機と、ケーブルの移動を導く1つまたは複数の綱車と、かごの重量と釣り合いを取るためにケーブルに連結された釣り合い重りとを備える。本発明の装置は、このシステムに組み込まれる。
[発明の詳細な説明]
【0011】
図1および図2は、2つの異なるエレベータシステムに具現される本発明を示す。これらの図では、同様の参照符号は同様の要素を表す。
【0012】
システムは、アラミド繊維ケーブル7により吊り下げられたエレベータかご3を備える。アラミド繊維ケーブルは、1つまたは複数の綱車9にかかっており、システムの平衡を保つために釣り合い重り11に連結されている。綱車9のうちの1つを含む巻上機15が、エレベータかご3を昇降させるために2つの方向のいずれかにケーブルを駆動する。
【0013】
本発明の装置は、以下のようにシステムに組み込まれる。図1Aおよび図2Aの拡大図を参照すると、いずれも音響センサから構成される送信機22および受信機24が、アラミド繊維ケーブル7に接続されている。送信機22は、アラミド繊維ケーブル7に沿って音波を伝えることができる構成要素を含む。送信機22は、送信機から最も近くにある綱車へ進み、綱車から反射して受信機24へ戻る音波を伝える。送信機22および受信機24は、音波が最初にケーブル7に伝えられる時刻を示す信号、およびその後音波が受信機24により受信される時刻を示す信号を生成する。
【0014】
第1の信号および第2の信号を処理する手段であって、それによりケーブルの残留強度を計算する、処理する手段が設けられる。特に、本発明は、送信機22および受信機24の両方に接続されるエレベータ制御システム35を提供する。制御システム35は、第1の信号および第2の信号に基づいて音波の速度を計算するのに適したアルゴリズムを含むプログラムを有する。制御システムおよびプログラムは、(図1のように)機械室に設けられてよい。さらに、図2に示すように、エレベータかご3は、送信機および受信機から信号を受け取り、それらの信号を制御システムへ送るインタフェース38を含んでもよい。制御システム内のプログラムは、ケーブルの弾性率を計算し、続いて、残留強度を弾性率の関数として表す格納されている式から、ケーブルの残留強度を求める。
【0015】
計算された残留強度が所定の閾値未満になると、制御システム35は、アラミドケーブル7の交換が必要であるという通知を適宜与える。所望であれば、制御システムは、アラミドケーブル7の残留強度が閾値未満になった場合にシステムを停止するようにプログラムされていてもよい。残留強度の値は、定期的に求められ、ケーブルの寿命を予測する際に用いるために制御システムのメモリに自動的に格納され得る。エレベータを稼働させたままケーブルを試験して残留強度を求めることができるため、これは重要な利点である。特に、本発明の装置は、ケーブルの残留強度を継続的に試験することができ、この試験は、エレベータの稼動中にケーブルの種々の部分を試験することにより行うことができる。エレベータかごがシステム内の種々の場所に位置している際にケーブルの種々の部分の試験を行うことにより、本発明の装置は、最終的にケーブルの全長を試験することができる。これに関するある特定のオプションは、装置がケーブルの種々の連続した部分を段階的に(incrementally)試験して、ケーブル全体を評価することである。別のオプションは、種々の部分を無作為に試験することであってもよい。
【図面の簡単な説明】
【0016】
【図1】第1のエレベータシステムに具現される本発明を示す。
【図1A】図1に示す受信機および送信機の拡大図を示す。
【図2】第2のエレベータシステムに具現される本発明を示す。
【図2A】図2に示す受信機および送信機の拡大図を示す。
【Technical field】
[0001]
The present invention relates to an elevator system. More particularly, the present invention relates to an apparatus for testing an aramid fiber cable to determine when the aramid fiber cable used in an elevator system is damaged and needs to be replaced.
[Background of the invention]
[0002]
Conventional steel cables for elevators can be easily visually inspected for wear. Since the wires break individually, these breaks can be easily confirmed. Aramid fiber elevator cables are covered with a protective sheath that makes visual inspection impossible. Even when the rope is not armed, it may be difficult to determine a suitable time to change the rope. This is because the appearance of the fiber is almost the same regardless of whether the fiber is new or needs to be replaced.
[0003]
U.S. Pat. No. 5,834,942 issued to De Angelis on Nov. 10, 1998 discloses an apparatus for determining when a synthetic fiber cable for an elevator (such as an aramid cable) should be replaced. The apparatus includes a voltage detection device that detects a voltage on at least one carbon fiber of the synthetic fiber cable and at least one threshold device that determines when the detected voltage exceeds a predetermined voltage threshold. The detected voltage depends on the integrity of a portion of the synthetic cable (especially the carbon fibers in the synthetic cable). Exceeding the predetermined voltage threshold indicates failure of that portion of the cable. Prior art devices take the measure of placing conductive fibers in the cable so that the fibers can be monitored by electrical means. Therefore, this device may not be suitable for synthetic cables that are not readily conductive.
[0004]
Those skilled in the art have shown that elastic properties of aramid materials can be determined from measurements of wave propagation through the aramid material (M. Ferreira et al., “Nondestructive Testing of Polyaramide Cables by Longitudinal Wave Propagation: Study of the Dynamic Modulus ”, Polymer Engineering and Science, Vol. 40, No. 7, July 2000). In particular, it has been found that polyaramid cables in different fatigue states each have their own acoustic longitudinal wave velocity. Longitudinal waves are known to travel on aramid fiber ropes according to the following formula:
