JP2005502329A - 核酸結合タンパク質 - Google Patents

核酸結合タンパク質 Download PDF

Info

Publication number
JP2005502329A
JP2005502329A JP2003507251A JP2003507251A JP2005502329A JP 2005502329 A JP2005502329 A JP 2005502329A JP 2003507251 A JP2003507251 A JP 2003507251A JP 2003507251 A JP2003507251 A JP 2003507251A JP 2005502329 A JP2005502329 A JP 2005502329A
Authority
JP
Japan
Prior art keywords
polynucleotide
seq
polypeptide
sequence
amino acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003507251A
Other languages
English (en)
Inventor
ガンディー、アミーナ・アール
スウォーナカール、アニータ
ハファリア、エープリル・ジェイ・エイ
ワレン、ブリジット・エイ
エマーリング、ブルック・エム
アービズ、チャンドラ・エス
アイソン、クレイグ・エイチ
ホンシェル、シンシア・ディー
リー、アーンスティーン・エイ
ユエ、ヘンリー
フォーサイス、イアン・ジェイ
ランクマール、ジャヤラクシミ
グリフィン、ジェニファー・エイ
ヤング、ジュンミング
サンジャンワラ、マデュスダン・エム
ボーグン、マライア・アール
ボロースキー、マーク・エル
ヤオ、モニーク・ジー
チョーラ、ナリンダー・ケイ
バンドマン、オルガ
ラル、プリーティ・ジー
ベチャ、シャニア・ディー
リー、ソー・ユーン
リチャードソン、トマス・ダブリュ
エリオット、ビッキー・エス
ルオ、ウェン
タング、ワイ・トム
ゼバージャディアン、イェガネー
リュ、ヤン
Original Assignee
インサイト・ゲノミックス・インコーポレイテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by インサイト・ゲノミックス・インコーポレイテッド filed Critical インサイト・ゲノミックス・インコーポレイテッド
Publication of JP2005502329A publication Critical patent/JP2005502329A/ja
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • C07K14/4701Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals not used
    • C07K14/4702Regulators; Modulating activity
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/04Drugs for disorders of the alimentary tract or the digestive system for ulcers, gastritis or reflux esophagitis, e.g. antacids, inhibitors of acid secretion, mucosal protectants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/16Drugs for disorders of the alimentary tract or the digestive system for liver or gallbladder disorders, e.g. hepatoprotective agents, cholagogues, litholytics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • A61P11/06Antiasthmatics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • A61P13/08Drugs for disorders of the urinary system of the prostate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • A61P13/12Drugs for disorders of the urinary system of the kidneys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P15/00Drugs for genital or sexual disorders; Contraceptives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P15/00Drugs for genital or sexual disorders; Contraceptives
    • A61P15/08Drugs for genital or sexual disorders; Contraceptives for gonadal disorders or for enhancing fertility, e.g. inducers of ovulation or of spermatogenesis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P15/00Drugs for genital or sexual disorders; Contraceptives
    • A61P15/10Drugs for genital or sexual disorders; Contraceptives for impotence
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P15/00Drugs for genital or sexual disorders; Contraceptives
    • A61P15/14Drugs for genital or sexual disorders; Contraceptives for lactation disorders, e.g. galactorrhoea
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/06Antipsoriatics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P21/00Drugs for disorders of the muscular or neuromuscular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/08Antiepileptics; Anticonvulsants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/14Drugs for disorders of the nervous system for treating abnormal movements, e.g. chorea, dyskinesia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/14Drugs for disorders of the nervous system for treating abnormal movements, e.g. chorea, dyskinesia
    • A61P25/16Anti-Parkinson drugs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/18Antipsychotics, i.e. neuroleptics; Drugs for mania or schizophrenia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/22Anxiolytics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • A61P27/02Ophthalmic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • A61P27/02Ophthalmic agents
    • A61P27/12Ophthalmic agents for cataracts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/10Antimycotics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P33/00Antiparasitic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/02Antineoplastic agents specific for leukemia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/06Immunosuppressants, e.g. drugs for graft rejection
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/08Antiallergic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P5/00Drugs for disorders of the endocrine system
    • A61P5/14Drugs for disorders of the endocrine system of the thyroid hormones, e.g. T3, T4
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P5/00Drugs for disorders of the endocrine system
    • A61P5/18Drugs for disorders of the endocrine system of the parathyroid hormones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • A61P7/06Antianaemics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8201Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation
    • C12N15/8209Selection, visualisation of transformants, reporter constructs, e.g. antibiotic resistance markers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/158Expression markers

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Public Health (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biomedical Technology (AREA)
  • Neurology (AREA)
  • Neurosurgery (AREA)
  • Genetics & Genomics (AREA)
  • Diabetes (AREA)
  • Endocrinology (AREA)
  • Reproductive Health (AREA)
  • Oncology (AREA)
  • Zoology (AREA)
  • Immunology (AREA)
  • Hematology (AREA)
  • Communicable Diseases (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Pulmonology (AREA)
  • Urology & Nephrology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • General Engineering & Computer Science (AREA)
  • Ophthalmology & Optometry (AREA)
  • Gynecology & Obstetrics (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Pregnancy & Childbirth (AREA)

Abstract

本発明は、ヒトの核酸結合タンパク質(NAAP)および、NAAPを同定しコードするポリヌクレオチドを提供する。本発明の実施態様はまた、発現ベクター、宿主細胞、抗体、アゴニストおよびアンタゴニストをも提供する。他の実施態様は、NAAPの異常発現に関連する疾患を診断、治療または予防する方法をも提供する。

Description

【技術分野】
【0001】
本発明は、新規の核酸およびその核酸にコードされる核酸結合タンパク質に関する。本発明はまた、これらの核酸とタンパク質を利用した、細胞増殖異常、神経疾患、生殖系疾患、発生または発達障害、自己免疫/炎症性疾患、DNA修復障害および感染症の、診断・治療・予防に関する。本発明は更に、核酸および核酸結合タンパク質の発現における、外因性化合物の効果についての算定に関する。
【背景技術】
【0002】
多細胞生物は、構造及び機能が著しく異なる多様な細胞型から構成されている。細胞型は遺伝子発現パターンの特徴によって決定され、また、異なった細胞型は発生中に、オーバーラップするが弁別的な一組の遺伝子群を発現する。遺伝子発現の空間的及び時間的な調節は、細胞増殖、細胞分化、アポトーシス、及び生物の発達に必要なその他のプロセスにとって極めて重要である。更に、遺伝子発現は、細胞外シグナルに応答して調節される。細胞外シグナルは、細胞間伝達を仲介し、様々な細胞型の作用を協調させる。適切な遺伝子調節はまた、細胞を効率よく機能させる。これを確実にするため、その機能が要求される遺伝子群のみが所定の時期に発現される。
【0003】
細胞の核は、細胞の遺伝情報の全てをDNAの形で含み、またDNAの複製とDNAからRNAへの転写に必要な成分と機構も含んでいる(Alberts, B. 他 (1994) Molecular Biology of the Cell, Garland Publishing Inc. New York NY, 335399ページを参照)。DNAは核内でヒストンおよび非ヒストン染色体タンパク質などのさまざまなDNA結合タンパク質との相互作用により、コンパクトな構造物として組織化されている。DNAの複製または転写の前に、DNA特異的なヌクレアーゼ(DNAse)がこれらのコンパクトな構造物を部分的に分解する。DNAの複製は、二本鎖DNA螺旋を巻き戻すDNAヘリカーゼおよび分離したDNA鎖を複製するDNAポリメラーゼの助力を得て行われる。
【0004】
転写因子
転写調節タンパク質は、遺伝子発現の制御に必須である。これらのタンパク質の一部は転写因子として機能し、遺伝子の転写を開始、活性化、抑制し、または終了させる。転写因子は一般に遺伝子のプロモーター、エンハンサー、または上流調節領域に、配列特異的に結合する(ただし、一部の因子は遺伝子コード領域内またはその下流の調節エレメントに結合する)。転写因子は、単体で或いは他のアクセサリーファクターと複合体を形成してDNAの特定の領域に結合し得る(概説はLewin, B. (1990) Genes IV, Oxford University Press, New York NY, および Cell Press, Cambridge MA, 554-570ページ)。
【0005】
DNAの二重らせん構造とリピート配列群とがトポロジー的および化学的な特徴を生み出し、これらの特徴は転写因子によって認識され得る。これらの特徴とは、水素結合の供与基と受容基、疎水性パッチ、主溝と副溝、および、配列の規則的な繰り返しストレッチ群(repeated stretches:ヘリックス内に明確な折れ曲がり群を誘導)である。通常、転写因子が特異的に認識するDNA配列モチーフ群は、約20ヌクレオチドの長さである。複数の、隣接した転写因子結合モチーフ群が遺伝子調節に必要な場合もある。
【0006】
多くの転写因子は、DNA結合の構造的モチーフ群を組み込んでいる。これらのモチーフはαヘリックスまたはβシートからなり、DNAの主溝に結合する。4種の良く特徴付けられたモチーフが、ヘリックス・ターン・ヘリックス、Znフィンガー、ロイシン・ジッパー、およびヘリックス・ループ・ヘリックスである。これらのモチーフを持つタンパク質は、単独で単量体として作用したり、または、ホモ二量体やヘテロ二量体を形成してDNAと相互作用する。
【0007】
ヘリックス・ターン・ヘリックス・モチーフは2つのαヘリックスからなり、これらは、決まった角度で、アミノ酸群の或る短鎖によって接続されている。一方のヘリックスが、主溝に結合する。ヘリックス・ターン・ヘリックス・モチーフの1例はホメオボックス・モチーフであり、これはホメオドメイン蛋白質に在る。ホメオドメイン蛋白質は発生期に前後体軸(anterior-posterior body axis)を決めるのに重要であり、動物界全体で保存されている。キイロショウジョウバエのアンテナペディアタンパク質とウルトラバイソラックスタンパク質とは、原型のホメオドメインタンパク質である(Pabo, C.O. および R.T. Sauer (1992) Annu. Rev. Biochem. 61:1053-1095)。
【0008】
ホメオボックス遺伝子は、転写因子をコードする高度に保存された調節遺伝子のファミリーである。これらは胚の発生に必須である。これらは四肢の形成および生殖器官の発生に重要である。また、マウスの子宮受容力(uterine receptivity)および着床においても機能を持ち、ヒトにおいても恐らく類似の役割を持っている(Daftary, G. S. および Taylor, H. S. (2000) Semin. Reprod. Med. 18:311320)。ホメオボックス遺伝子の突然変異は、自閉症への感受性で或る役割を持ち(Ingram, J. L. 他 (2000) Teratology 62:393405)、糖尿病や癌などのヒトの病気とに関連すると考えられている(Cillo, C. 他 (2001) J. Cell Physiol. 188:161169)。
【0009】
ヘリックス・ループ・ヘリックス・モチーフ(HLH)は1つの短いαヘリックスと、これが1つのループによって接続された長いαヘリックスとからなる。このループは柔軟なので、2本のヘリックスは、互いに対して折れ曲がることができ、DNAに結合できる。癌原遺伝子であるMycは転写因子であり、細胞増殖に必要な遺伝子群を活性化する。Mycは原型的なHLHモチーフを持つ。
【0010】
Znフィンガーモチーフは亜鉛イオンに結合する。このモチーフは一般に、周期的に配置されたシステイン残基とヒスチジン残基からなる約30アミノ酸のタンデムリピート群を持つ。この配列パターンの2例、C2H2とC3HC4 (「RING」フィンガー)については既に記載されている(前出のLewin)。Znフィンガータンパク質の各々が1つの逆平行βシート及び1つのαヘリックスを持ち、それらの近接性とコンフォメーションとは、亜鉛イオンによって維持されている。DNAとの接触は、αヘリックスの前のアルギニン残基によって、並びにαヘリックスの第2の残基、第3の残基、及び第6の残基によってなされる。Znフィンガーモチーフの変異体の例には、あまり解明されていないシステインリッチモチーフ群があり、これらの変異体モチーフは、亜鉛または他の金属イオンと結合する。これらの変異体モチーフはヒスチジン残基を持たない場合があり、一般に非反復である。タンパク質の各ZnフィンガーのαヘリックスがDNA二重らせんの主溝と接触できるように、Znフィンガーモチーフはそのタンパク質内でタンデム型にリピートされ得る。この、タンパク質とDNAとの間の接触の繰り返しによって、強力且つ特異的なDNA−タンパク質相互作用が起こる。この相互作用の強度及び特異性は、タンパク質内のZnフィンガーモチーフの数によって調節され得る。Znフィンガーは、初めはDNAと直接相互作用する領域としてDNA結合タンパク質群において同定されたが、DNAと結合しない種々のタンパク質にも出現する(Lodish, H.他 (1995) Molecular Cell Biology, Scientific American Books, New York NY, 447-451ページ)。例えば、Galcheva-Gargova, Z. 他 (1996、 Science 272:1797-1802) は、種々のサイトカイン受容体と相互作用するZnフィンガータンパク質群を同定している。
【0011】
C2H2タイプのZnフィンガーシグネチャモチーフには、或る28アミノ酸の配列があり、この配列には、2つの保存されたCys残基、および2つの保存されたHis残基が、1つのC-2-C-12-H-3-Hタイプのモチーフ内に含まれる。C2H2タイプのモチーフは一般に、多重タンデムリピートで出現する。或るシステインリッチドメインであってモチーフAsp-His-His-Cysを含むドメイン (DHHC-CRD) が、固有サブグループのZnフィンガープロテインとして同定されている。DHHC-CRD領域は、成長と発達とに関与すると思われている。或るDHHC-CRD突然変異体は、Rasの機能欠損を示す。Rasは低分子の膜結合型GTP結合タンパク質であり、細胞の成長と分化とを調節する。一方、他のDHHC-CRDタンパク質類は、おそらくRasとは無関係の経路群で機能する(Bartels, D.J. 他 (1999) Mol. Cell Biol. 19:6775-6787)。
【0012】
Znフィンガー転写因子は、しばしば、モジュラー配列モチーフ群を伴う。このモチーフの例は、Kruppel-associated box (KRAB) およびSCANドメインである。例えば、低αリポ蛋白血症(hypoalphalipoproteinemia)感受性遺伝子ZNF202は、或るSCANボックスと或るKRABドメイン(8つのC2H2 Znフィンガーモチーフ群が続く)とをコードする(Honer, C. 他 (2001) Biochim. Biophys. Acta 1517:441-448)。SCANドメインは、高度に保存されたロイシンリッチモチーフであり、約60アミノ酸からなり、Znフィンガー転写因子のアミノ末端に見られる。SCANドメインは、最も多くはC2H2 Znフィンガーモチーフに連結しており、この連結は、それらのカルボキシル末端を通じてなされる。生化学的な結合研究は、SCANドメインを選択的なヘテロおよびホモタイプのオリゴマー化ドメインとして確定している。SCANドメインが媒介するタンパク質複合体は、転写因子の生物学的機能を変調させるよう機能するようである(Schumacher, C. 他 (2000) J. Biol. Chem. 275:17173-17179)。
【0013】
KRAB (Kruppel-associated box)ドメインは、保存されたアミノ酸配列であって約75アミノ酸にまたがる。KRABドメインは、C2H2 Znフィンガーをコードする300〜700種の遺伝子のほぼ3分の1に見られる。KRABドメインは、フィンガーリピートに対してN末端側に見られる。KRABドメインは、一般に2つのエキソンによってコードされる。KRAB-A領域またはボックスが1つのエキソンによってコードされ、KRAB-B領域またはボックスが第2エキソンによってコードされる。KRABドメインの機能は、転写の抑制である。転写抑制を達成するため、KRAB-associated protein-1(1種の転写コリプレッサー)またはKRAB-A相互作用タンパク質のどちらかが動員される。KRABドメインを持つタンパク質は、発生期に調節的な役割を果たすようである(Williams, A.J. 他 (1999) Mol. Cell Biol. 19:8526-8535)。高度に近縁のヒトKRAB Znフィンガー蛋白質群は全ヒト組織で検出し得るが、或るサブグループは、ヒトTリンパ球に高度に発現される(Bellefroid, E.J. 他 (1993) EMBO J. 12:13631374)。ZNF85 KRAB Znフィンガー遺伝子はヒトZNF91ファミリーのメンバーであり、正常成人精巣や、精上皮腫(seminoma)や、NT2/D1 奇形癌腫細胞株に高度に発現される(Poncelet, D.A. 他 (1998) DNA Cell Biol.17:931-943)。
【0014】
C4モチーフは、ホルモン調節されるタンパク質に見られる。C4モチーフは一般に、唯2つのリピートのみを持つ。多数の真核生物タンパク質およびウイルス蛋白質には、或る保存されたシステインリッチドメインがあり、これは40〜60残基からなり、C3HC4 ZnフィンガーまたはRINGフィンガーと呼ばれる。このドメインは亜鉛2原子と結合する。また、おそらくタンパク質間相互作用の仲介に関与する。亜鉛ライゲーション系の3次元の「十字(cross-brace)」構造は、RINGドメイン独自のものである。このようなドメイン内のシステイン群の間隔は、C-x(2)-C-x(9 〜 39)-C-x(1 〜 3)-H-x(2 〜3)-C-x(2)-C-x(4 〜 48)-C-x(2)-Cである。PHDフィンガーは、或るC4HC3 Znフィンガー様モチーフであって、クロマチンが媒介する転写調節に関与すると思われる核タンパク質に見られる。
【0015】
GATAタイプの転写因子には1つまたは2つのZnフィンガードメインが含まれ、DNAの、連続したヌクレオチド配列であるGATAを有する領域に特異結合する。NMR研究の示すところでは、このZnフィンガーには2枚の不規則な逆平行βシートと1つのαヘリックスとがあり、続いて、フィンガーのC末端までの長いループがある(Ominchinski, J.G. (1993) Science 261:438-446)。このヘリックスと、2枚のβシートを接続するループとがDNAの主溝と接触し、一方、C末端部(結合の特性を決める部位)は、副溝内に巻き付きながら入り込む(wraps around into the minor groove)。
【0016】
LIMモチーフには約60アミノ酸残基があり、7つの保存されたシステイン残基と1つのヒスチジンとが、1つのコンセンサス配列内に含まれる(Schmeichel, K.L. および M.C. Beckerle (1994) Cell 79:211-219)。LIMファミリーには、発達、分化、および細胞成長に関与し得る、転写因子と細胞骨格タンパク質とを含む。一例のアクチン結合LIMタンパク質は、細胞骨格と細胞形態形成との調節において役割を果たし得る(Roof, D.J. 他 (1997) J. Cell Biol. 138:575-588)。アクチン結合LIMタンパク質のN末端ドメインには、4つの二重Znフィンガーモチーフ群があり、LIMコンセンサス配列を有する。アクチン結合LIMタンパク質のC末端ドメインは、既知のアクチン結合タンパク質(例えばデマチン:dematinおよびビリン:villin)との配列類似性を示す。アクチン結合LIMタンパク質は、Fアクチンと結合する。この結合は、デマチン様C末端ドメインを通じて行う。LIMドメインは、他のLIM結合タンパク質とのタンパク質間相互作用を仲介するように思われる。
【0017】
骨髄性細胞の発達は、組織特異的な転写因子群によって制御される。骨髄性Znフィンガー蛋白質(MZF)としては、MZF-1とMZF-2とがある。MZF-1は好中性顆粒球の発生の調節において機能する。或るネズミ相同体MZF-2は、骨髄性細胞群、特に好中球系にコミットされた細胞に発現される。MZF-2は、G-CSFによって下方調節される。また、好中球発生において独自の機能を持つようである(Murai, K. 他 (1997) Genes Cells 2:581-591)。
【0018】
ロイシンジッパーモチーフは、ロイシンに富むアミノ酸群の或るストレッチを有し、これは両親媒性のαヘリックスを形成できる。この構造は、2つのロイシンジッパー蛋白質の二量体化のための基盤を提供する。ロイシンジッパーに隣接する領域は通常は塩基性であり、タンパク質二量体化すると、主溝に結合するのに最適であるように配置される。このようなモチーフを持つタンパク質を総称してbZIP転写因子と呼ぶ。ロイシンジッパーモチーフは癌原遺伝子であるFosとJunとに見られる。FosとJunとはヘテロ二量体転写因子であるAP1を有する。AP1は、細胞成長と、細胞系統の決定とに関わる(Papavassiliou, A.G. (1995) N. Engl. J. Med. 332:45-47)。
【0019】
ヘリックス・ループ・ヘリックス・モチーフ(HLH)は1つの短いαヘリックスと、これが1つのループによって接続された長いαヘリックスとからなる。このループは柔軟なので、2本のヘリックスは、互いに対して折れ曲がることができ、DNAに結合できる。転写因子であるMycは、原型的なHLHモチーフを持つ。
【0020】
NF-κ-B/Relシグネチャは、或るファミリーの真核細胞転写因子を規定する。この転写因子は、発癌や、胚の発生、分化、および免疫応答に関与する。Rel 相同性ドメイン(RHD)を持つ殆どの転写因子は、二量体として、或るコンセンサスDNA配列モチーフであるκ-Bと結合する。Rel ファミリーのメンバーは、高度に保存された300アミノ酸ドメインであるRel 相同性ドメインを共有する。特徴的なRel C末端ドメインは、遺伝子活性化および細胞質へのアンカリングの機能に関わる。RHDドメインを持つことが知られるタンパク質の例には、脊椎動物核因子NFκB(或るDNA結合サブユニットと転写因子p65とのヘテロ二量体)、哺乳類転写因子RelB、および脊椎動物プロト癌遺伝子crelがあり、crelは、分化とリンパ球新生とに関わるタンパク質である(Kabrun, N., および P.J. Enrietto (1994) Semin. Cancer Biol. 5:103112)。
【0021】
或るDNA結合モチーフであるARID (ATリッチ相互作用ドメイン)は、或る進化的に保存されたファミリーのタンパク質を特徴づける。約100残基のARID配列は、細胞成長、分化、および組織特異的遺伝子発現の調節への関与が強く示唆される一連のタンパク質に存在する。ARIDタンパク質の例には、Bright (B細胞特異的遺伝子発現の調節因子)、dead ringer (発達に関与)、およびMRF2 (サイトメガロウイルスエンハンサーからの発現を抑制)を含む。(Dallas, P.B. 他 (2000) Mol. Cell Biol. 20:31373146)。
【0022】
ELM2 (Egl-27およびMTA1 相同性2)ドメインは、腫瘍転移関連タンパク質MTA1、およびタンパク質ER1に見られる。線虫(Caenorhabditis elegans)遺伝子egl 27は、胚パターン形成に必要である。ヒトMTA1遺伝子は転移性癌で発現が上昇し、この遺伝子は、ヒストン脱アセチル酵素活性と、ヌクレオソームのリモデリング活性とを持つ或るタンパク質複合体の成分である(Solari, F. 他 (1999) Development 126:24832494)。ELM2ドメインは通常、myb様DNA結合ドメインのN末端に見られる。ELM2はまた、或るARID DNAに会合しているのが見られる。
【0023】
イロコイ(Iroquois:Irx)遺伝子ファミリーは線虫、昆虫および脊椎動物に見られる。Irx遺伝子は、各々が3つの遺伝子からなる1つまたは2つのゲノムクラスターとして存在するのが普通であり、特徴的なホメオドメインをもつ転写制御因子をコードする。Irx遺伝子は発生の早い時期に機能し、身体のさまざまな領域の同一性を指定する。ショウジョウバエおよび脊椎動物の両方において、発生の後期にIrx遺伝子は再び機能し、これらの領域を小さなドメインに分ける (概説はCavodeassi, F. 他 (2001) Development 128:28472855)。たとえば、マウスおよびヒトのIrx4タンパク質は83%保存されていて、マウスおよびヒトの63-aaホメオドメインはショウジョウバエのイロコイパターン遺伝子と93%以上の同一性を有している。Irx4の転写物は主に心室で発現される。ホメオボックス遺伝子Irx4は心臓の発生中に心室の分化を仲介する(Bruneau, B.G. 他 (2000) Dev. Biol. 217:26677)。
【0024】
ヒスチジントライアッド(HIT)タンパク質は、2つの相等しいプリンヌクレオチド結合部位を形成する、独特な二量体の10ストランドハーフバレル構造内の残基を共有している。全ての生命体に見出されるHint(ヒスチジントライアッドヌクレオチド結合タンパク質)関連タンパク質と動物および菌類に見出される脆弱なヒスチジントライアッド(Fhit)関連タンパク質はHITスーパーファミリーの2つの主要な分岐を代表している。Fhitの相同体はジアデノシンポリリン酸に結合し、切断する。Fhit-Ap(n)A複合体は上皮組織のプロアポトーシス腫瘍抑制経路で機能しているように見える (Brenner C. 他 (1999) J. Cell Physiol.181:179187)。
【0025】
殆どの転写因子には特徴的なDNA結合モチーフがあり、上記モチーフ群の種々の変異と新規のモチーフ群とが、これまでに特徴付けられており、また現在も行われている (Faisst, S. および S. Meyer (1992) Nucleic Acids Res. 20:3-26)。これらモチーフの内には、フォークヘッドモチーフを含む。フォークヘッドが見られる転写因子群は、発生と発癌とに関わる (Hacker, U. 他(1995) EMBO J 14:5306-5317)。また、新規の主溝および副溝DNA接触部を形成するTボックスタンパク質のTドメインも含まれる。 Brachyury (T)などのTボックス遺伝子は発生中の組織指定に必須である(Muller (1997) Nature 389:884-888)。
【0026】
クロマチン結合タンパク質
核内で、DNAはクロマチンに詰められる。クロマチンはコンパクトな構成であり、DNAの、転写因子への到達可能性を制限し、遺伝子調節において主要な役割を果たす (前出Lewin, 409-410ページ)。クロマチンのコンパクトな構造は、クロマチン結合タンパク質によって決定され影響される。このようなタンパク質としては、ヒストン、高移動度グループ(HMG)タンパク質、およびクロモドメイン蛋白質がある。5種のクラスのヒストン、H1、H2A、H2B、H3およびH4があり、全ては高度に塩基性の低分子量タンパク質である。クロマチンの基盤ユニットであるヌクレオソームには、200塩基対のDNAと、H2A、H2B、H3およびH4それぞれ2つずつのコピーとがある。H1は、隣接ヌクレオソーム群を連結する。HMGタンパク質は、低分子量の非ヒストン蛋白質であり、DNAを巻き戻すことと、一本鎖DNAを安定させることにおいて役割を果たすと思われる。クロモドメイン蛋白質は、高度にコンパクト化されたヘテロクロマチンの形成において重要な役割を果たし、ヘテロクロマチンは転写的にはサイレント(不活動)である。
【0027】
遺伝子調節に関連する疾患および障害
転写因子の突然変異は発癌に寄与する。これは細胞の増殖に関与する遺伝子の発現における転写因子の役割に起因する可能性が高い。たとえば、Fos、Jun、Myc、RelおよびSpi1などの前癌遺伝子にコードされる転写因子の突然変異は細胞増殖の刺激が増えるために発癌的である可能性がある。逆に、p53、RB1およびWT1などの腫瘍抑制遺伝子にコードされる転写因子の突然因子は細胞増殖の阻害が減少するために発癌的である可能性がある(Latchman, D. (1995) Gene Regulation: A Eukaryotic Perspective, Chapman and Hall, London, UK, 242-255ページ)。
【0028】
ヒトにおける腫瘍疾患の多くは、不適切な遺伝子発現によって起こり得る。悪性の細胞成長は、腫瘍促進遺伝子の過剰な発現又は、腫瘍抑制遺伝子の不十分な発現によって起こり得る(Cleary, M. L. (1992) Cancer Surv. 15:89-104)。Znフィンガー型の転写調節因子WT1は、ウィルムス腫瘍を持つ子供では不活性化されている腫瘍抑制タンパク質である。WT1遺伝子の欠失またはこのタンパク質のDNA結合活性を破壊する点突然変異は小児の腎芽細胞腫、Wilms腫瘍およびDenysDrash症候群の発生に関連している(Rauscher, F.J. (1993) FASEB J. 7:896903)。大細胞リンパ腫で重要な役割を果たすオンコジーンbcl-6もZnフィンガー蛋白質である(Papavassiliou, A.G. (1995) N. Engl. J. Med. 332:45-47)。染色体転座によっても、或る遺伝子のコード配列を別の無関係遺伝子の調節領域と融合させる、キメラ座(chimeric loci)が生成され得る。このような配列は、おそらく不適切な遺伝子転写を引き起こす。また、悪性腫瘍を引き起こす可能性もある。例えばバーキット型リンパ腫では、転写因子Mycが免疫グロブリン重鎖遺伝子座に転座され、Myc発現を大きく増強し、急速な細胞成長を生じて白血病をもたらす(Latchman, D. S. (1996) N. Engl. J. Med. 334:28-33)。
【0029】
グルタミンに富むある種のタンパク質は脊髄小脳失調、双極性障害、統合失調症および自閉症を含む神経学的障害に関連している(Margolis, R.L. 他 (1997) Human Genetics 100:114122)。これらのタンパク質はグルタミン残基が15以上も連続する領域を含み、神経発生または神経形成に役割を持つ可能性のある転写因子として機能している可能性がある。
【0030】
更に、免疫系は、細胞防御機構の漸進的な選択、増幅、及び動員を調整するイベントのカスケードを活性化することにより、感染や外傷に応答する。遺伝子の活性化及び抑制の複雑かつバランスの取れたプログラムが、このプロセスに関与している。しかしながら、遺伝子発現の不適切或いは不十分な調節によって起こる免疫系の活動過多は、組織や器官に相当な損傷を与え得る。この損傷は、関節炎、アレルゲン、心臓発症、発作、及び感染に関連する免疫応答についての文献に詳しく記載されている(Isselbacher, K.J. 他 (1996) Harrison's Principles of Internal Medicine, 第13版, McGraw Hill, Inc. and Teton Data Systems Software参照)。特に、Staf50 (Stimulated transacting factor of 50 kDaの略)というZnフィンガータンパク質は転写調節因子であり、さまざまな細胞株においてインターフェロンIおよびIIで誘発される。Staf50は、形質移入された細胞で、ヒトの1型免疫不全ウィルスの長い末端反復配列プロモーター領域によって指示されるウィルスの転写を下方調節することによってインターフェロンの抗ウィルス活性を仲介するように見える(Tissot, C. (1995) J. Biol. Chem. 270:1489114898)。また、自己免疫性多腺性内分泌不全症カンジダ症外胚葉性ジストロフィー(APECED)の原因遺伝子が最近単離され、2つのPHDタイプZnフィンガーモチーフを持つ或るタンパク質をコードすることが見出された(Bjorses, P. 他 (1998) Hum. Mol. Genet. 7:1547-1553)。
【0031】
更に、多細胞生物の産生は、発生の適当な段階における細胞分化の誘導及び調整に基づいている。このプロセスの中心は、体中の細胞及び組織に固有性を与える差次的な遺伝子発現である。発生中に遺伝子発現の調節に失敗すると、発生/発達障害が起こり得る。Znフィンガー型転写調節因子の突然変異に起因するヒトの発達障害には以下が含まれる。泌尿生殖器の発生異常(WT1に関連);Greig頭蓋・多合指趾症候群(cephalopolysyndactyly)、Pallister-Hall症候群、および軸後性多指症(postaxial polydactyly)タイプA(GLI3に関連);並びに、肛門、腎臓、手足および耳の異常を特徴とするTownes-Brocks症候群(SALL1関連)である(Engelkamp, D. および van Heyningen, V. (1996) Curr. Opin. Genet. Dev. 6:334-342; Kohlhase, J. 他 (1999) Am. J. Hum. Genet. 64:435-445)。
【0032】
ヒトの急性白血病は、染色体領域11q23に位置するALL-1遺伝子をさまざまなヒト染色体上に位置する一連のパートナー遺伝子に融合する染色体相互転座を伴っている。融合された遺伝子はキメラタンパク質をコードする。AF17遺伝子は1093アミノ酸残基のタンパク質をコードする。このタンパク質は融合点の3‘の位置にロイシンジッパー二量体化モチーフを含み、またタンパク質Br140(peregrin)内のドメインに相同性を示すN末端のシステインリッチドメインを含んでいる(Prasad R. 他 (1994) Proc. Natl. Acad. Sci. USA 91:81078111)。
【0033】
転写調節の障害はアルツハイマー病に至る可能性がある。この病気は進行性神経変性障害であり、特徴は、老人斑と神経原線維変化(アミロイドβペプチドを含む)との形成である。これらの斑は脳の辺縁皮質と連合皮質とに見られる。これには海馬、側頭皮質、帯状皮質、扁桃、基底核、および青班核を含む。アルツハイマー病の早期に、生理学的変化が帯状皮質に見られる(Minoshima, S. 他(1997) Ann. Neurol. 42:85-94)。進行したアルツハイマー病の患者では、蓄積する斑が、辺縁領域の神経構造を損傷し、最終的に、記憶プロセスを不自由にする。
【0034】
核酸の合成
ポリメラーゼ
DNAとRNAとの複製は、細胞の複製と機能とにとって死活的なプロセスである。DNAとRNAとの複製を仲介する酵素がそれぞれDNAポリメラーゼおよびRNAポリメラーゼであり、この仲介は「鋳型取り(templating)」プロセスで行う。このプロセスでは、DNAまたはRNAストランドのヌクレオチド配列が、相補的塩基対合によってDNAまたはRNAどちらかの相補的な核酸配列にコピーされる。しかし、この2つのプロセスには、根本的な相違がある。
【0035】
DNAポリメラーゼが触媒する反応は、或るポリヌクレオチド鎖(プライマー鎖)の3'-OH末端へのデオキシリボヌクレオチドの逐次付加であり、このプライマー鎖は第二の(鋳型)ストランドと対合される。新たなDNAストランドは、したがって5'から3'方向へ成長する(Alberts, B. 他 (1994) The Molecular Biology of the Cell, Garland Publishing Inc., New York NY, 251-254ページ)。この重合反応の基質は対応するデオキシヌクレオチド三リン酸であり、ポリメラーゼに認識されるためには、鋳型ストランド上の正しいヌクレオチドと塩基対合する必要がある。DNAは二重らせんとして存在するので、二本鎖のそれぞれが、新たな相補的ストランドの形成のための鋳型となり得る。したがって、分裂中の細胞の2個の娘細胞のそれぞれが、1本は古く1本は新しいストランドを持つ新たなDNA二重らせんを受け継ぐ。したがって、DNAは、DNAポリメラーゼによって「半保存的に」複製されると言われる。新たなDNAの合成に加え、DNAポリメラーゼはまた、損傷したDNAの修復にも関わる。これは、下記の「リガーゼ」で述べる。
【0036】
DNAポリメラーゼと対照的に、RNAポリメラーゼは1本のDNA鋳型ストランドを用いてDNAをRNAに「転写」し、これにはリボヌクレオチド三リン酸を基質として用いる。DNA重合と同様、RNA重合は、5'から3'方向に、リボヌクレオシド一リン酸の、成長するRNA鎖の3'-OH末端への付加によって進む。DNA転写はメッセンジャーRNA (mRNA)を産生し、mRNAはタンパク質合成のための情報を運ぶ。DNA転写はまた、転移RNA、リボソームRNAや、構造的または触媒的な機能を持つ他のRNAをも産生する。真核細胞では、3種の別々のRNAポリメラーゼが、3タイプのRNAを合成する(Alberts、前出 367-368ページ)。RNAポリメラーゼIは大きなリボソームRNAを作り、RNAポリメラーゼIIはタンパク質へと翻訳されるmRNAを作り、RNAポリメラーゼIIIは、種々の小さな安定したRNA(5SリボソームRNAや転移RNA(tRNA)等)を作る。どの場合も、RNA合成の開始は、RNAポリメラーゼの、DNA上のプロモーター領域への結合によってなされ、合成の開始は、プロモーター内の開始部位で起こる。合成の完了は、DNA内の停止(終了)シグナルでなされ、ここでポリメラーゼと完成したRNA鎖とが解放される。
【0037】
リガーゼ
DNA修復のプロセスによって、偶発的な塩基変化(原因は例えば酸化損傷、加水分解的攻撃、DNAの無秩序なメチル化など)が、DNAの複製または転写が起きる前に修正される。DNA修復プロセスの効率が良いので、偶発的な塩基変化の1000分の1未満のみが突然変異を起こす(Alberts、前出 245-249ページ)。殆どのタイプのDNA修復に共通の3つのステップは、(1)損傷または変容した塩基またはヌクレオチドの、DNAヌクレアーゼによる切除。(2)切除されたヌクレオチドが残したギャップへの、正しいヌクレオチドの挿入。これはDNAポリメラーゼが、相補的ストランドを鋳型として用いて行う。(3)挿入されたヌクレオチド(群)と既存DNAストランドとの間に残った切れ目の、DNAリガーゼによる埋め合わせ(sealing)、である。最後の反応において、DNAリガーゼはATP加水分解からのエネルギーを用い、切れ目の入ったホスホジエステル結合の5'末端を活性化した後、DNAストランドの3'-OHとの新たな結合を形成する。ブルーム症候群は遺伝性のヒト疾患であるが、この患者はこのDNAライゲーションが部分的に欠損しているため、癌の発症の増加を示す(Alberts、前出 247ページ)。
【0038】
ヌクレアーゼ
ヌクレアーゼ酵素には、DNAを加水分解するDNA分解酵素と、RNAを加水分解するRNA分解酵素とがある。2種のヌクレアーゼは、核酸代謝において別々の目的で働く。ヌクレアーゼは、隣接するヌクレオチド間のホスホジエステル結合を加水分解する。エンドヌクレアーゼは内部の位置で加水分解し、エキソヌクレアーゼは3'または5'末端のヌクレオチド位置で加水分解する。例えばDNAポリメラーゼにおける或るDNAエキソヌクレアーゼ活性は、ポリメラーゼによって成長するDNAストランドの3'-OH末端に付着されたヌクレオチドの内、不適切に対合したヌクレオチドを除去するよう働くので、「校正」機能を提供する。上記したように、DNAエンドヌクレアーゼ活性は、DNA修復プロセスの切除ステップに関わる。
【0039】
RNA分解酵素(RNase)もまた、種々の機能を提供する。例えばRNase Pはリボ核タンパク質酵素であり、tRNA前駆体群の5'末端の切断を、それらの成熟プロセスの一部として行う。RNase Hは、或るRNA/DNAハイブリッドのRNAストランドを消化する。このようなハイブリッドはレトロウイルスが侵入した細胞に生じ、RNase Hは、レトロウイルス複製サイクルにおける重要な酵素である。膵臓RNA分解酵素は膵臓によって腸内に分泌され、摂取した食物の中のRNAを加水分解する。血清と細胞抽出物とにおけるRNA分解酵素活性の上昇は、種々の癌や感染疾患で見られる(Schein, C.H. (1997) Nat. Biotechnol. 15:529-536)。RNA分解酵素活性の調節が、腫瘍血管新生、アレルギー反応、ウイルスの感染および複製、並びに真菌感染を制御する手段として研究されている。
【0040】
核酸の修飾
DNA の修復
細胞は常に複製異常と周囲からの攻撃(紫外線の照射等)に直面しており、DNAの損傷が生じ得る。DNAへの損傷は、分子の構造を修飾するすべての変更からなる。DNAの変更は、単一の塩基での変更および構造上の変形の2つの一般的なクラスに分けられる。単一の塩基での変更は配列に影響を及ぼすが、DNAの全体構造には影響を及ぼさない。単一の塩基での変更は転写または複製に影響を及ぼさないが、将来の世代に影響を与える。構造上の変形はDNAの構造に影響を与える。一本鎖のニックまたは塩基の除去は、DNAまたRNA合成のための生存する鋳型として鎖が作用することを妨げ得る。塩基間の鎖内または鎖間共有結合あるいは塩基への大きな付加物の付加は、二重らせんの構造を変形し、転写と複製を損ない得る。DNAへの損傷はすべて突然変異をもたらす可能性がある。そして突然変異は癌などの疾患をもたらし得る。
【0041】
DNAの変更は、細胞内の修復システムにより認識される。これらの修復系は、損傷を修正するよう作用する。それにより突然変異事象の有害な影響を妨げる。修復系は、直接修復、除去修復、回復系の3つの一般的な種類に分けられる。修復系が排除される時、細胞は紫外線の照射等の周囲の変異誘発物質に対して非常に感受性が高くなる。DNA修復系の損失と関連する疾患は、周囲の変異誘発物質に対してしばしば高い感受性を示す。そのような疾患の例には、色素性乾皮症、ブルーム症候群、ウェルナー症候群が含まれる。色素性乾皮症は、日光、特に紫外線への過敏症をもたらし、皮膚の異常を生成する。ブルーム症候群は、姉妹染色体交換等の染色体の異常の頻度を高める(Yamagata, K. 他. (1998) Proc. Natl. Acad. Sci. USA 95:8733-8738)。
【0042】
直接修復は、DNAの損傷した領域の逆または単一除去に関与する。正常な塩基に関連する不一致は、修復系内のある偏向に基づいて修復される。例えば、不一致のGT塩基対はチミンを形成する5-メチルシトシンの脱アミノ反応がしばしば引き起こす。よって、修復系は不一致のGT対をATではなくGCに変換する。修復は半メチル化DNA中の非メチル化鎖をも支援する。この鎖が新規に合成した娘鎖を表すからである。非メチル化鎖での半メチル化DNAの認識と不一致の修復は、遺伝子mutH、mutL、mutS(不一致の塩基対を特異的に認識する)、uvrD 遺伝子によりコードしたヘリカーゼ、dam 遺伝子によりコードしたメチラーゼの生成に関与する。C-5シトシン特異的DNAメチラーゼはDNAのシトシンのC-5炭素を特異的にメチル化する酵素である (Kumar, S. 他 (1994) Nucleic Acids Res. 22:110)。
【0043】
除去修復は、ミスペアの塩基、または損傷した塩基がDNAから除去されるシステムであり、DNAの新規の区間はそれらを交換するために合成された。切開の段階では、損傷した構造は損傷の両側でDNA鎖を切断するエンドヌクレアーゼにより認識される。切除の段階では、5'-3'エキソヌクレアーゼが損傷したDNA鎖の区間を除去する。合成の段階では、切除した配列の交換を合成するにDNAポリメラーゼに対して結果的に生じる一本鎖領域が鋳型として役立つ。最後に、DNAリガーゼが新規物資の3'末端を古い物質に共有結合で結合する。哺乳動物では、DNAポリメラーゼβがDNA修復ポリメラーゼとしての役割を果たす。ヒトDNAポリメラーゼβ遺伝子における突然変異は、複数の種類の癌と関連する(Bhattacharyya, N. 他 (1999) DNA Cell Biol. 18:549-554、Matsuzaki, J他 (1996) Mol. Carcinog. 15:38-43)。
【0044】
メチラーゼ
特定ヌクレオチドのメチル化はDNA、RNA双方で起こり、この2種の高分子において別々の機能を提供する。DNAでシトシン残基のメチル化は5-メチルシトシンを形成し、これは、DNA二重らせん内で互いに塩基対合したCG配列群内で特異的に起こる。メチル化のこのパターンは、DNA複製時に世代間で受け渡される。これを行う酵素は「維持メチラーゼ」と呼ばれ、既にメチル化されたCG配列と塩基対合したCG配列上で優先的に作用する。このようなメチル化は、活性遺伝子と非活性遺伝子との区別を、遺伝子を「オンにする(turn on)」調節タンパク質の結合を防ぐ一方、遺伝子を不活化するタンパク質の結合を許すことによって行うようである(Alberts、前出 448-451ページ)。RNA代謝では、「tRNAメチラーゼ」がtRNAにおける幾つかのヌクレオチド修飾の1つを起こす。この修飾は、この分子のコンフォメーションと塩基対合とに影響し、適切なmRNAコドンの、特異的tRNA群による認識を促進する。主なメチル化パターンとしてはグアニン残基のジメチル化があり、これはN,N-ジメチルグアニンを形成する。
【0045】
ヘリカーゼおよび一本鎖結合タンパク質
ヘリカーゼ酵素は、DNA、RNA双方の二重らせん構造を不安定化し、巻き戻す。DNA複製は2本のストランドでほぼ同時に起こるので、2本のストランドは先ず分離して複製「フォーク」を産生し、DNAポリメラーゼが作用できるようにする必要がある。2種の複製タンパク質がこのプロセスに寄与する。DNAヘリカーゼと、一本鎖結合タンパク質とである。DNAヘリカーゼは、ATPを加水分解し、そのエネルギーを用いてDNAストランドを分離させる。一本鎖結合タンパク質(SSB)が次に、露出したDNAストランドに結合するが、塩基を覆いはせず、DNAポリメラーゼによる鋳型取りのためにそれらを一時的に安定化する(Alberts、前出 255-256ページ)。
【0046】
RNAヘリカーゼは、RNAのコンフォメーションと2次構造とを変容させ調節する。DNAヘリカーゼと同様、RNAヘリカーゼは、ATP加水分解に由来するエネルギーを利用し、RNA二重鎖を不安定化し巻き戻す。RNAヘリカーゼの最も良く特徴付けられ偏在するファミリーはDEADボックスファミリーであり、その名は、保存されたBタイプATP結合モチーフに由来する。このモチーフは、このファミリーのタンパク質にとって特徴的である。40種を超すDEADボックスヘリカーゼが、細菌、昆虫、酵母、両生類、哺乳類、および植物に及ぶ多様な生物において同定されている。DEADボックスヘリカーゼは、多様なプロセスにおいて機能する。そのプロセスとしては例えば翻訳開始、スプライシング、リボソームの集合、および、RNAの編集、輸送、安定性がある。これらのRNAヘリカーゼの例としては、酵母Drs1タンパク質(リボソームRNAプロセシングに関与)、酵母TIF1およびTIF2並びに哺乳類eIF-4A(これらはRNA翻訳の開始に必須である)、およびヒトp68抗原(細胞の成長および分化を調節)がある(Ripmaster, T.L. 他 (1992) Proc. Natl. Acad. Sci. USA 89:11131-11135; Chang, T.-H. 他 (1990) Proc. Natl. Acad. Sci. USA 87:1571-1575)。これらのRNAヘリカーゼは、強い配列相同性を、約420アミノ酸のストレッチにわたり示す。これらの保存された配列としては、或るATP結合タンパク質のAモチーフのコンセンサス配列、「DEADボックス」配列(ATPアーゼ活性に関与)、配列SAT(実際のヘリカーゼ巻き戻し:actual helicase unwinding領域に関与)、および、RNA結合とATP加水分解とに必要なオクタペプチドコンセンサス配列がある(Pause, A. 他 (1993) Mol. Cell Biol. 13:6789-6798)。これらの保存された領域の外側の差は、各タンパク質の機能役割の差を反映すると思われる(前出のChang 他)。
【0047】
数種のDEADボックスヘリカーゼは、精子形成と胚形成とにおいて、組織特異的およびステージ特異的な役割を果たす。DEADボックス1タンパク質(DDX1)の過剰発現は、神経芽腫(Nb)と網膜芽腫(Rb)との進行において役割を果たすと思われる(Godbout, R. 他 (1998) J. Biol. Chem. 273:21161-21168)。これらの観察の示唆するところでは、DDX1は、腫瘍進行の促進または増強を、癌細胞内のRNAの正常な二次構造と発現レベルとを改変することによって行う。他のDEAD-box ヘリカーゼが、腫瘍形成に直接あるいは間接的に関与している(前出のGodbout他)。例えばネズミp68は紫外線で誘発した腫瘍において突然変異し、ヒトDDX6は、B細胞リンパ腫に関連する或る染色体易切断点(chromosomal breakpoint)に位置する。同様に、DDX10とNUP98(1種の核膜孔タンパク質:nucleoporin)とからなるキメラ蛋白質は、数種の骨髄性悪性腫瘍の病原に関与するようである。
【0048】
トポイソメラーゼ
DNAストランドを複製前に分離する他に、2本のストランドは、DNAヘリカーゼによる分離の前に、互いから「巻き戻す」必要がある。この機能を行うタンパク質は、DNAトポイソメラーゼとして知られる。DNAトポイソメラーゼは、可逆的ヌクレアーゼとして効果的に作用してDNAストランド内のホスホジエステラーゼ結合を加水分解し、二本鎖を互いに対して自由に回転できるようにしてヘリックスを巻き戻した後、二本鎖の間の元のホスホジエステル結合を再結合させる。トポイソメラーゼは、転写、複製、クロマチン形成、組換え、および染色体分離、によって生じたDNAのトポロジー的再編成を担う必須酵素である。DNAへの高次らせんコイルの導入は、進行型酵素(processive enzyme)(例えばRNAポリメラーゼ)の通過によって、または、ヘリカーゼによるDNAストランドの複製前の分離によってなされる。DNAの合成、貯蔵、修復のプロセス中に、結び目(knotting)と連環(concatenation)とが生じ得る。全てのトポイソメラーゼの働きは、DNAのリボース‐リン酸主鎖内のホスホジエステル結合を壊して行う。この酵素にある或る触媒チロシン残基が、切れやすいホスホジエステル結合に求核攻撃することによって反応中間体を生じる。この中間体では、共有結合が、この酵素と、壊れたストランドの1端との間に形成される。或るチロシンDNAホスホジエステラーゼは、偶発するデッドエンドトポイソメラーゼI‐DNA中間体の中のこの結合を加水分解することでDNAの修復に機能する(Pouliot, J. J.他(1999) Science 286:552-555)。
【0049】
2タイプのDNAトポイソメラーゼ、タイプIとタイプIIとがある。タイプIトポイソメラーゼは単量体として働いてDNAの一本鎖に切れ目を作る。一方、タイプIIトポイソメラーゼはホモ二量体として働き、二本鎖の双方を切断する。DNAトポイソメラーゼIは、DNAヘリックス内に一本鎖の切れ目を生じることによって、ヘリックスの二本鎖が、反対のストランドの中の、残るホスホジエステル結合を軸に回転できるようにする。DNAトポイソメラーゼIはDNAヘリックスの二本鎖の双方に一時的な切れ目を作り、ここで二本の二重らせんが互いに交差する。このトポイソメラーゼIIは、2つの連環した環状DNAを、効果的に分離できる(Alberts、前出 260-262ページ)。タイプIIトポイソメラーゼは、真核生物では増殖する細胞(癌細胞など)にほとんど限られている。このためトポイソメラーゼIIは、抗癌剤の標的である。トポイソメラーゼIIは、多剤耐性(MDR)に関係すると思われている。その理由は、この酵素がDNA結合剤(ドキソルビシン:doxorubicinやビンクリスチン:vincristineなど)によるDNA損傷の修復を助けると思われるからである。
【0050】
トポイソメラーゼIファミリーには、トポイソメラーゼI(TopoI)とトポイソメラーゼIII(TopoIII)とを含む。ヒトのトポイソメラーゼIの結晶構造が示唆するところでは、無傷DNAストランドを軸とした回転を、この酵素が部分的に制御する。この「制御された回転(controlled rotation)」モデルでは、タンパク質-DNA相互作用がこの回転を制限する。これはDNA内のねじれひずみ(torsional strain)が駆動する(Stewart, L. 他 (1998) Science 379:1534-1541)。構造的にはTopoIは、その活性部位領域内の触媒チロシン残基と、多数の他の保存された残基で認識できる。TopoIは、転写時に機能すると思われる。2種のTopoIIIがヒトでは既知であり、これらは原核生物トポイソメラーゼに相同で、保存されたチロシンと、このファミリーに特異的な活性部位シグネチャとを持つ。TopoIIIは、減数分裂組換え(meiotic recombination)において役割を果たすことが示唆されている。マウスのある種のTopoIIIは精巣組織で高度に発現され、その発現の増加は、太糸期(pachytene)における細胞数の増加に伴う(Seki, T. 他 (1998) J. Biol. Chem. 273:28553-28556)。
【0051】
トポイソメラーゼIIファミリーには、2種のイソ酵素(IIαおよびIIβ)を含み、2種は別々の遺伝子がコードする。TopoIIは二本鎖DNAの切断を、再現性のある非無作為の方法で優先的に、或るATリッチ領域で行うが、切断部位選択性の原理は未知である。構造上はTopoIIには4つのドメインがある。その最初の2つは構造的に類似し、おそらく真核生物TopoIの類似ドメインとは遠い相同性を持つ。第二ドメインには触媒チロシンと、高度に保存されたペンタペプチドとを持つ。IIαイソフォームは、染色体分離時にDNAを解くこと(unlinking)に関係するようである。IIαを発現するがIIβを発現しない細胞株は、IIβが細胞プロセスに非必須であることを示唆するが、IIβノックアウトマウスは、神経発生における不全のため周産期に死亡した。主な異常が主に後期発生イベント(神経形成)時に起きたことは、IIβが有糸分裂ではなくDNA修復時に必要であることを示唆する(Yang, X. 他 (2000) Science 287:131-134)。
【0052】
トポイソメラーゼは多数の病態に関わると思われており、トポイソメラーゼ毒は、数種のヒト悪性腫瘍癌に有効な抗腫瘍薬であることが示されている。TopoIはファンコニ貧血(Fanconi's anemia)では誤った場所に局在する。また、この疾患に見られる染色体切断に関わると思われる(Wunder, E. (1984) Hum. Genet. 68:276281)。毛細血管拡張性運動失調(A-T)細胞での短縮されたTopoIIIの過剰発現は、部分的にA-T表現型を抑制するが、これはおそらく優性阻害機序(dominant negative mechanism)による。これが示唆するところでは、TopoIIIはA-Tでは調節解除される(Fritz, E. 他 (1997) Proc. Natl. Acad. Sci. USA 94:4538-4542)。TopoIIIはまた、ブルーム症候群(Bloom's Syndrome)遺伝子産物と相互作用する。また、腫瘍抑制因子としての役割を持つことを示唆されている(Wu, L. 他 (2000) J. Biol. Chem. 275:9636-9644)。異常なTopoII活性は、しばしば癌や、増加した癌リスクを伴う。大きく低下したTopoII活性が、全てではないが数種のA-T細胞株に見られている(Mohamed, R. 他 (1987) Biochem. Biophys. Res. Commun. 149:233-238)。一方、TopoIIは、DNAの分断を、A-T遺伝子(ATM)の領域で行い得る。ATMは、全てのDNA損傷応答性細胞周期チェックポイントを制御する(Kaufmann, W.K. (1998) Proc. Soc. Exp. Biol. Med. 217:327-334)。トポイソメラーゼがDNAを分断する能力は、抗腫瘍薬の基礎として用いられている。トポイソメラーゼ毒は、デッドエンド共有結合DNA-酵素複合体の細胞内の数を増すことによって作用し、最終的には細胞死経路の引き金となる(Fortune, J.M. および N. Osheroff (2000) Prog. Nucleic Acid Res. Mol. Biol. 64:221-253; Guichard, S.M. および M.K. Danks (1999) Curr. Opin. Oncol. 11:482-489)。TopoIに対する抗体は全身性強皮症(systemic sclerosis)患者の血清中に見られ、この抗体のレベルは、この疾患に関与する肺のマーカーとして利用できそうである(Diot, E. 他 (1999) Chest 116:715-720)。最後に、ヒトのTopoIのDNA結合領域は、遺伝子治療用のDNA送達伝播体として用いられている(Chen, T.Y. 他 (2000) Appl. Microbiol. Biotechnol. 53:558-567)。
【0053】
リコンビナーゼ
遺伝子組換えは、或る生物のゲノム内でのDNA配列の再編成プロセスであり、環境の変化に応じたその生物の遺伝子変異を提供する。DNA組換えによって、或る個体のゲノム内にある遺伝子の特定の組み合わせにおける変異が可能になり、これらの遺伝子の発現の時期とレベルとにおける変異も可能である(前出のAlberts、 263-273ページ)。2種の広範なクラスの遺伝子組換え(普遍的組換えと部位特異的組換え)が広く認識されている。普遍的組換えでは、任意の相同的な1対のDNA配列間の遺伝子交換を伴う。これらの配列の位置は通常、同じ染色体の2つのコピー上にある。このプロセスを補助する酵素であるリコンビナーゼは、DNA二重鎖の一方のストランドに幾分無作為的に「ニック(切れ目)を入れ」、他の二重鎖にある相補的ストランドとの交換を可能にする。このプロセスは、通常は染色体内の遺伝子の編成を変えない。部位特異的組換えでは、リコンビナーゼは組み換える分子の一方または双方にある特定のヌクレオチド配列を認識する。塩基対合はこの形の組み換えには関与しないので、組み換える分子の間のDNA相同性は不要である。普遍的組換えとは異なり、部位特異的組み換えは、染色体内のヌクレオチド配列群の相対位置を改変できる。
【0054】
RNA代謝
真核細胞の遺伝子発現の調節の多くは転写後のレベルで起きる。メッセンジャーRNA(mRNA)は細胞核内でタンパク質をコードする遺伝子の一次転写物から生成されるが、その後プロセシングされ、タンパク質合成機構のある細胞質に輸送される。RNA結合タンパク質は、mRNAのプロセシング、編集、輸送、局所化および転写後の調節に関与するタンパク質のグループであり、リボソームのタンパク質成分でもある。これらのタンパク質の多くのRNA結合活性はそれらのタンパク質の中で同定される一連のRNA結合モチーフによって仲介される。これらのドメインとしては、RNPモチーフ、アルギニンリッチモチーフ、RGGボックスおよびKHモチーフが含まれる(概説はBurd, C.G. and Dreyfuss, G. (1994) Science 265:615-621)。RNPモチーフはこれらのモチーフの中でも最も広範に見出され、最もよく特徴付けられている。RNPモチーフはRNA結合ドメインを形成する90〜100のアミノ酸からなり、mRNA前駆体、mRNA、リボソームRNA前駆体および低分子量核内RNAに結合するタンパク質内に1つ以上見出される。RNPモチーフは2つの短い配列(RNP-1とRNP-2)からなり、他の多数の主に疎水性の保存されたアミノ酸がモチーフを通じて散在されている(前出のBurd、 ExPASy PROSITE document PDOC0030)。
【0055】
リボ核酸(RNA)は直鎖の一本鎖重合体である(4種のヌクレオチドであるATP、CTP、UTP、およびGTPからなる)。殆どの生物では、RNAの転写は、デオキシリボ核酸(DNA)のコピーとしてなされ、DNAがその生物の遺伝子材料である。レトロウイルスでは、DNAでなくRNAが遺伝子材料として働く。遺伝子材料のRNAコピーは、タンパク質をコードするか、もしくは生物内で種々の構造的、触媒的、または調節的な役割を果たす。RNAの分類は、その細胞内局在と機能とに基づく。メッセンジャーRNA (mRNA)は、ポリペプチドをコードする。リボソームRNA (rRNA)は、リボソーム蛋白質と組み合わされてリボソームとなる。リボソームは細胞質粒子であり、mRNAをポリペプチドへ翻訳する。転移RNA (tRNA)はサイトゾルのアダプター分子であり、mRNA翻訳における機能はmRNAコドンと、そのコドンに適合するアミノ酸との双方の認識である。ヘテロ核RNA (hnRNA)としては、mRNA前駆体と、他の種々のサイズの核内RNAとを含む。核内低分子RNA (snRNA)は核内スプライセオソーム複合体の一部である。この複合体は、mRNA前駆体内に介在する非コード配列(イントロン)群を除去し、エキソン群を再結合する。
【0056】
タンパク質は、DNAからのRNAの転写や、RNAプロセシング、および、タンパク質へのmRNAの翻訳の際に、RNAと会合する。タンパク質はまた、RNAが構造的、触媒的、または調節的な目的で利用される際に、RNAと会合する。
【0057】
RNAプロセシング
リボソームRNA (rRNA)は、リボソーム蛋白質と組み合わされてリボソームとなる。リボソームは細胞質粒子であり、メッセンジャーRNA (mRNA)をポリペプチドへ翻訳する。真核生物リボソームは60S (大)サブユニットと40S (小)サブユニットとからなり、両ユニットが共になって80Sリボソームを形成する。18S、28S、5S、および5.8SのrRNAに加え、リボソームには生物の種類によって50から80種を超す別々のリボソーム蛋白質が含まれる。リボソーム蛋白質の分類は、それらが属するサブユニットによる(すなわち、大きな60Sサブユニットに関連するならL、小さい40SサブユニットならS)。大腸菌リボソームはもっとも詳しく研究されており、50種の蛋白質を持ち、その多くは全ての生物で保存されている。9種のリボソーム蛋白質の構造の解明が3.0D未満の分解能でなされており(すなわちS5、S6、S17、L1、L6、L9、L12、L14、L30)、共通のモチーフ群(例えばb-a- b蛋白質フォールド群)と、b-ストランドの間に位置する酸性および塩基性のRNA結合モチーフ群とを明らかにした。殆どのリボソーム蛋白質はrRNAと直接に接触すると思われる(概説はLiljas, A. および M.Garber, (1995) Curr. Opin. Struct. Biol. 5:721727; また、Woodson, S.A. および N.B. Leontis, (1998) Curr. Opin. Struct. Biol. 8:294-300; Ramakrishnan, V. および S.W. White, (1998) Trends Biochem. Sci. 23:208-212を参照)。
【0058】
リボソーム蛋白質は、翻訳を調節するために、翻訳後修飾を受けたり、他のリボソーム関連タンパク質と相互作用することがある。例えば高度に相同な40Sリボソーム蛋白質S6キナーゼであるS6K1とS6K2とは細胞成長の調節において主要な役割を果たすが、これはタンパク質合成装置(例えばリボソーム蛋白質)を作り上げる翻訳成分の生合成を制御することにより行う。S6K1の場合、少なくとも8つのリン酸化部位が、キナーゼ活性化を階層的な手法で仲介すると思われる(Dufner および Thomas (1999) Exp. Cell. Res. 253:100-109)。数種のリボソーム蛋白質(L1を含む)はまた翻訳抑制因子として機能し、これはリボソーム蛋白質をコードする多シストロン性mRNAと結合して行う(概説は前出Liljas および前出Garber)。
【0059】
最近の証拠が示唆するところでは、多数のリボソーム蛋白質が、蛋白質生合成へのこれらの関与とは独立した二次機能を持つ。これらの蛋白質は、細胞増殖の調節因子として、また数例では細胞死の誘発因子として機能する。例えばヒトのリボソーム蛋白質L13aの発現は、アポトーシスを誘発することが示されている。これは、細胞周期のG2/M期に細胞成長を停止させて行う。L13aの発現の抑制は標的細胞内にアポトーシスを誘発し、これが示唆するところでは、この蛋白質は、適量では、細胞生存に必要である。同様の結果が酵母でも得られている。ここでは、L13aの酵母相同体である、rp22とrp23との不活化によって、重度の成長遅滞と死とを招いた。非常に近縁のリボソーム蛋白質であるL7は、G1期の細胞を停止させ、アポトーシスをも誘発する。したがって、或るサブセットのリボソーム蛋白質は、細胞周期チェックポイントとして機能すると思われ、新規ファミリーの細胞増殖調節因子を構成するようである。
【0060】
個々のリボソーム蛋白質の、無傷リボソームの表面へのマッピングがなされた。これには3D免疫低温電子顕微鏡(immunocryoelectronmicroscopy)を用い、これによって特定のリボソーム蛋白質群に対して産生された抗体群が可視化された。L1、L7、およびL12のマッピングに向けて進歩がなされているが、無傷リボソームの構造の解明は、わずかに20〜25Dの分解能であり、別々の粗構造(crude structures)の間には矛盾がある(Frank, J. (1997) Curr. Opin. Struct. Biol. 7:266-272)。
【0061】
3種の別々の部位が、リボソーム上で同定されている。アミノアシルtRNA受容部位(A部位)は、チャージした(charged)tRNAを受け取る(例外は開始tRNAである)。ペプチジルtRNA部位(P部位)は新生ポリペプチドと結合し、A部位からのアミノ酸が、この伸長する鎖に付加される。脱アシル化したtRNA群は、脱出部位(E部位)内に結合した後、リボソームから解放される(リボソームの構造の概説は、Stryer, L. (1995) Biochemistry, W.H. Freeman and Company, New York NY, 888-908ページ; 前出のLodish, 119-138ページ; および Lewin, B. (1997) Genes VI, Oxford University Press, Inc. New York NYを見られたい)。
【0062】
種々の蛋白質が、核内で転写されたRNAのプロセシングに必要である。mRNAプロセシングの前段階としては、5'末端へのメチルグアノシンでのキャッピング、3'末端のポリアデニル化、および、イントロンを除去するためのスプライシングを含む。DNAからの一次RNA転写物は、エキソン、イントロン双方の配列を有する遺伝子の忠実なコピーであり、イントロン配列がRNA転写物から切り出されることが、蛋白質をコードするmRNAを産出するために必要である。mRNAの「スプライシング」は、核内で、大きな多成分リボ核タンパク質複合体(スプライセオソームとして知られる)の補助を受けてなされる。スプライセオソーム複合体は、5種の低分子核内リボ核タンパク質粒子(snRNP)である、U1、U2、U4、U5、およびU6からなる。それぞれのsnRNP内には、1つの種のsnRNAと、約10種のタンパク質とを含む。数種のsnRNPのRNA成分は、イントロンのコンセンサス配列を認識し塩基対合する。タンパク質成分は、スプライセオソームアセンブリと、スプライシング反応とを仲介する。snRNPタンパク質に対する自己抗体は全身性紅斑性狼瘡の患者の血液中に見出される(前出のStryer、863ページ)。
【0063】
不均質核内リボ核タンパク質(hnRNP)の役割は、スプライシングや、成熟RNAの細胞質への移出、および、mRNA翻訳にあることが同定されている(Biamonti, G. 他 (1998) Clin. Exp. Rheumatol. 16:317-326)。hnRNPの例としては、酵母タンパク質群である、Hrp1p(RNAの切断と3'末端でのポリアデニル化に関与)、Cbp80p(RNAの5'末端のキャッピングに関与)、および、Npl3p(核からのmRNAの移出に関与する哺乳類hnRNP A1の相同体)がある(Shen, E.C. 他 (1998) Genes Dev. 12:679-691)。hnRNPは、リウマチ性疾患における自己免疫応答の重要な標的であることが示されている(前出Biamonti他)。
【0064】
多くのsnRNPタンパク質およびhnRNPタンパク質は、或るRNA認識モチーフ(RRM)によって特徴付けられる(概説はBirney, E. et al. (1993) Nucleic Acids Res. 21:5803-5816)。RRMは、約80アミノ酸の長さであり、α/βサンドイッチの形に編成された4本のβストランドと2本のαヘリックスとを形成する。RRM内には、コアのRNP-1オクタペプチドモチーフと、周囲の保存された配列群とを含む。snRNPタンパク質に加え、上記モチーフ群を持つRNA結合タンパク質の例には、新生RNAを安定させるヘテロ核リボ核タンパク質と、選択的スプライシングを調節する因子群とを含む。選択的スプライシング因子には発生的に調節されるタンパク質が含まれ、その特異的な例は下等真核生物(例えばキイロショウジョウバエや線虫Caenorhabditis elegans)において同定されている。これらのタンパク質は、それぞれ発生プロセス(例えばパターン形成や性決定)において重要な役割を果たす(Hodgkin, J. 他 (1994) Development 120:3681-3689)。
【0065】
殆どの真核生物mRNAの3'末端は、また、ポリアデニル化による転写後修飾を受ける。ポリアデニル化は、2種の、酵素的に別々のステップを経て進む。(i)新生mRNAのヌクレオチド鎖切断が、3'非翻訳(非コード)領域内のシス作用ポリアデニル化シグナル群でなされ、(ii)ポリ(A)トラクト(poly(A) tract)が、5' mRNA断片へ付加される。シス作用RNA配列群の存在が、両方のステップに必要である。これらの配列としては、5'-AAUAAA-3'(切断部位の10〜30ヌクレオチド上流に位置)と、あまり保存されていないGU-リッチ配列エレメントまたはU-リッチ配列エレメント(切断部位の10〜30ヌクレオチド下流に位置)とを含む。切断刺激因子(CstF)、切断因子I(CF I)、および切断因子II(CF II)は切断反応に関わり、一方、切断およびポリ(A)付加特異性決定因子(CPSF)とポリ(A)ポリメラーゼ(PAP)とは、切断とポリアデニル化との双方に必要である。付加的酵素であるポリ(A)結合タンパク質II(PAB II)は、ポリ(A)トラクト伸長を促進する(Ruegsegger, U. 他 (1996) J. Biol. Chem. 271:6107-6113; およびその参照文献)。
【0066】
翻訳
遺伝子コードの正しい翻訳は、適切な転移RNA(tRNA)との連結を形成する各アミノ酸に依存する。アミノアシル-tRNA 合成酵素(aaRS) は、全ての生物に在る本質的なタンパク質である。aaRSは、タンパク質の生合成の最初の段階として、アミノ酸の活性化と、その同族tRNAとの正しい付着とを担う。原核生物は少なくとも20種の異なるタイプのaaRSを持ちアミノ酸ごとに1種類のaaRSを持つが、真核生物は通常、異なるアミノ酸の各々のために細胞質ゾル形態とミトコンドリア形態の2つのaaRSを有する。20種のaaRS酵素は2つの構造的クラスに分け得る。クラスI酵素はtRNAの3'末端で2'ヒドロキシルにアミノ酸を加え、クラスII酵素はtRNAの3'末端で3'ヒドロキシルにアミノ酸を加える。各クラスは触媒的ドメインの特有のトポロジーによって特徴づけられる。クラスI酵素には、ヌクレオチド結合した「ロスマンフォールド」に基づく触媒的ドメインがある。特に、或るコンセンサステトラペプチドのモチーフは、高度に保存的である(Prosite Document PDOC00161, Aminoacyl-transfer RNA synthetases class-I signature)。クラスI酵素は、アルギニン、システイン、グルタミン酸、グルタミン、イソロイシン、ロイシン、メチオニン、チロシン、トリプトファンおよびバリンに特異的である。クラスII酵素は、中心的触媒ドメイン(7本鎖の逆平行β-シートドメインからなる)と、N末端およびC末端調節ドメインを持つ。クラスII酵素は酵素のヘテロ二量体構造あるいはホモ二量体構造に基づき2群に分けられるが、後者はさらにN末端およびC末端調節ドメインの構造によって分けられる(Hartlein, M. およびS. Cusack (1995) J. Mol. Evol. 40:519-530)。クラスII酵素は、アラニン、アスパラギン、アスパラギン酸、グリシン、ヒスチジン、リジン、フェニルアラニン、プロリン、セリンおよびトレオニンに特異的である。
【0067】
数種のaaRSには編集(エディティング)機能もある。例えばIleRSはバリンを誤って活性化しVal-tRNAIle を形成する場合があるが、この生成物は、誤ってチャージした生成物を破壊する或る加水分解作用によって取り除かれる。この編集活性は、クラスI酵素のロスマンフォールドドメイン内の長い挿入配列である接続ポリペプチド 1 領域(connective polypeptide 1 region)(CP1)で見つかる 2 番目の触媒サイト内に位置する(Schimmel, P. 他(1998) FASEB J. 12:1599-1609)。AaRS はまた tRNA プロセシングでも役割を果たす。成熟した tRNA は細胞質に移出される前に、核の中でそれぞれのアミノ酸でチャージされることが示されている。またこのアミノ酸との結合は品質管理機構として機能し、確実にtRNAを機能的に保っている可能性がある(Martinis, S.A. 他(1999) EMBO J. 18:4591-4596)。
【0068】
最適条件下でのポリペプチド合成の進行速度は、約40アミノ酸残基/秒である。翻訳時の誤った取り込みの比率は10-4 の位であり、主な原因はアミノアシル-t-RNAに間違ったアミノ酸でチャージされたことである。間違ってチャージされたtRNAは細胞毒性を持つ。その理由は、それらが間違ったアミノ酸残基を、伸長するポリペプチドに組み込むためである。翻訳の速度は、最適な伸長速度と、翻訳忠実度の必要性との折衷で決まると推測される。数学的計算による予測では、10-4 が、生物系におけるタンパク質合成の最大許容エラー率である(概説は前出 Stryer, L. および Watson, J. 他 (1987) The Benjamin/Cummings Publishing Co., Inc. Menlo Park, CA)。特にエラーの多いアミノアシル-tRNAチャージングイベントは、tRNAGln のグルタミン(Gln)との結合である。このミスチャージングを補正する機序があり、これはその起源を進化の中に持つようである。Glnはポリペプチド合成に利用され自然界に現れる20種の天然アミノ酸の最後の集団にあった。グラム陽性真正細菌、シアノバクテリア、始原菌(Archeae)、および真核生物のオルガネラは、Gln-tRNAGln の合成のための非典型的経路(noncanonical pathway)を持ち、この経路はGlu-tRNAGln (Glu-tRNAシンテターゼであるGluRSが合成)のトランスフォーメーションに基づくものであり、酵素であるGlu-tRNAGln アミドトランスフェラーゼ(Glu-AdT)を用いる。アミド基転移経路に関わる反応は次のとおりである(Curnow, A.W. 他 (1997) Nucleic Acids Symposium 36:2-4)。
GluRS
tRNAGln + Glu + ATP → Glu-tRNAGln + AMP + PPi
Glu-AdT
Glu-tRNAGln + Gln + ATP → Gln-tRNAGln + Glu + ADP + P
類似の酵素であるAsp-tRNAAsn アミドトランスフェラーゼは始原菌に存在し、Asp-tRNAAsn をAsn-tRNAAsnへ転換する。ホルミラーゼ(formylase)酵素は真正細菌においてMet-tRNAfMet をfMet-tRNAfMet へ転換し、これは近縁の酵素のようである。或る加水分解活性もまた、ミスチャージしたVal-tRNAIle を破壊することが同定されている(Schimmel, P. 他 (1998) FASEB J. 12:1599-1609)。原始的な生物形態におけるGlu-AdTの進化の、或る可能性のあるシナリオは、特異的グルタミニル-tRNAシンテターゼ(GlnRS)の不在が、Gln-tRNAGlnの合成のための代替経路を必要としたというものである。事実、グラム陽性細菌におけるGlu-AdTオペロンの欠失は致死的である(Curnow, A.W. 他 (1997) Proc. Natl. Acad. Sci. U.S.A. 94:11819-11826)。他の生物におけるGluRS活性の存在が自然界の翻訳機構における高度の保存によって推測されているが、GluRSは、ヒトを含む全ての生物において同定されていない。このような酵素は、翻訳忠実度を確保し、欠陥ポリペプチドの合成を減らすよう働くと思われる。
【0069】
タンパク質合成における機能に加えて、特定のアミノアシルtRNA合成酵素群は、細胞忠実度、RNA スプライシング、RNA輸送、アポトーシス、および転写と翻訳の調節で役割を果たす例えばヒトのチロシルtRNA合成酵素はたんぱく質分解により、別々のサイトカイン活性を持つ 2 つの部分に裂け得る。C末端ドメインは単球と白血球の走化作用を示し、また、ミエロペルオキシダーゼ、腫瘍壊死因子-α、および組織因子の生成を刺激する。 N末端ドメインはインターロイキン-8 タイプA受容体に結合し、インターロイキン8様サイトカインとして機能するヒトのチロシルtRNA合成酵素(TyrRS)はアポトーシス段階の腫瘍細胞から分泌される。また、アポトーシスを加速する可能性がある(Wakasugi, K および Schimmel, P (1999) Science 284:147-151)。ミトコンドリア型のアカパンカビ(Neurospora crassa)TyrRS および出芽酵母(S. cerevisiae)LeuRSはグループIイントロンの数種のスプライシング活性に必須であり、ヒトのミトコンドリアLeuRSは酵母のヌル種(null strain)において酵母LeuRSとして代用できる。数種のバクテリアaaRSは、それ自身の転写または翻訳の調節に関与している(前出Martinis他)。数種のaaRSは、細胞増殖、分化、およびアポトーシスにおいて役割を持つシグナル伝達分子の1クラスである、ジアデノシンオリゴホスフェートを合成できる(Kisselev, L.L 他(1998) FEBS Lett. 427:157-163; Vartanian, A. 他 (1999) FEBS Lett. 456:175-180)。
【0070】
アミノアシル-tRNAに対する自己抗体は、リウマチ関節炎、皮膚筋炎、及び多発性筋炎など、自己免疫疾患の患者によって産生される。また、複雑な間質性肺疾患(ILD)と強度に相関する(Freist, W. 他 (1999) Biol. Chem. 380:623-646; Freist, W. 他 (1996) Biol. Chem. Hoppe Seyler 377:343-356)。これらの自己抗体はウイルス感染に応じて産生されるとみられ、コクサッキーウイルスは動物に実験的ウイルス性筋炎を誘発するために用いられている。
【0071】
aaRS構造の、人体と病原体とでの比較は、新規の抗生物質の設計に有用となっている(Schimmel他、前出)。遺伝子操作したaaRS群を用いてin vivoで、非天然アミノ酸群のタンパク質類への部位特異的取り込みが可能となっている(Liu, D.R. 他 (1997) Proc. Natl. Acad. Sci. USA 94:10092-10097)。
【0072】
tRNA の修飾
修飾されたリボヌクレオシドであるプソイドウリジン(ψ)は、転移RNA (tRNA)、大小のリボソームRNA (rRNA)、および核内低分子RNA (snRNA)のアンチコドン領域に偏在する。ψは、tRNAに存在する最も一般的な修飾ヌクレオシド(すなわちG、A、U、およびC以外)である。タンパク合成に無関係のわずかな酵母tRNAのみが、ψを持たない (Cortese, R. 他 (1974) J. Biol. Chem. 249:1103-1108)。ウリジンからψへの転換を担う酵素であるプソイドウリジン合成酵素 (プソイドウリジル酸シンターゼ)は初め、ネズミチフス菌(Salmonella typhimurium)から単離された (Arena, F. 他 (1978) Nucleic Acids Res. 5:4523-4536)。この酵素はそれ以後、多数の哺乳類(例えば去勢ウシやマウス)から単離されている(Green, C.J. 他 (1982) J. Biol. Chem. 257:304552並びにChen, J.およびJ.R. Patton, (1999) RNA 5:409419)。tRNAプソイドウリジン合成酵素は、このファミリーの、最も広く研究されているメンバーである。これらの酵素の最適活性には、チオール供与体(システインなど)と、一価カチオン(アンモニアやカリウムなど)とが必要である。付加的補因子や高エネルギー分子(ATPやGTP)は不要である(Green他、前出)。別の真核生物プソイドウリジン合成酵素群が同定されており、rRNAに特異的なようである(概説はC.M. Smith, およびSteitz, J.A. (1997) Cell 89:669-672)。また、或る二重特異性酵素は、tRNA基質とrRNA基質との双方を利用することが同定されている(Wrzesinski, J. 他 (1995) RNA 1: 437-448)。ψがtRNAのアンチコドンループ内に不在の場合、細菌(Singer, C.E. 他 (1972) Nature New Biol. 238:72-74)と酵母(Lecointe, F. (1998) 273:1316-1323)との双方において成長が低下するが、この遺伝子欠損は致死的ではない。
【0073】