V 2 = E / ρ (Formula 1)
Where V = velocity of wave propagation, E = dynamic or sonic modulus, and ρ = density. The tensile modulus and acoustic modulus both change at the same rate with fatigue, so the tensile modulus can be calculated from the observed wave propagation values. It was found that E = f (Fr), where E (elastic modulus) is plotted against Fr (residual strength). In other words, there is a quantifiable relationship between the elastic modulus (obtained from the velocity) and the residual strength.
[0005]
For an aramid cable used in an elevator system, a similar relationship can be obtained between elastic modulus and residual strength. This relationship varies based on the particular aramid material used in the cable and the dimensions of the cable. It is possible to extrapolate the residual strength from a plurality of measurements of modulus of elasticity where the relationship is determined. This has not been done so far for elevator systems.
[0006]
Accordingly, it is an object of the present invention to provide an apparatus for inspecting an aramid fiber elevator cable and calculating the residual strength of the cable in order to determine when the cable needs to be replaced.
[Summary of Invention]
[0007]
The present invention relates to an apparatus for inspecting an aramid fiber cable that drives an elevator and calculating the residual strength of the cable, thereby determining and calculating the time when the cable needs to be replaced. The apparatus comprises a transmitter that transmits sound waves traveling along an aramid fiber cable and a receiver that receives the sound waves after the sound waves have traversed a designated portion of the cable. The transmitter and the receiver supply a signal indicating the time when the sound wave is transmitted by the transmitter and a signal indicating the time when the sound wave is subsequently received by the receiver.
[0008]
The present invention provides a means for processing the first signal and the second signal, thereby calculating the residual strength of the cable. In particular, the present invention provides an elevator control system connected to a transmitter and a receiver. The control system has a program and associated algorithm that calculates the velocity of the sound wave based on the time of the first signal and the second signal. In this case, the program calculates the elastic modulus of the cable and subsequently determines the residual strength of the cable. Determining the residual strength is based on a stored equation that indicates the residual strength as a function of the modulus of elasticity. The stored formula depends on the specific aramid cable used in the system.
[0009]
The transmitter and receiver may be placed at various locations along the cable. However, in a preferred embodiment, the transmitter and receiver are co-located along the cable and located a nominal distance from the sheave used in the elevator system. In this case, the speed of the sound wave is calculated by measuring the time it takes for the sound wave to travel from the transmitter to the sheave and back to the receiver. In this embodiment, the transmitter and receiver are actually housed in one unit.
[0010]
The invention also relates to an elevator system incorporating an apparatus for inspecting an aramid cable used to drive the elevator system. The elevator system typically includes an elevator car, an aramid fiber cable connected to the car, a hoist with a drive motor that moves the cable to move the car, and one or more to guide the movement of the cable. A sheave and a counterweight coupled to the cable to balance the weight of the car. The device of the present invention is incorporated into this system.