別のリボヌクレオシド修飾が主に真核細胞で起こる。これはグアノシンからN2,N2-ジメチルグアノシン(m2 2G)への転換であり、サイトゾルおよびミトコンドリアのtRNAのDステムの塩基位置26または10で起こる。この転写後修飾は、tRNA構造の安定化を、別のtRNA二次構造および三次構造の形成を防ぐことで行うと思われる。酵母tRNAAsp は、この修飾を持たない点が特異である。この修飾は真正細菌には起こらず、理由はおそらく、これらの細胞とオルガネラとにおけるtRNAの構造が配列によって制約され、転写後修飾によって別の構造の形成を防ぐ必要がないためである(Steinberg, S.およびR. Cedergren, (1995) RNA 1:886-891、およびその参照文献)。グアノシンからm2 2Gへの転換を担う酵素は、63 kDaのS-アデノシルメチオニン(SAM)-依存性tRNA N2,N2-ジメチルグアノシンメチルトランスフェラーゼである(TRM1 遺伝子産物とも呼ばれ、本明細書ではTRMと呼ぶ) (Edqvist, J. (1995) Biochimie 77:54-61)。この酵素は、核とミトコンドリアとの双方に局在する(Li, J-M. 他、(1989) J. Cell Biol. 109:1411-1419)。アフリカツメガエル由来のTRMでの研究に基づくと、修飾されるG26の直前のC11〜G24とG10〜C25との位置での塩基対合には或る必要条件があると思われ、tRNAの別の構造的特徴も、G26基質の適切な提示に必要に思われる (Edqvist. J. 他(1992) Nucleic Acids Res. 20:6575-6581)。酵母での研究が示唆するところでは、或る弱いオーカーtRNAサプレッサ(sup3-i)を有する細胞群は、TRM活性が無ければ翻訳終了を抑制できないことから、TRMが真核細胞においてtRNAの正しい三次元構造の確保という、より一般的な機能にくわえて、抑制の頻度を調整する役割をも持つことを示唆する(Niederberger, C. 他(1999) FEBS Lett. 464:67-70)。
【0074】
翻訳開始
翻訳の開始は、3つのステージに分けることができる。第一ステージは、或る開始転移RNA (Met-tRNAf)と40Sリボソームサブユニットとから43S開始前複合体を形成する。第二ステージは、43S開始前複合体をmRNAと結合させた後、複合体を正しいAUG開始コドンに移動させる。第三ステージは、60Sリボソームサブユニットを40Sサブユニットに導き、開始コドンにおいて80Sリボソームを産生する。翻訳の調節には主に、開始プロセスにおける第一および第二のステージが関わる(Pain, V.M. (1996) Eur. J. Biochem. 236:747-771)。
【0075】
数種の開始因子(その多くは複数のサブユニットを持つ)が、開始tRNAと40Sリボソームサブユニットとの複合に関わる。eIF2は1種のグアニンヌクレオチド結合タンパク質であり、開始tRNAを40Sリボソームサブユニットまで動員する。eIF2はGTPと結合した時にのみ開始tRNAと会合する。eIF2Bは1種のグアニンヌクレオチド交換タンパク質であり、eIF2の、GDP結合不活性型からGTP結合活性型への転換を担う。2種の別の因子であるeIF1AとeIF3とは、40Sサブユニットと結合し安定化させ、これは18SリボソームRNAおよび特定のリボソーム構造タンパク質群と相互作用して行う。eIF3はまた、40SリボソームサブユニットとmRNAとの会合にも関わる。Met-tRNAf、eIF1A、eIF3および40Sリボソームサブユニットは共に、43S開始前複合体を形成する(Pain、前出)。
【0076】
43S開始前複合体がmRNA分子と結合するには、複数の付加的因子が必要であり、このプロセスは、いくつかのレベルで調節される。eIF4Fという複合体は、3種のタンパク質、eIF4E、eIF4A、eIF4Gからなる。eIF4EはmRNAの5'-末端m7GTPキャップを認識して結合し、eIF4Aは二方向性のRNA依存型ヘリカーゼであり、eIF4Gは一種の足場ポリペプチドである。eIF4Gは三つの結合ドメインを持つ。eIF4GのN末端側の三分の一はeIF4Eと相互作用し、中央の三分の一はeIF4Aと相互作用し、C末端の三分の一は43S開始前複合体に結合したeIF3と相互作用する。したがって、eIF4Gは、40SリボソームサブユニットとmRNAとの橋渡しをする(Hentze, M.W. (1997) Science 275:500-501)。
【0077】
eIF4Fが43S開始前複合体の結合を開始する能力は、mRNAの構造的特徴によって調節される。mRNA分子は、5'キャップとAUG開始コドンとの間に非翻訳領域(UTR)を持つ。数種のmRNAでは、この領域は43S開始前複合体の結合を妨害する二次構造を形成する。eIF4Aのヘリカーゼ活性は、この二次構造を除去して43S開始前複合体の結合を促進するよう機能すると思われる(Pain、前出)。
【0078】
翻訳伸長
伸長プロセスでは、付加的アミノ酸群が開始メチオニンに結合し、完全ポリペプチド鎖を形成する。伸長因子であるEF1α、EF1βγ、およびEF2が、開始後のポリペプチド鎖の伸長に関わる。EF1αは、GTP結合タンパク質である。EF1αのGTP結合型では、EF1αがアミノアシルtRNAをリボソームのA部位に導く。新規に到着したアミノアシルtRNAに付着していたアミノ酸は、ペプチド結合を開始メチオニンとの間に形成する。EF1α上のGTPはGDPへ加水分解され、EF1α-GDPはリボソームから解離する。EF1βγがEF1α-GDPと結合し、GDPをEF1αから解離させることにより、EF1αはGTPと結合できるようになり新規サイクルが始まる。
次々にアミノアシルtRNAがリボソームに導かれ、EF-G(別のGTP結合タンパク質)が、リボソームのA部位からP部位へ、そして最後にはE部位へのtRNAの移動を触媒する。これにより、リボソームとmRNAは翻訳中に結合したままでいられる。
【0079】
翻訳終了
放出因子(release factor)であるeRFが翻訳を終了させる。eRFはmRNA内の停止コドンを認識し、ポリペプチド鎖をリボソームから遊離させる。
【0080】
発現プロファイリング
マイクロアレイは生物学的分析に使用される分析ツールである。マイクロアレイは固体支持物の表面上に空間的に分配され、表面と安定に結合した複数の分子を持っている。ポリペプチド、ポリヌクレオチドや抗体のマイクロアレイが開発されており、遺伝子配列決定、遺伝子発現の監視、遺伝子マッピング、細菌同定、薬物の発見および組み合わせ化学などのさまざまな用途に使用されている。
【0081】
マイクロアレイが特に有用な分野の一つとして、遺伝子発現分析が挙げられる。アレイ技術は、単一の多型遺伝子の発現や、多数の関連遺伝子または無関係の遺伝子の発現プロファイルを探求する簡単な方法を提供し得る。単一遺伝子の発現を試験するときは、アレイを用いて或る特定遺伝子又はその変異体の発現を検出する。発現プロファイルを調べると、組織特異的であり、毒性試験でテストする物質によって影響され、シグナル伝達カスケードの一部であり、細胞の生存に基本的に必要な機能を実行する、または特定の遺伝的素因、状態、疾患または障害に特に関連する遺伝子を同定するためのプラットホームをアレイは提供する。
【0082】
乳癌
18万例を超える新規発症の乳癌が毎年診断されており、乳癌による死亡率は45〜54歳の女性の全死亡の10%に近い(K. Gish (1999) AWIS Magazine 28:7-10)。ただし、限局性乳癌の早期診断に基づく生存率は極めて高い(97%)。これに対して、病期が進行し腫瘍が乳房外に進展した場合は22%である。現在の臨床乳癌検診の手法は感度と特異性とを欠いており、乳癌の包括的な遺伝子発現プロファイルを開発する努力がなされている。このプロファイルを従来のスクリーニング法とともに用いれば、乳癌の診断と予後診断とを向上し得る(Perou, C.M. 他(2000) Nature 406:747-752)。
2種の遺伝子、BRCA1とBRCA2との突然変異が、女性の乳癌の大きな素因であることが知られており、この変異は親から子へ受け渡されるようである(Gish, K. (1999) AWIS Magazine 28:7-10)。しかし、このタイプの遺伝性乳癌はわずかに乳癌の約5%〜9%であり、大多数の乳癌の原因は非遺伝性突然変異であり、乳腺上皮細胞での変異である。
上皮成長因子(EGF)とその受容体であるEGFRとの発現と、ヒト乳癌との関係は、特に良く研究されている(この分野の概説については、Khazaie, K. 他 (1993) Cancer and Metastasis Rev. 12:255274およびこの論文内の引用文献を参照)。EGFRの過剰発現、特にエストロゲン受容体の下方制御と結びついた発現は、乳癌患者の不良な予後のマーカーである。また、乳腺腫瘍転移におけるEGFR発現は、しばしば原発腫瘍に比して上昇するので、EGFRが腫瘍の進行と転移とに関わることを示唆している。これを支持する証拠が蓄積されている。それはEGFが、転移の潜在能に関する細胞機能に対する効果を持つという証拠である。この機能とは例えば、細胞運動性、走化性、分泌、および分化である。erbB受容体ファミリー(EGFRはその1つである)の他のメンバーの発現の変化も、乳癌に関わるとされている。erbB受容体(例えばHER-2/neu, HER-3およびHER-4)およびそれらのリガンドの乳癌における豊富さは乳癌の発生機序におけるそれらの機能的重要性を示しており、したがって乳癌治療の標的を提供しうる(Bacus, S. S. 他(1994) Am. J. Clin. Pathol. 102:S13-S24)。他の既知の乳癌マーカーとしては、或るヒトの分泌型frizzledタンパク質のmRNA(乳腺腫瘍では下方調節される)、マトリクスG1aタンパク質(ヒト乳癌細胞で過剰発現)、Drg1すなわちRTP(この遺伝子の発現は結腸腫瘍、乳腺腫瘍、前立腺腫瘍で低下)、maspin(この腫瘍抑制遺伝子は浸潤性乳癌で下方調節)、およびCaN19(S100蛋白ファミリーのメンバーであり、このファミリーは全て、乳癌細胞では正常乳腺上皮細胞に比して下方調節される)を含む(Zhou, Z. 他(1998) Int. J. Cancer 78:95-99; Chen, L. 他 (1990) Oncogene 5:1391-1395; Ulrix, W. 他 (1999) FEBS Lett. 455:23-26; Sager, R. 他 (1996) Curr. Top. Microbiol. Immunol. 213:51-64; および Lee, S. W. 他 (1992) Proc. Natl. Acad. Sci. USA 89:2504-2508)。
【0083】
種々の病期のヒト乳癌の乳腺上皮細胞に由来する細胞株は、悪性転換と腫瘍進行とのプロセスを研究するのに有用なモデルを提供する。その理由は、これらの細胞株が、その親腫瘍の多くの特性を、長い培養期間にわたり保持することが示されているからである(Wistuba, I.I. 他(1998) Clin. Cancer Res. 4:2931-2938)。こうしたモデルが特に有用なのは、ヒト乳腺上皮細胞の表現型と分子との特徴を、悪性転換の種々の病期で比較する場合である。
【0084】
免疫系は、細胞防御機構の漸進的な選択、増幅、及び動員を調整するイベントのカスケードを活性化することにより、感染や外傷に応答する。遺伝子の活性化及び抑制の複雑かつバランスの取れたプログラムが、このプロセスに関与している。しかしながら、遺伝子発現の不適切或いは不十分な調節によって起こる免疫系の活動過多は、組織や器官に相当な損傷を与え得る。この損傷は、関節炎、アレルゲン、心臓発症、発作、及び感染に関連する免疫応答についての文献に詳しく記載されている(Harrison's Principles of Internal Medicine, 第13版, McGraw Hill, Inc. and Teton Data Systems Software参照)。特に、Staf50 (Stimulated transacting factor of 50 kDaの略)というZnフィンガータンパク質は転写調節因子であり、さまざまな細胞株においてインターフェロンIおよびIIで誘発される。Staf50は、形質移入されたヒトの1型免疫不全ウィルスの末端反復配列プロモーター領域によって指示されるウィルスの転写を下方調節することによってインターフェロンの抗ウィルス活性を仲介するように見える(Tissot, C. (1995) J. Biol. Chem. 270:1489114898)。
【0085】
樹状細胞(DC)は抗原提示細胞(APC)であり、一次免疫応答で主要な役割を果たす理由は、DCが抗原を未刺激(naive)T細胞に提示する独自の能力にある。またDCは、抗原との初回接触後の免疫応答を維持し調節する成熟免疫細胞の別々のサブセットへ分化する。DCサブセットとしては、特定のTヘルパー1(Th1)応答またはTヘルパー2(Th2)応答を優先的に誘導するDCや、B細胞応答を調節するDCがある。また免疫応答を操作する為にDCを使用することが増えている。免疫応答を操作する目的は、異常な自己免疫応答の下方制御、または、ワクチン接種ないし腫瘍特異応答の増強である。
DCは、特定の分化状態と相関して、機能的に特化している。CD34+骨髄性細胞は骨髄に見られ、シグナルに応じてCD14+ CD11c+単球へ成熟する。生得的応答、即ち抗原非特異的応答は、まず、単球が非リンパ組織へ循環し、細菌由来マイトジェンであるリポ多糖(LPS)およびウイルスに応答したときに起きる。抗原との、こうした直接遭遇はプロ炎症性サイトカインの分泌を生じ、これらのサイトカインが、侵入する病原体の防衛の第一線で、ナチュラルキラー細胞、マクロファージおよび好酸球を誘引し調節する。単球は次にDCへ成熟し、これがエンドサイトーシスと抗原受容体取込とを介して抗原を効率的に捕獲する。抗原プロセシングと抗原提示とが活性化と成熟DCへの分化を誘起し、この成熟DCがMHCクラスII分子を細胞表面で発現しT細胞を効率的に活性化し、抗原特異的なT細胞応答とB細胞応答とを開始する。次に、T細胞がCD40リガンド‐CD40相互作用を介してDCを活性化し、これは共刺激分子であるCD80とCD86との発現を刺激する。CD86は、最も強力にT細胞応答を増幅する。CD40を介したDCのT細胞との相互作用はまた炎症サイトカイン、例えばTNFαやIL-1の産生をも刺激する。TNF受容体ファミリーのメンバーであるRANKと、RANKリガンドであり活性化したT細胞上で発現するTRANCEとの結合は、アポトーシスを阻害してDCの生存を増強し、したがってT細胞活性化を増強する。単球の成熟と成熟DCへの分化とは、抗原非特異的生得的免疫反応を、抗原特異的適応的免疫反応に連結する。
【0086】
ヒトの末梢血単球細胞(PBMC)は、免疫系の主要な成分を代表する別々の細胞集団に分類することができる。PBMCは52%のリンパ球(12%がBリンパ球、40%がTリンパ球{25%がCD4+で15%がCD8+})、20%のNK細胞、25%の単球および3%のさまざまな細胞(樹状細胞および前駆細胞など)を含んでいる。これらの細胞成分の比率および生物学的特徴は健常な個人の間で多少異なる傾向があり、年齢、過去の医学的履歴および遺伝的背景に依存する。
【0087】
ステロイドホルモン
ステロイドは、コレステロール、胆汁酸、ビタミンD、ホルモン等の脂質可溶性分子の1クラスであり、シクロペンタヒドロフェナントレン(cyclopentanoperhydrophenanthrene)に基づく共通な4リング構造を共有し、広範囲な機能を実施する。例えば、コレステロールは膜流動性を制御する細胞膜の1成分である。それは脂質を可溶して、消化中に小腸で吸収を促進する胆汁酸の前駆体でもある。ビタミンDは小腸におけるカルシウムの吸収を調節し、原形質におけるカルシウムの濃度を制御する。副腎皮質、卵巣、精巣によって生成されるステロイドホルモンには、グルココルチコイド、電解質コルチコイド、アンドロゲン、エストロゲンが含まれる。それらは核内の特定の遺伝子の転写を調節する細胞内受容体に結合することにより、多様な生体プロセスを制御する。例えばグルココルチコイドは、肝臓における糖新生の調節により血糖濃度、脂肪組織のリポリシスの促進により脂肪酸の血中濃度を上昇させ、中枢神経内のカテコールアミンへの感度を調節し、炎症を減少する。主要な電解質コルチコイドであるアルドステロンは副腎皮質により生成され、ナトリウムイオン再吸収を促進するために腎臓の遠位尿細管の細胞に作用する。精巣内のライディヒの間細胞により生成されるアンドロゲンには、思春期の変化すなわち精子の生成と第二次性徴の維持を誘発する男性ホルモンテストステロン等がある。女性ホルモンであるエストロゲンとプロゲステロンは、卵巣そしてさらに妊娠中に胎盤と胎児の副腎皮質により生成される。エストロゲンは、女性生殖プロセスと第二次性徴を調節する。プロゲステロンは、月経周期と妊娠中の子宮内膜における変化を調節する。
【0088】
ステロイドホルモンは、避妊法、また怪我や関節炎、喘息、自己免疫疾患等の疾患での抗炎治療において広範囲に利用されている。天然のプロゲスチンであるプロゲステロンは、無月経、異常子宮出血を治療するために、または避妊薬として主に使用される。内因性のプロゲステロンは、受精卵着床と妊娠の維持の準備でエストロゲンに感作された子宮の子宮内膜における分泌作用に関与する。それは黄体形成ホルモン(LH)に応答して黄体から分泌される。外因性のプロゲスチンの主要な避妊効果には、LHの周期半ばのサージの抑制が関係する。細胞レベルではプロゲスチンは自由に拡散して標的細胞に入っていき、プロゲステロン受容体に結合する。標的細胞には、女性の生殖管、乳腺、視床下部、下垂体がある。いったん受容体に結合すると、プロゲスチンは視床下部からのゴナドトロピン放出ホルモンの放出の頻度を遅くし、前排卵LHサージを鈍くする。それにより卵胞成熟と排卵を防ぐ。プロゲステロンには、最小限のエストロゲンとアンドロゲンの作用がある。プロゲステロンは、肝臓でプレグナンジオールに代謝され、グルクロン酸と抱合する。
【0089】
6α-メチル-17-ヒドロキシプロゲステロンとしても知られるメドロキシプロゲステロン(MAH)は、プロゲステロンよりも15倍も大きな薬理学的作用を有する合成プロゲスチンである。MAHは腎臓癌と子宮内膜癌、無月経、異常子宮出血、ホルモンの失調と関連する子宮内膜症の治療のために使用される。MAHは呼吸中枢に刺激的作用を有し、睡眠時無呼吸、慢性閉塞性肺疾患、あるいは炭酸過剰症によって引き起こされる血液の低酸素化の場合に使用されてきた。
【0090】
RU-486としても知られるミフェプリストンは、プロゲステロンの受容体を阻害する抗プロゲステロン剤である。それは、妊娠を維持するのに必要であるプロゲステロンの影響を打ち消す。ミフェプリストンは、妊娠初期に投与し、続いてプロスタグランジン、ミソプロストールで治療すると自然流産を誘発する。さらに研究によると、避妊手段を用いない性交の後、5日以内に投与するとミフェプリストンは非常に低量の投与で、性交後の避妊として非常に効果的になり得る。従って避妊失敗や性的暴行の場合に女性に「モーニングアフターピル」を提供する。ミフェプリストンにはまた、腫瘍がプロゲステロン依存性である場合の乳癌と卵巣癌の治療において潜在的な使用可能性がある。それは脳髄膜腫のステロイド依存性成長に干渉し、また子宮内膜組織のエストロゲン依存性成長を阻止して子宮内膜症の治療においても有用であろう。子宮類線維腫とクッシング症候群の治療においても有用であろう。ミフェプリストンは糖質コルチコイド受容体に結合し、コルチゾール結合に干渉する。ミフェプリストンは抗糖質コルチコイドとしても作用し、AIDS、神経性無食欲症、潰瘍、糖尿病、パーキンソン病、多発性硬化症、アルツハイマー病等の、コルチゾールレベルが上昇する症状を治療するのに効果がある。
【0091】
ダナゾールは、エチニルテストステロン由来の合成ステロイドである。ダナゾールは、卵胞刺激ホルモンとLHの下垂体合成を低下させることによりエストロゲン生成を間接的に減少する。ダナゾールはまた標的組織において性ホルモン受容体に結合する。従って同化作用、抗エストロゲン作用、弱いアンドロゲンの作用を示す。ダナゾールはいかなるプロゲストゲン作用も有しておらず、コルチコトロピンの正常な下垂体放出あるいは副腎によるコルチゾールの放出を抑制しない。ダナゾールは、子宮内膜症の治療において、痛みを緩和し、子宮内膜細胞成長を阻害するために使用される。また乳房腺維嚢胞病と遺伝性血管浮腫を治療するためにも使用される。
【0092】
コルチコステロイドは炎症を緩和して、免疫応答を抑制するために使用される。炎症反応を仲介するサイトカインの調節により、好酸球、好塩基球、気道上皮性細胞機能を阻害する。炎症部位で白血球侵入を阻害し、炎症反応のメディエーターの機能において干渉し、さらに体液の免疫応答を抑制する。コルチコステロイドは、アレルギー、喘息、関節炎、皮膚病を治療するために使用される。ベクロメタゾンは、ステロイド依存性喘息の治療、アレルギーまたは非アレルギー(血管運動)鼻炎に付随する症状を緩和するため、あるいは外科的切除に続く再発性鼻ポリープを予防するために使用される合成グルココルチコイドである。鼻腔内ベクロメタゾンの抗炎症作用および血管収縮作用は、ヒドロコルチゾンによるものより5000倍強力である。ブデソニドは、アレルギー性鼻炎または喘息に付随する症状を制御するために使用されるコルチコステロイドである。ブデソニドは、全身作用が弱いが強い局所抗炎症作用を有する。デキサメタゾンは、抗炎症組成物または免疫抑制組成物において使用される合成グルココルチコイドである。喘息の症状を予防するために吸入薬においても使用される中枢神経系に到達する強力な能力のために、デキサメタゾンは脳水腫を調節するために通常選択される治療である。デキサメタゾンは、ヒドロコルチゾンより約20〜30倍、そしてプレドニゾンより5〜7倍強力である。プレドニゾンは、肝臓で代謝されて、活性型であるプレドニゾロン(抗炎症特性を有するグルココルチコイド)になる。プレドニゾンはヒドロコルチゾンより約4倍強力であり、そしてプレドニゾンの作用持続時間はヒドロコルチゾンとデキサメタゾンの中間である。プレドニゾンは、同種移植の拒絶反応、喘息、全身性紅斑性狼瘡、関節炎、潰瘍性大腸炎、その他の炎症症状を治療するために使用される。ベタメタゾンは抗炎症作用と免疫抑制作用を有する合成グルココルチコイドであり、乾癬、水虫や白癬等の真菌感染症を治療するために使用される。
【0093】
コルチコステロイドの抗炎症作用は、リポコルチンと総称されるホスホリパーゼA2抑制タンパク質に関係すると考えられる。逆にリポコルチンは、前駆体分子アラキドン酸の放出を阻害することによりプロスタグランジン、ロイコトリエン等炎症の強力な媒介物の生合成を制御する。提案されている作用の機構には、減少したIgE合成、白血球上で増加したβ-アドレナリン受容体の数、減少したアラキドン酸代謝が含まれる。慢性気管支喘息等の即時アレルギー反応中、アレルゲンは肥満細胞の表面上のIgE抗体を架橋し、これらの細胞の化学走化性物質の放出を誘発する。従って肥満細胞の流入と活性化が、喘息患者の炎症と口腔粘膜の過剰刺激感受性に部分的に関与している。この炎症は、コルチコステロイドの投与によって遅れ得る。
【0094】
この技法を使った細胞増殖異常、神経疾患、生殖系疾患、発生または発達障害、自己免疫/炎症性疾患、DNA修復障害および感染症の診断・治療・予防のために核酸およびタンパク質を含めた新規の組成物が必要である。
【発明の開示】
【発明の効果】
【0095】
本発明さまざまな実施態様は、総称して「NAAP」、個別には各々「NAAP-1」、「NAAP-2」、「NAAP-3」、「NAAP-4」、「NAAP-5」、「NAAP-6」、「NAAP-7」、「NAAP-8」、「NAAP-9」、「NAAP-10」、「NAAP-11」、「NAAP-12」、「NAAP-13」、「NAAP-14」、「NAAP-15」、「NAAP-16」、「NAAP-17」、「NAAP-18」、「NAAP-19」、「NAAP-20」、「NAAP-21」、「NAAP-22」、「NAAP-23」、「NAAP-24」、「NAAP-25」、「NAAP-26」、「NAAP-27」、「NAAP-28」、「NAAP-29」、「NAAP-30」、「NAAP-31」、「NAAP-32」、「NAAP-33」、「NAAP-34」、「NAAP-35」および「NAAP-36」と呼ぶ、核酸結合タンパク質である、精製されたポリペプチドを提供し、またこれらのタンパク質およびそれらをコードするポリヌクレオチドを使って病気および状態の検出、診断および治療を行う方法を提供する。実施態様は精製された核酸結合タンパク質やそれをコードするポリヌクレオチドを、効果、投与量、毒性および薬物学的特徴の決定を含む薬物発見プロセスに利用する方法も提供する。関連する実施態様は精製された核酸結合タンパク質やそれをコードするポリヌクレオチドを病気の病因および医学的状態の研究に利用する方法を提供する。
【0096】
ある実施態様は、(a)SEQ ID NO:1-36を有する群から選択されたアミノ酸配列からなるポリペプチドと、(b)SEQ ID NO:1−26からなる群から選択されたアミノ酸配列と90%以上同一あるいは約90%以上同一である天然のアミノ酸配列を含むポリペプチドと、(c)SEQ ID NO:1-36からなる群から選択されたアミノ酸配列を有するポリペプチドの生物学的活性断片と、(d)SEQ ID NO:1-36とからなる群から選択されたアミノ酸配列を有するポリペプチドの免疫原性断片とで構成される群から選択された単離されたポリペプチドを提供する。もう1つの実施態様はSEQ ID NO:1-36のアミノ酸配列を含む単離されたポリペプチドを提供する。
【0097】
さらにもう1つの実施態様は、(a)SEQ ID NO:1-36からなる群から選択したアミノ酸配列を含むポリペプチド、(b)SEQ ID NO:1-36からなる群から選択したアミノ酸配列と少なくとも90%の同一性または少なくとも約90%の同一性を有する天然のアミノ酸配列を含むポリペプチド、(c)SEQ ID NO:1-36からなる群から選択したアミノ酸配列を有するポリペプチドの生物学的活性断片、および(d)SEQ ID NO:1-36からなる群から選択したアミノ酸配列を有するポリペプチドの免疫原性断片からなる群より選択されたポリペプチドをコードするような単離されたポリヌクレオチドを提供する。一実施態様では、ポリヌクレオチドはSEQ ID NO:1-36からなる群から選択したポリペプチドをコードする。別の実施態様では、ポリヌクレオチドはSEQ ID NO:37-72からなる群から選択される。
【0098】
さらにもう1つの実施態様は、(a)SEQ ID NO:1-36からなる群から選択したアミノ酸配列を有するポリペプチド、(b)SEQ ID NO:1-36からなる群から選択したアミノ酸配列と少なくとも90%が同一あるいは少なくとも約90%が同一である天然のアミノ酸配列を含むポリペプチド、(c)SEQ ID NO:1-36からなる群から選択したアミノ酸配列を有するポリペプチドの生物学的活性断片、および(d)SEQ ID NO:1-36からなる群から選択したアミノ酸配列を有するポリペプチドの免疫原性断片からなる群から選択したポリペプチドをコードするようなポリヌクレオチドと機能的に連結したプロモーター配列を有する組換えポリヌクレオチドを提供する。一実施態様は組換えポリヌクレオチドを用いて形質転換した細胞を提供する。さらにもう1つの実施態様は、この組換えポリヌクレオチドを持つ遺伝形質転換生物体を提供する。
【0099】
もう1つの実施態様は、(a)SEQ ID NO:1-36からなる群から選択したアミノ酸配列を含むポリペプチド、(b)SEQ ID NO:1-36からなる群から選択したアミノ酸配列と少なくとも90%が同一あるいは少なくとも約90%が同一である天然のアミノ酸配列を含むポリペプチド、(c)SEQ ID NO:1-36からなる群から選択したアミノ酸配列を有するポリペプチドの生物学的活性断片、および(d)SEQ ID NO:1-36からなる群から選択したアミノ酸配列を有するポリペプチドの免疫原性断片から構成される群から選択したポリペプチドを製造する方法を提供する。 製造方法は、(a)組換えポリヌクレオチドを用いて形質転換した細胞をポリペプチドの発現に適した条件下で培養する過程と、(b)そのように発現したポリペプチドを回収する過程とを有し、組換えポリヌクレオチドはポリペプチドをコードするポリヌクレオチドに機能的に連結したプロモーター配列を有する。
【0100】
さらにもう1つの実施態様は、(a)SEQ ID NO:1-36からなる群から選択されたアミノ酸配列からなるポリペプチドと、(b)SEQ ID NO:1-36からなる群から選択されたアミノ酸配列と90%以上同一あるいは約90%以上同一である天然のアミノ酸配列を含むポリペプチドと、(c)SEQ ID NO:1-36からなる群から選択されたアミノ酸配列を有するポリペプチドの生物学的活性断片と、(d)SEQ ID NO:1-36とからなる群から選択されたアミノ酸配列を有するポリペプチドの免疫原性断片とで構成される群から選択されたポリペプチドに特異的に結合する単離された抗体を提供する。
【0101】
さらにもう1つの実施態様は、(a)SEQ ID NO:37-72からなる群から選択したポリヌクレオチド配列を含むポリヌクレオチド、(b)SEQ ID NO:37-72からなる群から選択したポリヌクレオチド配列と少なくとも90%の同一性あるいは少なくとも約90%の同一性を有する天然のポリヌクレオチド配列を含むポリヌクレオチド、(c)(a)に相補的なポリヌクレオチド、(d)(b)に相補的なポリヌクレオチド、および(e)(a)〜(d)のRNA等価物からなる群から選択された単離されたポリヌクレオチドを提供する。他の実施態様においては、このポリヌクレオチドは少なくとも20、30、40、60、80または100個の連続したヌクレオチドを含むことができる。
【0102】
さらにもう1つの実施態様は、サンプル中の標的ポリヌクレオチドを検出する方法を提供する。ここで、標的ポリヌクレオチドは、(a)SEQ ID NO:37-72からなる群から選択したポリヌクレオチド配列を含むポリヌクレオチド、(b)SEQ ID NO:37-72からなる群から選択したポリヌクレオチド配列と少なくとも90%の同一性あるいは少なくとも約90%の同一性を有する天然のポリヌクレオチド配列を含むポリヌクレオチド、(c)(a)のポリヌクレオチドに相補的なポリヌクレオチド、(d)(b)のポリヌクレオチドに相補的なポリヌクレオチド、および(e)(a)〜(d)のRNA等価物からなる群から選択された配列のポリヌクレオチドを有する。検出方法は、(a)サンプル中の上記標的ポリヌクレオチドに相補的な或る配列からなる少なくとも20の連続したヌクレオチド群からなる或るプローブを用いて該サンプルをハイブリダイズする過程と、(b)該ハイブリダイゼーション複合体の有無を検出する過程からなる。該プローブと該標的ポリヌクレオチドあるいはその断片との間でハイブリダイゼーション複合体が形成されるような条件下で、プローブは、該標的ポリヌクレオチドに対し特異的にハイブリダイズする。関連する実施態様において、この方法はハイブリダイゼーション複合体の量の検出を含むことができる。さらに他の実施態様においては、このプローブは少なくとも約20、30、40、60、80または100個の連続したヌクレオチドを含むことができる。
【0103】
さらにもう1つの実施態様は、サンプル中の標的ポリヌクレオチドを検出する方法を提供する。ここで、標的ポリヌクレオチドは、(a)SEQ ID NO:37-72からなる群から選択したポリヌクレオチド配列を含むポリヌクレオチド、(b)SEQ ID NO:37-72からなる群から選択したポリヌクレオチド配列と少なくとも90%の同一性あるいは少なくとも約90%の同一性を有する天然のポリヌクレオチド配列を含むポリヌクレオチド、(c)(a)のポリヌクレオチドに相補的なポリヌクレオチド、(d)(b)のポリヌクレオチドに相補的なポリヌクレオチド、および(e)(a)〜(d)のRNA等価物からなる群から選択された配列のポリヌクレオチドを有する。検出方法は、(a)ポリメラーゼ連鎖反応増幅を用いて標的ポリヌクレオチドまたはその断片を増幅する過程と、(b)前記の増幅した標的ポリヌクレオチドまたはその断片の存在・不存在を検出する過程を含む。関連する実施態様において、この方法は増幅された標的ポリヌクレオチドまたはその断片の量の検出を含むことができる。
【0104】
もう1つの実施態様は、有効量のポリペプチドと薬剤として許容できる賦形剤とを含む組成物を提供する。有効量のポリペプチドは、(a)SEQ ID NO:1-36からなる群から選択したアミノ酸配列を含むポリペプチド、(b)SEQ ID NO:1-36からなる群から選択したアミノ酸配列と少なくとも90%が同一あるいは少なくとも約90%が同一である天然のアミノ酸配列を含むポリペプチド、(c)SEQ ID NO:1-36からなる群から選択したアミノ酸配列を有するポリペプチドの生物学的活性断片、および(d)SEQ ID NO:1-36からなる群から選択したアミノ酸配列を有するポリペプチドの免疫原性断片からなる群から選択される。一実施態様では、その組成物は、SEQ ID NO:1-36からなる一群から選択されたアミノ酸配列を含むことができる。 他の実施態様は、機能的NAAPの発現の低下に関連した疾患やその症状の治療方法を提供し、その内にはそのような治療を必要とする患者にこの組成物を投与することが含まれる。
【0105】
さらにもう1つの実施態様は、(a)SEQ ID NO:1-36からなる群から選択したアミノ酸配列、(b)SEQ ID NO:1-36からなる群から選択したアミノ酸配列と少なくとも90%の同一性あるいは少なくとも約90%の同一性を有する天然のアミノ酸配列、(c)SEQ ID NO:1-36を有する群から選択したアミノ酸配列の生物学的活性断片、および(d)SEQ ID NO:1-36からなる群から選択したアミノ酸配列の免疫抗原性断片からなる群から選択されたポリペプチドのアゴニストとしての有効性を確認するために化合物をスクリーニングする方法を提供する。 スクリーニング方法は、(a)ポリペプチドを有するサンプルを化合物に曝す過程と、(b)サンプル中のアゴニスト活性を検出する過程とを含む。もう1つの実施態様では、この方法によって同定されたアゴニスト化合物と好適な医薬用賦形剤とを含む組成物を提供する。さらにもう1つの実施態様は、機能的NAAPの発現の低下に関連した疾患やその症状の治療方法を提供し、その内にはそのような治療を必要とする患者にこの組成物を投与することが含まれる。
【0106】
さらにもう1つの実施態様は、(a)SEQ ID NO:1-36からなる群から選択したアミノ酸配列、(b)SEQ ID NO:1-36からなる群から選択したアミノ酸配列と少なくとも90%の同一性あるいは少なくとも約90%の同一性を有する天然のアミノ酸配列、(c)SEQ ID NO:1-36を有する群から選択したアミノ酸配列の生物学的活性断片、および(d)SEQ ID NO:1-36からなる群から選択したアミノ酸配列の免疫抗原性断片からなる群から選択されたポリペプチドのアンタゴニストとしての有効性を確認するために化合物をスクリーニングする方法を提供する。 スクリーニング方法は、(a)ポリペプチドを有するサンプルを化合物に曝す過程と、(b)サンプル中のアンタゴニスト活性を検出する過程とを含む。もう1つの実施態様では、この方法によって同定されたアンタゴニスト化合物と好適な医薬用賦形剤とを含む組成物を提供する。さらにもう1つの実施態様は、機能的NAAPの過剰発現に関連した疾患やその症状の治療方法を提供し、その内にはそのような治療を必要とする患者にこの組成物を投与することが含まれる。
【0107】
もう1つの実施例は、(a)SEQ ID NO:1-36からなる群から選択したアミノ酸配列を含むポリペプチド、(b)SEQ ID NO:1-36からなる群から選択したアミノ酸配列と少なくとも90%の同一性あるいは少なくとも約90%の同一性を有する天然のアミノ酸配列を含むポリペプチド、(c)SEQ ID NO:1-36からなる群から選択したアミノ酸配列を有するポリペプチドの生物学的活性断片、または(d)SEQ ID NO:1-36からなる群から選択したアミノ酸配列を有するポリペプチドの免疫原性断片を含む群から選択されたポリペプチドに特異結合する化合物をスクリーニングする方法を提供する。スクリーニング方法は、(a)ポリペプチドを適切な条件下で少なくとも1つの試験化合物と混合させる過程と、(b)試験化合物とのポリペプチドの結合を検出し、それによってポリペプチドに特異結合する化合物を同定する過程とを含む。
【0108】
さらにもう1つの実施例は、(a)SEQ ID NO:1-36を有する群から選択したアミノ酸配列、(b)SEQ ID NO:1-36を有する群から選択したアミノ酸配列と少なくとも90%の同一性あるいは少なくとも約90%の同一性を有する天然のアミノ酸配列、(c)SEQ ID NO:1-36を有する群から選択したアミノ酸配列の生物学的活性断片、または(d)SEQ ID NO:1-36を有する群から選択したアミノ酸配列の免疫原性断片を含むポリペプチドの活性を調節する化合物をスクリーニングする方法を提供する。 スクリーニング方法は、(a)ポリペプチドの活性が許容された条件下で、ポリペプチドを少なくとも1つの試験化合物と混合させる過程と、(b)ポリペプチドの活性を試験化合物の存在下で算定する過程と、(c)試験化合物の存在下でのポリペプチドの活性を試験化合物の不存在下でのポリペプチドの活性と比較する過程とを含み、試験化合物の存在下でのポリペプチドの活性の変化は、ポリペプチドの活性を調節する化合物であることを意味する。
【0109】
さらにもう1つの実施態様は、SEQ ID NO:37-72からなる群から選択されたポリヌクレオチド配列を含む標的ポリヌクレオチドの発現を変化させるのに効果的な化合物をスクリーニングする方法を提供し、その方法には、(a)この標的ポリヌクレオチドを含むサンプルを化合物に曝露するステップと、(b)この標的ポリヌクレオチドの発現の変化を検出するステップと、(c)可変量の化合物の存在下と化合物の非存在下で標的ポリヌクレオチドの発現を比較するステップが含まれる。
【0110】
もう1つの実施例は、試験化合物の毒性の算定方法を提供する。この方法には、以下の過程がある。(a)核酸群を有する生体サンプルを試験化合物で処理する過程。(b)処理済み生体サンプルの核酸群をハイブリダイズする過程。この過程には、次のようなプローブを用いる。(i)SEQ ID NO:37-72からなる群から選択した或るポリヌクレオチド配列を持つポリヌクレオチド、(ii)SEQ ID NO:37-72からなる群から選択した或るポリヌクレオチド配列との少なくとも90%の同一性あるいは少なくとも約90%の同一性を有する天然ポリヌクレオチド配列を持つポリヌクレオチド、(iii)(i)に相補的な配列を持つポリヌクレオチド、(iv)(ii)のポリヌクレオチドに相補的なポリヌクレオチド、(v)(i)〜(iv)のRNA等価物、からなる群から選択した或るポリヌクレオチドの少なくとも20の連続したヌクレオチド群からなるプローブである。ハイブリダイゼーションは、前記プローブと生物学的サンプル中の標的ポリヌクレオチドの間に特定のハイブリダイゼーション複合体が形成されるような条件下で発生し、前記標的ポリヌクレオチドは、(i)SEQ ID NO:37-72からなる群から選択したポリヌクレオチド配列を含むポリヌクレオチド、(ii)SEQ ID NO:37-72からなる群から選択したポリヌクレオチド配列と少なくとも90%の同一性あるいは少なくとも約90%の同一性を有する天然のポリヌクレオチド配列を含むポリヌクレオチド、(iii)(i)のポリヌクレオチドに相補的な配列を有するポリヌクレオチド、(iv)(ii)のポリヌクレオチドに相補的なポリヌクレオチド、および(v)(i)〜(iv)のRNA等価物からなる群から選択する。或いは、標的ポリヌクレオチドは、上記(i)〜(v)からなる群から選択したポリヌクレオチドの断片を有することができる。毒性の算定方法には更に、(c)ハイブリダイゼーション複合体の量を定量する過程と、(d)処理した生物学的サンプルのハイブリダイゼーション複合体の量を、非処理の生物学的サンプルのハイブリダイゼーション複合体の量と比較する過程を含み、処理した生物学的サンプルのハイブリダイゼーション複合体の量との差は、試験化合物の毒性を意味する。
【発明を実施するための最良の形態】
【0111】
(本発明の記載について)
本発明のタンパク質、核酸及び方法について説明する前に、説明した特定の装置、材料及び方法に本発明の実施態様が限定されるものではなく、改変し得ることを理解されたい。また、ここで使用する専門用語は特定の実施態様を説明する目的で用いたものに過ぎず、本発明の範囲を限定することを意図したものではないことも併せて理解されたい。
【0112】
請求の範囲及び明細書中で用いている単数形の「或る」及び「その(この)」の表記は、文脈から明らかにそうでないとされる場合を除いて複数のものを指す場合もある。従って、例えば「或る宿主細胞」と記されている場合にはそのような宿主細胞が複数あることもあり、「或る抗体」と記されている場合には単数または複数の抗体、及び、当業者に公知の抗体の等価物等についても言及しているのである。
【0113】
本明細書中で用いる全ての技術用語および科学用語は、特に定義されている場合を除き、当業者に一般に理解されている意味と同じ意味を有する。本明細書で説明するものと類似あるいは同等の任意の装置、材料及び方法を用いて本発明の実施または試験を行うことができるが、ここでは好適な装置、材料、方法について説明する。本発明で言及する全ての刊行物は、刊行物中で報告されていて且つ本発明のさまざまな実施態様に関係があるであろう細胞、プロトコル、試薬及びベクターについて説明及び開示する目的で引用しているものである。本明細書のいかなる開示内容も、本発明が先行技術の効力によってこのような開示に対して先行する権利を与えられていないことを認めるものではない。
【0114】
(定義)
用語「NAAP」は、天然、合成、半合成或いは組換え体などの、全ての種(特にウシ、ヒツジ、ブタ、ネズミ、ウマ及びヒトを含む哺乳動物)から得られる実質的に精製されたNAAPのアミノ酸配列を指す。
【0115】
用語「アゴニスト」は、NAAPの生物学的活性を強めたり、模倣する分子を指す。アゴニストの例としては、NAAPと直接相互作用することによって、或いはNAAPが関与する生物学的経路の構成成分に作用することによってNAAPの活性を調節する、タンパク質、核酸、糖質、小分子その他の任意の化合物や組成物を含みうる。
【0116】
用語「対立遺伝子変異体/変異配列」は、NAAPをコードする別の形の遺伝子を指す。対立遺伝子変異体は、核酸配列における少なくとも1つの突然変異から作製し得る。また、変異RNAまたはポリペプチドからも作製し得る。ポリペプチドの構造または機能は、変異することもしないこともある。或る遺伝子は、その天然型の対立遺伝子変異配列を全く持たない場合もあり、1個以上持つこともある。対立遺伝子変異体を生じさせる通常の突然変異性変化は一般に、ヌクレオチドの自然な欠失、付加または置換による。これら各種の変化は、単独であるいは他の変化と共に、或る配列内で1回以上、生じ得る。
【0117】
NAAPをコードする「変容した/改変された」核酸配列に含む配列には、様々なヌクレオチドの欠失、挿入、或いは置換を有し、その結果、NAAPと同一のポリペプチドを、或いは、NAAPの機能的特徴の少なくとも1つを備えるポリペプチドを生じる配列がある。この定義には、NAAPをコードするポリヌクレオチド配列の正常な染色体の遺伝子座ではない位置での対立遺伝子変異配列との不適当或いは予期しないハイブリダイゼーション、並びにNAAPをコードするポリヌクレオチドの特定のオリゴヌクレオチドプローブを用いて容易に検出可能な或いは検出困難な多型性を含む。コードされるタンパク質も「変容する/改変される」ことがあり、また、サイレント変化を生じた結果、機能的に等価なNAAPとなるような、アミノ酸残基の欠失、挿入または置換を持ち得る。意図的なアミノ酸置換は、生物学的あるいは免疫学的にNAAPの活性が保持される範囲で、残基群の、極性、電荷、溶解度、疎水性、親水性、および/または両親媒性についての、類似性に基づいて成され得る。例えば、負に帯電したアミノ酸にはアスパラギン酸及びグルタミン酸があり、正に帯電したアミノ酸にはリジン及びアルギニンがある。親水性値が近似している非荷電極性側鎖を有するアミノ酸には、アスパラギンとグルタミン、セリンとトレオニンがある。親水性値が近似している非荷電側鎖を有するアミノ酸には、ロイシンとイソロイシンとバリン、グリシンとアラニン、フェニルアラニンとチロシンが含まれうる。
【0118】
「アミノ酸」または「アミノ酸配列」の語は、オリゴペプチド、ペプチド、ポリペプチド若しくはタンパク質の配列またはその断片を指し、天然または合成分子を指すことができる。「アミノ酸配列」が天然のタンパク質分子の配列を指す場合、「アミノ酸配列」及び類似の用語は、アミノ酸配列を記載したタンパク質分子に関連する完全で元のままのアミノ酸配列に限定するものではない。
【0119】
用語「増幅」は、核酸の複製物を作製することに関連する。増幅には、ポリメラーゼ連鎖反応(PCR)技術などの当業者に公知の増幅技術を用いることができる。
【0120】
用語「アンタゴニスト」は、NAAPの生物学的活性を阻害或いは減弱する分子を指す。アンタゴニストは、NAAPに直接相互作用するか、或いはNAAPが関与する生物学的経路の成分と作用して、NAAPの活性を調節する抗体、核酸、糖質、小分子、任意の他の化合物や組成物などのタンパク質を含み得る。
【0121】
「抗体」の語は、抗原決定基と結合することができる、そのままの免疫グロブリン分子やその断片、例えばFab,、F(ab')2 及びFv断片を指す。NAAPポリペプチド群と結合する抗体類の作製には、免疫抗原として、無傷ポリペプチド群を用いることができ、または、当該の小ペプチド群を有する断片群を用い得る。動物(マウス、ラット、ウサギ等)を免疫化するために用いるポリペプチドまたはオリゴペプチドは、RNAの翻訳、または化学合成によって得られるポリペプチドまたはオリゴペプチドに由来し得るもので、好みに応じてキャリアータンパク質に抱合することも可能である。通常用いられるキャリアーであってペプチドと化学結合するものは、ウシ血清アルブミン、サイログロブリン及びスカシガイのヘモシアニン(KLH)等がある。その結合ペプチドは、動物を免疫化するために用いる。
【0122】
用語「抗原決定基」は、特定の抗体と接触する分子の領域(即ちエピトープ)を指す。タンパク質またはタンパク質断片を用いて宿主動物を免疫化する場合、タンパク質の多数の領域が、抗原決定基(タンパク質の特定の領域または3次元構造)に特異結合する抗体の産生を誘導し得る。抗原決定基は、抗体に結合するための無損傷抗原(即ち免疫応答を誘導するために用いられる免疫原)と競合し得る。
【0123】
用語「アプタマー(aptamer)」は、核酸またはオリゴヌクレオチド分子であって、特定の分子ターゲットに結合する分子を指す。アプタマーはin vitroでの進化プロセスに由来する(例えば、SELEX(Systematic Evolution of Ligands by EXponential Enrichmentの略、試験管内選択法)、米国特許第5,270,163号に記述)。これは、大規模な組み合わせライブラリ群から標的特異的アプタマー配列を選択するプロセスである。アプタマー組成は、2本鎖または1本鎖であってもよく、デオキシリボヌクレオチド、リボヌクレオチド、ヌクレオチド誘導体、または他のヌクレオチド様分子を含み得る。アプタマーの各ヌクレオチド成分は修飾された糖基を持つことがあり(例えば、リボヌクレオチドの2'-OH基は2'-Fまたは2'-NH2によって置換され得る)、これは、ヌクレアーゼへの抵抗性または血中でのより長い寿命など、所望の特性を向上し得る。循環系からアプタマーが除去される速度を遅くするために、アプタマーを高分子量キャリアー等の分子に抱合させることができる。アプタマーは、たとえば架橋剤の光活性化によって各々のリガンドと特異的に架橋させることができる(Brody, E.N. および L. Gold, (2000) J. Biotechnol. 74:5-13)。
【0124】
「intramer」の用語はin vivoで発現されるアプタマーを意味するたとえば、ワクシニアウイルスに基づく或るRNA発現系は、白血球の細胞質内で特定のRNAアプタマーが高レベルで発現するために使用されている(Blind, M. 他 (1999) Proc. Natl Acad. Sci. USA 96:3606-3610)。
【0125】
「spiegelmer」の語はL-DNA、L-RNAその他の左旋性ヌクレオチド誘導体またはヌクレオチド様分子を含むアプタマーを指す。左旋性ヌクレオチドを含むアプタマーは、右旋性のヌクレオチドを含む基質に通常作用する天然の酵素による分解に耐性がある。
【0126】
「アンチセンス」の語は、特定の核酸配列を有するポリヌクレオチドの「センス」(コーディング)鎖と塩基対を形成することが可能な任意の組成物を指す。アンチセンス成分には、DNAや、RNAや、ペプチド核酸(PNA)や、ホスホロチオ酸、メチルホスホン酸またはベンジルホスホン酸等の修飾されたバックボーン結合を有するオリゴヌクレオチドや、2'-メトキシエチル糖または2'-メトキシエトキシ糖等の修飾された糖類を有するオリゴヌクレオチドや、或いは5-メチルシトシン、2-デオキシウラシルまたは7-デアザ-2'-デオキシグアノシン等の修飾された塩基を有するオリゴヌクレオチドがある。アンチセンス分子は、化学合成または転写を含む任意の方法で製造することができる。相補的アンチセンス分子は、ひとたび細胞に導入されたら、細胞が産生した天然核酸配列との塩基対を形成し、転写または翻訳を阻止する二重鎖を形成する。「負」または「マイナス」という表現は、ある参考DNA分子のアンチセンス鎖を意味し、「正」または「プラス」という表現はある参考DNA分子のセンス鎖を意味する。
【0127】
用語「生物学的に活性」は、天然分子の構造的、調節的、或いは生化学的な機能を有するタンパク質を指す。同様に、用語「免疫学的に活性」または「免疫原性」は、天然或いは組換え体のNAAP、合成NAAP、またはそれらの任意のオリゴペプチドが、適当な動物或いは細胞内の特定の免疫応答を誘発して特定の抗体と結合する能力を指す。
【0128】
「相補(的)」または「相補性」の語は、塩基対形成によってアニーリングする2つの一本鎖核酸の間の関係を指す。例えば、「5'-AGT-3'」は、その相補配列「3'-TCA-5'」との対を形成する。
【0129】
「所与のポリヌクレオチドを含む組成物」および「所与のポリペプチドを含む組成物」は所与のポリヌクレオチドまたはポリペプチドを含む任意の組成物を指しうる。この組成物には、乾燥製剤または水溶液が含まれ得る。NAAP 若しくはNAAPの断片をコードするポリヌクレオチドを含む組成物は、ハイブリダイゼーションプローブとして使用され得る。このプローブは、凍結乾燥状態で保存可能であり、糖質などの安定化剤と結合させることが可能である。ハイブリダイゼーションにおいては、塩(例えばNaCl)、界面活性剤(例えばドデシル硫酸ナトリウム;SDS)及びその他の構成成分(例えばデンハート液、脱脂粉乳、サケの精子のDNA等)を含む水溶液中にプローブを分散させることができる。
【0130】
「コンセンサス配列」は、不要な塩基を分離するためにDNA配列の解析を繰り返し行い、XL-PCRキット(PE Biosystems,Foster City CA)を用いて5'及び/または3'の方向に伸長され、再度シークエンシングされた核酸配列、またはGELVIEW 断片アセンブリシステム(GCG, Madison, WI)またはPhrap (University of Washington, Seattle WA)等の断片アセンブリ用のコンピュータプログラムを用いて1つ或いはそれ以上のオーバーラップするcDNAやEST、またはゲノムDNA断片からアセンブリされた核酸配列を指す。伸長及びアセンブリの両方を行ってコンセンサス配列を作製する配列もある。
【0131】
用語「保存的なアミノ酸置換」は、元のタンパク質の特性を殆ど変えない置換を指す。即ち、置換によってそのタンパク質の構造や機能が大きくは変わらず、そのタンパク質の構造、特にその機能が保存される。下表は、タンパク質中で元のアミノ酸と置換できて、保存アミノ酸置換と認められるアミノ酸を示している。
Figure 2005502329
【0132】
保存アミノ酸置換では通常、(a)置換領域におけるポリペプチドのバックボーン構造、例えばβシートやα螺旋構造、(b)置換部位における分子の電荷または疎水性、及び/または(c)側鎖の大部分を保持する。
【0133】
用語「欠失」は、1個以上のアミノ酸残基が欠如するアミノ酸配列の変化、或いは1個以上のヌクレオチドが欠如する核酸配列の変化を指す。
【0134】
用語「誘導体」は、化学修飾されたポリヌクレオチドまたはポリペプチドを指す。例えば、アルキル基、アシル基、ヒドロキシル基またはアミノ基による水素の置換は、ポリヌクレオチド配列の化学修飾に含まれ得る。ポリヌクレオチド誘導体は、天然分子の生物学的または免疫学的機能を少なくとも1つは保持しているポリペプチドをコードする。ポリペプチド誘導体は、グリコシル化、ポリエチレングリコール化(pegylation)、或いは任意の同様なプロセスであって、誘導起源のポリペプチドの少なくとも1つの生物学的若しくは免疫学的機能を保持するプロセスによって、修飾されたポリペプチドである。
【0135】
「検出可能な標識」は、測定可能な信号を発生し得る、ポリヌクレオチドやポリペプチドに共有結合或いは非共有結合するレポーター分子や酵素を指す。
【0136】
「差次的発現」は少なくとも2つの異なったサンプルを比較することによって決められる、増加(上方調節)、あるいは減少(下方調節)、または遺伝子発現の欠損またはタンパク発現の欠損を指す。このような比較は例えば、処理済サンプルと不処理サンプル、または病態のサンプルと正常サンプルの間で行われ得る。
【0137】
「エキソンシャフリング」は、異なるコード領域(エキソン)の組換えを意味する。1つのエキソンがコードされたタンパク質の1つの構造的または機能的ドメインを代表し得るため、安定したサブストラクチャーを再分類することによって、新しいタンパク質がアセンブリされることが可能であり、新しいタンパク質機能の進化を促進できる。
【0138】
「断片」は、NAAPの又はNAAPをコードするポリヌクレオチドの固有の部分であって、その親配列(parent sequence)と配列は同一でありうるが親配列より長さが短いものを指す。断片は、定義された配列の全長から1ヌクレオチド/アミノ酸残基を差し引いた長さよりも短い長さを有し得る。例えば或る断片は、約5〜1000の連続したヌクレオチドまたはアミノ酸残基を有し得る。プローブ、プライマー、抗原、治療用分子として、或いはその他の目的のために用いられる断片は、少なくとも5、10、15、20、25、30、40、50、60、75、100、150、250若しくは500の連続したヌクレオチド或いはアミノ酸残基長さであり得る。断片は、分子の特定領域から選択的に選択し得る。例えば、ポリペプチド断片は、所定の配列に示すような最初の250または500アミノ酸(またはポリペプチドの最初の25%または50%)から選択された或る長さの連続したアミノ酸を有し得る。これらの長さは明らかに例として挙げているものであり、本発明の実施例では、配列表、表及び図面を含む明細書に裏付けされた任意の長さであってよい。
【0139】
SEQ ID NO:37-72の断片は、例えば、この断片を得たゲノム内の他の配列とは異なる、SEQ ID NO:37-72を明確に同定する固有のポリヌクレオチド配列の領域を含みうる。SEQ ID NO:37-72の断片は、本発明の1つ以上の方法の実施態様において使用することができる。たとえば、ハイブリダイゼーションおよび増幅技術およびSEQ ID NO:37-72を関連するポリヌクレオチドから区別する類似の方法において使用することができる。SEQ ID NO:37-72の断片の正確な長さ及び断片に対応するSEQ ID NO:37-72の領域は、断片に対する意図した目的に基づき当業者が慣例的に決定することが可能である。
【0140】
SEQ ID NO:1-36の或る断片は、SEQ ID NO:37-72の或る断片によってコードされる。SEQ ID NO:1-36の或る断片は、SEQ ID NO:1-36を特異的に同定する固有のアミノ酸配列の領域を含みうる。例えば、SEQ ID NO:1-36の或る断片は、SEQ ID NO:1-36を特異的に認識する抗体の開発における免疫原性ペプチドとして有用である。SEQ ID NO:1-36の或る断片の正確な長さは、また、この断片に対応するSEQ ID NO:1-36の領域は、その断片の目的に基づいてここに記述された、あるいは当分野で公知の一つ以上の分析方法を使って判定し得る。
【0141】
「完全長」ポリヌクレオチドとは、少なくとも1つの翻訳開始コドン(例えばメチオニン)と、それに続く1オープンリーディングフレームおよび翻訳終止コドンを有する配列である。「完全長」ポリヌクレオチド配列は、「完全長」ポリペプチド配列をコードする。
【0142】
「相同性」の語は、2つ以上のポリヌクレオチド配列または2つ以上のポリペプチド配列の配列類似性、または配列同一性を意味する。
【0143】
ポリヌクレオチド配列についての用語「一致率」または「一致性%」とは、標準化されたアルゴリズムを用いてアラインメントされる、2つ以上のポリヌクレオチド配列間の一致する残基の百分率のことである。このようなアルゴリズムは、2配列間のアラインメントを最適化するために、比較する配列において、標準化された再現性のある方法でギャップを挿入しうるので、2つの配列をより有意に比較できる。
【0144】
ポリヌクレオチド配列間の一致率は、公知の、あるいはここで記述されている一つ以上のコンピュータアルゴリズムまたはプログラムを使って決定することができる。たとえば、一致率は、MEGALIGN version 3.12e配列アラインメントプログラムに組込まれているようなCLUSTAL Vアルゴリズムのデフォルトのパラメータを用いて決定できる。このプログラムは、LASERGENE ソフトウェアパッケージ(一組の分子生物学的分析プログラム) (DNASTAR, Madison WI)の一部である。このCLUSTAL Vは、HigginsおよびSharp (1989;CABIOS 5:151-153)、Higgins他 (1992;(CABIOS 8:189-191)に記載されている。ポリヌクレオチド配列を2つ1組でアラインメントする際のデフォルトパラメータは、Ktuple=2、gap penalty=5、window=4、「diagonals saved」=4と設定する。「weighted(重み付けされた)」残基重み付け表が、デフォルトとして選択される。一致率は、アラインメントされたポリヌクレオチド配列間の「percent similarity(類似性パーセント)」としてCLUSTAL Vによって報告される。
【0145】
或いは、一般的に用いられ且つ自由に入手できる使用可能な配列比較アルゴリズム一式が、国立バイオテクノロジー情報センター(NCBI)Basic Local Alignment Search Tool(BLAST)から提供されており(Altschul, S.F. 他 (1990) J. Mol. Biol. 215:403-410)、これはメリーランド州ベセスダにあるNCBI及びインターネット(http://www.ncbi.nlm.nih.gov/BLAST/)を含む幾つかの情報源から入手可能である。このBLASTソフトウェア一式には、既知のポリヌクレオチド配列と様々なデータベースの別のポリヌクレオチド配列とのアラインメントに用いられる「blastn」を含む、様々な配列分析プログラムが含まれる。「BLAST 2 Sequences」と呼ばれるツールが入手可能であり、2つのヌクレオチド配列の直接のペアワイズで比較するために用いられる。「BLAST 2 Sequences」は、http://www.ncbi.nlm.nih.gov/gorf/bl2.htmlにアクセスして、対話形式で利用ができる。「BLAST 2 Sequences」ツールは、blastn および blastp(以下に記載)の両方に用い得る。BLASTプログラムは、一般的には、ギャップ(gap)などのパラメータをデフォルト設定にセットして用いる。例えば、2つのヌクレオチド配列を比較するために、デフォルトパラメータとして設定された「BLAST 2 Sequences」ツールVersion 2.0.12(2000年4月21日)を用いてblastnを実行してもよい。デフォルトパラメータの設定例を以下に示す。
Matrix:BLOSUM62
Reward for match: 1
Penalty for mismatch: -2
Open Gap:5 及びExtension Gap:2 penalties
Gap x drop-off: 50
Expect: 10
Word Size: 11
Filter:on
一致率は、ある定義された配列の全長(例えば特定のSEQ IDナンバーで定義された配列)で測定し得る。或いは、より短い長さ、例えば、定義された、より大きな配列から得られた断片(例えば少なくとも20、30、40、50、70、100または200の連続したヌクレオチドの断片)の長さと比較して一致率を測定してもよい。ここに挙げた長さは単なる例示的なものに過ぎず、表、図及び配列リストを含めた本明細書に記載された配列に裏付けられた任意の配列長さの断片を用いて、一致率を測定し得る長さを説明し得ることを理解されたい。
【0146】
高度の相同性を示さない核酸配列が、それにもかかわらず遺伝子コードの縮重が原因で類似のアミノ酸配列をコードする場合がある。この縮重を利用して核酸配列内で変化を生じさせて、全ての核酸配列が実質上同一のタンパク質をコードするような多数の核酸配列を生成し得ることを理解されたい。
【0147】
ポリペプチド配列に用いられる用語「一致率」または「一致性%」とは、標準化されたアルゴリズムを用いてアラインメントされる2つ以上のポリペプチド配列間の一致する残基の百分率のことである。ポリペプチド配列アラインメントの方法は公知である。保存的アミノ酸置換を考慮するアラインメント方法もある。既に詳述したこのような保存的置換は通常、置換部位の電荷および疎水性を保存するので、ポリペプチドの構造を(したがって機能も)保存する。
【0148】
ポリペプチド配列間の一致率は、MEGALIGN version 3.12e配列アラインメントプログラムに組込まれているようなCLUSTAL Vアルゴリズムのデフォルトのパラメータを用いて決定できる(既に説明したのでそれを参照されたい)。CLUSTAL Vを用いて、ポリぺプチド配列をペアワイズアラインメントする際のデフォルトパラメータは、Ktuple=1、gap penalty=3、window=5、「diagonals saved」=5と設定する。デフォルトの残基重み付け表としてPAM250マトリクスが選択される。ポリヌクレオチドアラインメントと同様に、CLUSTAL Vは、アラインメントされたポリペプチド配列対間の「類似率」として一致率を報告する。
【0149】
或いは、NCBI BLASTソフトウェア一式を用いてもよい。例えば、2つのポリペプチド配列をペアワイズで比較する場合、「BLAST 2 Sequences」ツールVersion 2.0.12(2000年4月21日)のblastpをデフォルトパラメータに設定して用い得る。デフォルトパラメータの設定例を以下に示す。
Matrix:BLOSUM62
Open Gap:11 及びExtension Gap:1 penalties
Gap x drop-off: 50
Expect: 10
Word Size: 3
Filter:on
一致率は、定義された(例えば特定の配列番号で定義された)ポリペプチド配列全体の長さと比較して測定し得る。或いは、より短い長さ、例えばより大きな定義されたポリペプチド配列から得られた断片(例えば少なくとも15、20、30、40、50、70または150の連続した残基の断片)の長さと比較して一致率を測定してもよい。ここに挙げた長さは単なる例示的なものに過ぎず、表、図及び配列リストを含めた本明細書に記載された配列に裏付けられた任意の配列長さの断片を用いて、或る長さであってその長さに対して一致率を測定し得る長さを説明し得ることを理解されたい。
【0150】
「ヒト人工染色体(HAC)」は、約6kb 〜10MbのサイズのDNA配列を含み得る、安定した染色体複製の分離及び維持に必要な全てのエレメントを含む直鎖状の小染色体である。
【0151】
用語「ヒト化抗体」は、もとの結合能力を保持しつつよりヒトの抗体に似せるために、非抗原結合領域のアミノ酸配列が変えられた抗体分子を指す。
【0152】
「ハイブリダイゼーション」とは、所定のハイブリダイゼーション条件下で、ある一本鎖ポリヌクレオチドがある相補的な一本鎖と塩基対を形成するアニーリングのプロセスである。特異的ハイブリダイゼーションは、2つの核酸配列が高い相補性を共有することを示すものである。特異的ハイブリダイゼーション複合体は許容されるアニーリング条件下で形成され、「洗浄」ステップ後もハイブリダイズされたままである。洗浄ステップは、ハイブリダイゼーションプロセスのストリンジェンシーを決定する際に特に重要であり、更にストリンジェントな条件では、非特異結合(即ち完全には一致しない核酸鎖間の対の結合)が減少する。核酸配列のアニーリングに対する許容条件は、本技術分野における当業者が慣例的に決定する。許容条件はハイブリダイゼーション実験の間は一定でよいが、洗浄条件は所望のストリンジェンシーを得るように、従ってハイブリダイゼーション特異性も得るように実験中に変更することができる。アニーリングが許容される条件は、例えば、温度が68℃で、約6×SSC、約1%(w/v)のSDS、並びに約100μg/mlのせん断して変性したサケ精子DNAが含まれる。
【0153】
一般に、ハイブリダイゼーションのストリンジェンシーは或る程度、洗浄ステップを実行する温度を基準にして表すことができる。このような洗浄温度は通常、所定のイオン強度及びpHにおける特定の配列の融点(Tm)より約5〜20℃低くなるように選択する。このTmは、所定のイオン強度及びpHの条件下で、完全に一致するプローブに標的配列の50%がハイブリダイズする温度である。Tmを計算する式及び核酸のハイブリダイゼーション条件はよく知られており、Sambrook 他 、(1989; Molecular Cloning: A Laboratory Manual, 第2版, 1-3巻, Cold Spring Harbor Press, Plainview NYに記載されており、特に2巻の9章)を参照されたい。
【0154】
本発明のポリヌクレオチド間の高いストリンジェンシーのハイブリダイゼーションでは、約0.2x SSC及び約0.1%のSDSの存在の下、約68℃で1時間の洗浄過程を含む。別法では、約65℃、60℃、55℃、または42℃の温度で行う。SSC濃度は、約0.1%のSDS存在下で、約0.1〜2×SSCの範囲で変化し得る。通常は、ブロッキング剤を用いて非特異ハイブリダイゼーションを阻止する。このようなブロッキング剤には、例えば、約100〜200μg/mlのせん断した変性サケ精子DNAがある。特定条件下で、例えばRNAとDNAのハイブリダイゼーションに有機溶剤、例えば約35〜50%v/vの濃度のホルムアミドを用いることもできる。洗浄条件の有用なバリエーションは、当業者には自明であろう。ハイブリダイゼーションは、特に高ストリンジェント条件下では、ヌクレオチド間の進化的な類似性を示唆し得る。このような類似性は、ヌクレオチド群及びヌクレオチドにコードされるポリペプチド群について、類似の役割を強く示唆している。
【0155】
用語「ハイブリダイゼーション複合体」は、相補的な塩基間の水素結合によって形成された、2つの核酸の複合体を指す。ハイブリダイゼーション複合体は、溶解状態で形成し得る(C0tまたはR0t解析等)。或いは、一方の核酸配列が溶解状態で存在し、もう一方の核酸が固体支持体(例えば紙、膜、フィルタ、チップ、ピンまたはガラススライド、或いは他の適切な基板であって細胞若しくはその核酸が固定される基板)に固定されているような2つの核酸間に形成され得る。
【0156】
用語「挿入」或いは「付加」は、1個以上のアミノ酸残基或いはポリヌクレオチドがそれぞれ追加されるアミノ酸配列或いは核酸配列の変化を指す。
【0157】
「免疫応答」は、炎症、外傷、免疫異常症、伝染性疾患または遺伝性疾患に関連する症状を指し得る。これらの症状は、細胞及び全身の防御系に作用し得る種々の因子、例えばサイトカイン、ケモカイン、その他のシグナル伝達分子の発現によって特徴づけることができる。
【0158】
「免疫原性断片」は、生物(例えば哺乳類)に導入すると免疫応答を引き起こし得る、NAAPのポリペプチド断片またはオリゴペプチド断片である。用語「免疫原性断片」にはまた、本明細書で開示するまたは当分野で既知のあらゆる抗体生産方法に有用な、NAAPの任意のポリペプチド断片またはオリゴペプチド断片をも含む。
【0159】
用語「マイクロアレイ」は、基板上の複数のポリヌクレオチド、ポリペプチド、抗体またはその他の化合物の構成を指す。
用語「エレメント」または「アレイエレメント」は、マイクロアレイ上に固有の指定された位置を有する、ポリヌクレオチド、ポリペプチド、抗体またはその他の化合物を指す。
【0160】
用語「モジュレート」または「活性を調節」は、NAAPの活性を変化させることを指す。例えば、モジュレートによって、NAAPのタンパク質活性の、或いは結合特性の、またはその他の生物学的特性、機能的特性或いは免疫学的特性の変化が起き得る。
【0161】
「核酸」及び「核酸配列」の語は、ヌクレオチド、オリゴヌクレオチド、ポリヌクレオチドまたはこれらの断片を指す。「核酸」及び「核酸配列」の語は、ゲノム起源または合成起源のDNAまたはRNAであって一本鎖または二本鎖であるか或いはセンス鎖またはアンチセンス鎖を表し得るようなDNAまたはRNAや、ペプチド核酸(PNA)や、任意のDNA様またはRNA様物質を指すこともある。
【0162】
「機能的に連結した」は、第1の核酸配列と第2の核酸配列が機能的な関係にある状態を指す。例えば、プロモーターがコード配列の転写または発現に影響を及ぼす場合には、そのプロモーターはそのコード配列に機能的に連結している。同一のリーディングフレーム内で2つのタンパク質コード領域を接続する必要がある場合、一般に、機能的に連結したDNA配列は非常に近接するか、或いは連続的に隣接し得る。
【0163】
「ペプチド核酸(PNA)」は、末端がリシンで終わるアミノ酸残基のペプチドのバックボーンに結合した、少なくとも約5ヌクレオチドの長さのオリゴヌクレオチドを含む、アンチセンス分子または抗遺伝子剤を指す。末端のリジンは、この組成に溶解性を与える。PNAは、相補的一本鎖DNAまたはRNAに優先的に結合して転写の伸長を停止するものであり、ポリエチレングリコール化して細胞におけるPNAの寿命を延長し得る。
【0164】
NAAPの「翻訳後修飾」としては、脂質化、グリコシル化、リン酸化、アセチル化、ラセミ化、蛋白分解的切断、及びその他の当分野で既知の修飾を含み得る。これらのプロセスは、合成的或いは生化学的に生じ得る。生化学的修飾は、NAAPの酵素環境に依存し、細胞の種類によって異なることとなる。
【0165】
「プローブ」とは、同一、対立遺伝子、あるいは関連する核酸の検出に用いる、NAAPやそれらの相補体、またはそれらの断片をコードする核酸のことである。プローブは、単離されたオリゴヌクレオチドまたはポリヌクレオチドであって、検出可能な標識またはレポーター分子に結合したものである。典型的な標識には、放射性アイソトープ、リガンド、化学発光試薬及び酵素がある。「プライマー」とは、相補的な塩基対を形成して標的のポリヌクレオチドにアニーリング可能な、通常はDNAオリゴヌクレオチドである短い核酸である。プライマーは次に、DNAポリメラーゼ酵素によって標的DNA鎖に沿って延長し得る。プライマー対は、例えばポリメラーゼ連鎖反応(PCR)による、核酸の増幅(および同定)に用い得る。
【0166】
本発明に用いるようなプローブ及びプライマーは通常、既知の配列の、少なくとも15の連続したヌクレオチドを含んでいる。特異性を高めるために長めのプローブ及びプライマー、例えば開示した核酸配列の少なくとも20、25、30、40、50、60、70、80、90、100または150の連続したヌクレオチドからなるようなプローブ及びプライマーを用いてもよい。これよりもかなり長いプローブ及びプライマーもある。表、図面及び配列リストを含む本明細書に裏付けされた任意の長さのヌクレオチドを用いることができるものと理解されたい。
【0167】
プローブ及びプライマーの調製及び使用方法については、Sambrook, J. (前出)、Ausubel, F.M. 他, (1987; Current Protocols in Molecular Biology, Greene Publ. Assoc. & Wiley-Intersciences, New York NY)、およびInnis他 (1990; PCR Protocols, A Guide to Methods and Applications Academic Press, San Diego CA)等を参照されたい。PCRプライマー対を既知の配列から得るには、例えば、そのためのコンピュータプログラム、例えばPrimer(Version 0.5, 1991, Whitehead Institute for Biomedical Research, Cambridge MA)を用い得る。
【0168】
プライマーとして用いるオリゴヌクレオチドの選択は、そのような目的のために本技術分野で既知のソフトウェアを用いて行う。例えばOLIGO 4.06ソフトウェアは、各100ヌクレオチドまでのPCRプライマー対の選択に有用であり、オリゴヌクレオチド及び最大5,000までの大きめのポリヌクレオチドであって32キロベースまでのインプットポリヌクレオチド配列から得たものを分析するのにも有用である。類似のプライマー選択プログラムには、拡張能力のための追加機能が組込まれている。例えば、PrimOUプライマー選択プログラム(テキサス州ダラスにあるテキサス大学南西部医療センターのゲノムセンターから一般向けに入手可能)は、メガベース配列から特定のプライマーを選択することが可能であり、従ってゲノム全体の範囲でプライマーを設計するのに有用である。Primer3プライマー選択プログラム(Whitehead Institute/MIT Center for Genome Research(マサチューセッツ州ケンブリッジ)より入手可能)を用いれば、プライマー結合部位として避けたい配列を指定できる「非プライミングライブラリ(mispriming library)」を入力できる。Primer3は特に、マイクロアレイのためのオリゴヌクレオチドの選択に有用である。(後二者のプライマー選択プログラムのソースコードは、それぞれの情報源から得てユーザー固有のニーズを満たすように変更してもよい。)PrimerGenプログラム(英国ケンブリッジ市の英国ヒトゲノムマッピングプロジェクト-リソースセンターから一般向けに入手可能)は、多数の配列アラインメントに基づいてプライマーを設計し、それによって、アラインメントされた核酸配列の最大保存領域または最小保存領域の何れかとハイブリダイズするようなプライマーの選択を可能にする。従って、このプログラムは、固有であって保存されたオリゴヌクレオチド及びポリヌクレオチドの断片の同定に有用である。上記選択方法のいずれかによって同定したオリゴヌクレオチド及びポリヌクレオチドの断片は、ハイブリダイゼーション技術において、例えばPCRまたはシークエンシングプライマーとして、マイクロアレイエレメントとして、或いは核酸のサンプルにおいて完全または部分的相補的ポリヌクレオチドを同定する特異プローブとして有用である。オリゴヌクレオチドの選択方法は、上記の方法に限定されるものではない。
【0169】
本明細書における「組換え核酸」は天然の配列ではなく、2つ以上の配列の離れたセグメントを人工的に組み合わせた核酸である。この人為的組合せはしばしば化学合成によって達成するが、より一般的には核酸の単離セグメントの人為的操作によって、例えばのSambrookらの文献(前出)に記載されているような遺伝子工学的手法によって達成する。組換え核酸の語は、単に核酸の一部が付加、置換または欠失により改変された核酸も含む。しばしば組換え核酸には、プロモーター配列に機能的に連結した核酸配列が含まれる。このような組換え核酸は、例えばある細胞を形質転換するために使用されるベクターの一部とすることが可能である。
【0170】
或いはこのような組換え核酸は、ウイルスベクターの一部であって、例えばワクシニアウイルスに基づくものであり得る。そのようなワクシニアウイルスは哺乳動物に接種され、その組換え核酸が発現されて、その哺乳動物ないで防御免疫応答を誘導するように使用することができる。
【0171】
「調節因子」は、通常は遺伝子の非翻訳領域に由来する核酸配列であり、エンハンサー、プロモーター、イントロン及び5'及び3'の非翻訳領域(UTR)を含む。調節エレメントは、転写、翻訳またはRNA安定性を調節する宿主タンパク質またはウイルスタンパク質と相互作用する。
【0172】
「レポーター分子」は、核酸、アミノ酸または抗体の標識に用いられる化学的または生化学的な部分である。レポーター分子には、放射性核種、酵素、蛍光剤、化学発光剤、発色剤、基質、補助因子、阻害因子、磁気粒子及びその他の当分野で既知の成分がある。
【0173】
本明細書において、DNA分子に対する「RNA等価物」とは、基準となるDNA分子と同じ直鎖の核酸配列から構成されるが、窒素性塩基のチミンがウラシルに置換され、糖鎖のバックボーンがデオキシリボースではなくリボースからなる。
【0174】
用語「サンプル」は、その最も広い意味で用いられている。NAAP、NAAPをコードする核酸群、またはその断片群を含むと推定されるサンプルとしては、体液と、細胞や細胞から単離した染色体や細胞内小器官(オルガネラ)や膜からの抽出物と、細胞と、溶液中に存在するまたは基板に固定されたゲノムDNA、RNA、cDNAと、組織と、組織プリントなどがあり得る。
【0175】
用語「特異的結合」及び「特異的に結合する」は、タンパク質若しくはペプチドと、アゴニスト、抗体、アンタゴニスト、小分子、若しくは任意の天然若しくは合成の結合組成物との間の相互作用を指す。この相互作用は、タンパク質の特定の構造(例えば抗原決定基即ちエピトープ)であって結合分子が認識するものが存在するか否かに依存していることを意味している。例えば、抗体がエピトープ「A」に対して特異的である場合、結合していない標識した「A」及び抗体を含む反応液に、エピトープAを含むポリペプチド或いは結合していない無標識の「A」が存在すると、抗体と結合する標識Aの量が減少する。
【0176】
用語「実質的に精製された」は、自然の環境から取り除かれてから、単離あるいは分離された核酸配列あるいはアミノ酸配列であって、自然に会合している他の成分が少なくとも約60%除去されたものであり、好ましくは約75%以上除去、最も好ましくは約90%以上除去されたものを指す。
【0177】
「置換」とは、一つ以上のアミノ酸またはヌクレオチドをそれぞれ別のアミノ酸またはヌクレオチドに置き換えることである。
【0178】
用語「基板」は、任意の好適な固体或いは半固体の支持物を指し、膜及びフィルター、チップ、スライド、ウエハ、ファイバー、磁気または非磁気ビード、ゲル、チューブ、プレート、ポリマー、微小粒子、毛細管が含まれる。基板は、壁、溝、ピン、チャネル、孔等、様々な表面形態を有することができ、基板表面にはポリヌクレオチドやポリペプチドが結合する。
【0179】
「転写イメージ」または「発現プロファイル」は、所定条件下での所定時間における特定の細胞の種類または組織による集合的遺伝子発現のパターンを指す。
【0180】
「形質転換(transformation)」とは、外来DNAが受容細胞に導入されるプロセスのことである。形質転換は、本技術分野で知られている種々の方法に従って自然条件または人工条件下で生じ得るものであり、外来性の核酸配列を原核宿主細胞または真核宿主細胞に挿入する任意の既知の方法を基にし得る。形質転換の方法は、形質転換する宿主細胞の種類によって選択する。限定するものではないが形質転換方法には、ウイルス感染、電気穿孔法(エレクトロポレーション)、熱ショック、リポフェクション及び微粒子銃を用いる方法がある。「形質転換された細胞」には、導入されたDNAが自律的に複製するプラスミドとして或いは宿主染色体の一部として複製可能である安定的に形質転換された細胞が含まれる。さらに、限られた時間に一過的に導入DNA若しくは導入RNAを発現する細胞も含まれる。
【0181】
ここで用いる「遺伝形質転換生物体」とは任意の生物体であり、限定するものではないが動植物を含み、生物体の1若しくは数個の細胞が、ヒトの関与によって、例えば本技術分野でよく知られている形質転換技術によって導入された異種核酸を有する。 核酸の細胞への導入は、直接または間接的に、細胞の前駆物質に導入することによって、計画的な遺伝子操作によって、例えば微量注射法によって或いは組換えウイルスの導入によって行う。もう1つの実施態様において、核酸はレンチウイルスベクターのような組換えウイルスベクターを用いた感染によって導入することができる(Lois, C. 他(2002) Science 295:868-872)。遺伝子操作の語は、古典的な交雑育種或いは試験管内受精を指すものではなく、組換えDNA分子の導入を指すものである。本発明に基づいて予期される遺伝形質転換生物体には、バクテリア、シアノバクテリア、真菌及び動植物がある。本発明の単離されたDNAは、本技術分野で知られている方法、例えば感染、形質移入、形質転換またはトランス接合(transconjugation)によって宿主に導入することができる。本発明のDNAをこのような生物体に移入する技術はよく知られており、前出のSambrook 他などの文献で提供されている。
【0182】
特定の核酸配列の「変異体」は、核酸配列1本全部の長さに対して特定の核酸配列と少なくとも40%の相同性を有する核酸配列であると定義する。その際、デフォルトパラメータに設定した「BLAST 2 Sequences」ツールVersion 2.0.9(1999年5月7日)を用いてblastnを実行する。このような核酸対は、所定の長さに対して、例えば少なくとも50%、60%、70%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%またはそれ以上の相同性を示し得る。或る変異体は、例えば「対立遺伝子」変異体(前述)、「スプライス」変異体、「種」変異体または「多型性」変異体として説明し得る。スプライス変異体は参照分子とかなりの相同性を有し得るが、mRNAプロセッシング中のエキソンの選択的スプライシングによって通常、より多くまたはより少数のヌクレオチドを有することになる。対応するポリペプチドは、追加機能ドメインを有するか或いは参照分子に存在するドメインが欠落していることがある。種変異体は、種によって異なるポリヌクレオチドである。結果的に生じるポリペプチドは通常、相互にかなりのアミノ酸相同性を有する。多型性変異体は、与えられた種の個体間で特定の遺伝子のポリヌクレオチド配列中での変異である。多型変異配列はまた、ポリヌクレオチド配列の1つのヌクレオチドが異なる「一塩基多型」(SNP)も含み得る。SNPの存在は、例えば特定の個体群、病状または病状性向を示し得る。
【0183】
特定のポリペプチド配列の「変異体」は、ポリペプチド配列の1本の長さ全体で特定のポリペプチド配列に対して少なくとも40%の相同性を有するポリペプチド配列として定義される。定義づけには、デフォルトパラメータに設定した「BLAST 2 Sequences」ツールVersion 2.0.9(1999年5月7日)を用いてblastpを実行する。このようなポリペプチド対は、一方のポリペプチドの或る所定の長さに対して、例えば少なくとも50%、60%、70%、80%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%またはそれ以上の配列同一性を示し得る。
(発明)
本発明のさまざまな実施態様は、新規のヒト核酸結合タンパク質群(NAAP)および、NAAPをコードするポリヌクレオチド群を含む。また、これらの組成物を利用した、細胞増殖異常、神経疾患、生殖系疾患、発生または発達障害、自己免疫/炎症性疾患、DNA修復障害および感染症の診断、治療、および予防の開発を含む。
【0184】
表1は、本発明の完全長ポリヌクレオチド配列及びポリペプチド実施例の命名の概略である。各ポリヌクレオチド及びその対応するポリペプチドは、1つのIncyteプロジェクト識別番号(IncyteプロジェクトID)と相関する。各ポリペプチド配列は、ポリペプチド配列識別番号(ポリペプチドSEQ ID NO)とIncyteポリペプチド配列番号(IncyteポリペプチドID)によって表示した。各ポリヌクレオチド配列は、ポリヌクレオチド配列識別番号(ポリヌクレオチドSEQ ID NO)とIncyteポリヌクレオチドコンセンサス配列番号(IncyteポリヌクレオチドID)によって表示した。列6は本発明のポリペプチドおよびポリヌクレオチド実施態様に相当する物理的な完全長クローンのIncyte ID 番号を示す。完全長のクローンは列3に示すポリペプチドに少なくとも95%の配列同一性を有するポリペプチドをコードする。
【0185】
表2は、GenBankタンパク質(genpept)データベースとPROTEOMEデータベースとに対するBLAST分析で同定した、本発明のポリペプチド群に相同な配列群を示す。列1および列2はそれぞれ、本発明の各ポリペプチドに対するポリペプチド配列識別番号(ポリペプチド SEQ ID NO:)と、それに対応するIncyteポリペプチド配列番号(IncyteポリペプチドID)を示す。列3は、GenBankの最も近い相同体のGenBank識別番号(Genbank ID NO)と最も近いPROTEOME データベース相同体のPROTEOME データベース識別番号 (PROTEOME ID NO) を示す。列4は、各ポリペプチドとその相同体との間の一致について確率スコアを示す。列5は、GenBankとPROTEOME データベースの相同体の注釈を示し、更に該当箇所には関連する引用文献も示す。これら全ては引用することを以って本明細書の一部とする。
【0186】
表3は、本発明のポリペプチドの様々な構造的特徴を示す。列1および列2はそれぞれ、本発明の各ポリペプチドのポリペプチド配列識別番号(SEQ ID NO)およびそれに対応するIncyte ポリペプチド配列番号(Incyte ポリペプチド ID)を示す。列3は、各ポリペプチドのアミノ酸残基数を示す。列4および列5はそれぞれ、GCG配列分析ソフトウェアパッケージのMOTIFSプログラム(Genetics Computer Group, Madison WI)によって決定された、リン酸化およびグリコシル化の可能性のある部位を示す。列6は、シグネチャ配列、ドメイン、およびモチーフを含むアミノ酸残基を示す。列7は、タンパク質の構造/機能の分析のための分析方法を示し、該当箇所にはさらに分析方法に利用した検索可能なデータベースを示す。
【0187】
表2および3は共に、本発明の各々のポリペプチドの特性を要約しており、それら特性が、請求の範囲に記載されたポリペプチドが核酸結合タンパク質であることを確立している。たとえば、SEQ ID NO:1はマウスのゲノムスクリーンホメオボックスタンパク質2(GenBank ID g1042009) と残基M1から残基L304にかけて88%同一であることがBasic Local Alignment Search Tool (BLAST)によって示されたBLAST確率スコアは2.1e-146であり、これは観察されたポリペプチド配列アラインメントが偶然に得られる確率を示している。SEQ ID NO:1はまた、1つのホメオボックスドメインを有するが、これは隠れマルコフモデル(HMM)を基にした保存されたタンパク質ファミリードメイン群のPFAMデータベースにおいて、統計的に有意な一致を検索して決定された (表3参照)。BLIMPS、MOTIFS、及PROFILESCANおよび追加のBLAST 解析よりのデータは、SEQ ID NO:1 がホメオボックスタンパク質である、さらに実証的な証拠を提供する。
【0188】
別の例において、SEQ ID NO:8は残基G24から残基E384までヒトのDNA結合タンパク質B (GenBank ID g181486)に99%の同一性を有するが、これはBasic Local Alignment Search Tool (BLAST)によって同定される(表2参照)。BLAST確率スコアは5.8e-199であり、これは観察されたポリペプチド配列アラインメントが偶然に得られる確率を示している。SEQ ID NO:8はまた、「コールドショック(cold shock)」DNA結合ドメインを有するが、これは、隠れマルコフモデル(HMM)を基にした保存されたタンパク質ファミリードメインのPFAMデータベースにおいて、統計的に有意な一致を検索して決定された (表3参照)。BLIMPS、MOTIFS、及びPROFILESCAN解析よりのデータは、SEQ ID NO:8がDNA結合タンパク質である、さらに実証的な証拠を提供する。
【0189】
別の例において、SEQ ID NO:13 は ヒトの中心小体結合タンパク質 (GenBank ID g3435244) に残基M780から残基E1598までの94%同一であることがBasic Local Alignment Search Tool (BLAST)によって確認された(表2参照)。BLAST確率スコアは0.0であり、これは観測されたポリペプチド配列アラインメントが偶然に得られる確率を示している。さらなるBLIMPS解析およびMOTIFS解析よりのデータは、SEQ ID NO:13が中心小体結合タンパク質であることを更に確証する証拠を提供する。
【0190】
また他の例として、SEQ ID NO:15はヒトのブロモドメインPHDフィンガー転写因子(GenBank ID g6683492)と残基E435から残基L2523まで87%同一であることがBasic Local Alignment Search Tool (BLAST)によって示された(表2参照)。BLAST確率スコアは0.0であり、これは観測されたポリペプチド配列アラインメントが偶然に得られる確率を示している。SEQ ID NO:15はまた、1つのPHDフィンガードメインを有するが、これは、隠れマルコフモデル(HMM)を基にした保存されたタンパク質ファミリードメイン群のPFAMデータベースにおいて、統計的に有意な一致を検索して決定された (表3参照)。BLIMPS、MOTIFS、及びPROFILESCAN解析よりのデータは、SEQ ID NO:15がブロモドメインPHDフィンガー転写因子である、さらに実証的な証拠を提供する。
【0191】
別の例において、SEQ ID NO:21は残基T141から残基E370までヒトのKurppel様Znフィンガータンパク質 (GenBank ID g8163824)に41%の同一性を有するが、これはBasic Local Alignment Search Tool (BLAST)によって同定される(表2参照)。BLAST確率スコアは6.7e-71であり、これは観察されたポリペプチド配列アラインメントが偶然に得られる確率を示している。SEQ ID NO:21はまた、ZnフィンガーC2H2タイプドメインを有するが、これは、隠れマルコフモデル(HMM)を基にした保存されたタンパク質ファミリードメイン群のPFAMデータベースにおいて、統計的に有意な一致を検索して決定された (表3参照)。BLIMPS解析およびMOTIFS解析よりのデータは、SEQ ID NO:21 がC2H2タイプのZnフィンガータンパク質である、さらに実証的な証拠を提供する。