Detailed Description of the Invention
[0011]
1 and 2 show the present invention embodied in two different elevator systems. In these figures, like reference numerals represent like elements.
[0012]
The system comprises an elevator car 3 suspended by an aramid fiber cable 7. The aramid fiber cable rests on one or more sheaves 9 and is connected to a counterweight 11 to keep the system balanced. A hoisting machine 15 including one of the sheaves 9 drives the cable in one of two directions to raise and lower the elevator car 3.
[0013]
The apparatus of the present invention is incorporated into the system as follows. Referring to the enlarged views of FIG. 1A and FIG. 2A, a transmitter 22 and a receiver 24 each composed of an acoustic sensor are connected to the aramid fiber cable 7. The transmitter 22 includes components that can transmit acoustic waves along the aramid fiber cable 7. The transmitter 22 transmits sound waves that travel from the transmitter to the nearest sheave and reflect back from the sheave to the receiver 24. The transmitter 22 and the receiver 24 generate a signal indicating the time when the sound wave is first transmitted to the cable 7, and then a signal indicating the time when the sound wave is received by the receiver 24.
[0014]
Means are provided for processing the first signal and the second signal, thereby calculating the residual strength of the cable. In particular, the present invention provides an elevator control system 35 that is connected to both the transmitter 22 and the receiver 24. The control system 35 has a program that includes an algorithm suitable for calculating the velocity of the sound wave based on the first signal and the second signal. The control system and program may be provided in the machine room (as in FIG. 1). In addition, as shown in FIG. 2, the elevator car 3 may include an interface 38 that receives signals from the transmitter and receiver and sends the signals to the control system. A program in the control system calculates the cable's modulus, and then determines the cable's residual strength from a stored equation that represents the residual strength as a function of the modulus.
[0015]
When the calculated residual strength falls below a predetermined threshold, the control system 35 suitably gives notification that the aramid cable 7 needs to be replaced. If desired, the control system may be programmed to shut down the system when the residual strength of the aramid cable 7 falls below a threshold value. Residual strength values are determined periodically and can be automatically stored in the memory of the control system for use in predicting cable life. This is an important advantage since the cable can be tested to determine the residual strength while the elevator is running. In particular, the device of the present invention can continuously test the residual strength of the cable, which can be done by testing various parts of the cable during elevator operation. By testing various parts of the cable while the elevator car is located at various locations in the system, the apparatus of the present invention can ultimately test the total length of the cable. One particular option in this regard is that the device evaluates the entire cable by incrementally testing various successive portions of the cable. Another option may be to randomly test various parts.
[Brief description of the drawings]
[0016]
FIG. 1 shows the present invention embodied in a first elevator system.
FIG. 1A shows an enlarged view of the receiver and transmitter shown in FIG.
FIG. 2 shows the present invention embodied in a second elevator system.
FIG. 2A shows an enlarged view of the receiver and transmitter shown in FIG.