【0192】
もう1つの例において、SEQ ID NO:30は分裂酵母(Schizosaccharomyces pombe)の推定ヘリカーゼ (GenBank ID g6901197)に残基T556から残基E1699までで33%、残基S10から残基Y211までで32%の同一性を有するが、これはBasic Local Alignment Search Tool (BLAST)によって同定される(表2参照)。BLAST確率スコアは2.9e-137であり、これは保存されたポリペプチド配列アラインメントが偶然に得られる確率を示している。SEQ ID NO:30はまた、1つのDEAD/DEAHボックスヘリカーゼドメインを有するが、これは、隠れマルコフモデル(HMM)を基にした保存されたタンパク質ファミリードメイン群のPFAMデータベースにおいて、統計的に有意な一致を検索して決定された (表3参照)。DOMOおよびPRODOMデータベースのBLAST解析からのデータは、SEQ ID NO:30がヘリカーゼであることのさらに確証的な証拠を提供する。
【0193】
また他の例として、SEQ ID NO:33はマウスのTボックス転写因子(GenBank ID g3169261)と残基M1から残基V602まで97%同一であることがBasic Local Alignment Search Tool (BLAST)によって示された(表2参照)。BLAST確率スコアは0.0であり、これは観測されたポリペプチド配列アラインメントが偶然に得られる確率を示している。SEQ ID NO:33はまた、1つのTボックスドメインを有するが、これは、隠れマルコフモデル(HMM)を基にした保存されたタンパク質ファミリードメイン群のPFAMデータベースにおいて、統計的に有意な一致を検索して決定された (表3参照)。BLIMPS、PRODOMおよびDOMO BLASTよりのデータおよびMOTIFS解析は、SEQ ID NO:33が転写因子分子であることをさらに確証する証拠を提供する。
【0194】
上記を総合して、SEQ ID NO:1、 SEQ ID NO:8、 SEQ ID NO:13、 SEQ ID NO:15、 SEQ ID NO:21、 SEQ ID NO:30およびSEQ ID NO:33が全て核酸に結合するという証拠が提供される。SEQ ID NO:2-7、SEQ ID NO:9-12、SEQ ID NO:14、SEQ ID NO:16-20、SEQ ID NO:22-29、SEQ ID NO:31-32およびSEQ ID NO:34-36は、同様に分析し、注釈を付けた。SEQ ID NO:1-36の解析のためのアルゴリズム及びパラメータが表7で記述されている。
【0195】
表4に示すように、完全長ポリヌクレオチドの具体例は、cDNA配列またはゲノムDNA由来のコード(エキソン)配列を用いて、あるいはこれら2種類の配列を任意に組み合わせてアセンブリした。列1は本発明の各ポリヌクレオチドに対するポリヌクレオチド配列識別番号(ポリヌクレオチドSEQ ID NO)および対応するIncyteポリヌクレオチドコンセンサス配列番号(Incyte ID)、および塩基対の各ポリヌクレオチド配列の長さを示している。列2は、完全長ポリヌクレオチド実施態様のアセンブリに使われたcDNA配列および/またはゲノム配列のヌクレオチド開始位置(5')と停止位置(3')、およびSEQ ID NO:37-72 を同定するか、またはSEQ ID NO:37-72と、関連するポリヌクレオチド配列とを区別する技術(例えば、ハイブリダイゼーション技術または増幅技術)に有用なポリヌクレオチドの断片のヌクレオチド開始位置(5')と終了位置(3')を示す。
【0196】
表4の列2で記述されたポリヌクレオチド断片は、具体的にはたとえば組織特異的なcDNAライブラリまたはプールされたcDNAライブラリに由来するIncyte cDNAを指す場合がある。或いは列2に記載したポリヌクレオチド断片は、完全長ポリヌクレオチドのアセンブリに寄与したGenBank cDNAまたはESTを指す場合もある。さらに、列2のポリヌクレオチド断片は、ENSEMBL(The Sanger Centre、英国ケンブリッジ)データベースから由来した配列(即ち「ENST」命名を含む配列)を同定し得る。或いは、列2で記述されたポリヌクレオチド断片は、NCBI RefSeq Nucleotide Sequence Records データベースから由来する場合もあり(即ち「NM」または「NT」の命名を含む配列)、またNCBI RefSeq Protein Sequence Recordsから由来する場合もある(即ち「NP」の命名を含む配列)。または列で記述されたポリヌクレオチド断片は、「エキソンスティッチング(exon-stitching)」アルゴリズムにより結び合わせたcDNA及びGenscan予想エキソンの両方からなるアセンブリ体を意味する場合がある。例えば、FL_XXXXXX_N1_N2_YYYYY_N3_N4 として同定されるポリヌクレオチド配列はアルゴリズムが適用される配列のクラスターの識別番号がXXXXXXであり、アルゴリズムにより生成される予測の番号がYYYYY であり、(もし存在すれば)N1,2,3..が解析中に手動で編集された可能性のある特定のエキソンであるような「縫合された」配列である( 実施例5参照 )。または、列2のポリヌクレオチド断片は「エキソンストレッチング(exon-stretching)」アルゴリズムにより結び合わせたエキソンのアセンブリ体を指す場合もある。例えば、FLXXXXXX_gAAAAA_gBBBBB_1_N として同定されるポリヌクレオチド配列は「ストレッチ」配列である。ここでXXXXXXはIncyteプロジェクト識別番号、gAAAAAは「エキソンストレッチング」アルゴリズムを適用したヒトゲノム配列のGenBank識別番号、gBBBBBは一番近いGenBankタンパク質相同体のGenBank識別番号またはNCBI RefSeq 識別番号である。(実施例5を参照。)あるRefSeq配列が「エキソンストレッチング」アルゴリズムのためのタンパク質相同体として使用された場合では、RefSeq識別番号(「NM」、「NP」、または「NT」によって表される)が、GenBank識別(即ち、gBBBBB)の代わりに使用される場合もある。
【0197】
或いは、接頭コードは、手動で編集された構成配列、ゲノムDNA配列から予測された構成配列、または組み合わされた配列解析方法から由来する構成配列を同定する。次の表は、構成配列の接頭コードと、接頭コードに対応する配列分析方法の例を列記する(実施例4と5を参照)。
Figure 2005502329
【0198】
場合によっては、最終コンセンサスポリヌクレオチド配列を確認するために表4に示すような配列の適用範囲と重複するIncyte cDNAの適用範囲が得られたが、それに関連するIncyte cDNA識別番号は示さなかった。
【0199】
表5は、Incyte cDNA配列を用いてアセンブリされた完全長ポリヌクレオチドのための代表的なcDNAライブラリを示している。代表的なcDNAライブラリとはIncyte cDNAライブラリであり、これは、最も頻繁にはIncyte cDNA配列群によって代表されるが、これら配列は、上記のポリヌクレオチドをアセンブリおよび確認するために用いられた。cDNAライブラリを作製するために用いた組織およびベクターを表5に示し、表6で説明している。
【0200】
表8は、ポリヌクレオチド実施態様に見られる一塩基多型(SNP)を、種々のヒト集団での対立遺伝子(アレル)頻度と共に示す。列1および列2はそれぞれ、本発明の各ポリヌクレオチドのポリヌクレオチド配列識別番号(SEQ ID NO:)と、それに対応するIncyteプロジェクト識別番号(PID)を示す。列3はSNPが検出されたESTのIncyte識別番号(EST ID)を示し、列4はSNP の識別番号(SNP ID)を示す。列5はSNPが存在するEST配列内の位置(EST SNP)を示し、列6は完全長ポリヌクレオチド配列内のSNPの位置を示す。列7はEST配列内に存在する対立遺伝子を示す。列8および列9はSNP部位に存在する2つの対立遺伝子を示す。列10はESTに存在する対立遺伝子に基づいてSNP部位に含まれるコドンによってコードされるアミノ酸を示す。列11〜14は四つの異なったヒト母集団における対立遺伝子1の発生頻度を示す。n/d(検出されない)の項目は母集団における対立遺伝子1の発生頻度が低すぎて検出されなかったことを示し、また、n/a(利用不可)はその母集団において対立遺伝子の発生頻度が決定されなかったことを示す。
【0201】
本発明には、NAAPの変異体も含まれる。好適なNAAP変異体は、NAAPの機能的或いは構造的特徴の少なくとも1つを有し、かつ該NAAPアミノ酸配列に対して少なくとも約80%のアミノ酸配列同一性、或いは少なくとも約90%のアミノ酸配列同一性、更には少なくとも約95%のアミノ酸配列同一性を有する配列である。
【0202】
種々の実施態様もまた、NAAPをコードするポリヌクレオチドをも含む。特定の実施態様において、本発明は、NAAPをコードする、SEQ ID NO:37-72からなる一群から選択された1配列を持つポリヌクレオチド配列を提供する。SEQ ID NO:37-72のポリヌクレオチド配列には、配列表に示したように等価RNA配列をも含むが、そこでは窒素塩基チミンの出現はウラシルに置換され、糖のバックボーンはデオキシリボースではなくリボースで構成される。
【0203】
本発明はまた、NAAPをコードするポリヌクレオチド配列の変異配列を含む。詳細には、このような変異体ポリヌクレオチド配列は、NAAPをコードするポリヌクレオチド配列との、少なくとも約70%のポリヌクレオチド配列同一性、あるいは少なくとも約85%のポリヌクレオチド配列同一性、更には少なくとも約95%ものポリヌクレオチド配列同一性を持つこととなる。本発明の特定の実施形態は、SEQ ID NO:37-72からなる一群から選択された核酸と少なくとも70%のポリヌクレオチド配列同一性、或いは少なくとも85%のポリヌクレオチド配列同一性、更には少なくとも95%ものポリヌクレオチド配列同一性を有するSEQ ID NO:37-72からなる一群から選択された配列を含む変異ポリヌクレオチドを提供する。 上記したポリヌクレオチド変異配列は何れも、INTSIGの機能的或いは構造的特徴の少なくとも1つを有するポリペプチドをコードする。
【0204】
更に別の例では、本発明の或るポリヌクレオチド変異体はNAAPをコードするポリヌクレオチドのスプライス変異配列である。或るスプライス変異体はNAAPをコードするポリヌクレオチドとの顕著な配列同一性を持つ部分複数を有し得るが、mRNAプロセッシング中のエキソン群の選択的スプライシングによって生ずる、配列の数ブロックの付加または欠失により、通常、より多数またはより少数のポリヌクレオチドを有することになる。或るスプライス変異体には、約70%未満、または約60%未満、あるいは約50%未満のポリヌクレオチド配列同一性が、NAAPをコードするポリヌクレオチドとの間で全長に渡って見られるが、このスプライス変異体のいくつかの部分には、NAAPをコードするポリヌクレオチドの各部との、少なくとも約70%、あるいは少なくとも約85%、または少なくとも約95%、または100%の、ポリヌクレオチド配列同一性を有することとなる。例えばSEQ ID NO:72は、SEQ ID NO:50の配列からなるポリヌクレオチドのスプライス変異体である。上記したスプライス変異配列は何れも、NAAPの機能的或いは構造的特徴の少なくとも1つを有する或るポリペプチドをコードし得る。
【0205】
遺伝暗号の縮重により、NAAPをコードする種々のポリヌクレオチド配列が作り出され、中には、既知のいかなる天然遺伝子のポリヌクレオチド配列群とも最小の類似性しか有しない配列もあることは、当業者には理解されよう。したがって本発明には、可能コドン選択に基づく組合せの選択によって産出し得るあらゆる可能なポリヌクレオチド配列のバリエーションを網羅し得る。これらの組み合わせは、天然NAAPのポリヌクレオチド配列に適用される標準的なトリプレット遺伝暗号を基に作られる。また、こうした全ての変異が明確に開示されていると考慮されたい。
【0206】
NAAPをコードするポリヌクレオチド及びその変異体は一般に、好適に選択されたストリンジェントな条件下で、天然のNAAPのポリヌクレオチドとハイブリダイズ可能であるが、非天然のコドンを含めるなどの実質的に異なった使い方のコドンを有するNAAP或いはその誘導体をコードするポリヌクレオチドを作ることは有利となり得る。宿主が特定のコドンを利用する頻度に基づいて、特定の真核宿主又は原核宿主に発生するペプチドの発現率を高めるようにコドンを選択することが可能である。コードされるアミノ酸配列を改変せずに、NAAP及びその誘導体をコードするヌクレオチド配列を実質的に改変する別の理由には、天然配列から作られる転写物より例えば長い半減期など好ましい特性を備えるRNA転写物を作ることもある。
【0207】
本発明はまた、NAAP及びその誘導体をコードするポリヌクレオチドまたはそれらの断片を完全に合成化学によって作り出すことも含む。作製後にこの合成ポリヌクレオチドを、当分野で公知の試薬を用いて、多くの入手可能な発現ベクター及び細胞系の何れの中にも挿入可能である。更に、合成化学を用いて、NAAPまたはその任意の断片をコードするポリヌクレオチドの中に突然変異を導入することも可能である。
【0208】
本発明の実施態様には、種々のストリンジェントな条件下で、請求項に記載されたポリヌクレオチド、特に、SEQ ID NO:37-72及びそれらの断片とハイブリダイズ可能なポリヌクレオチドが含まれる(Wahl, G.M.及びS.L. Berger (1987) Methods Enzymol. 152:399-407; and Kimmel. A.R. (1987) Methods Enzymol. 152:507-511)。アニーリング及び洗浄条件を含むハイブリダイゼーションの条件は、「定義」に記載されている。
【0209】
DNAシークエンシングの方法は当分野では公知であり、本発明のいずれの実施例もDNAシークエンシング方法を用いて実施可能である。DNAシークエンシング方法には酵素を用いることができ、例えばDNAポリメラーゼIのクレノウ断片、SEQUENASE(US Biochemical, Cleveland OH)、Taqポリメラーゼ(Applied Biosystems)、熱安定性T7ポリメラーゼ(Amersham, Biosciences, Piscataway NJ)を用いることができる。或いは、例えばELONGASE増幅システム(Invitrogen, Carlsbad CA)において見られるように、ポリメラーゼと校正エキソヌクレアーゼを併用することができる。好適には、MICROLAB2200液体転移システム(Hamilton, Reno, NV)、PTC200サーマルサイクラー(MJ Research, Watertown MA)及びABI CATALYST 800サーマルサイクラー(Applied Biosystems)等の装置を用いて配列の準備を自動化する。次に、ABI 373 或いは 377 DNAシークエンシングシステム(Applied Biosystems)、MEGABACE 1000 DNAシークエンシングシステム(Amersham Biosciences)または当分野でよく知られている他の方法を用いてシークエンシングを行う。結果として得られた配列を当分野でよく知られている種々のアルゴリズムを用いて分析する(Ausubel, F.M. (1997) Short Protocols in Molecular Biology, John Wiley & Sons, New York NY, 7.7ユニット、Meyers, R.A. (1995) Molecular Biology and Biotechnology, Wiley VCH, New York NY, 856-853ページ)。
【0210】
当分野で周知の、PCR法をベースにした種々の方法と、部分的ヌクレオチド配列とを利用して、NAAPをコードする核酸を伸長し、プロモーターや調節エレメントなど、上流にある配列を検出し得る。例えば、使用し得る方法の1つである制限部位PCR法は、ユニバーサルプライマー及びネステッドプライマーを用いてクローニングベクター内のゲノムDNAから未知の配列を増幅する方法である(Sarkar, G. (1993) PCR Methods Applic 2:318-322)。別の方法に逆PCR法があり、これは広範な方向に伸長させたプライマーを用いて環状化した鋳型から未知の配列を増幅する方法である。鋳型は、既知のゲノム遺伝子座及びその周辺の配列からなる制限酵素断片から得る(Triglia, T.他 (1988) Nucleic Acids Res 16:8186)。第3の方法としてキャプチャPCR法があり、これはヒト及び酵母菌人工染色体DNAの既知の配列に隣接するDNA断片をPCR増幅する方法に関与している(Lagerstrom, M.他(1991) PCR Methods Applic 1:111-119)。この方法では、PCRを行う前に複数の制限酵素の消化及びライゲーション反応を用いて未知の配列領域内に組換え二本鎖配列を挿入することが可能である。また、未知の配列を検索するために用い得る別の方法については当分野で知られている(Parker, J.D.他 (1991) Nucleic Acids Res. 19:3055-3060)。更に、PCR、ネステッドプライマー及びPromoterFinder(商標)ライブラリ(Clontech, Palo Alto CA)を用いてゲノムDNAをウォーキングすることができる。この手順は、ライブラリ類をスクリーニングする必要がなく、イントロン/エキソン接合部の発見に有用である。全てのPCRベースの方法に対して、市販されているソフトウェア、例えばOLIGO 4.06プライマー分析ソフトウェア(National Biosciences, Plymouth MN)或いは別の好適なプログラムを用いて、長さが約22〜30ヌクレオチド、GC含有率が約50%以上、温度約68℃〜72℃で鋳型に対してアニーリングするようにプライマーを設計し得る。
【0211】
完全長cDNAをスクリーニングする際は、より大きなcDNAを含むようにサイズ選択されたライブラリを用いるのが好ましい。更に、ランダムプライマーのライブラリは、しばしば遺伝子の5'領域を有する配列を含み、オリゴd(T)ライブラリが完全長cDNAを作製できない状況に対して好適である。ゲノムライブラリ群は、5'非転写調節領域への、配列の伸長に有用であろう。
【0212】
市販のキャピラリー電気泳動システムを用いて、シークエンシングまたはPCR産物のサイズを分析し、またはそのヌクレオチド配列を確認することができる。具体的には、キャピラリーシークエンシングは、電気泳動による分離のための流動性ポリマーと、4つの異なるヌクレオチドに特異的であるような、レーザで活性化されるフルオロフォアと、発光された波長の検出に利用するCCDカメラとを有し得る。出力/光の強度は、適切なソフトウェア(Applied Biosystems社のGENOTYPER、SEQUENCE NAVIGATOR等)を用いて電気信号に変換し得る。サンプルのロードからコンピュータ分析及び電子データ表示までの全プロセスがコンピュータ制御可能である。キャピラリー電気泳動法は、特定のサンプルに少量しか存在しないようなDNA小断片のシークエンシングに特に適している。
【0213】
本発明の別の実施例では、NAAPをコードするポリヌクレオチドまたはその断片を組換えDNA分子にクローニングして、適切な宿主細胞内にNAAP、その断片または機能的等価物を発現させることが可能である。遺伝暗号に固有の縮重により、実質的に同じ或いは機能的に等価のポリペプチドをコードする別のポリヌクレオチドが作られ得り、これらの配列をNAAPの発現に利用可能である。
【0214】
種々の目的でNAAPがコードする配列を変えるために、本発明のヌクレオチドを当分野で通常知られている方法を用いて組み換えることができる。 ここで目的には、限定するものではないが遺伝子産物のクローニング、プロセッシング、発現の調節がある。遺伝子断片及び合成オリゴヌクレオチドのランダムなフラグメンテーション及びPCR再アセンブリによるDNAシャッフリングを用い、ヌクレオチド配列を組み換えることが可能である。例えば、オリゴヌクレオチドを介した部位特異的変異誘導を利用して、新規な制限部位の作製、グリコシル化パターンの変更、コドン優先の変更、スプライス変異体の生成等を起こす突然変異を導入し得る。
【0215】
本発明のヌクレオチドを、MOLECULARBREEDING (Maxygen Inc., Santa Clara CA; 米国特許第5,837,458号; Chang, C.-C. 他 (1999) Nat. Biotechnol. 17:793-797; Christians, F.C. 他 (1999) Nat. Biotechnol. 17:259-264; Crameri, A. 他 (1996) Nat. Biotechnol. 14:315-319)などのDNAシャフリング技術を用いてシャフリングして、NAAPの生物学的または酵素的な活性、或いは他の分子や化合物と結合する能力などのNAAPの生物学的特性を変更或いは改良することができる。DNAシャッフリングは、遺伝子断片のPCRを介する組換えを用いて遺伝子変異体のライブラリを作製するプロセスである。ライブラリはその後、所望の特性を持つ遺伝子変異体群を同定する、選択またはスクリーニングの手順を経る。続いて、これら好適な変異体をプールし、更に反復してDNAシャッフリングおよび選択/スクリーニングを行い得る。従って、人工的な育種及び急速な分子の進化によって多様な遺伝子が作られる。例えば、ランダムポイント突然変異を持つ単一の遺伝子の断片を組み換えて、スクリーニングし、その後所望の特性が最適化されるまでシャッフリングし得る。或いは、所定の遺伝子を同種または異種のいずれかから得た同一遺伝子ファミリーの相同遺伝子と組み換え、それによって天然に存在する複数の遺伝子の遺伝多様性を、管理された、制御可能な方法で最大化させることができる。
【0216】
別の実施例によれば、NAAPをコードするポリヌクレオチドは、当分野で周知の化学的方法を用いて、全体或いは一部が合成可能である(Caruthers. M.H.ら(1980)Nucl. Acids Res. Symp. Ser 7:215-223; 及びHorn, T.他(1980)Nucl. Acids Res. Symp. Ser.7:225-232)。あるいは、NAAP自体またはその断片を当分野で既知の化学的方法を用いて合成し得る。例えば、種々の液相または固相技術を用いてペプチド合成を行うことができる(Creighton, T. (1984) Proteins, Structures and Molecular Properties, WH Freeman, New York NY, 55-60ページ、Roberge, J.Y. 他 (1995) Science 269:202-204)。自動合成はABI 431Aペプチドシンセサイザ(Applied Biosystems)を用いて達成し得る。更に、NAAPのアミノ酸配列または任意のその一部を、直接合成の際に改変することにより、及び/または他のタンパク質からの配列群または任意のその一部と組み合わせることにより、或る天然ポリペプチドの配列を有するポリペプチドまたは変異体ポリペプチドが作製され得る。
【0217】
ペプチドは、分離用高速液体クロマトグラフィーを用いて実質上精製可能である(Chiez, R.M.及び F.Z. Regnier (1990) Methods Enzymol. 182:392-421)。合成ペプチドの組成は、アミノ酸分析またはシークエンシングによって確認することができる(前出のCreighton, 28-53ページ)。
【0218】
生物学的に活性なNAAPを発現させるために、NAAPをコードするポリヌクレオチドまたはその誘導体を好適な発現ベクターに挿入する。 この発現ベクターは、好適な宿主に挿入されたコード配列の転写及び翻訳の調節に必要なエレメントを含む。必要なエレメントとしては、該ベクターと、NAAPをコードするポリヌクレオチド群とにおける調節配列群(エンハンサー、構成型及び発現誘導型のプロモーター、5'及び3'の非翻訳領域など)が含まれる。必要なエレメント群は、強度および特異性が様々である。特定の開始シグナルによって、NAAPをコードするポリヌクレオチドのより効果的な翻訳を達成することが可能である。開始シグナルの例には、ATG開始コドンと、コザック配列など近傍の配列とが含まれる。NAAP をコードするポリヌクレオチド配列及びその開始コドン、上流の調節配列が好適な発現ベクターに挿入された場合は、更なる転写調節シグナルや翻訳調節シグナルは必要なくなるであろう。しかしながら、コード配列あるいはその断片のみが挿入された場合は、インフレームATG開始コドンなど外因性の翻訳制御シグナルが発現ベクターに含まれるようにすべきである。外因性の翻訳エレメント群および開始コドン群は、様々な天然物および合成物を起源とし得る。発現の効率は、用いられる特定の宿主細胞系に好適なエンハンサーを包含することによって高めることができる(Scharf, D. 他 (1994) Results Probl. Cell Differ. 20:125-162)。
【0219】
当業者に周知の方法を用いて、NAAP をコードするポリヌクレオチド、好適な転写及び翻訳調節エレメントを含む発現ベクターを作製することが可能である。これらの方法には、in vitro組換えDNA技術、合成技術、及びin vivo遺伝子組換え技術が含まれる(Sambrook 他, 前出, ch. 4, 8, および 16-17; Ausubel, F.M. 他 (1995) Current Protocols in Molecular Biology, John Wiley & Sons, New York NY, ch. 9, 13, および 16)。
【0220】
種々の発現ベクター/宿主系を利用して、NAAPをコードするポリヌクレオチドの保持及び発現が可能である。限定するものではないがこのような発現ベクター/宿主系には、組換えバクテリオファージ、プラスミドまたはコスミドDNA発現ベクターで形質転換させた細菌などの微生物等や、酵母菌発現ベクターで形質転換させた酵母菌や、ウイルス発現ベクター(例えばバキュロウイルス)に感染した昆虫細胞系や、ウイルス発現ベクター(例えばカリフラワーモザイクウイルスCaMVまたはタバコモザイクウイルスTMV)または細菌発現ベクター(例えばTiプラスミドまたはpBR322プラスミド)で形質転換させた植物細胞系、動物細胞系がある(前出のSambrook 他; 前出のAusubel ; Van Heeke, G. および S.M. Schuster (1989) J. Biol. Chem. 264:55035509; Engelhard, E.K. 他 (1994) Proc. Natl. Acad. Sci. USA 91:3224-3227; Sandig, V. 他 (1996) Hum. Gene Ther. 7:1937-1945; Takamatsu, N. (1987) EMBO J. 6:307311; The McGraw Hill Yearbook of Science and Technology (1992) McGraw Hill, New York NY, pp. 191196; Logan, J. および T. Shenk (1984) Proc. Natl. Acad. Sci. USA 81:36553659; および Harrington, J.J. 他 (1997) Nat. Genet. 15:345-355)。レトロウイルス、アデノウイルス、ヘルペスウイルスまたはワクシニアウイルス由来の発現ベクターまたは種々の細菌性プラスミド由来の発現ベクターを用いて、ポリヌクレオチドを標的器官、組織または細胞集団へ送達することができる(Di Nicola, M. 他 (1998) Cancer Gen. Ther. 5(6):350-356、Yu, M. 他 (1993) Proc. Natl. Acad. Sci. USA 90(13):6340-6344、Buller, R.M. 他 (1985) Nature 317(6040):813-815; McGregor, D.P. 他 (1994) Mol. Immunol. 31(3):219-226、Verma, I.M. および N. Somia (1997) Nature 389:239-242)。本発明は使用される宿主細胞によって限定されるものではない。
【0221】
細菌系では、多数のクローニングベクター及び発現ベクターが、NAAPをコードするポリヌクレオチドの使用目的に応じて選択可能である。例えば、NAAP をコードするポリヌクレオチドの日常的なクローニング、サブクローニングおよび増殖は、PBLUESCRIPT(Stratagene, La Jolla CA)またはPSPORT1プラスミド(Invitrogen)などの多機能の大腸菌ベクターを用いて達成することができる。NAAP をコードするポリヌクレオチドをこのベクターのマルチクローニング部位にライゲーションするとlacZ遺伝子が破壊され、組換え分子を持つ形質転換された細菌の同定のための比色スクリーニング法が可能となる。更にこれらのベクターは、クローニングされた配列におけるin vitro転写、ジデオキシのシークエンシング、ヘルパーファージによる一本鎖のレスキュー、入れ子状態の欠失の生成にも有用であろう(Van Heeke, G. および S.M. Schuster (1989) J. Biol. Chem. 264:5503-5509)。例えば、抗体の産生のためなどに多量のNAAPが必要な場合は、NAAPの発現をハイレベルで誘導するベクターが使用できる。例えば、強力な誘導SP6バクテリオファージプロモーターまたは誘導T7バクテリオファージプロモーターを含むベクターが使用できる。
【0222】
酵母の発現系を使用してNAAPを産出することもできる。α因子、アルコールオキシダーゼ、PGHプロモーター等の構成型或いは誘導型のプロモーターを含む多数のベクターが、出芽酵母菌(Saccharomyces cerevisiae) またはピキア酵母(Pichia pastoris)に使用可能である。更に、このようなベクターは、発現したタンパク質を分泌或いは細胞内への保持のいずれかに誘導し、安定した増殖のために外来ポリヌクレオチド配列の宿主ゲノムへの組込みを可能にする(前出のAusubel (1995)、Bitter, G.A. 他 (1987) Methods Enzymol. 153:516544、 Scorer, C.A. 他 (1994) Bio/Technology 12:181-184)。
【0223】
植物系もNAAPの発現に使用可能である。NAAPをコードするポリヌクレオチドの転写は、ウイルスプロモーター、例えば単独或いはTMV(Takamatsu, N. (1987) EMBO J 6:307-311)由来のオメガリーダー配列と組み合わせて用いられるようなCaMV由来の35S及び19Sプロモーターによって促進される。或いは、RUBISCOの小サブユニット等の植物プロモーターまたは熱ショックプロモーターを用いてもよい(Coruzzi, G. 他 (1984) EMBO J. 3:16711680、 Broglie, R. 他 (1984) Science 224:838843、 Winter, J. 他 (1991) Results Probl. Cell Differ. 17:85105)。これらの構成物は、直接DNA形質転換または病原体を媒介とする形質移入によって、植物細胞内に導入可能である(『マグローヒル科学技術年鑑』(The McGraw Hill Yearbook of Science and Technology) (1992) McGraw Hill New York NY, 191-196ページ)。
【0224】
哺乳類細胞においては、多数のウイルスベースの発現系を利用し得る。アデノウイルスが発現ベクターとして用いられる場合、後発プロモーター及び3連リーダー配列からなるアデノウイルス転写物/翻訳複合体にNAAPをコードするポリヌクレオチドを連結し得る。ウイルスのゲノムの非必須のE1またはE3領域への挿入により、感染した宿主細胞にNAAPを発現する生ウイルスを得ることが可能である(Logan, J.及びShenk, T.(1984)Proc. Natl. Acad. Sci. 81:3655-3659)。更に、ラウス肉腫ウイルス(RSV)エンハンサー等の転写エンハンサーを用いて、哺乳動物宿主細胞における発現を増大させ得る。SV40またはEBVをベースにしたベクターを用いてタンパク質を高レベルで発現させることもできる。
【0225】
ヒト人工染色体(HAC)を用いて、プラスミドに含まれ得る断片やプラスミドから発現し得る断片より大きなDNAの断片群を送達することもできる。治療のために約6kb〜10MbのHACsを作製し、従来の送達方法(リポソーム、ポリカチオンアミノポリマー、またはベシクル)で供給する(Harrington, J.J. 他 (1997) Nat. Genet. 15:345-355)。
【0226】
哺乳動物系内の組換えタンパク質の長期にわたる産生のためには、細胞株におけるNAAPの安定した発現が望ましい。例えば、発現ベクターを用いて、NAAPをコードするポリヌクレオチドを株化細胞に形質転換することが可能である。このような発現ベクターは、ウイルス起源の複製要素及び/または内因性の発現要素や、同じベクター上に或いは別のベクター上に選択マーカー遺伝子を含み得る。ベクターの導入後、選択培地に移す前に強化培地で約1〜2日間、細胞を増殖させ得る。選択可能マーカーの目的は選択剤への抵抗性を与えることであり、選択可能マーカーの存在により、導入した配列をうまく発現するような細胞の成長および回収が可能となる。安定的に形質転換された細胞の耐性クローンは、その細胞型に適した組織培養技術を用いて増殖可能である。
【0227】
任意の数の選択系を用いて、形質転換細胞株を回収できる。限定するものではないがこのような選択系には、tk細胞のために用いられる単純ヘルペスウイルスのチミジンキナーゼ遺伝子と、apr細胞のために用いられる単純ヘルペスウイルスのアデニンホスホリボシルトランスフェラーゼ遺伝子がある(Wigler, M. 他 (1977) Cell 11:223-232、Lowy, I. 他 (1980) Cell 22:817-823)。また、選択の基礎として代謝拮抗物質、抗生物質あるいは除草剤への耐性を用いることができる。例えばdhfrはメトトレキセートに対する耐性を与え、neoはアミノグリコシド系ネオマイシン及びG-418に対する耐性を与え、alsはクロルスルフロンに対する耐性を、patはホスフィノトリシンアセチルトランスフェラーゼに対する耐性を各々与える(Wigler, M. 他 (1980) Proc. Natl. Acad. Sci. USA 77:3567-3570、Colbere-Garapin, F. 他 (1981) J. Mol. Biol. 150:1-14)。この他の選択可能な遺伝子、例えば、代謝のための細胞の必要条件を変えるtrpB及びhisDは、文献に記載されている(Hartman, S.C.及び R.C. Mulligan (1988) Proc. Natl. Acad. Sci. USA 85:8047-8051)。可視マーカー、例えばアントシアニン、緑色蛍光タンパク質(GFP;Clontech)、βグルクロニダーゼ及びその基質βグルクロニド、またはルシフェラーゼ及びその基質ルシフェリン等を用いてもよい。これらのマーカーを用いて、形質転換体を同定するだけでなく、特定のベクター系に起因する一過性或いは安定したタンパク質発現を定量することも可能である(Rhodes, C.A. (1995) Methods Mol. Biol. 55:121-131)。
【0228】
マーカー遺伝子発現の有無によって目的の遺伝子の存在が示唆されても、その遺伝子の存在および発現の確認が必要な場合もある。例えば、NAAPをコードする配列が或るマーカー遺伝子配列の中に挿入された場合、NAAPをコードするポリヌクレオチド群を有する形質転換された細胞群は、マーカー遺伝子機能の欠落により同定できる。または、単一プロモーターの制御下で、或るマーカー遺伝子を、NAAPをコードする1配列とタンデムに配置することもできる。誘導または選択に応答したマーカー遺伝子の発現は通常、タンデム遺伝子の発現も示す。
【0229】
一般に、NAAPをコードするポリヌクレオチドを含み且つNAAPを発現する宿主細胞は、当業者によく知られている種々の方法を用いて同定することが可能である。限定するものではないが当業者によく知られている方法には、DNA-DNAハイブリダイゼーション或いはDNA-RNAハイブリダイゼーション、PCR法、核酸或いはタンパク質の検出、定量、或いはその両方を行うための膜系、溶液ベース或いはチップベースの技術を含むタンパク質の生物学的検定法または免疫学的検定法がある。
【0230】
特異的ポリクローナル抗体または特異的モノクローナル抗体を用いてNAAPの発現の検出と計測とを行うための免疫学的方法は、当分野で既知である。このような技術の例としては、酵素結合イムノソルベントアッセイ(ELISA)、ラジオイムノアッセイ(RIA)、蛍光活性化細胞選別(FACS)などが挙げられる。NAAP上の2つの非干渉エピトープに反応するモノクローナル抗体群を用いた、2部位のモノクローナルベースイムノアッセイ(two-site, monoclonal-based immunoassay)が好ましいが、競合結合試験を用いることもできる。これらのアッセイ及びこれ以外のアッセイは、当分野で公知である(Hampton. R. 他 (1990) Serological Methods, a Laboratory Manual. APS Press. St Paul. MN, Sect. IV、Coligan, J. E. 他 (1997) Current Protocols in Immunology, Greene Pub. Associates and Wiley-Interscience, New York NY、Pound, J.D. (1998) Immunochemical Protocols, Humans Press, Totowa NJ)。
【0231】
多岐にわたる標識方法及び抱合方法が、当業者に知られており、様々な核酸アッセイおよびアミノ酸アッセイにこれらの方法を用い得る。NAAPをコードするポリヌクレオチドに関連する配列を検出するための、標識されたハイブリダイゼーションプローブ或いはPCRプローブを生成する方法には、オリゴ標識化、ニックトランスレーション、エンドラベリング(末端標識化)、または標識されたヌクレオチドを用いるPCR増幅が含まれる。別法として、NAAPをコードするポリヌクレオチド群、またはその任意の断片群を、mRNAプローブを生成するためのベクターにクローニングできる。このようなベクターは、当分野において知られており、市販もされており、T7、T3またはSP6などの好適なRNAポリメラーゼおよび標識されたヌクレオチドを加えて、in vitroでRNAプローブの合成に用いることができる。このような方法は、例えばAmersham Biosciences、Promega(Madison WI)、U.S. Biochemicalなどから市販されている種々のキットを用いて実行することができる。検出を容易にするために用い得る好適なレポーター分子あるいは標識には、基質、補助因子、インヒビター、磁気粒子のほか、放射性核種、酵素、蛍光剤、化学発光剤、発色剤などがある。
【0232】
NAAPをコードするポリヌクレオチド群で形質転換された宿主細胞は、細胞培地でのこのタンパク質の発現および回収に好適な条件下で培養される。形質転換細胞から製造されたタンパク質が分泌されるか細胞内に留まるかは、使用される配列、ベクター、あるいはその両者に依存する。NAAPをコードするポリヌクレオチド群を持つ発現ベクター類は、原核細胞膜または真核細胞膜を透過してのNAAPの分泌を指示するシグナル配列群を持つように設計できることは、当業者には理解されよう。
【0233】
更に、宿主細胞株の選択は、挿入したポリヌクレオチドの発現をモジュレートする能力、または発現したタンパク質を所望の形に処理する能力によって行い得る。限定するものではないがこのようなポリペプチドの修飾には、アセチル化、カルボキシル化、グリコシル化、リン酸化、脂質化およびアシル化がある。タンパク質の「プレプロ」または「プロ」形を切断する翻訳後のプロセシングを利用して、タンパク質の標的への誘導、折りたたみ及び/または活性を特定することが可能である。翻訳後の活性のための固有の細胞装置及び特徴のある機構を有する種々の宿主細胞(例えばCHO、HeLa、MDCK、MEK293、WI38等)は、American Type Culture Collection(ATCC, Manassas, VA)から入手可能であり、外来タンパク質の正しい修飾及び処理を確実にするように選択し得る。
【0234】
本発明の別の実施例では、NAAP をコードする天然のポリヌクレオチド、修飾されたポリヌクレオチド、または組換えのポリヌクレオチドを上記した任意の宿主系の融合タンパク質の翻訳となる異種配列に連結させ得る。例えば、市販の抗体によって認識できる異種部分を含むキメラNAAPタンパク質は、NAAP活性のインヒビターに対するペプチドライブラリのスクリーニングを促進し得る。また、異種タンパク質部分および異種ペプチド部分も、市販されている親和性マトリックスを用いて融合タンパク質の精製を促進し得る。限定されるものではないがこのような部分には、グルタチオンSトランスフェラーゼ(GST)、マルトース結合タンパク質(MBP)、チオレドキシン(Trx)、カルモジュリン結合ペプチド(CBP)、6-His、FLAG、c-myc、赤血球凝集素(HA)がある。GSTは固定化グルタチオン上で、MBPはマルトース上で、Trxはフェニルアルシンオキシド上で、CBPはカルモジュリン上で、そして6-Hisは金属キレート樹脂上で、同族の融合タンパク質の精製を可能にする。FLAG、c-mycおよび赤血球凝集素(HA)は、これらのエピトープ標識を特異的に認識する市販のモノクローナル抗体およびポリクローナル抗体を用いた、融合タンパク質の免疫親和性精製を可能にする。また、融合タンパク質が、NAAPをコードする配列と異種タンパク質配列との間にタンパク質分解切断部位を持つように遺伝子操作すると、精製後にNAAPが異種部分から切断され得る。融合タンパク質の発現および精製方法は、前出のAusubel(1995)10章に記載されている。市販されている種々のキットを用いて融合タンパク質の発現および精製を促進することもできる。
【0235】
本発明の別の実施例では、TNTウサギ網状赤血球可溶化液またはコムギ胚芽抽出系(Promega)を用いてin vitroで放射能標識したNAAP の合成が可能である。これらの系は、T7、T3またはSP6プロモーターと機能的に連結したタンパク質コード配列の転写及び翻訳をカップルさせる。翻訳は、例えば35Sメチオニンのような放射能標識したアミノ酸前駆体の存在下で起こる。
【0236】
本発明のNAAPまたはその断片を用いて、NAAPに特異結合する化合物をスクリーニングすることができる。1つ以上の試験化合物をNAAPへの特異的な結合についてスクリーニングすることができる。種々の実施例において、NAAPに対する特異結合について、1、 2、 3、 4、 5、 10、 20、 50、 100 または 200 の試験化合物をスクリーンすることができる。試験化合物の例として、抗体、アンティカリン(anticalins)、オリゴヌクレオチド、タンパク質(例えばリガンドや受容体)、または小分子が挙げられる。
【0237】
関連する実施例において、NAAP、NAAPの変異体、あるいはNAAPおよび/または1つ以上のNAAP変異体とのある組み合わせへの試験化合物(抗体等)の結合/をスクリーニングするために、NAAP変異体を用いることができる。ある実施例においては、SEQ ID NO:1-36の配列の正確な配列を有するNAAPではなく、NAAPの変異体に結合する化合物のスクリーニングにSCAP の変異体を用いることができる。このようなスクリーニングを行うために使うNAAP変異体はNAAPに約50%から約99%の範囲で配列同一性を有し得る。また、種々の実施例で60%、 70%、 75%、 80%、 85%、 90%,および 95%の配列同一性を有することができる。
【0238】
ある実施態様では、NAAPへの特異的結合のスクリーニングで同定された化合物は、例えばリガンドやその断片などのNAAPの天然のリガンド、または天然の基質、構造的または機能的な擬態または自然結合パートナーに密接に関連している(Coligan, J.E. 他 (1991) Current Protocols in Immunology 1(2)の5章)。別の実施例においては、こうして同定された化合物は受容体NAAPの天然のリガンドである(Howard, A.D. 他 (2001) Trends Pharmacol. Sci.22:132-140; Wise, A. 他 (2002) Drug Discovery Today 7:235-246)。
【0239】