Claims (12)

エレベータを駆動するアラミド繊維ケーブルを検査して、該アラミド繊維ケーブルの残留強度を計算する装置であって、それにより前記ケーブルの交換が必要な時期を求める、検査および計算する装置であって、
前記アラミド繊維ケーブルに沿って音波を伝え(introduce)、前記音波を伝えた時刻を示す第1の信号を供給する送信機と、
前記アラミド繊維ケーブルに沿って進む前記音波を受信し、前記音波を受信した時刻を示す第2の信号を供給する受信機と、
前記第1の信号および前記第2の信号を処理する手段であって、それにより前記ケーブルの残留強度を計算し、処理する手段と、
を備える装置。
An apparatus for inspecting and calculating an aramid fiber cable driving an elevator and calculating a residual strength of the aramid fiber cable, thereby obtaining a time when the cable needs to be replaced;
Transmitting a sound wave along the aramid fiber cable (introduce) and supplying a first signal indicating the time when the sound wave was transmitted;
A receiver for receiving the sound wave traveling along the aramid fiber cable and supplying a second signal indicating a time when the sound wave is received;
Means for processing the first signal and the second signal, thereby calculating and processing the residual strength of the cable;
A device comprising:
前記第1の信号および前記第2の信号を処理する手段は、前記送信機および前記受信機に接続されたエレベータ制御システムを含み、該制御システムは、前記第1の信号および前記第2の信号の時刻を処理することにより、前記音波の速度、前記ケーブルの弾性率、および前記ケーブルの残留強度を計算するプログラムおよび関連アルゴリズムを有する、請求項1に記載の装置。The means for processing the first signal and the second signal includes an elevator control system connected to the transmitter and the receiver, the control system comprising the first signal and the second signal. The apparatus according to claim 1, further comprising: a program and an associated algorithm for calculating the speed of the sound wave, the elastic modulus of the cable, and the residual strength of the cable by processing the time of 前記送信機および受信機は、前記ケーブルに沿って異なる場所に配置される、請求項2に記載の装置。The apparatus of claim 2, wherein the transmitter and receiver are located at different locations along the cable. 前記送信機および受信機は、前記ケーブルに沿って同じ場所に配置される、請求項2に記載の装置。The apparatus of claim 2, wherein the transmitter and receiver are co-located along the cable. 前記送信機および受信機は1つのユニットを構成する、請求項2に記載の装置。The apparatus of claim 2, wherein the transmitter and receiver comprise a unit. エレベータシステムであって、
エレベータかご、該かごに接続されたアラミド繊維ケーブル、前記かごを移動させるために前記ケーブルを移動させる駆動モータ、前記ケーブルの移動を導く1つまたは複数の綱車、および前記かごの重量と釣り合いを取るために前記ケーブルに連結された釣り合い重りと、
前記アラミド繊維ケーブルを検査して、該アラミド繊維ケーブルの残留強度を計算する装置であって、それにより前記ケーブルの交換が必要な時期を求める、検査および計算する装置であって、
前記アラミド繊維ケーブルに沿って進む音波を伝え、前記音波を送信した時刻を示す第1の信号を供給する送信機、
前記アラミド繊維ケーブルに沿って進む前記音波を受信し、進行中の前記音波を受信した時刻を示す第2の信号を供給する受信機、および
前記第1の信号および前記第2の信号を処理する手段であって、それにより前記ケーブルの残留強度を計算し、処理する手段、
を備える装置と、
を備えるエレベータシステム。
An elevator system,
An elevator car, an aramid fiber cable connected to the car, a drive motor that moves the cable to move the car, one or more sheaves that guide the movement of the cable, and balance the weight of the car A counterweight connected to the cable to take;
An apparatus for inspecting and calculating the residual strength of the aramid fiber cable by inspecting the aramid fiber cable, thereby obtaining a time when the cable needs to be replaced,
A transmitter for transmitting a sound wave traveling along the aramid fiber cable and supplying a first signal indicating a time at which the sound wave is transmitted;
A receiver that receives the sound waves traveling along the aramid fiber cable and supplies a second signal indicating the time at which the sound waves in progress are received, and processes the first signal and the second signal Means for calculating and processing the residual strength of said cable,
An apparatus comprising:
Elevator system with
前記第1の信号および前記第2の信号を処理する手段は、前記送信機および前記受信機に接続されたエレベータ制御システムを含み、該制御システムは、前記第1の信号および前記第2の信号に基づいて、前記音波の速度、前記ケーブルの弾性率、ならびに前記ケーブルの残留強度を計算するプログラムおよび関連アルゴリズムを有する、請求項6に記載のエレベータシステム。The means for processing the first signal and the second signal includes an elevator control system connected to the transmitter and the receiver, the control system comprising the first signal and the second signal. 7. An elevator system according to claim 6, comprising a program and an associated algorithm for calculating the velocity of the sound wave, the elastic modulus of the cable, and the residual strength of the cable based on 前記送信機および受信機は、前記ケーブルに沿って異なる場所に配置される、請求項7に記載のエレベータシステム。The elevator system of claim 7, wherein the transmitter and receiver are located at different locations along the cable. 前記送信機および受信機は、前記ケーブルに沿って同じ場所に配置され、前記音波は、前記送信機から前記綱車へ進み、反射して前記受信機へ戻る、請求項7に記載のエレベータシステム。8. The elevator system of claim 7, wherein the transmitter and receiver are co-located along the cable, and the sound waves travel from the transmitter to the sheave and reflect back to the receiver. . 前記送信機および受信機は1つのユニットを構成する、請求項7に記載のエレベータシステム。The elevator system according to claim 7, wherein the transmitter and the receiver constitute one unit. 前記装置は、エレベータが稼動中であり、かつ該システム内の種々の場所にある際に、前記アラミド繊維ケーブルの長さの種々の部分の残留強度を計算するようになっている、請求項7に記載のエレベータシステム。The apparatus is adapted to calculate residual strength of various portions of the length of the aramid fiber cable when the elevator is in operation and at various locations in the system. The elevator system described in. 前記装置は、前記アラミド繊維ケーブルの種々の部分の残留強度を段階的に計算するようになっており、それにより前記ケーブル全体を評価するようにする、請求項11に記載のエレベータシステム。The elevator system according to claim 11, wherein the apparatus is adapted to calculate in stages the residual strength of various parts of the aramid fiber cable, thereby evaluating the entire cable.
JP2003529106A 2001-09-17 2002-09-13 Equipment for testing aramid fiber elevator cables Expired - Fee Related JP4128529B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/953,689 US6662660B2 (en) 2001-09-17 2001-09-17 Apparatus for testing aramid fiber elevator cables
PCT/US2002/029241 WO2003025525A1 (en) 2001-09-17 2002-09-13 Apparatus for testing aramid fiber elevator cables