別の実施態様で該化合物は、NAAPへの特異結合に対するスクリーニングにおいて同定された化合物は、NAAPが結合する天然受容体に、或いは少なくとも該受容体の或る断片、または例えばリガンド結合部位や結合ポケットの全体または一部を含む該受容体の或る断片に密接に関連し得る。たとえば、この化合物はシグナルを伝播する能力を持つNAAPの受容体であるかもしれないし、あるいはシグナルを伝播する能力のないNAAPのおとり受容体であるかもしれない(Ashkenazi, A. および V.M. Divit (1999) Curr. Opin. Cell Biol. 11:255-260; Mantovani, A. 他 (2001) Trends Immunol. 22:328-336)。この化合物は既知の技法を用いて合理的に設計することができる。こうした技法の例としては、化合物エタネルセプト(etanercept)(ENBREL; Immunex Corp., Seattle WA)の作製に用いられた技法がある。この化合物はヒトのリューマチ性関節炎の治療に効果的である。エタネルセプトは遺伝子操作されたp75腫瘍壊死因子(TNF)受容体二量体であり、ヒトのIgG1のFc部分に連結されている(Taylor, P.C. 他 (2001) Curr. Opin. Immunol. 13:611-616)。
【0240】
ある実施態様においては、類似した、あるいは異なる特異性を持つ2つ以上の抗体を、NAAP、NAAPの断片またはNAAPの変異体への結合についてスクリーニングすることができる。このようにしてスクリーニングされた抗体の結合特異性は、その特異的結合によって、NAAPの特定の断片または変異体を同定することができる。ある実施態様においては、NAAPの特定の断片または変異体を優先的に同定するように抗体の結合特異性を選ぶことができる。もう1つの実施態様においては、NAAPの産生の増加、減少あるいはその他の異常産生を伴う特定の病気または状態を優先的に診断できるように抗体の結合特異性を選ぶことができる。
【0241】
ある実施態様においては、anticalinをNAAP、NAAPの断片またはNAAPの変異体への結合についてスクリーニングすることができる。アンティカリンはリポカリン足場(scaffold )に基づいて作成されたリガンド結合タンパク質である(Weiss, G.A. 及び H.B. Lowman (2000) Chem. Biol. 7:R177-R184; Skerra, A. (2001) J. Biotechnol. 74:257-275)。リポカリンのタンパク質構造には、その開放末端に4つのループを支持する8つの逆平行ベータ鎖を持つベータバレルが含まれ得る。これらのループはリポカリンの天然リガンド結合部位を形成し、この部位はin vitro でアミノ酸置換によって再度人工操作して、新規な結合特異性を与えることができる。このアミノ酸置換は当分野で既知の方法または本明細書に記載の方法を用いて行うことができる。また、保存的置換(例えば、結合特異性を変えないような置換)、あるいは、結合特異性を少し、中等度、または大きく変えるような置換を行うこともできる。
【0242】
一実施態様では、NAAPに特異的に結合、もしくは刺激または阻害する化合物のスクリーニングには、分泌タンパク質或いは細胞膜上のタンパク質の何れか一方としてNAAPを発現する適切な細胞の作製が含まれる。好適な細胞には、哺乳動物、酵母、ショウジョウバエ、または大腸菌からの細胞が含まれる。NAAPを発現する細胞またはNAAPを含有する細胞膜分画を次に試験化合物と接触させて、NAAPまたはこの化合物のどちらかの結合、刺激、または活性の阻害を分析する。
【0243】
或るアッセイは、単に試験化合物をポリペプチドに実験的に結合させ、フルオロフォア(蛍光標識試薬)、放射性同位体、酵素抱合体、または他の検出可能な標識により、その結合を検出できる。例えば、このアッセイは、少なくとも1つの試験化合物を、溶液中の、あるいは固体支持物に固定されたNAAPと混合するステップと、NAAPとこの化合物との結合を検出するステップを含み得る。別法では、標識された競合物の存在下での試験化合物の結合の検出及び測定を行うことができる。更にこのアッセイでは、無細胞再構成標本、化学ライブラリまたは天然の生成混合物を用いて実施することができ、試験化合物は、溶液中で遊離させるか固体支持体に固定させる。
【0244】
ある化合物が天然のリガンドに結合したり天然のリガンドがその天然の受容体に結合するのを阻害する能力を検定するためのアッセイを使うことができる。こうしたアッセイの例としては、米国特許第5,914,236号および第6,372,724号に記載されたような放射ラベルアッセイを含む。関連した実施態様では、1つ以上のアミノ酸置換が或るポリペプチド化合物(受容体など)に導入され、その天然リガンドに結合する能力を向上または改変しうる(Matthews, D.J. および J.A. Wells. (1994) Chem. Biol. 1:25-30)。もう一つの関連する実施例においては、ポリペプチド化合物(たとえばリガンド)に1つ以上のアミノ酸置換を行うことにより、天然受容体への結合能力を改善または改変することができる(Cunningham, B.C. および J.A. Wells (1991) Proc. Natl. Acad. Sci. USA 88:3407-3411; Lowman, H.B. 他 (1991) J. Biol. Chem. 266:10982-10988)。
【0245】
NAAPまたはその断片、あるいはNAAPの変異体を用いて、NAAPの活性を変調する化合物をスクリーニングすることができる。このような化合物には、アゴニスト、アンタゴニスト、部分的アゴニスト、または逆アゴニスト等が含まれる。或る実施例では、NAAPを少なくとも1つの試験化合物と混合する、NAAPの活性が許容される条件下でアッセイを実施し、試験化合物の存在下でのNAAPの活性と、試験化合物不在下でのNAAPの活性とを比較する。試験化合物の存在下でのNAAPの活性の変化は、NAAPの活性を調節する化合物の存在を示唆する。別法では、試験化合物を、NAAPの活性に適した条件下で、NAAPを含むin vitroすなわち無細胞系と混合してアッセイを実施する。これらアッセイの何れにおいても、NAAPの活性を調節する試験化合物は間接的に調節する場合があり、その際は試験化合物と直接接触する必要がない。少なくとも1つから複数の試験化合物をスクリーニングすることができる。
【0246】
別の実施態様では、胚性幹細胞(ES細胞)における相同組換えを用いて動物モデル系内で、NAAPまたはその哺乳類相同体をコードするポリヌクレオチドを「ノックアウト」する。このような技術は当技術分野において周知であり、ヒト疾患動物モデルの作製に有用である(米国特許第5,175,383号及び第5,767,337号)。例えば129/SvJ細胞株等のマウスES細胞は初期のマウス胚に由来し、培地で増殖させることができる。このES細胞は、ネオマイシンホスホトランスフェラーゼ遺伝子(neo: Capecchi, M.R.(1989)Science 244:1288-1292)などのマーカー遺伝子で破壊した、目的の遺伝子を持つベクターで形質転換する。このベクターは、相同組換えにより宿主ゲノムの対応する領域に組み込まれる。別法では、Cre-loxP系を用いて相同組換えを行い、組織特異的または発生段階特異的に目的遺伝子をノックアウトする(Marth, J.D. (1996) Clin. Invest. 97:1999-2002; Wagner, K.U. 他 (1997) Nucleic Acids Res. 25:4323-43 30)。形質転換したES細胞を同定し、例えばC57BL/6マウス系等から採取したマウス細胞胚盤胞に微量注入する。胚盤胞を偽妊娠メスに外科的に導入し、得られるキメラ子孫の遺伝形質を決め、これを交配させてヘテロ接合性系またはホモ接合性系を作製する。このようにして作製した遺伝子組換え動物は、潜在的な治療薬や毒性薬物で検査されうる。
【0247】
NAAPをコードするポリヌクレオチドをin vitroでヒト胚盤胞由来のES細胞において操作することが可能である。ヒトES細胞は、内胚葉、中胚葉及び外胚葉の細胞の種類を含む少なくとも8つの別々の細胞系統に分化する可能性を有する。これらの細胞系統は、例えば神経細胞、造血系統及び心筋細胞に分化する(Thomson, J.A. 他 (1998) Science 282:1145-1 147)。
【0248】
NAAPをコードするポリヌクレオチドを用いて、ヒト疾患をモデルとした「ノックイン」ヒト化動物(ブタ)または遺伝子組換え動物(マウスまたはラット)を作製することもできる。ノックイン技術を用いて、NAAPをコードするポリヌクレオチドの或る領域を動物ES細胞に注入し、注入した配列を動物細胞ゲノムに組み込ませる。形質転換細胞を胞胚に注入し、胞胚を上記のように移植する。遺伝子組換え子孫または近交系について研究し、可能性のある医薬品を用いて処理し、ヒトの疾患の治療に関する情報を得る。別法では、例えばNAAPを乳汁内に分泌するなどNAAPを過剰に発現する哺乳動物近交系は、便利なタンパク質源となり得る(Janne, J. 他 (1998) Biotechnol. Annu. Rev. 4:55-74)。
【0249】
(治療)
NAAPの領域と核酸結合タンパク質の領域との間には、例えば配列及びモチーフの文脈における、化学的及び構造的類似性が存在する。さらに、NAAPを発現する組織の例が、表6および実施例11に見つけられる。従って、NAAPは、細胞増殖異常、神経疾患、生殖系疾患、発生または発達障害、自己免疫/炎症性疾患、DNA修復障害および感染症においてある役割を果たすと考えられる。NAAPの発現または活性の増大に関連する疾患の治療においては、NAAPの発現または活性を低下させることが望ましい。また、NAAPの発現または活性の低下に関連する疾患の治療においては、NAAPの発現または活性を増大させることが望ましい。
【0250】
従って、一実施態様では、NAAPの発現または活性の低下に関連した疾患の治療または予防のために、被験者にNAAPまたはその断片や誘導体が投与され得る。限定するものではないが、そのような疾患のうち、細胞増殖異常の中には日光性角化症及びアテローム性動脈硬化、滑液包炎、硬変、肝炎、混合型結合組織病(MCTD)、骨髄線維症、発作性夜間ヘモグロビン尿症、真性多血症、乾癬、原発性血小板血症、並びに腺癌及び白血病、リンパ腫、黒色腫、骨髄腫、肉腫、及び奇形癌、具体的には、副腎、膀胱、骨、骨髄、脳、乳房、頚部、胆嚢、神経節、消化管、心臓、腎臓、肝臓、肺、筋肉、卵巣、膵臓、副甲状腺、陰茎、前立腺、唾液腺、皮膚、脾臓、精巣、胸腺、甲状腺、子宮の癌が含まれ、神経の疾患の中には、核上性麻痺、大脳皮質基底核変性症、家族性前頭側頭型痴呆、癲癇、虚血性脳血管障害、脳卒中、大脳新生物、アルツハイマー病、ピック病、ハンチントン病、痴呆、パーキソン病及びその他の錐体外路障害、筋萎縮性側策硬化及びその他の運動ニューロン障害、進行性神経性筋萎縮症、色素性網膜炎、遺伝性運動失調、多発性硬化症及び他の脱髄疾患、細菌性及びウイルス性髄膜炎、脳膿瘍、硬膜下蓄膿症、硬膜外膿瘍、化膿性頭蓋内血栓性静脈炎、脊髄炎及び神経根炎、ウイルス性中枢神経系疾患と、クールー及びクロイツフェルト‐ヤコブ病、Gerstmann-Straussler-Scheinker症候群を含むプリオン病と、致死性家族性不眠症、神経系性栄養病及び代謝病、神経線維腫症、結節硬化症、小脳網膜血管芽腫(cerebelloretinal hemangioblastomatosis)、脳3叉神経血管症候群、ダウン症を含む中枢神経系性精神遅滞及び他の発達障害、脳性麻痺、神経骨格異常症、自律神経系障害、脳神経疾患、脊髄疾患筋ジストロフィー、および他の神経筋障害、末梢神経系疾患、皮膚筋炎及び多発性筋炎と、遺伝性、代謝性、内分泌性、及び中毒性ミオパシーと、重症筋無力症、周期性四肢麻痺と、気分性及び不安性の障害、分裂病性疾患を含む精神病と、季節性障害(SAD)と、静座不能、健忘症、緊張病、糖尿病性ニューロパシー、錐体外路性終末欠陥症候群(遅発性ジスキネジア)、ジストニー、分裂病性精神障害、帯状疱疹後神経痛、及びトゥーレット病が含まれ、生殖系疾患としては、プロラクチン産生障害、不妊症(卵管疾患、排卵欠損症、子宮内膜症)、性周期障害、月経周期障害、多嚢胞性卵巣症候群、卵巣過刺激症候群、子宮内膜癌、卵巣癌、子宮筋腫、自己免疫疾患、子宮外妊娠、催奇形、乳がん、繊維嚢胞性乳房疾患、乳漏症、精子形成破壊、精子異常生理、精巣癌、前立腺癌、良性前立腺肥大、前立腺炎、パイロニー病、性交不能、男性乳癌、女性化乳房が含まれ、発達障害としては尿細管性アシドーシス、貧血、クッシング症候群、軟骨形成不全性小人症、デュシェンヌ‐ベッカー型筋ジストロフィー、癲癇、性腺形成異常、WAGR症候群(ウィルムス腫瘍、無虹彩症、尿生殖器異常、精神薄弱)、スミス‐マジェニス症候群(Smith- Magenis syndrome)、脊髄形成異常症候群、遺伝性粘膜上皮異形成、遺伝性角皮症、シャルコー‐マリー‐ツース病及び神経線維腫症などの遺伝性神経病、甲状腺機能低下症、水頭症、Syndenham舞踏病(Syndenham's chorea)及び脳性小児麻痺などの発作障害、脊髄二分裂、無脳症、頭蓋脊椎披裂、先天性緑内障、白内障、感覚神経性聴力損失が含まれ、自己免疫/炎症性疾患には、後天性免疫不全症候群(AIDS)、アジソン病、成人呼吸窮迫症候群、アレルギー、強直性脊椎炎、アミロイド症、貧血症、喘息、アテローム性動脈硬化症、自己免疫性溶血性貧血、自己免疫性甲状腺炎、自己免疫性多腺性内分泌カンジダ性外胚葉ジストロフィー(APECED)、気管支炎、胆嚢炎、接触皮膚炎、クローン病、アトピー皮膚炎、皮膚筋炎、真性糖尿病、肺気腫、リンパ球毒素性一時性リンパ球減少症、胎児赤芽球症、結節性紅斑、萎縮性胃炎、糸球体腎炎、グッドパスチャー症候群、痛風、グレーブス病、橋本甲状腺炎、過好酸球増加症、過敏性大腸症候群、多発性硬化症、重症筋無力症、心筋または心膜炎症、骨関節炎、骨粗しょう症、膵炎、多発性筋炎、乾癬、ライター症候群、慢性関節リウマチ炎、強皮症、シェ−グレン症候群、全身性アナフィラキシー、全身性エリテマトーデス、全身性硬化症、血小板減少症、潰瘍性大腸炎、ウェルナー症候群、癌合併症、血液透析、体外循環、ウイルス感染症、細菌感染症、真菌感染症、寄生虫感染症、原虫感染症、蠕虫感染症、外傷が含まれ、感染症には、アデノウイルス、アレナウイルス、ブンヤウイルス(bunyavirus)、カリチウイルス(calicivirus)、コロナウイルス、フィロウイルス、ヘパドナウイルス、ヘルペスウイルス、フラビウイルス、オルソミクソウイルス、パルボウイルス、パポーバウイルス、パラミクソウイルス、ピコルナウイルス、ポックスウイルス、レオウイルス、レトロウイルス、ラブドウイルス、トガウイルスに分類されるウイルス病原体による感染や、細菌による感染(肺炎球菌、ブドウ球菌、連鎖球菌、バシラス菌、コリネバクテリウム、クロストリジウム、髄膜炎菌、淋菌、リステリア、モラクセラ、キンゲラ、ヘモフィルス、レジオネラ、百日咳菌類(ボルデテラ)や、シゲラ、サルモネラ、カンピロバクターを含むグラム陰性腸内細菌、シュードモナス、ビブリオ、ブルセラ、野兎病菌類(フランシセラ)、エルシニア、バルトネラ、norcardium、放線菌、ミコバクテリウム、spirochaetale、リケッチア、クラミジア、マイコプラズマに分類)、真菌感染(分類はアスペルギルス、ブラストミセス、皮膚糸状菌、クリプトコッカス、コクシジオイデス、malasezzia、ヒストプラスマ、または他の真菌症起因菌)、寄生虫感染(分類はプラスモディウムすなわちマラリア原虫、寄生性アメーバ、リーシュマニア、トリパノソーマ、トキソプラズマ、ニューモシスチスカリニ、腸内原虫(ジアルジアなど)、トリコモナス、組織線虫(旋毛虫など)、腸管寄生線虫(回虫など)、リンパ管フィラリア線虫、吸虫(住血吸虫など)、および条虫(サナダムシなど))が含まれ、そしてDNA修復障害としては、色素性乾皮症、ブルーム症候群、ウェルナー症候群が含まれる。
【0251】
別の実施態様では、限定するものではないが上に列記した疾患を含む、NAAPの発現または活性の低下に関連した疾患の治療または予防のために、NAAPまたはその断片や誘導体を発現し得るベクターを被験者に投与し得る。
【0252】
更に別の実施態様では、限定するものではないが上に列記した疾患を含む、NAAPの発現または活性の低下に関連した疾患の治療または予防のために、実質的に精製されたNAAPを有する組成物を、好適な医薬用キャリアと共に被験者に投与し得る。
【0253】
更に別の実施態様では、限定するものではないが上に列記した疾患を含む、NAAPの発現または活性の低下に関連した疾患の治療または予防のために、NAAPの活性を調節するアゴニストを被験者に投与し得る。
【0254】
更なる実施例では、NAAPの発現または活性の増大に関連した疾患の治療または予防のために、被験者にNAAPのアンタゴニストを投与し得る。限定するものではないが、このような疾患の例には、上記した細胞増殖異常、神経疾患、生殖系疾患、発生または発達障害、自己免疫/炎症性疾患、DNA修復障害および感染症が含まれる。一態様では、NAAPと特異的に結合する抗体が直接アンタゴニストとして、或いはNAAPを発現する細胞または組織に薬剤を運ぶターゲッティング機構或いは送達機構として間接的に用いられ得る。
【0255】
別の実施態様では、NAAPをコードするポリヌクレオチドの相補配列を発現するベクターを被験者に投与して、限定するものではないが上記した疾患を含む、NAAPの発現または活性の増大に関連した疾患の治療または予防を成し得る。
【0256】
別の実施態様では、任意のタンパク質、アゴニスト、アンタゴニスト、抗体、相補配列、またはベクター実施態様を、別の好適な治療薬と組合せて投与することもできる。併用療法で用いる好適な治療薬は、当業者が従来の医薬原理に従って選択し得る。治療薬と組合せることにより、上記した種々の疾患の治療または予防に相乗効果をもたらし得る。この方法を用いることにより少量の各薬剤で医薬効果をあげることが可能となり、それによって副作用の可能性を低減し得る。
【0257】
NAAPのアンタゴニストは、本技術分野で一般的に知られている方法を用いて製造し得る。具体的には、精製されたNAAPを用いて抗体を作るか、治療薬のライブラリをスクリーニングして、NAAPと特異結合するものを同定することが可能である。NAAPへの抗体も、本技術分野で公知の方法を用いて産生され得る。限定するものではないがこのような抗体には、ポリクローナル抗体、モノクローナル抗体、キメラ抗体、一本鎖抗体、Fab断片、およびFab発現ライブラリによって作られた断片が含まれ得る。中和抗体(即ち二量体の形成を阻害する抗体)は通常、治療用に好適である。(ラクダやラマの)一本鎖抗体は強力な酵素阻害剤である可能性があり、ペプチド擬態の設計および免疫吸着剤およびバイオセンサの開発に有用である可能性がある(Muyldermans, S. (2001) J. Biotechnol. 74:277-302)。
【0258】
抗体の産生のためには、ヤギ、ウサギ、ラット、マウス、ラクダ、ヒトコブラクダ、ラマ、ヒトなどを含む種々の宿主が、NAAP、若しくは免疫原性の特性を備えるその任意の断片またはオリゴペプチドの注入によって免疫化され得る。宿主の種に応じて、種々のアジュバントを用いて免疫応答を高めることもできる。限定するものではないがこのようなアジュバントには、フロイントアジュバントと、水酸化アルミニウム等のミネラルゲルアジュバントと、リゾレシチン、プルロニックポリオル、ポリアニオン、ペプチド、油性乳剤、スカシガイのヘモシニアン、ジニトロフェノール等の界面活性剤とがある。ヒトに用いられるアジュバントの中では、BCG(カルメット‐ゲラン杆菌)及びコリネバクテリウム‐パルバム(Corynebacterium parvum)が特に好ましい。
【0259】
NAAPに対する抗体を誘導するために用いるオリゴペプチド、ペプチドまたは断片は、少なくとも約5個のアミノ酸からなるアミノ酸配列を持つものが好ましく、一般的には約10個以上のアミノ酸からなるものとなる。これらのオリゴペプチド、ペプチドまたは断片は、天然のタンパク質のアミノ酸配列の一部と同一であることが望ましい。NAAPアミノ酸類の短いストレッチ群は、KLHなど他のタンパク質の配列と融合され、このキメラ分子に対する抗体群が産生され得る。
【0260】
NAAPに対するモノクローナル抗体は、培地内の連続した細胞株によって、抗体分子を産生する任意の技術を用いて作製することが可能である。限定するものではないがこのような技術には、ハイブリドーマ技術、ヒトB細胞ハイブリドーマ技術及びEBV-ハイブリドーマ技術がある(Kohler, G. 他 (1975) Nature 256:495-497、Kozbor, D. 他 (1985) .J. Immunol. Methods 81:31-42、Cote, R.J. 他 (1983) Proc. Natl. Acad. Sci. USA 80:2026-2030、Cole, S.P. 他 (1984) Mol. Cell Biol. 62:109-120)。
【0261】
更に、ヒト抗体遺伝子にマウス抗体遺伝子をスプライシングするなどの、「キメラ抗体」作製のために発達した技術が、好適な抗原特異性及び生物学的活性を備える分子を得るために用いられる(Morrison, S.L.他. (1984) Proc. Natl. Acad. Sci. 81−4851−4855; Neuberger, M.S.他. (1984) Nature 312:604-608; Takeda, S.他 (1985) Nature 314:452,454)。別法では、当分野で周知の方法を用い、一本鎖抗体の産生のための記載された技術を適用して、NAAP特異的一本鎖抗体を生成する。関連特異性を有するがイディオタイプ組成が異なるような抗体を、ランダムな組合せの免疫グロブリンライブラリからチェーンシャッフリングによって産生することもできる(Burton D.R. (1991) Proc. Natl. Acad. Sci. USA 88:10134-10137)。
【0262】
抗体の産生は、リンパ球集団におけるin vivo産生の誘導によって、或いは文献に開示されているように非常に特異的な結合試薬の免疫グロブリンライブラリまたはパネルのスクリーニングによっても行い得る(Orlandi, R. 他 (1989) Proc. Natl. Acad. Sci. USA 86: 3833-3837、Winter, G. 他 (1991) Nature 349:293-299)。
【0263】
NAAPに対する特異的な結合部位を含む抗体断片も産生され得る。例えば、限定するものではないが、このような断片には、抗体分子のペプシン消化によって作製されるF(ab')2 断片と、F(ab')2 断片のジスルフィド架橋を還元することによって作製されるFab断片とがある。或いは、Fab発現ライブラリを作製することによって、モノクローナルFab断片を所望の特異性と迅速且つ容易に同定することが可能となる(Huse, W.D. 他 (1989) Science 246:1275-1281)。
【0264】
種々の免疫学的検定(イムノアッセイ)を用いてスクリーニングすることにより、所望の特異性を有する抗体を同定し得る。確立された特異性を有するポリクローナル抗体またはモノクローナル抗体の何れかを用いる免疫放射定量測定法または競合結合アッセイに対する数々のプロトコルは、本技術分野において公知である。このようなイムノアッセイは通常、NAAPとその特異抗体との間の複合体形成の計測を含む。2つの非干渉性NAAPエピトープに対して反応性を持つモノクローナル抗体群を用いる、2部位モノクローナルベースのイムノアッセイが一般に利用されるが、競合結合試験も利用できる(Pound、前出)。
【0265】
ラジオイムノアッセイ技術と共にScatchard分析などの様々な方法を用いて、NAAPに対する抗体の親和性を評価し得る。親和性を結合定数Kaで表すが、このKaは、平衡状態下の、NAAP抗体複合体のモル濃度を、遊離抗体と遊離抗原とのモル濃度で除して得られる値である。ポリクローナル抗体類は多様なNAAPエピトープに対して親和性が不均一であり、或るポリクローナル抗体製剤に関して判定したKaは、NAAPに対する抗体群の平均の親和性または結合活性を表す。モノクローナル抗体は或る特定のNAAPエピトープに対して単一特異的であり、モノクローナル抗体の或る製剤について判定したKaは、親和性の真の測定値を表す。Ka値が10〜1012liter/molの高親和性抗体製剤は、NAAP-抗体複合体が激しい操作に耐えなければならないイムノアッセイに用いるのが好ましい。Ka値が10〜10liter/molの低親和性抗体製剤は、NAAPが抗体から最終的に(好ましくは活性化状態で)解離する必要がある免疫精製(immunopurification)および類似の処理に用いるのが好ましい(Catty, D.(1988)Antibodies, Volume I: A Practical Approach, IRL Press, Washington, DC; Liddell, J. E. および Cryer, A.(1991)A Practical Guide to Monoclonal Antibodies, John Wiley & Sons, New York NY)。
【0266】
ポリクローナル抗体製剤の抗体価および結合活性を更に評価して、後に使う或る適用例に対するこのような試薬の品質および適性を決定することができる。例えば、少なくとも1〜2mg/mlの特異的な抗体、好ましくは5〜10mg/mlの特異的な抗体を含むポリクローナル抗体製剤は一般に、NAAP-抗体複合体を沈殿させなければならない処理に用いられる。抗体の特異性、抗体価、結合活性、様々な適用例における抗体の品質や使用に対する指針については、一般に入手可能である(Catty、前出、Coligan 他、前出)。
【0267】
本発明の別の実施態様では、NAAPをコードするポリヌクレオチド、またはその任意の断片や相補配列を、治療目的で使用することができる。或る実施例では、NAAPをコードする遺伝子のコーディング領域や調節領域に相補的な配列やアンチセンス分子(DNA、RNA、PNA、または修飾したオリゴヌクレオチド)を設計して遺伝子発現をモディフィケーションし得る。このような技術は当分野では周知であり、センスまたはアンチセンスオリゴヌクレオチドまたは大きな断片が、NAAPをコードする配列の制御領域から、またはコード領域に沿ったさまざまな位置から設計可能である(Agrawal, S., 編集 (1996) Antisense Therapeutics, Humana Press Inc., Totawa NJ 等を参照)。
【0268】
治療に用いる場合、アンチセンス配列を適切な標的細胞に導入するのに好適な、任意の遺伝子送達系を用いることができる。アンチセンス配列は、転写時に標的タンパク質をコードする細胞配列の少なくとも一部に相補的な配列を発現する発現プラスミドの形で細胞内に送達することが可能である(Slater, J.E. 他 (1998) J. Allergy Clin. Immunol. 102(3):469-475 及び Scanlon, K.J. 他 (1995)9(13):1288-1296)。アンチセンス配列はまた、例えばレトロウイルスやアデノ関連ウイルスベクター等のウイルスベクターを用いて細胞内に導入することもできる(Miller, A.D. (1990) Blood 76:271、前出のAusubel、Uckert, W. 及び W. Walther (1994) Pharmacol. Ther. 63(3):323-347)。その他の遺伝送達機構には、リポソーム系、人工的なウイルスエンベロープ及び当分野で公知のその他のシステムが含まれる(Rossi, J.J. (1995) Br. Med. Bull. 51(1):217-225; Boado、R.J.他 (1998) J. Pharm. Sci. 87(11):1308-1315、Morris, M.C. 他 (1997) Nucleic Acids Res. 25(14):2730-2736)。
【0269】
本発明の別の実施態様では、NAAPをコードするポリヌクレオチドを、体細胞若しくは生殖細胞の遺伝子治療に用いることが可能である。遺伝子治療を行うことにより、(i)遺伝子欠損症(例えばX染色体鎖遺伝(Cavazzana-Calvo, M. 他 (2000) Science 288:669-672)により特徴付けられる重度の複合型免疫欠損(SCID)-X1の場合)、先天性アデノシンデアミナーゼ(ADA)欠損症に関連する重度の複合型免疫欠損(Blaese, R.M. 他 (1995) Science 270:475-480、Bordignon, C. 他 (1995) Science 270:470-475)、嚢胞性繊維症(Zabner, J. 他 (1993) Cell 75:207-216: Crystal、R.G. 他 (1995) Hum. Gene Therapy 6:643-666、Crystal, R.G. 他 (1995) Hum. Gene Therapy 6:667-703)、サラセミア(thalassamia)、家族性高コレステロール血症、第VIII因子若しくは第IX因子欠損に起因する血友病(Crystal, 35 R.G. (1995) Science 270:404-410、Verma, I.M. および N. Somia (1997) Nature 389:239-242)を治療し、(ii)条件的致死性遺伝子産物を発現させ(例えば制御不能な細胞増殖に起因する癌の場合)、(iii)細胞内の寄生虫(例えばヒト免疫不全ウイルス(HIV)(Baltimore, D. (1988) Nature 335:395-396、Poescbla, E. 他 (1996) Proc. Natl. Acad. Sci. USA. 93:11395-11399)、B型若しくはC型肝炎ウイルス(HBV、HCV)、Candida albicans及びParacoccidioides brasiliensis等の真菌寄生虫、並びにPlasmodium falciparum及びTrypanosoma cruzi等の原虫寄生体に対する防御機能を有するタンパク質を発現させることができる。NAAPの発現若しくは調節に必要な遺伝子の欠損が疾患を引き起こす場合、導入した細胞の好適な集団からNAAPを発現させて、遺伝子欠損によって起こる症状の発現を緩和することが可能である。
【0270】
本発明の更なる実施例では、NAAPの欠損による疾患や異常症を、NAAPをコードする哺乳類発現ベクターを作製して、これらのベクターを機械的手段によってNAAP欠損細胞に導入することによって治療する。in vivoあるいはex vitroの細胞に用いる機械的導入技術には、(i)個々の細胞内への直接的なDNA微量注射法、(ii)遺伝子銃、(iii)リポソームを介した形質移入、(iv)受容体を介した遺伝子導入、および(v)DNAトランスポゾンの使用がある(Morgan, R.A. および W.F. Anderson(1993)Annu. Rev. Biochem. 62:191-217、Ivics, Z.(1997)Cell 91:501-510; Boulay, J-L. およびH. Recipon(1998)Curr. Opin. Biotechnol. 9:445-450)。
【0271】
NAAPの発現に有効でありうる発現ベクターには、限定するものではないが、PCDNA 3.1、EPITAG、PRCCMV2、PREP、PVAX、PCR2-TOPOTAベクター(Invitrogen, Carlsbad CA)、PCMV-SCRIPT、PCMV-TAG、PEGSH/PERV (Stratagene, La Jolla CA)、PTET-OFF、PTET-ON、PTRE2、PTRE2-LUC、PTK-HYG (Clontech, Palo Alto CA)が含まれる。NAAPを発現させるために、(i)恒常的に活性なプロモーター(例えば、サイトメガロウイルス(CMV)、ラウス肉腫ウイルス(RSV)、SV40ウイルス、チミジンキナーゼ(TK)、若しくはβ−アクチン遺伝子等)、(ii)誘導性プロモーター(例えば、市販されているT-REXプラスミド(Invitrogen)に含まれている、テトラサイクリン調節性プロモーター(Gossen, M. 及び H. Bujard (1992) Proc. Natl. Acad. Sci. U.S.A. 89:5547-5551; Gossen, M. 他 (1995) Science 268:1766-1769; Rossi, F.M.V. 及び H.M. Blau (1998) Curr. Opin. Biotechnol. 9:451-456))、エクジソン誘導性プロモーター(市販されているプラスミドPVGRXR及びPINDに含まれている:Invitrogen)、FK506/ラパマイシン誘導性プロモーター、またはRU486/ミフェプリストーン誘導性プロモーター(Rossi, F.M.V. 及び H.M. Blau, 前出)、または(iii)正常な個体に由来するNAAPをコードする内在性遺伝子の天然のプロモーター若しくは組織特異的プロモーターを用いることが可能である。
【0272】
市販のリポソーム形質転換キット(例えばInvitrogen社のPERFECT LIPID TRANSFECTION KIT)を用いれば、当業者は経験にそれほど頼らないでもポリヌクレオチドを培養中の標的細胞に導入することが可能になる。別法では、リン酸カルシウム法(Graham. F.L. 及び A.J. Eb (1973) Virology 52:456-467)若しくは電気穿孔法(Neumann, B. 他 (1982) EMBO J. 1:841-845)を用いて形質転換を行う。初代培養細胞にDNAを導入するためには、標準化された哺乳動物の形質移入プロトコルの修飾が必要である。
【0273】
本発明の別の実施例では、NAAPの発現に関連する遺伝子欠損によって起こる疾患や障害を、(i)レトロウイルス末端反復配列(LTR)プロモーター若しくは或る独立プロモーターのコントロール下でNAAPをコードするポリヌクレオチドと、(ii)好適なRNAパッケージングシグナル群と、(iii)追加のレトロウイルス・シス作用性RNA配列と、効率的なベクター増殖に必要なコーディング配列とを伴うRev応答性エレメント(RRE)と、からなるレトロウイルスベクターを作製して治療することができる。レトロウイルスベクター(例えばPFB及びPFBNEO)はStratagene社から市販されており、刊行データ(Riviere, I. 他 (1995) Proc. Natl. Acad. Sci. U.S.A. 92:6733-6737)に基づいている。上記データを引用することをもって本明細書の一部とする。ベクターは、好適なベクター産生細胞株(VPCL)において増殖され、VPCLは、標的細胞上の受容体に対する親和性を有するエンベロープ遺伝子またはVSVg等の汎親和性エンベロープタンパク質を発現する(Armentano, D. 他 (1987) J. Virol. 61:1647-1650、Bender, M.A. 他 (1987) J. Virol. 61:1639-1646、Adam, M.A. および A.D. Miller (1988) J. Virol. 62:3802-3806、Dull, T. 他 (1998) J. Virol. 72:8463-8471、Zufferey, R. 他 (1998) J. Virol. 72:9873-9880)。Riggに付与された米国特許第5,910,434号(「Method for obtaining retrovirus packaging cell lines producing high transducing efficiency retroviral supernatant」)において、レトロウイルスパッケージング細胞株を得るための方法が開示されており、引用することをもって本明細書の一部とする。レトロウイルスベクターの増殖、細胞集団(例えばCD4+ T細胞)の形質導入、及び形質導入した細胞の患者への戻しは、遺伝子治療の分野では当業者に公知の方法であり、多数の文献に記載されている(Ranga, U. 他 (1997) J. Virol. 71:7020-7029、Bauer, G. 他 (1997) Blood 89:2259-2267、Bonyhadi, M.L. (1997) J. Virol. 71:4707-4716、Ranga, U. 他 (1998) Proc. Natl. Acad. Sci. U.S.A. 95:1201-1206、Su, L. (1997) Blood 89:2283-2290)。
【0274】
ある実施態様では、アデノウイルス系遺伝子治療の送達系を用いて、NAAPの発現に関連する1つ或いは複数の遺伝子異常を有する細胞にNAAPをコードするポリヌクレオチドを送達する。アデノウイルス系ベクターの作製及びパッケージングについては、当業者に公知である。複製欠損型アデノウイルスベクターは、免疫調節タンパク質をコードする遺伝子を膵臓の無損傷の膵島内に導入するために融通のきくことが証明された(Csete, M.E. 他 (1995) Transplantation 27:263-268)。使用できる可能性のあるアデノウイルスベクターは、Armentanoに付与された米国特許第5,707,618号(「Adenovirus vectors for gene therapy」)に記載されており、引用することをもって本明細書の一部とする。アデノウイルスベクターについては、Antinozzi 他 (1999、 Annu. Rev. Nutr. 19:511-544) 及び VermaおよびSomia (1997、 Nature 18:389:239-242)も参照されたい。両文献は、引用することをもって本明細書の一部とする。
【0275】
別法では、ヘルペス系遺伝子治療の送達系を用いて、NAAP の発現に関して1以上の遺伝子異常を持つ標的細胞に、NAAP をコードするポリヌクレオチド類を送達する。単純ヘルペスウイルス(HSV)系ベクター類は、HSVが向性を持つ中枢神経細胞にNAAPを導入する際に、特に有益たりうる。ヘルペス系ベクターの作製及びパッケージングは、当業者に公知である。複製適格性単純ヘルペスウイルス(HSV)I型系のベクターは、レポーター遺伝子を霊長類の眼に送達するために用いられてきた(Liu, X. 他 (1999) Exp. Eye Res.169:385-395)。HSV-1ウイルスベクターの作製についても、DeLucaに付与された米国特許第5,804,413号(「Herpes simplex virus swains for gene transfer」)に開示されており、該特許の引用をもって本明細書の一部とする。 米国特許第5,804,413号には、ヒト遺伝子治療を含む目的のために好適なプロモーターの制御下において細胞に導入される少なくとも1つの外在性遺伝子を有するゲノムを含む組換えHSV d92についての記載がある。上記特許はまた、ICP4、ICP27及びICP22のために除去される組換えHSV系統の作製及び使用について開示している。HSVベクターについては、Goins他 (1999、 J. Virol. 73:519-532) 及び Xu他(1994、 Dev. Biol. 163:152-161)も参照されたい。両文献は、引用をもって本明細書の一部とする。クローン化ヘルペスウイルス配列の操作、巨大ヘルペスウイルスのゲノムの異なった部分を含む多数のプラスミドを形質移入した後の組換えウイルスの産生、ヘルペスウイルスの成長及び増殖、並びにヘルペスウイルスの細胞への感染は、当業者に公知の技術である。
【0276】
もう1つの実施態様では、αウイルス(正の一本鎖RNAウイルス)ベクターを用いてNAAPをコードするポリヌクレオチドを標的細胞に送達する。プロトタイプのαウイルスであるセムリキ森林熱ウイルス(Semliki Forest Virus, SFV)の生物学的研究が広範に行われており、遺伝子導入ベクターがSFVゲノムに基づいていることが分かった(Garoff, H. 及び K.-J. Li (1998) Cun. Opin. Biotech. 9:464-469)。αウイルスRNAの複製中に、通常はウイルスのキャプシッドタンパク質をコードするサブゲノムRNAが作り出される。このサブゲノムRNAは、完全長のゲノムRNAより高いレベルに複製されるため、酵素活性(例えばプロテアーゼ及びポリメラーゼ)を有するウイルスタンパク質に比べてキャプシッドタンパク質が過剰産生される。同様に、NAAPをコードする配列をαウイルスゲノムのカプシドをコードする領域に導入することによって、ベクター導入細胞において多数のNAAPをコードするRNAが産生され、高いレベルでNAAPが合成される。通常はαウイルスの感染が数日以内での細胞溶解に関係する一方で、シンドビスウイルス(SIN)の変異体を有するハムスター正常腎臓細胞(BHK-21)の持続的な感染を確立する能力は、αウイルスの溶解複製を遺伝子治療に適用できるように好適に変更可能であることを示唆している(Dryga, S.A. 他 (1997) Virology 228 :74-83)。αウイルスの宿主域は広いので、様々なタイプの細胞にNAAPを導入できることとなる。或る集団におけるサブセットの細胞の特定形質導入は、形質導入前に細胞の選別を必要とし得る。αウイルスの感染性cDNAクローンの処置方法、αウイルスのcDNA及びRNAの形質移入方法及びαウイルスの感染方法は、当業者に公知である。
【0277】
転写開始部位由来のオリゴヌクレオチドを用いて遺伝子発現を阻害することも可能である。転写開始部位(transcription initiation site)とは例えばスタート部位(start site)から数えて約−10と約+10の間である。同様に、三重らせん塩基対の形成方法を用いて阻害が可能となる。三重らせん塩基対形成は、ポリメラーゼ、転写因子または調節分子の結合のために充分に開く、二重らせんの能力を阻害するので有用である。三重らせんDNAを用いる最近の治療の進歩については文献に記載がある(Gee, J.E. 他 (1994) in: Huber, B.E.及び B.I. Carr, Molecular and Immunologic Approaches, Futura Publishing Co., Mt. Kisco, NY, 163-177ページ)。相補配列またはアンチセンス分子もまた、転写物がリボソームに結合するのを阻止することによってmRNAの翻訳を阻止するべく設計することができる。
【0278】
リボザイムは酵素的RNA分子であり、RNAの特異的切断を触媒するためにリボザイムを用いることもできる。リボザイム作用のメカニズムは、相補的標的RNAへのリボザイム分子の配列特異性ハイブリダイゼーションとその後に起こる内ヌクレオチド鎖切断に関与している。例えば、人工的に作製されたハンマーヘッド型リボザイム分子が、NAAPをコードするRNA分子の内ヌクレオチド鎖分解性の切断を特異的且つ効果的に触媒できる可能性がある。
【0279】
任意のRNA標的内の特異的リボザイム切断部位は、GUA、GUU、GUC配列を含めたリボザイム切断部位に対して標的分子をスキャンすることによって先ず同定される。一度同定されると、切断部位を含む標的遺伝子の領域に対応する15〜20リボヌクレオチドの短いRNA配列が、そのオリゴヌクレオチドを機能不全にするような2次構造の特徴をもっていないかを評価することが可能になる。候補標的の適合性の評価も、リボヌクレアーゼ保護アッセイを用いて相補的オリゴヌクレオチドとのハイブリダイゼーションのアクセス可能性をテストすることによって行うことができる。
【0280】
相補リボ核酸分子およびリボザイムは、核酸分子合成のために当分野でよく知られている任意の方法を用いて作製し得る。任意の方法には、固相フォスフォアミダイト化学合成等のオリゴヌクレオチドを化学的に合成する方法がある。或いは、NAAPをコードするDNA分子のin vitro及びin vivo転写によってRNA分子を産出し得る。このようなDNA配列は、T7やSP6等の好適なRNAポリメラーゼプロモーターを用いて多様なベクター内に取り込むことが可能である。或いは、相補的RNAを構成的或いは誘導的に合成するようなこれらcDNA産物を、細胞系、細胞または組織内に導入することができる。
【0281】
細胞内の安定性を高め、半減期を長くするためにRNA分子を修飾することができる。限定するものではないが可能な修飾としては、分子の5'末端、3'末端、あるいはその両方において隣接配列群を追加することや、分子の主鎖内においてホスホジエステラーゼ結合ではなくホスホロチオエートまたは2'O-メチルを使用することが含まれる。この概念は、PNAの産出に固有のものであり、これら全ての分子に拡大することができる。それには、内因性エンドヌクレアーゼによって容易には認識されないアデニン、シチジン、グアニン、チミン、及びウリジンにアセチル−、メチル−、チオ−及び同様の修飾をしたものの他、非従来型塩基、例えばイノシン、クエオシン(queosine)、ワイブトシン(wybutosine)等を加えることでできる。
【0282】
本発明の更なる実施例は、NAAPをコードするポリヌクレオチドの発現の改変に有効な化合物をスクリーニングする方法を含む。限定するものではないが特異ポリヌクレオチドの発現変化を起こすのに有効な化合物には、オリゴヌクレオチド、アンチセンスオリゴヌクレオチド、三重らせん形成オリゴヌクレオチド、転写因子その他のポリペプチド転写制御因子、及び特異ポリヌクレオチド配列と相互作用し得る非高分子化学的実体がある。有効な化合物は、ポリヌクレオチド発現のインヒビターまたはエンハンサーのいずれかとして作用することによりポリヌクレオチド発現を変異し得る。従って、NAAPの発現または活性の増加に関連する疾患の治療においては、NAAPをコードするポリヌクレオチドの発現を特異的に阻害する化合物が治療上有用であり、NAAPの発現または活性の低下に関連する疾患の治療においては、NAAPをコードするポリヌクレオチドの発現を特異的に促進する化合物が治療上有用であり得る。
【0283】
或る特定ポリヌクレオチドの発現を改変する際の有効性について、少なくとも1個、または複数個の試験化合物をスクリーニングし得る。試験化合物は、当分野で通常知られている任意の方法により得られる。このような方法には、ポリヌクレオチドの発現を変異させる場合と、既に、市販のまたは私的な、天然または非天然の化合物ライブラリから選択する場合と、標的ポリヌクレオチドの化学的及び/または構造的特性に基づく化合物を合理的にデザインする場合と、組合せ的にまたは無作為に生成した化合物のライブラリから選択する場合に有効であることが知られているような化合物の化学修飾がある。NAAPをコードするポリヌクレオチドを持つサンプルを、このようにして得た試験化合物の少なくとも1つに曝露する。サンプルには例えば、無傷細胞、透過化処理した細胞、無細胞再構成系または再構成生化学系があり得る。NAAPをコードするポリヌクレオチドの発現における改変は、当分野で周知の任意の方法でアッセイする。通常は、NAAPをコードするポリヌクレオチドの配列に相補的なヌクレオチド配列を有するプローブを用いたハイブリダイゼーションにより、特定のヌクレオチドの発現を検出する。ハイブリダイゼーション量を定量し、それによって1つ以上の試験化合物に曝露される及び曝露されないポリヌクレオチドの発現の比較に対する基礎を形成し得る。試験化合物に曝露されるポリヌクレオチドの発現における変化の検出は、ポリヌクレオチドの発現を変異する際に試験化合物が有効であることを示している。特異ポリヌクレオチドの発現改変に有効な化合物に対して、例えば分裂酵母(Schizosaccharomyces pombe)遺伝子発現系(Atkins, D. 他 (1999) 米国特許第5,932,435号、Arndt, G.M. 他 (2000) Nucleic Acids Res. 28:E15)またはHeLa細胞等のヒト細胞株(Clarke, M.L. 他 (2000) Biochem. Biophys. Res. Commun. 268:8-13)を用いてスクリーニングを実行する。本発明の或る特定の実施態様は、或る特定ポリヌクレオチド配列に対するアンチセンス活性について、オリゴヌクレオチド(デオキシリボヌクレオチド、リボヌクレオチド、ペプチド核酸、修飾したオリゴヌクレオチド)の組み合わせライブラリをスクリーニングする過程に関する(Bruice, T.W. 他 (1997) U.S. Patent No. 5,686,242、Bruice, T.W. 他. (2000) U.S. Patent No. 6,022,691)。
【0284】
ベクターを細胞または組織に導入する多数の方法が利用可能であり、in vivoin vitro及びex vivoの使用に対して同程度に適している。ex vivo治療の場合、ベクターを患者から採取した幹細胞内に導入し、クローニング増殖して同一患者に自家移植で戻すことができる。トランスフェクション、リポソーム注入またはポリカチオンアミノポリマーによる送達は、当分野でよく知られている方法を用いて実行することができる(Goldman, C.K. 他 (1997) Nat. Biotechnol. 15:462-466)。
【0285】
上記の治療方法はいずれも、例えば、ヒト、イヌ、ネコ、ウシ、ウマ、ウサギ、サルなどの哺乳類を含めて治療が必要な全ての被験体に適用できる。
【0286】
本発明の追加実施例は、通常薬剤として許容できる賦形剤で処方される活性成分を有する組成物の投与に関連する。賦形剤には例えば、糖、でんぷん、セルロース、ゴム及びタンパク質がある。様々な処方が通常知られており、詳細はRemington's Pharmaceutical Sciences(Maack Publishing, Easton PA)の最新版に記載されている。このような組成物は、NAAP、NAAPの抗体、擬態物質、アゴニスト、アンタゴニスト、またはインヒビターなどからなる。
【0287】
本発明に用いられる組成物は、任意の数の経路によって投与することができ、限定するものではないが経路には、経口、静脈内、筋肉内、動脈内、骨髄内、クモ膜下腔内、心室内、肺、経皮、皮下、腹腔内、鼻腔内、腸内、局所、舌下または直腸がある。
【0288】
肺から投与する組成物は、液状または乾燥粉末状で調製し得る。このような組成物は通常、患者が吸入する直前にエアロゾル化する。小分子(例えば従来の低分子量有機薬)の場合には、速効製剤のエアロゾル送達は当分野で公知である。高分子(例えばより大きなペプチド及びタンパク質)の場合には、当該分野において肺の肺胞領域を介しての肺送達が最近向上したことにより、インスリン等の薬剤を実質的に血液循環へ輸送することを可能にした(Patton, J.S. 他, 米国特許第5,997,848号等を参照)。肺送達は、針注射なしに投与する点で優れており、有毒な可能性のある浸透エンハンサーの必要性をなくす。
【0289】
本発明での使用に適した組成物には、所定の目的を達成するために必要なだけの量の活性成分を含有する成分が含まれる。有効投与量の決定は、当業者の能力の範囲内で行う。
【0290】
NAAPを有する、またはその断片群を有する高分子群を直接、細胞内に送達すべく、特殊な種々の形状の組成物群が調製され得る。例えば、細胞不透過性高分子を含むリポソーム製剤は、細胞融合及び高分子の細胞内送達を促進し得る。別法では、NAAPまたはその断片を、HIV Tat-1タンパク質から得た短い陽イオンN末端部に結合することもできる。このようにして生成された融合タンパク質は、マウスモデル系の脳を含む全ての組織の細胞に形質導入することがわかっている(Schwarze, S.R. 他 (1999) Science 285:1569-1572)。
【0291】
任意の化合物に対して、先ず細胞培養アッセイ、例えば新生物性細胞の細胞培養アッセイにおいて、あるいは、動物モデル、例えばマウス、ラット、ウサギ、イヌ、サルまたはブタなどにおいて、治療有効量を推定することができる。動物モデルはまた、好適な濃度範囲及び投与経路を決定するためにも用い得る。このような情報を用いて、次にヒトに対する有益な投与量及び投与経路を決定することができる。
【0292】
治療有効投与量とは、症状や容態を回復させる、たとえばNAAPまたはその断片、NAAPの抗体、NAAPのアゴニストまたはアンタゴニスト、インヒビターなど活性成分の量を指す。治療有効性および毒性は、細胞培養または動物実験における標準的な薬学手法によって、例えばED50(集団の50%の治療有効量)またはLD50(集団の50%の致死量)統計を計算するなどして判定できる。毒性効果の治療効果に対する投与量の比は、治療指数であり、LD50/ED50比として表すことができる。高い治療指数を示すような組成物が望ましい。細胞培養アッセイと動物実験とから得られたデータは、ヒトに用いる投与量の範囲の策定に用いられる。このような組成物が含まれる投与量は、毒性を殆ど或いは全く含まず、ED50を含むような血中濃度の範囲にあることが好ましい。用いられる投与形態、患者の感受性及び投与の経路によって、投与量はこの範囲内で様々に変わる。
【0293】
正確な投与量は、治療が必要な被験者に関する要素を考慮して、現場の医者が決定することになる。効果的なレベルの活性成分を与え、或いは所望の効果を維持するべく、投与量及び投与を調節する。被験者に関する要素としては、疾患の重症度、患者の通常の健康状態、患者の年齢、体重及び性別、投与の時間及び頻度、薬剤の配合、反応感受性及び治療に対する応答等を考慮する。作用期間が長い組成物は、特定の製剤の半減期及びクリアランス率によって3〜4日毎に1度、1週間に1度、或いは2週間に1度の間隔で投与し得る。
【0294】
通常の投与量は、投与の経路にもよるが約0.1〜100,000μgであり、合計で約1gまでとする。特定の投与量及び送達方法に関するガイダンスは文献に記載されており、現場の医者は通常それを利用することができる。当業者は、タンパク質またはインヒビターに対する処方とは異なる、ヌクレオチドに対する処方を利用することになる。同様に、ポリヌクレオチドまたはポリペプチドの送達は、特定の細胞、状態、位置等に特異的なものとなる。
【0295】
(診断)
別の実施例では、NAAPに特異的に結合する抗体を、NAAPの発現によって特徴付けられる障害の診断に、または、NAAPやNAAPのアゴニストまたはアンタゴニスト、インヒビターで治療を受けている患者をモニターするためのアッセイに用い得る。診断目的に有用な抗体は、上記の治療の箇所で記載した方法と同じ方法で調合される。NAAPの診断アッセイには、ヒトの体液から、あるいは細胞や組織の抽出物から、抗体および標識を用いてNAAPを検出する方法が含まれる。この抗体は修飾されたものもされていないものも可能であり、レポーター分子との共有結合または非共有結合で標識化できる。レポーター分子としては広くさまざまな種類が本分野で知られており、また使用可能であるが、そのうちのいくつかは上記で説明されている。
【0296】
NAAPを測定するための様々なプロトコル、例えばELISA、RIA、FACS等が当分野では周知であり、変容した、あるいは異常なレベルのNAAPの発現を診断するための基盤を提供する。正常あるいは標準的なNAAPの発現の値は、複合体の形成に適した条件下で、正常な哺乳動物、例えばヒトなどの被験体から採取した体液または細胞抽出物と、NAAPに対する抗体とを混合させることによって確定する。標準複合体形成量は、種々の方法、例えば測光法で定量できる。被験体、対照、および、生検組織からの疾患サンプルでの、NAAP発現の量を標準値と比較する。標準値と被験者との偏差が疾患を診断するパラメータとなる。
【0297】
本発明の別の実施態様によれば、NAAPをコードするポリヌクレオチドを診断のために用いることもできる。用いられることができるポリヌクレオチドには、オリゴヌクレオチド、相補的RNA及びDNA分子、そしてPNAが含まれる。これらのポリヌクレオチドを用いて、NAAPの発現が疾患と相関し得る生検組織における遺伝子発現を検出し定量し得る。この診断アッセイを用いて、NAAPの存在の有無、更には過剰な発現を判定し、治療時のNAAPレベルの調節を監視しうる。
【0298】
或る実施形態では、NAAPまたは近縁の分子をコードするゲノム配列を含むポリヌクレオチドを検出可能なPCRプローブ類とのハイブリダイゼーションを、NAAPをコードする核酸配列を同定するために用いることができる。プローブが高度に特異的な領域(例えば5'調節領域)から作られている、或いはやや特異性の低い領域(例えば保存されたモチーフ)から作られているかという、プローブの特異性と、ハイブリダイゼーション或いは増幅のストリンジェンシーとによって、そのプローブがNAAPをコードする天然配列のみを同定するかどうか、或いは対立遺伝子変異配列や関連配列を同定するかどうかが決まることとなる。
【0299】
プローブはまた、関連する配列の検出に利用でき、また、NAAPをコードする任意の配列との少なくとも50%の配列同一性を有し得る。本発明のハイブリダイゼーションプローブには、DNAあるいはRNAが可能であり、SEQ ID NO:37-72の配列、或いはNAAP遺伝子のプロモーター、エンハンサー、イントロンを含むゲノム配列に由来し得る。
【0300】
NAAPをコードするポリヌクレオチドに特異的なハイブリダイゼーションプローブの作製方法としては、NAAPまたはNAAP誘導体をコードするポリヌクレオチド配列を、mRNAプローブ作製用ベクターにクローニングする方法を含む。mRNAプローブ作製のためのベクターは、当業者に知られており、市販されており、好適なRNAポリメラーゼ及び好適な標識されたヌクレオチドを加えることによって、in vitroでRNAプローブを合成するために用いられ得る。ハイブリダイゼーションプローブは、種々のレポーターの集団によって標識され得る。レポーター集団の例としては、32Pまたは35S等の放射性核種、或いはアビジン/ビオチン結合系を介してプローブに結合されたアルカリホスファターゼ等の酵素標識などが挙げられる。
【0301】
NAAPをコードするポリヌクレオチド配列を、NAAPの発現に関係する疾患の診断に用い得る。限定するものではないが、そのような疾患のうち、細胞増殖異常の中には日光性角化症及びアテローム性動脈硬化、滑液包炎、硬変、肝炎、混合型結合組織病(MCTD)、骨髄線維症、発作性夜間ヘモグロビン尿症、真性多血症、乾癬、原発性血小板血症、並びに腺癌及び白血病、リンパ腫、黒色腫、骨髄腫、肉腫、及び奇形癌、具体的には、副腎、膀胱、骨、骨髄、脳、乳房、頚部、胆嚢、神経節、消化管、心臓、腎臓、肝臓、肺、筋肉、卵巣、膵臓、副甲状腺、陰茎、前立腺、唾液腺、皮膚、脾臓、精巣、胸腺、甲状腺、子宮の癌が含まれ、神経の疾患の中には、核上性麻痺、大脳皮質基底核変性症、家族性前頭側頭型痴呆、癲癇、虚血性脳血管障害、脳卒中、大脳新生物、アルツハイマー病、ピック病、ハンチントン病、痴呆、パーキソン病及びその他の錐体外路障害、筋萎縮性側策硬化及びその他の運動ニューロン障害、進行性神経性筋萎縮症、色素性網膜炎、遺伝性運動失調、多発性硬化症及び他の脱髄疾患、細菌性及びウイルス性髄膜炎、脳膿瘍、硬膜下蓄膿症、硬膜外膿瘍、化膿性頭蓋内血栓性静脈炎、脊髄炎及び神経根炎、ウイルス性中枢神経系疾患と、クールー及びクロイツフェルト‐ヤコブ病、Gerstmann-Straussler-Scheinker症候群を含むプリオン病と、致死性家族性不眠症、神経系性栄養病及び代謝病、神経線維腫症、結節硬化症、小脳網膜血管芽腫(cerebelloretinal hemangioblastomatosis)、脳3叉神経血管症候群、ダウン症を含む中枢神経系性精神遅滞及び他の発達障害、脳性麻痺、神経骨格異常症、自律神経系障害、脳神経疾患、脊髄疾患筋ジストロフィー、および他の神経筋障害、末梢神経系疾患、皮膚筋炎及び多発性筋炎と、遺伝性、代謝性、内分泌性、及び中毒性ミオパシーと、重症筋無力症、周期性四肢麻痺と、気分性及び不安性の障害、分裂病性疾患を含む精神病と、季節性障害(SAD)と、静座不能、健忘症、緊張病、糖尿病性ニューロパシー、錐体外路性終末欠陥症候群(遅発性ジスキネジア)、ジストニー、分裂病性精神障害、帯状疱疹後神経痛、及びトゥーレット病が含まれ、生殖系疾患としては、プロラクチン産生障害、不妊症(卵管疾患、排卵欠損症、子宮内膜症)、性周期障害、月経周期障害、多嚢胞性卵巣症候群、卵巣過刺激症候群、子宮内膜癌、卵巣癌、子宮筋腫、自己免疫疾患、子宮外妊娠、催奇形、乳がん、繊維嚢胞性乳房疾患、乳漏症、精子形成破壊、精子異常生理、精巣癌、前立腺癌、良性前立腺肥大、前立腺炎、パイロニー病、性交不能、男性乳癌、女性化乳房が含まれ、発達障害としては尿細管性アシドーシス、貧血、クッシング症候群、軟骨形成不全性小人症、デュシェンヌ‐ベッカー型筋ジストロフィー、癲癇、性腺形成異常、WAGR症候群(ウィルムス腫瘍、無虹彩症、尿生殖器異常、精神薄弱)、スミス‐マジェニス症候群(Smith- Magenis syndrome)、脊髄形成異常症候群、遺伝性粘膜上皮異形成、遺伝性角皮症、シャルコー‐マリー‐ツース病及び神経線維腫症などの遺伝性神経病、甲状腺機能低下症、水頭症、Syndenham舞踏病(Syndenham's chorea)及び脳性小児麻痺などの発作障害、脊髄二分裂、無脳症、頭蓋脊椎披裂、先天性緑内障、白内障、感覚神経性聴力損失が含まれ、自己免疫/炎症性疾患には、後天性免疫不全症候群(AIDS)、アジソン病、成人呼吸窮迫症候群、アレルギー、強直性脊椎炎、アミロイド症、貧血症、喘息、アテローム性動脈硬化症、自己免疫性溶血性貧血、自己免疫性甲状腺炎、自己免疫性多腺性内分泌カンジダ性外胚葉ジストロフィー(APECED)、気管支炎、胆嚢炎、接触皮膚炎、クローン病、アトピー皮膚炎、皮膚筋炎、真性糖尿病、肺気腫、リンパ球毒素性一時性リンパ球減少症、胎児赤芽球症、結節性紅斑、萎縮性胃炎、糸球体腎炎、グッドパスチャー症候群、痛風、グレーブス病、橋本甲状腺炎、過好酸球増加症、過敏性大腸症候群、多発性硬化症、重症筋無力症、心筋または心膜炎症、骨関節炎、骨粗しょう症、膵炎、多発性筋炎、乾癬、ライター症候群、慢性関節リウマチ炎、強皮症、シェ−グレン症候群、全身性アナフィラキシー、全身性エリテマトーデス、全身性硬化症、血小板減少症、潰瘍性大腸炎、ウェルナー症候群、癌合併症、血液透析、体外循環、ウイルス感染症、細菌感染症、真菌感染症、寄生虫感染症、原虫感染症、蠕虫感染症、外傷が含まれ、感染症には、アデノウイルス、アレナウイルス、ブンヤウイルス(bunyavirus)、カリチウイルス(calicivirus)、コロナウイルス、フィロウイルス、ヘパドナウイルス、ヘルペスウイルス、フラビウイルス、オルソミクソウイルス、パルボウイルス、パポーバウイルス、パラミクソウイルス、ピコルナウイルス、ポックスウイルス、レオウイルス、レトロウイルス、ラブドウイルス、トガウイルスに分類されるウイルス病原体による感染や、細菌による感染(肺炎球菌、ブドウ球菌、連鎖球菌、バシラス菌、コリネバクテリウム、クロストリジウム、髄膜炎菌、淋菌、リステリア、モラクセラ、キンゲラ、ヘモフィルス、レジオネラ、百日咳菌類(ボルデテラ)や、シゲラ、サルモネラ、カンピロバクターを含むグラム陰性腸内細菌、シュードモナス、ビブリオ、ブルセラ、野兎病菌類(フランシセラ)、エルシニア、バルトネラ、norcardium、放線菌、ミコバクテリウム、spirochaetale、リケッチア、クラミジア、マイコプラズマに分類)、真菌感染(分類はアスペルギルス、ブラストミセス、皮膚糸状菌、クリプトコッカス、コクシジオイデス、malasezzia、ヒストプラスマ、または他の真菌症起因菌)、寄生虫感染(分類はプラスモディウムすなわちマラリア原虫、寄生性アメーバ、リーシュマニア、トリパノソーマ、トキソプラズマ、ニューモシスチスカリニ、腸内原虫(ジアルジアなど)、トリコモナス、組織線虫(旋毛虫など)、腸管寄生線虫(回虫など)、リンパ管フィラリア線虫、吸虫(住血吸虫など)、および条虫(サナダムシなど))が含まれ、そしてDNA修復障害としては、色素性乾皮症、ブルーム症候群、ウェルナー症候群が含まれる。NAAPをコードするポリヌクレオチド配列は、変容したNAAP発現を検出するために患者から採取した体液或いは組織を利用する、サザーン法やノーザン法、ドットブロット法、或いはその他の膜系の技術や、PCR法や、ディップスティック(dipstick)、ピン(pin)、およびマルチフォーマットのELISA式アッセイ、及びマイクロアレイに使用することが可能である。このような定性方法または定量方法は、当分野で公知である。
【0302】
或る特定の態様では、NAAPをコードするポリヌクレオチドは、関連する疾患、特に前記したこれらを検出するアッセイにおいて有用であり得る。NAAPをコードする配列に相補的なポリヌクレオチドは、標準的な方法で標識化され、ハイブリダイゼーション複合体の形成に好適な条件下で、患者から採取した体液或いは組織のサンプルに加えることができるであろう。好適なインキュベーション期間が経過したらサンプルを洗浄し、シグナルを定量して標準値と比較する。患者サンプル中のシグナルの量が、対照サンプルと較べて著しく変化している場合は、該サンプル内の、NAAPをコードするポリヌクレオチドのレベル変化の存在が、関連する疾患の存在を示す。このようなアッセイは、動物実験、臨床試験における特定の治療効果を評価するため、あるいは個々の患者の治療をモニターするために用いることもできる。
【0303】
NAAPの発現に関連する疾患の診断の基盤を提供するために、発現の正常すなわち標準的なプロファイルが確立される。これは、ハイブリダイゼーションあるいは増幅に好適な条件の下、動物あるいはヒトのいずれかの正常な被験体から採取された体液或いは細胞抽出物と、NAAPをコードする配列あるいはその断片とを混合することにより達成され得る。実質的に精製されたポリヌクレオチドを既知量用いて行った実験から得た値を正常な被験者から得た値と比較することにより、標準ハイブリダイゼーションを定量することができる。このようにして得た標準値は、疾患の徴候を示す患者から得たサンプルから得た値と比較することができる。標準値からの偏差を用いて疾患の存在を確定する。
【0304】
疾患の存在が確定されて治療プロトコルが開始されると、患者の発現レベルが正常な被検者に観察されるレベルに近づき始めたかどうかを測定するため、ハイブリダイゼーションアッセイを定期的に繰り返し得る。連続アッセイから得られた結果を用いて、数日から数ヶ月の期間にわたる治療の効果を示し得る。
【0305】
癌に関しては、個体からの生体組織における異常な量の転写物(過少発現または過剰発現)の存在は、疾患の発生素質を示したり、実際に臨床的症状が現れる前に疾患を検出する方法を提供し得る。この種のより明確な診断により、医療の専門家が予防方法または積極的な治療法を早くから利用し、それによって癌の発生または更なる進行を防止することが可能となる。
【0306】
NAAPをコードする配列群から設計したオリゴヌクレオチド群の更なる診断的利用には、PCRの利用を含み得る。これらのオリゴマーは、化学的に合成するか、酵素により生産するか、或いはin vitroで産出し得る。オリゴマーは、好ましくはNAAPをコードするポリヌクレオチドの断片、或いはNAAPをコードするポリヌクレオチドと相補的なポリヌクレオチドの断片を含み、最適化した条件下で、特定の遺伝子や条件を識別するために利用される。また、オリゴマーは、やや緩いストリンジェント条件下で、近縁のDNA或いはRNA配列の検出、定量、或いはその両方のため用いることが可能である。
【0307】
特定態様においては、NAAPをコードするポリヌクレオチド配列群に由来するオリゴヌクレオチドプライマー類を用いて、一塩基多型(SNP)を検出し得る。SNPは、多くの場合にヒトの先天性または後天性遺伝病の原因となるような置換、挿入および欠失である。限定するものではないがSNPの検出方法には、SSCP(single-stranded conformation polymorphism)及び蛍光SSCP(fSSCP)がある。SSCPでは、NAAPをコードするポリヌクレオチド配列由来のオリゴヌクレオチドプライマーを用いたポリメラーゼ連鎖反応(PCR)でDNAを増幅する。DNAは例えば、病変組織または正常組織、生検サンプル、体液その他に由来し得る。DNA内のSNPは、一本鎖形状のPCR生成物の2次及び3次構造に差異を生じさせる。差異は非変性ゲル中でのゲル電気泳動法を用いて検出可能である。fSCCPでは、オリゴヌクレオチドプライマーを蛍光性に標識する。それによってDNAシークエンシング機などの高処理機器でアンプリマー(amplimer)の検出が可能になる。更に、インシリコSNP(in silico SNP, isSNP)と呼ばれる配列データベース分析法は、一般的なコンセンサス配列にアセンブリされるような個々のオーバーラップするDNA断片の配列を比較することにより、多型性を同定し得る。これらのコンピュータベースの方法は、DNAの実験室での調整及び統計モデル及びDNA配列クロマトグラムの自動分析を用いたシークエンシングのエラーに起因する配列の変異をフィルタリングして除去する。別の態様では、例えば高処理MASSARRAYシステム(Sequenom, Inc., San Diego CA)を用いた質量分析によりSNPを検出し、特徴付ける。
【0308】
SNPはヒトの病気の遺伝的基礎を研究するために使える可能性がある。たとえば、少なくとも16個の一般的なSNPがインスリン非依存性の糖尿病と関連付けられている。SNPはまた、嚢胞性線維症、鎌形血球貧血、慢性肉芽腫性疾病等の単一遺伝子病の現れ方の違いを研究するために有用である。たとえば、マンノース結合レクチン(MBL2)の変異体は嚢胞性線維症の肺での有害な現れ方との相関が示されている。SNPはまた、薬理ゲノミックス(命のかかわる毒性など、患者の薬への反応に影響する遺伝的変異体の同定)にも役立つ。たとえば、Nアセチルトランスフェラーゼのある変異体は抗結核薬剤イソニアジドに対する高頻度の末梢神経障害と関連付けられているし、ALOX5のコアプロモーターのある変異体は5リポオキシゲナーゼ経路を標的とする抗喘息薬剤による治療への臨床的反応を弱くする。異なる集団におけるSNP分布の分析は、遺伝的浮動、突然変異、組換え、選択の研究において、また集団の起源と移動の追跡以外にも有用である(Taylor, J.G. 他 (2001) Trends Mol. Med. 7:507-512; Kwok, P.-Y. および Z. Gu (1999) Mol. Med. Today 5:538-543; Nowotny, P. 他 (2001) Curr. Opin. Neurobiol. 11:637-641)。
【0309】
NAAPの発現を定量するために用いられ得る方法には、ヌクレオチドの放射標識或いはビオチン標識、調節核酸の相互増幅(coamplification)、及び標準的な曲線に結果が加えられたものが含まれる(Melby, P.C.他(1993) J. Immunol. Methods, 159:235-44;Duplaa, C.他(1993) Anal. Biochem. 229-236)。目的のオリゴマーが種々の希釈液中に存在し、分光光度法または比色反応によって定量が迅速になるような高処理フォーマットのアッセイを行うことによって、複数のサンプルの定量速度を加速することができる。
【0310】
更に別の実施例では、本明細書で記載した任意のポリヌクレオチドに由来するオリゴヌクレオチドまたはより長い断片を、或るマイクロアレイにおけるエレメント群として用いることができる。多数の遺伝子の関連発現レベルを同時にモニターする転写イメージング技術にマイクロアレイを用いることが可能である。これについては、以下に記載する。マイクロアレイはまた、遺伝変異体、突然変異及び多型性の同定に用いることができる。この情報を用いることで、遺伝子機能を決定し、疾患の遺伝的根拠を理解し、疾患を診断し、遺伝子発現の機能としての疾病の進行/後退をモニターし、疾病治療における薬剤の活性を開発及びモニターすることができる。特に、患者にとって最もふさわしく、有効的な治療法を選択するために、この情報を用いて患者の薬理ゲノムプロフィールを開発することができる。例えば、患者の薬理ゲノムプロファイルに基づき、患者に対して高度に効果的で副作用を殆ど示さない治療薬を選択することができる。
【0311】
別の実施例では、NAAP、NAAPの断片、NAAPに特異的な抗体を、マイクロアレイ上のエレメントとして用いることができる。マイクロアレイを用いて、上記のようなタンパク質−タンパク質相互作用、薬剤−標的相互作用及び遺伝子発現プロフィールをモニターまたは測定することが可能である。
【0312】
或る実施態様は、或る組織または細胞タイプの転写イメージを作製する、本発明のポリヌクレオチドの使用に関連する。転写イメージは、特定の組織または細胞タイプにより遺伝子発現の包括的パターンを表す。包括的遺伝子発現パターンは、所与の条件下で所与の時間に発現した遺伝子の数および相対存在量を定量することにより分析し得る(Seilhamer 他の米国特許第5,840,484号「Comparative Gene Transcript Analysis」を参照。当該文献は特に引用することを以って本明細書の一部となす)。従って、特定の組織または細胞タイプの転写または逆転写全体に本発明のポリヌクレオチドまたはその補体をハイブリダイズすることにより、転写イメージを生成し得る。或る実施例では、本発明のポリヌクレオチドまたはその補体がマイクロアレイ上のエレメントのサブセットを複数含むような高処理フォーマットでハイブリダイゼーションを発生させる。結果として得られる転写イメージは、遺伝子活性のプロファイルを提供し得る。
【0313】
転写イメージは、組織、細胞株、生検またはその生体サンプルから単離した転写物を用いて作製し得る。転写イメージは従って、組織または生検サンプルの場合にはin vivo、または株化細胞の場合にはin vitroでの遺伝子発現を反映する。
【0314】
本発明のポリヌクレオチドの発現のプロフィールを作製する転写イメージはまた、工業的または天然の環境化合物の毒性試験のみならず、in vitroモデル系及び薬剤の前臨床評価と併せて使用し得る。全ての化合物は、作用機序及び毒性メカニズムを示す、しばしば分子フィンガープリントまたは毒性シグネチャ(toxicant signatures)と称されるような特徴的な遺伝子発現パターンを惹起する(Nuwaysir, E.F. 他 (1999) Mol. Carcinog. 24:15 3-159、Steiner, S. 及び N.L. Anderson (2000) Toxicol. Lett. 112-113:467-471)。試験化合物が、既知の毒性を有する化合物のシグネチャと同一のシグネチャを有する場合には、毒性特性を共有している可能性がある。フィンガープリントまたはシグネチャは、多数の遺伝子および遺伝子ファミリーからの発現情報を含んでいる場合に、最も有用且つ正確である。理想的には、ゲノム全域にわたる発現の測定が、最高品質のシグネチャを提供する。たとえ、発現が任意の試験された化合物によって変化しない遺伝子があったとしても、それらの発現レベルを残りの発現データを標準化するために使用できるため、それらの遺伝子は重要である。標準化手順は、異なる化合物で処理した後の発現データの比較に有用である。毒性シグネチャの要素への遺伝子機能を割り当てることは毒性機構の解明に役立つが、毒性の予測につながるシグネチャの統計的な一致には遺伝子機能の知識は必要ではない(例えば2000年2月29日に米国国立環境健康科学研究所(National Institute of Environmental Health Sciences)より発行されたPress Release 00-02を参照されたい。これについてはhttp://www.niehs.nih.gov/oc/news/toxchip.htmで入手可能である)。従って、中毒学的スクリーニングの際に毒性シグネチャを用いて、全ての発現した遺伝子配列を含めることは重要且つ望ましいことである。
【0315】
或る実施例では、核酸を有する生体サンプルを試験化合物で処理することにより、この試験化合物の毒性を算定することができる。処理した生物学的サンプル中で発現した核酸は、本発明のポリヌクレオチドに特異的な1つ若しくは複数のプローブでハイブリダイズし、それによって本発明のポリヌクレオチドに対応する転写レベルを定量し得る。処理した生物学的サンプル中の転写レベルを、未処理生物学的サンプル中のレベルと比較する。両サンプルの転写レベルの差は、処理されたサンプル中で試験化合物が引き起こす毒性反応を示す。
【0316】
別の実施態様は、ここで開示されているポリペプチド群を用いて或る組織または細胞タイプのプロテオームを分析することに関する。プロテオームの語は、特定の組織または細胞タイプでのタンパク質発現の包括的パターンを指す。プロテオームの各タンパク質成分は、個々に更に分析の対象とすることができる。プロテオーム発現パターン即ちプロフィールは、所与の条件下で所与の時間に発現したタンパク質の数及び相対存在量を定量することにより分析し得る。従って細胞のプロテオームのプロフィールは、特定の組織または細胞タイプのポリペプチドを分離及び分析することにより作成し得る。或る実施例では、1次元等電点電気泳動によりサンプルからタンパク質を分離し、2次元ドデシル硫酸ナトリウムスラブゲル電気泳動により分子量に応じて分離するような2次元ゲル電気泳動により分離が達成される(前出のSteiner および Anderson)。タンパク質は、通常クーマシーブルーまたは銀染色液または蛍光染色液などの物質を用いてゲルで染色することにより、分散した、独自の位置にある点としてゲル中で可視化される。各タンパク質スポットの光学密度は、通常サンプル中のタンパク質レベルに比例する。異なるサンプル、例えば試験化合物または治療薬で処理または未処理のいずれかの生物学的サンプルから得られるタンパク質スポットの光学密度を比較し、処理に関連するタンパク質スポット密度の変化を同定する。スポット内のタンパク質は、例えば化学的または酵素的切断とそれに続く質量分析を用いる標準的な方法を用いて部分的にシークエンシングする。スポット内のタンパク質の同一性は、その部分配列を、好適には少なくとも5個の連続するアミノ酸残基を、対象となるポリペプチド配列と比較することにより決定し得る。場合によっては、決定的なタンパク質同定のための更なる配列が得られる。
【0317】
プロテオームのプロファイルは、NAAPに特異的な抗体を用いてNAAP発現レベルを定量することによっても作成可能である。或る実施態様では、マイクロアレイ上のエレメントとしてこれら抗体を用い、マイクロアレイをサンプルに曝して各アレイエレメントへのタンパク質結合レベルを検出することにより、タンパク質発現レベルを定量する(Lueking, A. 他(1999) Anal. Biochem. 270:103-111; Mendoze, L.G.他(1999) Biotechniques 27:778-788)。検出は当分野で既知の様々な方法で行うことができ、例えば、チオール反応性またはアミノ反応性蛍光化合物とサンプル中のタンパク質を反応させ、各アレイエレメントにおける蛍光結合の量を検出し得る。
【0318】
プロテオームレベルでの毒性シグネチャも中毒学的スクリーニングに有用であり、転写レベルでの毒性シグネチャと並行に分析するべきである。或る組織の或るタンパク質に対しては、転写とタンパク質の存在量の相関が乏しいこともあるので(Anderson, N.L. 及び J. Seilhamer (1997) Electrophoresis 18:533-537)、転写イメージにはそれ程影響しないがプロテオームのプロフィールを変化させるような化合物の分析においてプロテオーム毒性シグネチャは有用たり得る。更に、体液中の転写物の分析はmRNAの急速な分解のために困難なので、プロテオームのプロフィール作成はこのような場合により信頼し得、情報価値があり得る。
【0319】
別の実施例では、タンパク質を含有する生体サンプルを試験化合物で処理することにより試験化合物の毒性を算定する。処理された生物学的サンプル中で発現したタンパク質は、各タンパク質の量を定量し得るように分離する。各タンパク質の量を、未処理生物学的サンプル中の対応するタンパク質の量と比較する。両サンプルのタンパク質量の差は、処理サンプル中の試験化合物に対する反応を示す。個々のタンパク質は、個々のタンパク質のアミノ酸残基をシークエンシングし、これら部分配列を本発明のポリペプチドと比較することにより同定する。
【0320】
別の実施例では、タンパク質を含有する生体サンプルを試験化合物で処理することにより試験化合物の毒性を算定する。生物学的サンプルから得たタンパク質は、本発明のポリペプチドに特異的な抗体を用いてインキュベートする。抗体により認識されたタンパク質の量を定量する。処理された生物学的サンプル中のタンパク質の量を、未処理生物学的サンプル中のタンパク質の量と比較する。両サンプルのタンパク質量の差は、処理サンプル中の試験化合物に対する反応を示す。
【0321】
マイクロアレイは、本技術分野でよく知られている方法を用いて調製し、使用し、そして分析する(Brennan, T.M. 他 (1995) の米国特許第5,474,796号、Schena, M. 他 (1996) Proc. Natl. Acad. Sci. USA 93:10614-10619、Baldeschweiler 他の (1995) PCT出願第WO95/251116号、Shalon, D.他の (1995) PCT出願第WO95/35505号、Heller, R.A. 他 (1997) Proc. Natl. Acad. Sci. USA 94:2150-2155、Heller, M.J. 他の (1997) 米国特許第5,605,662号)。様々なタイプのマイクロアレイが公知であり、詳細については、DNA Microarrays: A Practical Approach, M. Schena, 編集. (1999) Oxford University Press, Londonに記載されている。
本発明の別の実施態様ではまた、NAAPをコードする核酸配列群を用いて、天然ゲノム配列をマッピングするのに有用なハイブリダイゼーションプローブ群を産生し得る。コード配列または非コード配列のいずれかを用いることができ、或る例では、コード配列より非コード配列の方が好ましい。例えば、多重遺伝子ファミリーのメンバー内でのコード配列の保存により、染色体マッピング中に望ましくないクロスハイブリダイゼーションが生じる可能性がある。核酸配列は、特定の染色体、染色体の特定領域または人工形成の染色体、例えば、ヒト人工染色体(HAC)、酵母人工染色体(YAC)、細菌人工染色体(BAC)、細菌P1産物、或いは単一染色体cDNAライブラリに対してマッピングされる(Harrington, J.J. 他 (1997) Nat Genet. 15:345-355、Price, C.M. (1993) Blood Rev. 7:127-134、Trask, B.J. (1991) Trends Genet. 7:149-154等を参照)。一度マッピングすると、この核酸配列を用いて、例えば病状の遺伝と特定の染色体領域やまたは制限酵素断片長多型(RFLP)の遺伝とが相関するような遺伝子連鎖地図を作成可能である(Lander, E.S. 及び D. Botstein (1986) Proc. Natl. Acad. Sci. USA 83:7353-7357)。
【0322】
蛍光原位置ハイブリッド形成法(FISH)は、他の物理的及び遺伝地図データと相関し得る(Heinz-Ulrich, 他 (1995) 前出のMeyers, 965-968ページ等を参照)。遺伝地図データの例は、種々の科学雑誌あるいはOnline Mendelian Inheritance in Man(OMIM)のウェブサイトに見ることができる。物理的染色体地図上の、NAAPをコードする遺伝子の位置と、特定の疾患との相関性、あるいは特定の疾患に対する素因との相関性は、この疾患と関連するDNAの領域の決定に役立ち得るため、ポジショナルクローニングの作業を促進し得る。
【0323】
確定した染色体マーカーを用いた連鎖分析等の物理的マッピング技術及び染色体標本原位置ハイブリッド形成法を用いて、遺伝地図を拡張することができる。例えばマウスなど別の哺乳動物の染色体上に遺伝子を配置することにより、正確な染色体上の遺伝子座が未知でも、関連するマーカー類をしばしば明らかにし得る。この情報は、ポジショナルクローニングその他の遺伝子発見技術を用いて遺伝的疾患を探す研究者にとって価値がある。疾患または症候群が、血管拡張性失調症の11q22-23領域等、特定の遺伝子領域への遺伝的結合によって大まかに位置決めがなされると、該領域に対する任意のマッピングにより更なる調査のための関連遺伝子或いは調節遺伝子を表すことができる(Gatti, R.A.他 (1988) Nature 336:577-580)。転座、反転などに起因する、健常者、保有者、罹病者の三者間における染色体位置の相違を検出する場合にも、本発明のヌクレオチド配列を用い得る。
【0324】
本発明の別の実施態様では、NAAP、その触媒作用断片あるいは免疫原性断片またはそのオリゴペプチド群を、種々の任意の薬剤スクリーニング技術における、化合物のライブラリ群のスクリーニングに用い得る。薬剤スクリーニングに用いる断片は、溶液中に遊離しているか、固体支持物に固定されるか、細胞表面上に保持されるか、細胞内に位置することになろう。NAAPと検査する薬剤との結合による複合体の形成を測定することもできる。
【0325】
別の薬剤スクリーニング方法は、目的のタンパク質に対して好適な結合親和性を有する化合物を高処理能力でスクリーニングするために用いられる(Geysen,他 (1984) PCT出願番号 WO84/03564)。この方法においては、多数の異なる小さな試験用化合物を固体基板上で合成する。試験用化合物は、NAAP、或いはその断片と反応してから洗浄される。次に、結合したNAAPを本技術分野で周知の方法で検出する。精製したNAAPはまた、上記した薬剤スクリーニング技術に用いるプレート上に直接コーティングできる。別法では、非中和抗体を用いてペプチドを捕捉し、ペプチドを固体支持物に固定することもできる。
【0326】
別の実施例では、NAAPと特異結合可能な中和抗体がNAAPとの結合について試験化合物と競合する、競合的薬剤スクリーニングアッセイを用いることができる。この方法では、抗体を用いて、1つ以上の抗原決定基をNAAPと共有するどのペプチドの存在をも検出できる。
【0327】
別の実施例では、NAAPをコードするヌクレオチド配列を、将来に開発される分子生物学技術であり、現在知られているヌクレオチド配列の特性(限定はされないが、トリプレット遺伝コード、特異的な塩基対相互作用等を含む)に依存する新技術に用い得る。
【0328】
更に詳細説明をしなくとも、当業者であれば以上の説明を以って本発明を最大限に利用できるであろう。従って、これ以下に記載する実施例は単なる例示目的にすぎず、いかようにも本発明を限定するものではない。
【0329】
本明細書において開示した全ての特許、特許出願及び刊行物、特に米国特許第60/301,893号、第60/300,518号、第60/301,787号、第60/301,892号、第60/301,792号、第60/303,442、第60/303,405および第60/364,438は、言及することをもって本明細書の一部となす。
【実施例】
【0330】
cDNA ライブラリの作製
Incyte cDNA群の由来は、LIFESEQ GOLDデータベース (Incyte Genomics, Palo Alto CA)に記載されたcDNAライブラリ群である。幾つかの組織はホモジナイズしてグアニジニウムイソチオシアネート溶液に溶解し、他の組織はホモジナイズしてフェノールにまたは変性剤群の好適な混合液に溶解した。混合液の1例であるTRIZOL(Invitrogen)は、フェノールとグアニジンイソチオシアネートとの単相溶液である。結果として得られた溶解物は、塩化セシウムで遠心分離するかクロロホルムで抽出した。イソプロパノールか、酢酸ナトリウムとエタノールか、いずれか一方、或いは別の方法を用いて、溶解物からRNAを沈殿させた。
【0331】
RNAの純度を高めるため、RNAのフェノールによる抽出及び沈殿を必要な回数繰り返した。場合によっては、DNA分解酵素でRNAを処理した。殆どのライブラリでは、オリゴd(T)連結常磁性粒子(Promega)、OLIGOTEXラテックス粒子(QIAGEN, Chatsworth CA)またはOLIGOTEX mRNA精製キット(QIAGEN)を用いて、ポリ(A+) RNAを単離した。別法では、別のRNA単離キット、例えばPOLY(A)PURE mRNA精製キット(Ambion, Austin TX)を用いて組織溶解物からRNAを直接単離した。
【0332】
場合によってはStratagene社へのRNA提供を行い、対応するcDNAライブラリをStratagene社が作製することもあった。そうでない場合は、UNIZAPベクターシステム(Stratagene)またはSUPERSCRIPTプラスミドシステム(Invitrogen)を用いて本技術分野で公知の推奨方法または類似の方法でcDNAを合成し、cDNAライブラリを作製した(前出のAusubel, 1997, 5.1-6.6ユニット)。逆転写は、オリゴd(T)またはランダムプライマーを用いて開始した。合成オリゴヌクレオチドアダプターを二本鎖cDNAに連結反応させ、好適な制限酵素でcDNAを消化した。殆どのライブラリに対して、cDNAのサイズ(300〜1000bp)選択は、SEPHACRYL S1000、SEPHAROSE CL2BまたはSEPHAROSE CL4Bカラムクロマトグラフィー(Amersham Biosciences)、或いは調製用アガロースゲル電気泳動法を用いて行った。 合成オリゴヌクレオチドアダプターを二本鎖cDNAに連結反応させ、好適な制限酵素または酵素でcDNAを消化した。 好適なプラスミドは、例えばPBLUESCRIPTプラスミド(Stratagene)、PSPORT1 プラスミド(Invitrogen)、PCDNA2.1 プラスミド (Invitrogen, Carlsbad CA)、PBK-CMV プラスミド (Stratagene)、PCR2-TOPOTAプラスミド (Invitrogen)、PCMV-ICISプラスミド (Stratagene)、pIGEN (Incyte Genomics, Palo Alto CA)、pRARE (Incyte Genomics)、plNCY(Incyte Genomics)等およびその誘導体である。組換えプラスミドは、Stratagene社のXL1-Blue、XL1-BIueMRFまたはSOLR、或いはInvitrogen社のDH5α、DH10BまたはELECTROMAX DH10Bを含むコンピテントな大腸菌細胞に形質転換した。
【0333】
2 cDNA クローンの単離
UNIZAPベクターシステム(Stratagene)を用いたin vivo切除によって、或いは細胞溶解によって、実施例 1のようにして得たプラスミドを宿主細胞から回収した。プラスミドの精製には、下記の少なくとも1つを用いた。すなわちMagicまたはWIZARD Minipreps DNA精製システム(Promega)、AGTC Miniprep精製キット(Edge Biosystems, Gaithersburg MD)、QIAGEN社のQIAWELL 8 Plasmid、QIAWELL 8 Plus PlasmidおよびQIAWELL 8 Ultra Plasmid精製システム、R.E.A.L. Prep 96プラスミド精製キットのいずれかである。プラスミドは、沈殿させた後、0.1mlの蒸留水に再懸濁して、凍結乾燥して或いは凍結乾燥しないで4℃で保管した。