Publications (2)

Publication Number Publication Date
JP2005503552A true JP2005503552A (en) 2005-02-03
JP4128529B2 JP4128529B2 (en) 2008-07-30

Family

ID=25494397

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003529106A Expired - Fee Related JP4128529B2 (en) 2001-09-17 2002-09-13 Equipment for testing aramid fiber elevator cables

Country Status (4)

Country Link
US (1) US6662660B2 (en)
EP (1) EP1428000B1 (en)
JP (1) JP4128529B2 (en)
WO (1) WO2003025525A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007505022A (en) * 2003-09-12 2007-03-08 ティッセン エレベーター キャピタル コーポレーション Equipment for testing aramid fiber elevator cables

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10340713B3 (en) * 2003-09-04 2005-04-14 Steag Ag Method for determining the residual lifespan of hawsers
BRPI0418601A (en) * 2004-03-16 2007-05-02 Otis Elevator Co Method for modeling a condition of an elevator traction support, System for determining a condition of an elevator traction support and Controller useful for determining a condition of an elevator traction support
US7575371B1 (en) 2004-11-11 2009-08-18 Fieldmetrics, Inc Temperature sensor and extensometer
CN101778791A (en) * 2007-08-17 2010-07-14 因温特奥股份公司 Elevator system having a load carrier condition detector device, and method for detecting a condition of a load carrier
CA2760939C (en) * 2009-05-05 2019-08-20 Actuant Corporation Non-contact acoustic signal propagation property evaluation of synthetic fiber rope
DE202011001846U1 (en) 2011-01-24 2012-04-30 Liebherr-Components Biberach Gmbh Device for detecting the Ablegereife a high-strength fiber rope when used on hoists
DE102011018535A1 (en) 2011-04-26 2012-10-31 Liebherr-Components Biberach Gmbh cable tester
DE102013014265A1 (en) * 2013-08-27 2015-03-05 Liebherr-Components Biberach Gmbh Device for detecting the Ablegereife a high-strength fiber rope when used on hoists
GB201400967D0 (en) * 2014-01-21 2014-03-05 Parkburn Prec Handling Systems Ltd Monitoring system
EP3191395B1 (en) * 2014-09-11 2023-08-23 Otis Elevator Company Vibration-based elevator tension member wear and life monitoring system
US9557300B2 (en) * 2014-11-12 2017-01-31 Halliburton Energy Services, Inc. Wireline cable fatigue monitoring using thermally-induced acoustic waves
KR101912352B1 (en) * 2016-11-22 2018-10-26 한국산업기술시험원 Testing apparatus for wire rope durability
DE102018123758A1 (en) * 2018-06-28 2020-01-02 Liebherr-Components Biberach Gmbh Method and device for setting the maturity detection of high-strength fiber ropes
CN109855857B (en) * 2019-03-28 2023-12-15 青岛英派斯健康科技股份有限公司 Steel cable durability testing machine
CN110282523A (en) * 2019-07-12 2019-09-27 上海贝恩科电缆有限公司 The terraced trailing cable stabilization of high speed and reliability test experimental rig
CN113086808B (en) * 2021-04-30 2022-05-03 天津市滨海新区检验检测中心 Elevator safety monitoring mechanism and system