【0334】
別法では、高処理フォーマットにおいて直接結合PCR法を用いて宿主細胞溶解物からプラスミドDNAを増幅した(Rao, V.B. (1994) Anal. Biochem. 216:1-14)。宿主細胞の溶解および熱サイクリング過程は、単一反応混合液中で行った。サンプルを処理し、それを384ウェルプレート内で保管し、増幅したプラスミドDNAの濃度をPICOGREEN色素(Molecular Probes, Eugene OR)及びFLUOROSKANII蛍光スキャナ(Labsystems Oy, Helsinki, Finland)を用いて蛍光分析的に定量した。
【0335】
3 シークエンシング及び分析
実施例2に記載したようにプラスミドから回収したIncyte cDNAを、以下に示すようにシークエンシングした。cDNAのシークエンス反応は、標準的方法或いは高処理装置、例えばABI CATALYST 800 サーマルサイクラー(Applied Biosystems)またはPTC-200 サーマルサイクラー(MJ Research)をHYDRAマイクロディスペンサー(Robbins Scientific)またはMICROLAB 2200(Hamilton)液体転移システムと併用して処理した。cDNAのシークエンス反応は、Amersham Biosciences 社が提供する試薬、またはABIシークエンシングキット、例えばABI PRISM BIGDYE Terminator cycle sequencing ready reaction kit(Applied Biosystems)の試薬を用いて準備した。cDNAのシークエンス反応の電気泳動的分離には、また、標識したポリヌクレオチドの検出には、MEGABACE 1000 DNAシークエンシングシステム(Amersham Biosciences)か、標準ABIプロトコルと塩基対呼び出しソフトウェアとを用いるABI PRISM 373または377シークエンシングシステム(Applied Biosystems)か、あるいはその他の本技術分野で既知の配列解析システムを用いた。cDNA配列内のリーディングフレームは、標準的方法(前出のAusubel, 1997, 7.7ユニットに概説)を用いて同定した。cDNA配列の幾つかを選択して、実施例8に記載した方法で配列を伸長させた。
【0336】
Incyte cDNA配列に由来するポリヌクレオチド配列は、ベクター、リンカー及びポリ(A)配列を除去し、あいまいな塩基対をマスクすることによって有効性を確認した。その際、BLAST、動的プログラミング及び隣接ジヌクレオチド頻度分析に基づくアルゴリズム及びプログラムを用いた。次に、IncyteのcDNA配列、またはその翻訳を公共のデータベース(例えばGenBankの霊長類及びげっ歯類、哺乳動物、脊椎動物、真核生物のデータベースと、BLOCKS、PRINTS、DOMO、PRODOM)と、ヒト、ラット、マウス、線虫、出芽酵母(Saccharomyces cerevisiae)、分裂酵母(Schizosaccharomyces pombe)、および鵞口瘡カンジダ(Candida albicans )からの配列を含むPROTEOMEデータベース(Incyte Genomics, Palo Alto CA)、及びPFAM等隠れマルコフモデル(HMM)に基づいたタンパク質ファミリーデータベース並びに、SMART(Schultz 他(1998) Proc. Natl. Acad. Sci. USA 95:5857-5864、Letunic, I. 他 (2002) Nucleic Acids Res. 30:242-244)のようなHMMに基づいたタンパク質ドメインデータベースから選択したデータベースに対して問い合わせた。(HMMは、遺伝子ファミリーのコンセンサス1次構造を分析する確率的アプローチである。Eddy, S.R. (1996) Cuff. Opin. Struct. Biol. 6:361-365等を参照)。問合せは、BLAST、FASTA、BLIMPS及びHMMERに基づくプログラムを用いて行った。Incyte cDNA配列をアセンブリし、完全長のポリヌクレオチド配列を産出した。あるいは、GenBank cDNA群、GenBank EST群、スティッチされた配列群、ストレッチされた配列群、またはGenscan予測コード配列群(実施例4および5を参照)を用い、Incyte cDNAのアセンブリ体を完全長まで伸長させた。PhredとPhrapとConsedとに基づくプログラムを用いてアセンブリし、GenMarkとBLASTとFASTAとに基づくプログラムを用いて、cDNAのアセンブリ体を、オープンリーディングフレームについてスクリーニングした。完全長ポリヌクレオチド配列を翻訳し、対応する完全長ポリペプチド配列を誘導した。あるいは、ポリペプチドは、完全長翻訳ポリペプチドの任意のメチオニン残基で開始し得る。完全長ポリペプチド配列群の続いての分析としての問い合わせを、GenBankタンパク質データベース群(genpept)、SwissProt、PROTEOMEデータベース群、BLOCKS、PRINTS、DOMO、PRODOMおよびProsite等のデータベースや、PFAM、INCY、およびTIGRFAM等の隠れマルコフモデル(HMM)ベースのタンパク質ファミリーデータベース群、並びにSMART等のHMMベースのタンパク質ドメインデータベース群に対し行った。完全長ポリヌクレオチド配列はまた、MACDNASIS PROソフトウェア(日立ソフトウェアエンジニアリング, South San Francisco CA)およびLASERGENEソフトウェア(DNASTAR)を用いて分析する。ポリヌクレオチド及びポリペプチド配列アラインメントは、アラインメントした配列と配列の一致率も計算するMEGALIGNマルチシークエンスアラインメントプログラム(DNASTAR)に組み込まれているようなCLUSTALアルゴリズムによって特定されるデフォルトパラメータを用いて作製する。
【0337】
Incyte cDNA及び完全長配列の分析及びアセンブリに利用したツール、プログラム及びアルゴリズムの概略と、適用可能な説明、参照文献、閾値パラメータを表7に示す。用いたツール、プログラム及びアルゴリズムを表7の列1に、それらの簡単な説明を列2に示す。列3は好適な引用文献であり、全ての文献はそっくりそのまま引用を以って本明細書の一部となす。適用可能な場合には、列4は2つの配列が一致する強さを評価するために用いたスコア、確率値その他のパラメータを示す(スコアが高いほど、または確率値が低いほど、2配列間の相同性が高くなる)。
【0338】
完全長ポリヌクレオチド配列およびポリペプチド配列のアセンブリ及び分析に用いる上記のプログラムは、SEQ ID NO:37-72のポリヌクレオチド配列断片の同定にも利用できる。 ハイブリダイゼーション及び増幅技術に有用である約20〜約4000ヌクレオチドの断片を表4の列2に示した。
【0339】
4 ゲノム DNA からのコード配列の同定及び編集
推定上の核酸結合タンパク質は、先ず公共のゲノム配列データベース(例えばgbpriやgbhtg)に対しGenscan遺伝子同定プログラムを実行して同定した。Genscanは、様々な生物からのゲノムDNA配列を分析する汎用遺伝子同定プログラムである(Burge, C. 及び S. Karlin (1997) J. Mol. Biol. 268:78-94、Burge, C. 及び S. Karlin (1998) Curr. Opin. Struct. Biol. 8:346-354)。プログラムは予測エキソンを連結し、メチオニンから終止コドンに及ぶアセンブリされたcDNA配列を形成する。Genscanの出力は、ポリヌクレオチドおよびポリペプチド配列のFASTAデータベースである。Genscanが一度に分析する配列の最大範囲は、30kbに設定した。これらのGenscan予測cDNA配列の内、どの配列が核酸結合タンパク質をコードするかを判定するために、コードされるポリペプチドを、PFAMモデル群に対し核酸関連分子について問合せて分析した。潜在的な核酸結合タンパク質はまた、既に核酸結合タンパク質としてアノテーションが付けられたIncyte cDNA配列に対する相同性を基に同定された。こうして選択されたGenscan予測配列は、次にBLAST分析により公共データベースgenpept及びgbpriと比較した。必要であれば、genpeptからのトップBLASTヒットと比較することによりGenscan予測配列を編集し、余分なまたは省略されたエキソンなど、Genscanが予測した配列におけるエラーを補正した。BLAST分析はまた、Genscan予測配列の、いかなるIncyte cDNAまたは公共cDNAカバレッジ(coverage)の発見にも用いられ、したがって転写の証拠を提供した。Incyte cDNAカバレッジが利用できた場合には、この情報を用いてGenscan予測配列を補正または確認した。完全長ポリヌクレオチド配列は、実施例3に記載したアセンブリプロセスを用いて、Incyte cDNA配列および/または公共cDNA配列でGenscan予測コード配列をアセンブリして得た。或いは、完全長ポリヌクレオチド配列は編集または未編集のGenscan予測コード配列に完全に由来する。
【0340】
5 c DNA 配列データを使ったゲノム配列データのアセンブリ
ステッチ配列( Stitched Sequence
部分cDNA配列は、実施例4に記載のGenscan遺伝子同定プログラムにより予測されたエキソンを用いて伸長させた。実施例3に記載されたようにアセンブリされた部分cDNAは、ゲノムDNAにマッピングし、関連するcDNA及び1つ若しくは複数のゲノム配列から予測されたGenscanエキソンを含むクラスタに分解した。cDNA及びゲノム情報を統合するべくグラフ理論及び動的プログラミングに基づくアルゴリズムを用いて各クラスタを分析し、引き続いて確認、編集または伸長して完全長配列を産出するような潜在的スプライシング変異体を生み出した。区間全体の長さがクラスタ中の2以上の配列に存在するような配列を同定し、そのように同定された間隔は推移により等しいと考えられた。例えば、1つのcDNA及び2つのゲノム配列に間隔が存在する場合、3つの間隔は全て等しいと考えられる。このプロセスは、無関係であるが連続したゲノム配列をcDNA配列により結び合わせて架橋し得る。このようにして同定された区間を、親配列(parent sequence)に沿って現われるようにステッチアルゴリズムで縫い合わせ、可能な最も長い配列および変異配列を作製する。1種類の親配列に沿って発生した間隔と間隔との連鎖(cDNA−cDNAまたはゲノム配列−ゲノム配列)は、親の種類を変える連鎖(cDNA−ゲノム配列)に優先した。結果として得たスティッチ配列群を翻訳し、BLAST分析で公共データベースgenpeptおよびgbpriと比較した。Genscanにより予測された不正確なエキソンは、genpeptからのトップのBLASTヒットと比較することにより修正した。必要な場合には、追加cDNA配列を用いるかゲノムDNAの検査により配列を更に伸長させた。
【0341】
ストレッチ配列( Stretched Sequence
部分DNA配列は、BLAST分析に基づくアルゴリズムにより完全長まで伸長された。先ず、BLASTプログラムを用いて、GenBankの霊長類、げっ歯類、哺乳動物、脊椎動物及び真核生物のデータベースなどの公共データベースに対し、実施例3に記載されたようにアセンブリされた部分cDNAを問い合わせた。次に、最も近いGenBankタンパク質相同体をBLAST分析によりIncyte cDNA配列または実施例4に記載のGenScanエキソン予測配列のいずれかと比較した。結果として得られる高スコアリングセグメント対(HSP)を用いてキメラタンパク質を産出し、翻訳した配列をGenBankタンパク質相同体上にマッピングした。元のGenBankタンパク質相同体に対し、キメラタンパク質内では挿入または欠失が起こり得る。GenBankタンパク質相同体、キメラタンパク質またはその両方をプローブとして用い、公共のヒトゲノムデータベースから相同ゲノム配列を検索した。このようにして、部分的なDNA配列を相同ゲノム配列の付加によりストレッチすなわち伸長した。結果として得られるストレッチ配列を検査し、完全遺伝子を含んでいるか否かを判定した。
【0342】
NAAP をコードするポリヌクレオチドの染色体マッピング
SEQ ID NO:37-72をアセンブリするために用いた配列を、BLAST及びSmith-Watermanアルゴリズムを用いて、Incyte LIFESEQデータベース及び公共のドメインデータベースの配列と比較した。SEQ ID NO:37-72と一致するこれらのデータベースの配列を、Phrapなどのアセンブリアルゴリズム(表7)を使用して、連続しオーバーラップする配列のクラスター群にアセンブリされた。スタンフォード・ヒトゲノムセンター(SHGC)、ホワイトヘッド・ゲノム研究所(WIGR)、Genethon等の公的な情報源から入手可能な放射線ハイブリッド及び遺伝地図データを用いて、クラスタ化された配列が前もってマッピングされたかを決定した。マッピングされた配列がクラスタに含まれている場合は、個々の配列番号を含めてそのクラスタの全配列が地図上の位置に割り当てられた。
【0343】
地図上の位置は、ヒト染色体の範囲または間隔として表される。センチモルガン間隔の地図上の位置は、染色体の短腕(p-arm)の末端に関連して測定する。(センチモルガン(cM)は、染色体マーカー間の組換え頻度に基づく計測単位である。平均して、1cMは、ヒト中のDNAの1メガベース(Mb)にほぼ等しい。尤も、この値は、組換えのホットスポット及びコールドスポットに起因して広範囲に変化する。)cM距離は、各クラスタ内に配列が含まれる放射線ハイブリッドマーカー類に対して境界を提供するGenethonによってマッピングされた遺伝マーカー群に基づく。NCBI「GeneMap'99」(http://www.ncbi.nlm.nih.gov/genemap/)などの公的に入手可能なヒト遺伝子マップおよびその他の情報源を用いて、既に同定されている疾患遺伝子群が、上記した区間内若しくは近傍に位置するかを決定できる。
【0344】
7 ポリヌクレオチド発現の分析
ノーザン分析は、遺伝子の転写物の存在を検出するために用いられる実験用技術であり、特定の細胞種或いは組織からのRNAが結合されている膜への標識されたヌクレオチド配列のハイブリダイゼーションを伴う(Sambrook他,前出, 7章; Ausubel (1995)、前出, 4章及び16章)。
【0345】
BLASTを適用した類似のコンピュータ技術を用いて、GenBankやLifeSeq(Incyte Genomics)等のcDNAデータベースにおいて同一または関連分子を検索した。ノーザン分析は、多数の膜系ハイブリダイゼーションよりも非常に速い。更に、特定の同一を厳密な或いは相同的なものとして分類するか否かを決定するため、コンピュータ検索の感度を変更することができる。検索の基準は積スコアであり、次式で定義される。
【0346】
【数1】
Figure 2005502329
【0347】
積スコアは、2つの配列間の類似度と、配列が一致する長さとの両方を考慮している。積スコアは、0〜100の規準化された値であり、次のようにして求める。BLASTスコアにヌクレオチドの配列一致率を乗じ、その積を2つの配列の短い方の長さの5倍で除する。BLASTスコアを計算するには、或る高スコアリングセグメント対(HSP)内の一致する各塩基に+5のスコアを割り当て、各不一致塩基に−4を割り当てる。2つの配列は、2以上のHSPを共有し得る(ギャップにより隔離される)。2以上のHSPがある場合には、最高BLASTスコアの塩基対を用いて積スコアを計算する。積スコアは、断片的オーバーラップとBLASTアラインメントの質とのバランスを表す。例えば積スコア100は、比較した2つの配列の短い方の長さ全体にわたって100%一致する場合のみ得られる。積スコア70は、一端が100%一致し、70%オーバーラップしているか、他端が88%一致し、100%オーバーラップしているかのいずれかの場合に得られる。積スコア50は、一端が100%一致し、50%オーバーラップしているか、79%一致し、100%オーバーラップしているかのいずれかの場合に得られる。
【0348】
或いは、NAAPをコードするポリヌクレオチドは、由来する組織源に対して分析する。例えば幾つかの完全長配列は、少なくとも一部は、オーバーラップするIncyte cDNA配列群を用いてアセンブリされる(実施例3を参照)。各cDNA配列は、ヒト組織から作製されたcDNAライブラリに由来する。各cDNA配列は、ヒト組織から作製されたcDNAライブラリに由来する。各ヒト組織は、以下の生物/組織カテゴリー即ち心血管系、結合組織、消化器系、胎芽構造、内分泌系、外分泌腺、女性生殖器、男性生殖器、生殖細胞、血液及び免疫系、肝、筋骨格系、神経系、膵臓、呼吸器系、感覚器、皮膚、顎口腔系、非分類性/混合性または尿路の1つに分類される。各カテゴリーのライブラリ数を数えて、全カテゴリーの総ライブラリ数で除する。同様に、各ヒト組織は、以下の疾患/病状カテゴリー即ち癌、細胞株、発達、炎症、神経性、外傷、心血管、プール、その他の1つに分類される。 各カテゴリーのライブラリ数を数えて、全カテゴリーの総ライブラリ数で除する。得られるパーセンテージは、NAAPをコードするcDNAの疾患特異的な発現を反映する。
【0349】
NAAP をコードするポリヌクレオチドの伸長
完全長のポリヌクレオチド配列はまた、完全長分子の適切な断片から設計したオリゴヌクレオチドプライマーを用いて該断片を伸長させて生成した。或るプライマーは既知の断片の5'伸長を開始するべく合成し、別のプライマーは既知の断片の3'伸長を開始するべく合成した。開始プライマーは、長さが約22〜30ヌクレオチド、GC含有率が約50%以上となり、約68〜72℃の温度で標的配列にアニーリングするように、OLIGO 4.06ソフトウェア(National Biosciences)或いは別の適切なプログラムを用いて、cDNAから設計した。 ヘアピン構造及びプライマー−プライマー二量体を生ずるようなヌクレオチドの伸長は全て回避した。
【0350】
配列を伸長するために、選択されたヒトcDNAライブラリを用いた。2段階以上の伸長が必要または望ましい場合には、付加的プライマーあるいはプライマーのネステッドセットを設計した。
【0351】
高忠実度の増幅が、当業者によく知られている方法を利用したPCR法によって得られた。PCRは、PTC-200 サーマルサイクラー(MJ Research, Inc.)を用いて96穴プレート内で行った。反応混合液は、鋳型DNA及び200nmolの各プライマーを有する。また、Mg +と(NH4)2SO4と2−メルカプトエタノールを含む反応バッファー、Taq DNAポリメラーゼ(Amersham Biosciences)、ELONGASE酵素(Invitrogen)、Pfu DNAポリメラーゼ(Stratagene)を含む。プライマー対、PCI AとPCI Bに対して以下のパラメータで増幅を行った。ステップ1: 94℃で3分間 ステップ2: 94℃で15秒 ステップ3: 60度で1分間 ステップ4: 68℃で2分間 ステップ5: ステップ2、3、4を20回繰り返す ステップ6: 68℃で5分間 ステップ7: 4℃で保存。 プライマー対T7、SK+に対しては、上記パラメータに代えて以下のパラメータを用いた。 ステップ1: 94℃で3分間 ステップ2: 94℃で15秒 ステップ3: 57℃で1分間 ステップ4: 68℃で2分間 ステップ5: ステップ2、3、4を20回繰り返す ステップ6: 68℃で5分間 ステップ7: 4℃で保存。
【0352】
各ウェルのDNA濃度は、1X TE及び0.5μlの希釈していないPCR産物に溶解した100μlのPICOGREEN定量試薬(0.25(v/v) PICOGREEN; Molecular Probes, Eugene OR)を不透明な蛍光光度計プレート(Corning Costar, Acton MA)の各ウェルに分配してDNAが試薬と結合できるようにして測定する。サンプルの蛍光を計測してDNAの濃度を定量すべく、プレートをFluoroskan II(Labsystems Oy, Helsinki, Finland)でスキャンした。反応混合物のアリコット5〜10μlを1%アガロースゲル上で電気泳動法によって解析し、どの反応が配列の伸長に成功したかを判定した。
【0353】
伸長させたヌクレオチドは、脱塩及び濃縮して384ウェルプレートに移し、CviJIコレラウイルスエンドヌクレアーゼ(Molecular Biology Research, Madison WI)を用いて消化し、pUC 18ベクター(Amersham Biosciences)への再連結反応前に音波処理またはせん断した。ショットガン・シークエンシングのために、消化したヌクレオチドを低濃度(0.6〜0.8%)のアガロースゲル上で分離し、断片を切除し、寒天をAgar ACE(Promega)で消化した。伸長させたクローンをT4リガーゼ(New England Biolabs, Beverly MA)を用いてpUC 18ベクター(Amersham Biosciences)に再連結し、Pfu DNAポリメラーゼ(Stratagene)で処理して制限部位のオーバーハングを満たし、大腸菌細胞に形質移入した。形質移入した細胞を選択して抗生物質を含む培地に移し、それぞれのコロニーを切り取ってLB/2Xカルベニシリン培養液の384ウェルプレートに37℃で一晩培養した。
【0354】
細胞を溶解して、Taq DNAポリメラーゼ(Amersham Biosciences)及びPfu DNAポリメラーゼ(Stratagene)を用いて以下の手順でDNAをPCR増幅した。ステップ1: 94℃, 3分、 ステップ 2: 94℃、 15 秒、ステップ 3: 60℃、 1 分、ステップ 4: 72℃、 2 分、 ステップ 5: ステップ2、3および 4を29回反復する。 ステップ6: 72℃、5 分、ステップ7: 4℃で保存する。上記のようにPICOGREEN試薬(Molecular Probes)でDNAを定量した。DNAの回収率が低いサンプルは、上記と同一の条件を用いて再増幅した。サンプルは20%ジメチルスルホキシド(1:2, v/v)で希釈し、DYENAMIC エネルギートランスファー シークエンシングプライマー、及びDYENAMIC DIRECT kit(Amersham Biosciences)またはABI PRISM BIGDYE ターミネーターサイクル シークエンシング反応キット(Terminator cycle sequencing ready reaction kit)(Applied Biosystems)を用いてシークエンシングした。
【0355】
同様に、上記手順を用いて完全長ポリヌクレオチドを検証した。あるいは、完全長ポリヌクレオチドを用い、上記手順で、そのような伸長のために設計したオリゴヌクレオチド類と、或る適切なゲノムライブラリとを用いて5'調節配列を得た。
【0356】
NAAP をコードするポリヌクレオチドにおける一塩基多型の同定
一塩基多型(SNP)として知られる一般的なDNA配列変異体がLIFESEQ データベース(Incyte Genomics)を用いてSEQ ID NO:37-72 において同定された。実施例3に記述したように、同じ遺伝子からの配列を一緒にまとめてクラスター化し、アセンブリした。一連のフィルタから成るアルゴリズムが、SNPを他の配列変異体から区別するために用いられた。予備フィルターは最小Phredクオリティスコア15を要求することによって大多数のベースコールエラーを除去し、配列アラインメントエラーとスプライス変異体、キメラおよびベクター配列の不適正なトリミングによるエラーを除去した。高度染色体解析の自動化手順により、オリジナルのクロマトグラムファイルの中の推定上のSNPの近傍を解析した。クローンエラーフィルターは、統計的に生成されたアルゴリズムを使って、実験室の処理中に入ってくる(逆転写酵素、ポリメラーゼまたは体細胞性突然変異などに起因する)エラーを同定した。クラスタリングエラーフィルターは統計的に生成されたアルゴリズムを使って、近い相同体や偽遺伝子のクラスタリングによるエラーおよび非ヒト配列によるコンタミネーションに起因するエラーを同定した。最後のフィルターセットは免疫グロブリンまたはT細胞受容体で見つかる複製とSNPを除去した。
【0357】
4つの異なるヒトの集団における対立遺伝子頻度を解析するために、ある種のSNPを選択して、高スループットMASSARRAYシステム(Sequenom, Inc.) を使った質量分析で特性を測定した。白人集団は92人(男性46人、女性46人)で、83人がユタ州出身、4人がフランス人、3人がベネズエラ、そして2人がアーミッシュだった。アフリカ人は194人(男性97人、女性97人)からなり、その全てがアフリカ系アメリカ人であった。ラテンアメリカ系集団は324人(男性162人、女性162人)からなり、その全てがメキシコのラテンアメリカ系であった。アジア系集団は126人(男性64人、女性62人)からなり、報告された親の内訳は中国人が43%、日本人が31%、韓国人が13%、ベトナム人が5%、その他のアジア系が8%であった。対立遺伝子頻度は最初に白人集団で解析された。この集団内で対立遺伝子変異を示さなかったSNPはその他3つの集団ではテストしない場合もあった。
【0358】
10 個々のハイブリダイゼーションプローブの標識化及び使用
SEQ ID NO:37-72から導き出されたハイブリダイゼーションプローブを用いて、cDNA、mRNA、またはゲノムDNAをスクリーニングする。約20塩基対からなるオリゴヌクレオチドの標識について特に記載するが、より大きなヌクレオチド断片に対しても本質的に同一の手順が用いられる。オリゴヌクレオチドは、OLIGO 4.06ソフトウェア(National Biosciences)等の最新ソフトウェアを用いて設計し、各オリゴマー50pmolと、[γ-32P]アデノシン3リン酸 (Amersham Biosciences)250μCiと、T4ポリヌクレオチドキナーゼ(DuPont NEN, Boston MA)を混合することにより標識する。標識したオリゴヌクレオチドは、SEPHADEX G-25超細繊分子サイズ排除デキストラン ビードカラム(Amersham Biosciences)を用いて実質的に精製する。下記のいずれか1つのエンドヌクレアーゼで消化されたヒトゲノムDNAの、典型的な膜ベースのハイブリダイゼーション解析において、毎分107カウントの標識されたプローブを含むアリコットを用いる。すなわちAse I、Bgl II、Eco RI、Pst I、Xba I、またはPvu II(DuPont NEN)である。
【0359】
各消化物から得たDNAは、0.7%アガロースゲル上で分画してナイロン膜(Nytran Plus, Schleicher & Schuell, Durham NH)に移す。ハイブリダイゼーションは、40℃で16時間行う。 非特異的シグナルを除去するため、例えば0.1×クエン酸ナトリウム食塩水及び0.5%ドデシル硫酸ナトリウムに一致する条件下で、ブロットを室温で順次洗浄する。オートラジオグラフィーまたはそれに代わるイメージング手段を用いてハイブリダイゼーションパターンを視覚化し、比較する。
【0360】
11 マイクロアレイ
マイクロアレイの表面上でアレイエレメントの連鎖または合成は、フォトリソグラフィ、ピエゾ式印刷(インクジェット印刷、前出のBaldeschweiler等を参照)、機械的マイクロスポッティング技術及びこれらから派生したものを用いて達成することが可能である。上記各技術において基板は、均一且つ非多孔性の固体とするべきである(Schena (1999) 前出)。推奨する基板には、シリコン、シリカ、スライドガラス、ガラスチップ及びシリコンウエハがある。或いは、ドットブロット法またはスロットブロット法に類似のアレイを利用して、熱的、紫外線的、化学的または機械的結合手順を用いて基板の表面にエレメントを配置及び結合させてもよい。通常のアレイは、手作業で、または利用可能な方法や機械を用いて作製でき、任意の適正数のエレメントを有し得る(Schena, M. 他 (1995) Science 270:467-470、Shalon. D. 他 (1996) Genome Res. 6:639-645、Marshall, A. および J. Hodgson (1998) Nat. Biotechnol. 16:27-31)。
【0361】
完全長cDNA、発現配列タグ(EST)、またはその断片またはオリゴマーは、マイクロアレイのエレメントと成り得る。ハイブリダイゼーションに好適な断片またはオリゴマーを、レーザGENEソフトウェア(DNASTAR)等の本技術分野で公知のソフトウェアを用いて選択することが可能である。アレイエレメント群を、生体サンプル中のポリヌクレオチド群とハイブリダイズする。生体サンプル中のポリヌクレオチドは、検出を容易にするために蛍光標識などの分子タグに抱合させる。ハイブリダイゼーション後、生体サンプルからのハイブリダイズされていないヌクレオチドを除去し、蛍光スキャナを用いて各アレイエレメントでのハイブリダイゼーションを検出する。あるいは、レーザー脱離および質量スペクトロメトリを用いてもハイブリダイゼーションを検出し得る。マイクロアレイ上の或るエレメントにハイブリダイズする各ポリヌクレオチドの、相補性の度合と相対存在度とを算定し得る。 一実施態様におけるマイクロアレイの調製および使用について、以下に詳述する。
【0362】
組織または細胞サンプルの準備
グアニジニウムチオシアネート法を用いて組織サンプルから全RNAを単離し、オリゴ(dT)セルロース法を用いてポリ(A)+RNAを精製する。各ポリ(A)+RNAサンプルを、MMLV逆転写酵素、0.05pg/μlのオリゴ(dT)プライマー(21mer)、1×第一鎖合成バッファー、0.03unit/μlのRNアーゼ阻害因子、500μMのdATP、500μMのdGTP、500μMのdTTP、40μMのdCTP、40μMのdCTP-Cy3(BDS)またはdCTP-Cy5(Amersham Biosciences)を用いて逆転写する。逆転写反応は、GEMBRIGHTキット(Incyte)を用いてポリ(A)+RNA含有の25体積ml内で行う。特異的対照ポリ(A)+RNAは、非コード酵母ゲノムDNAからin vitro転写により合成する。各反応サンプル(1つはCy3、もう1つはCy5標識)は、2.5mlの0.5M水酸化ナトリウムで処理し、85℃で20分間インキュベートし、反応を停止させてRNAを分解させる。サンプルは、2つの連続するCHROMA SPIN 30ゲル濾過スピンカラム(CLONTECH Laboratories, Inc. (CLONTECH), Palo Alto CA)を用いて精製する。 混合後、2つの反応サンプルは、1mlのグリコーゲン(1mg/ml)、60mlの酢酸ナトリウム及び300mlの100%エタノールを用いてエタノール沈殿させる。サンプルは次に、SpeedVAC(Savant Instruments Inc., Holbrook NY)を用いて完全に乾燥させ、14μlの5×SSC/0.2%SDS中で再懸濁する。
【0363】
マイクロアレイの準備
本発明の配列を用いて、アレイエレメントを作製する。各アレイエレメントは、クローン化cDNAインサートによりベクター含有細菌性細胞から増幅する。PCR増幅は、cDNAインサートに隣接するベクター配列に相補的なプライマーを用いる。30サイクルのPCRによって、1〜2ngの初期量から5μgを超える最終量までアレイエレメントを増幅する。増幅したアレイエレメントは、SEPHACRYL-400(Amersham Biosciences)を用いて精製する。
【0364】
精製したアレイエレメントは、ポリマーコートされたスライドグラス上に固定する。顕微鏡スライドグラス(Corning)は、処理中及び処理後に0.1%のSDS及びアセトン中で超音波処理をかけ、蒸留水で非常に良く洗浄する。スライドグラスは、4%フッ化水素酸(VWR Scientific Products Corporation (VWR), West Chester PA)中でエッチングし、蒸留水中で非常に良く洗浄し、95%エタノール中で0.05%アミノプロピルシラン(Sigma)を用いてコーティングする。コーティングしたスライドガラスは、110℃のオブンで硬化させる。
【0365】
米国特許第5,807,522号で説明されている方法を用いて、コーティングしたガラス基板にアレイエレメントを付加する。 該特許は、引用を以って本明細書の一部となす。平均濃度が100ng/μlのアレイエレメントDNA1μlを高速機械装置により開放型キャピラリープリンティングエレメント(open capillary printing element)に充填する。装置はここで、スライド毎に約5nlのアレイエレメントサンプルを加える。
【0366】
マイクロアレイには、STRATALINKER UV架橋剤(Stratagene)を用いてUV架橋する。マイクロアレイは、室温において0.2%SDSで1度洗浄し、蒸留水で3度洗浄する。リン酸緩衝生理食塩水 (PBS)(Tropix, Inc., Bedford MA)中の0.2%カゼイン中において60℃で30分間マイクロアレイをインキュベートした後、前に行ったように0.2%SDS及び蒸留水で洗浄することにより、非特異結合部位をブロックする。
【0367】
ハイブリダイゼーション
ハイブリダイゼーション反応液は、5×SSC、0.2%SDSハイブリダイゼーション緩衝液にCy3及びCy5標識したcDNA合成産物を各0.2μg含む9μlのサンプル混合体を含めたものである。サンプル混合体は、65℃まで5分間加熱し、マイクロアレイ表面上に等分して1.8cm2 のカバーガラスで覆う。アレイを、顕微鏡用スライドよりわずかに大きい空洞を有する防水チェンバーに移す。チェンバーのコーナーに140μlの5×SSCを加えることにより、チェンバー内部を湿度100%に保持する。アレイを含むチェンバーは、60℃で約6.5時間インキュベートする。アレイは、第1洗浄緩衝液中(1×SSC,0.1%SDS)において45℃で10分間洗浄し、第2洗浄緩衝液中(0.1×SSC)において45℃で10分間各々3度洗浄して乾燥させる。
【0368】
検出
レポーター標識ハイブリダイゼーション複合体は、Cy3の励起のためには488nm、Cy5の励起のためには632nmでスペクトル線を発生し得るInnova70混合ガス10Wレーザ(Coherent, Inc., Santa Clara CA)を備えた顕微鏡で検出する。励起レーザ光の焦点をアレイ上に置くため、20×顕微鏡対物レンズ(Nikon, Inc., Melville NY)を用いる。アレイを含むスライドを、顕微鏡の、コンピュータ制御のX-Yステージに置き、対物レンズを通してラスタースキャンする。本実施例で用いる1.8cm×1.8cmのアレイは、解像度20μmでスキャンする。
【0369】
2つの異なるスキャンで、混合ガスマルチラインレーザは2つの蛍光色素を連続的に励起する。発光された光は、波長に基づき分離され、2つのフルオロフォアに対応する2つの光電子増倍管検出器(PMT R1477, Hamamatsu Photonics Systems, Bridgewater NJ)に送られる。好適なフィルタ群をアレイと光電子増倍管との間に設置して、シグナルをフィルタする。用いるフルオロフォアの最大発光の波長は、Cy3では565nm、Cy5では650nmである。装置は両方の蛍光色素からのスペクトルを同時に記録し得るが、レーザ源において好適なフィルタを用いて、蛍光色素1つにつき1度スキャンし、各アレイを通常2度スキャンする。
【0370】
スキャンの感度は通常、既知濃度でサンプル混合体に添加されるcDNA対照種により発生されるシグナル強度を用いて較正する。アレイ上の特定の位置には相補的DNA配列が含まれ、その位置におけるシグナルの強度を重量比1:100,000でハイブリダイゼーション種と相関させる。異なる源泉(例えば試験される細胞及び対照細胞など)からの2つのサンプルを、各々異なる蛍光色素で標識し、他と異なって発現した遺伝子を同定するために単一のアレイにハイブリダイズする場合には、2つの蛍光色素で較正するcDNAのサンプルを標識し、ハイブリダイゼーション混合液に各々等量を加えることによって較正を行う。
【0371】
光電子増倍管の出力は、IBMコンパチブルPCコンピュータにインストールされた12ビットRTI-835Hアナログディジタル(A/D)変換ボード(Analog Devices, Inc., Norwood MA)を用いてディジタル化される。ディジタル化されたデータは、青色(低シグナル)から赤色(高シグナル)までの擬似カラー範囲へのリニア20色変換を用いてシグナル強度がマッピングされたようなイメージとして表示される。データは、定量的にも分析される。2つの異なる蛍光色素を同時に励起および測定する場合には、各蛍光体の発光スペクトルを用いて、データはまず蛍光色素間の光学的クロストーク(発光スペクトルの重なりに起因する)を補正する。
【0372】
グリッドが蛍光シグナルイメージ上に重ねられ、それによって各スポットからのシグナルはグリッドの各エレメントに集められる。各エレメント内の蛍光シグナルは統合され、シグナルの平均強度に応じた数値が得られる。シグナル分析に用いるソフトウェアは、GEMTOOLS遺伝子発現分析プログラム(Incyte)である。GEMTOOLSプログラム(Incyte Genomics)を使って、発現が少なくとも2倍変化したアレイエレメント、SB比が少なくとも2.5であるもの、およびエレメントスポットサイズが少なくとも40%であるものは差次的に発現していると同定された。
【0373】
発現
別の例でSEQ ID NO:41は差次的発現をいくつかのヒトの乳癌細胞株で示し、これはマイクロアレイ分析で判定した。HMECは初代乳腺上皮細胞株であり、由来は正常なヒト乳腺組織である(Clonetics, San Diego, CA)。以下の細胞株をマイクロアレイでテストした:MCF-10は繊維嚢胞性乳房疾患にかかった36歳の女性から単離されたヒトの乳腺細胞株であり、SkBR3は43歳の女性の悪性胸水から単離された乳房腺癌細胞株であり、MCF7は69歳の女性の胸水から単離された乳房腺癌細胞株であり、T47Dは乳房の浸潤性腺管癌にかかった54歳の女性の胸水から単離された乳癌細胞株であり、BT20は74歳の女性から単離された腫瘍塊の薄切片から遊出した細胞から in vitro で得られた乳癌細胞株である、MDA-mb-231は転移性の乳癌にかかった54歳の女性の胸水から得られた転移性乳房腫瘍細胞株である。全ての培養細胞は供給業者の推奨事項に従って繁殖させ、70〜80%コンフルエントまで成長させてからRNA単離を行った。
【0374】
乳房腫瘍の進行のさまざまな段階を代表する5つの腫瘍細胞株(BT20, MCF7, MDA-mb-231, SKBr3およびT47D)のcDNAの発現を非悪性乳房上皮細胞株HMECまたはMCF-10Aと比較した。
【0375】
SEQ ID NO:41によると、HMEC細胞とSk-BR-3およびT-47Dを比較した場合に少なくとも2倍の差次的発現を示した。さらにSEQ ID NO:41の発現は、繊維嚢胞性乳房組織をBT-20, MCF-7, MDA-mb-231, Sk-BR-3およびT-47Dの癌細胞株を比較した場合に少なくとも2倍減少した。これらの実験はテストされた乳房腫瘍細胞株でSEQ ID NO:41の発現が有意に低下していることを示し、SEQ ID NO:41が診断マーカーとして有用なこと、あるいは乳癌の治療上の標的として使える可能性があることをさらに確立している。
別の実施例においては、SEQ ID NO:44は3.9倍の上方調節を成熟DCで単球に比して示したので、SEQ ID NO:44(SEQ ID NO:8をコード)は例えば、単球が分化し未成熟な樹状細胞となる過程の理解に役立ち、最終的に免疫系を操作でき、疾患たとえば癌、AIDS、感染症の潜在的免疫療法を導き、ワクチンの効力を高めるのに使用できる可能性がある。
【0376】
別の実施例においては、SEQ ID NO:48の発現がブドウ球菌の外毒素(SEB)で処理された(各々が別の供与者から得られた)7つのPBMC集団のうちの6つで上方調節されている。 in vitro でSEBを使ってPBMCを24時間および72時間刺激した。SEQ ID NO:48の発現は24時間後にはより高くなり、72時間後には減少していた。したがってSEQ ID NO:48は、免疫応答の診断アッセイに有用である。
【0377】
もう1つの実施例においては、SEQ ID NO:64が、成熟したヒトの肝臓の in vitro モデルとして良く確立されているC3A細胞株で差次的発現を示すことがマイクロアレイ分析で明らかになった。肝臓代謝とホルモン除去機構への影響は、薬剤の薬力学を理解するために重要である。たとえば、ヒトC3A肝臓細胞株は、強力な接触阻害の成長に関して選択されたHepG2/C3(肝臓腫瘍を患う15歳の男子から単離した肝臓癌細胞株)のクローン誘導体である。クローン集団の使用は、細胞の再現性を強化する。C3A細胞は、培養中の主要なヒト肝細胞の多くの特徴を有する。i)インシュリン受容体とインシュリン様成長因子II受容体の発現、ii)フェトプロテインと比較した血清アルブミンの高率分泌、iii)アンモニアの尿素とグルタミンへの転換、iv)芳香アミノ酸を代謝する能力、v)グルコースの無いまたインシュリンの無い培地での増殖。SEQ ID NO:64は、ベクロメタゾン、メドロキシプロゲステロン、ブデソニド、プレドニゾン、デキサメサゾンおよびプロゲステロンなどのさまざまなステロイドで処理されたC3A細胞において、未処理のC3A細胞と比べて差次的発現を示すことがマイクロアレイ分析で明らかになった。したがって、SEQ ID NO:64は肝臓、内分泌、および生殖系の疾患の診断と監視、および炎症性疾患と体液の免疫応答の診断および治療用の標的として有用である。
【0378】
12 相補的ポリヌクレオチド
NAAPをコードする配列あるいはその任意の一部に対して相補的な配列は、天然NAAPの発現を検出、低減または阻害するために用いられる。約15〜30塩基対を含むオリゴヌクレオチドの使用について記すが、これより小さなあるいは大きな配列の断片の場合でも、本質的に同じ手順を用いる。適切なオリゴヌクレオチド群を設計するため、Oligo 4.06ソフトウェア(National Biosciences)および、NAAPのコーディング配列を用いる。転写を阻害するためには、最も独特な5'配列から相補的オリゴヌクレオチドを設計し、これを用いて、プロモーターがコーディング配列に結合するのを防止する。翻訳を阻害するには、相補的なオリゴヌクレオチドを設計して、NAAPをコードする転写物にリボソームが結合するのを防ぐ。
【0379】
13 NAAP の発現
NAAPの発現及び精製は、細菌若しくはウイルスを基にした発現系を用いて行うことができる。細菌内でATRSを発現させるには、抗生物質耐性遺伝子と、cDNA転写レベルを高める誘導性プロモーターとを有する好適なベクターにcDNAをサブクローニングする。このようなプロモーターとしては、lacオペレーター調節エレメントと併用するT5またはT7バクテリオファージプロモーター、およびtrp-lac(tac)ハイブリッドプロモーターが含まれるが、これらに限定するものではない。組換えベクターを、BL21(DE3)等の好適な細菌宿主に形質転換する。抗生物質耐性細菌にNAAPを発現させるには、イソプロピルβ−Dチオガラクトピラノシド(IPTG)で誘発する。真核細胞でのNAAPの発現は、昆虫細胞株または哺乳動物細胞株に、一般にバキュロウイルスとして知られるAutographica californica核多角体病ウイルス(AcMNPV)の組換え型を感染させて行う。バキュロウイルスの非必須ポリヘドリン遺伝子をNAAPをコードするcDNAと置換するには、相同組換えを行うか、或いは、トランスファープラスミドの媒介を伴う、細菌の媒介による遺伝子転移を行う。ウイルスの感染力は維持され、強力なポリヘドリンプロモーターによって高レベルのcDNA転写が行われる。組換えバキュロウイルスは、多くの場合は夜蛾の1種Spodoptera frugiperda(Sf9)昆虫細胞への感染に用いるが、ヒト肝細胞への感染に用いることもある。後者の感染の場合は、バキュロウイルスの更なる遺伝的変更が必要になる。(Engelhard. E. K.他 (1994) Proc. Natl. Acad. Sci. USA 91:3224-3227、Sandig, V. 他 (1996) Hum. Gene Ther. 7:1937-1945参照)。
【0380】
殆どの発現系では、NAAPが、例えばグルタチオンSトランスフェラーゼ(GST)と、またはFLAGや6-Hisなどのペプチドエピトープ標識と合成された融合タンパク質となるため、未精製の細胞溶解物からの組換え融合タンパク質の親和性ベースの精製を、迅速に1ステップで行い得る。GSTは日本住血吸虫からの26kDaの酵素であり、タンパク質の活性および抗原性を維持した状態で、固定化したグルタチオン上での融合タンパク質の精製を可能とする(Amersham Biosciences)。精製後、GST部分を、特異的に操作した部位においてNAAPからタンパク分解的に切断することが可能である。FLAGは8アミノ酸のペプチドであり、市販されているモノクローナル及びポリクローナル抗FLAG抗体(Eastman Kodak)を用いて免疫親和性精製を可能にする