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4295212A (en) * 1980-01-28 1981-10-13 The United States Of America As Represented By The Secretary Of The Navy Linear acoustic array
US4445593A (en) * 1982-10-15 1984-05-01 Siecor Corporation Flat type feeder cable
US4622853A (en) 1985-08-23 1986-11-18 Union Camp Corporation Laser induced acoustic generation for sonic modulus
US4979125A (en) * 1987-11-20 1990-12-18 Southwest Research Institute Non-destructive evaluation of ropes by using transverse impulse vibrational wave method
YU47190B (en) 1988-02-19 1995-01-31 Institut Za Opštu I Fizičku Hemiju DEVICE FOR NON-INVASIVE ACOUSTIC TESTING OF ELASTICITY OF SOFT BIOLOGICAL MATERIALS
DE69128466T2 (en) * 1991-05-27 1998-07-09 Fokker Aircraft B.V., Schiphol Method and device for frequency-selective ultrasound testing of multilayer structures
US5456113A (en) 1992-11-06 1995-10-10 Southwest Research Institute Nondestructive evaluation of ferromagnetic cables and ropes using magnetostrictively induced acoustic/ultrasonic waves and magnetostrictively detected acoustic emissions
CA2169431C (en) 1995-03-06 2005-07-12 Claudio De Angelis Equipment for recognising when synthetic fibre cables are ripe for being discarded
SE9600989D0 (en) * 1996-03-15 1996-03-15 Abb Research Ltd Method and apparatus for space charge measurement in cables using a pulsed electroacoustic method
WO1999027360A1 (en) * 1997-11-21 1999-06-03 Mitsubishi Cable Industries, Ltd. Method and device for diagnosing deterioration of an article having at least a covering layer of organic polymer material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007505022A (en) * 2003-09-12 2007-03-08 ティッセン エレベーター キャピタル コーポレーション Equipment for testing aramid fiber elevator cables

Also Published As

Publication number Publication date
JP4128529B2 (en) 2008-07-30
US20030052695A1 (en) 2003-03-20
WO2003025525A1 (en) 2003-03-27
EP1428000A4 (en) 2007-08-22
US6662660B2 (en) 2003-12-16
EP1428000B1 (en) 2016-04-06
EP1428000A1 (en) 2004-06-16

Similar Documents

Publication Publication Date Title
JP4128529B2 (en) Equipment for testing aramid fiber elevator cables
CA2538128C (en) Apparatus for testing aramid fiber elevator cables
KR102488932B1 (en) Vibration-based elevator tension member wear and life monitoring system
CN103476697B (en) For identifying the equipment of the state of scrapping of the fibrecord used in weight-lifting equipment
US6073728A (en) Method and apparatus to inspect hoisting ropes
CN101778791A (en) Elevator system having a load carrier condition detector device, and method for detecting a condition of a load carrier
CA3028440A1 (en) Apparatus and method for measuring properties of a rope
JP4488216B2 (en) Elevator control device
Casey et al. A review of the acoustic-emission monitoring of wire rope
US20190202667A1 (en) Method and testing device for determining a state of a suspension traction apparatus of an elevator system
JP3288045B2 (en) Continuous monitoring of reinforcement in structures
JP2006008385A (en) Deterioration diagnosing method for handrail of escalator
Hovhanessian et al. Instrumentation and monitoring of critical structural elements unique to suspension bridges
WO1999053282A1 (en) Method and apparatus for conducting in-situ nondestructive tensile load measurements in cables and ropes
KR20160081456A (en) Elevator weight measuring method using a sound and vibration level meter
JP2004251880A (en) Method of determining lifetime of wire rope
JP2013001523A (en) Main rope inspection device of elevator
Kwun et al. Feasibility of nondestructive evaluation of synthetic or wire ropes using a transverse-impulse vibrational wave
JP2024021417A (en) Method and apparatus for inspecting wire rope
CN116963985A (en) Device for condition monitoring of ropes of lifting equipment
DOS REIS Nondestructive testing of wire rope using analytical ultrasonics

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070213

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20070514

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20070521

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20070613

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20070620

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20070712

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20070720

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070904

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20071204

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20071211

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20071226

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20080108

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20080130

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20080206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080304

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080415

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080514

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110523

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees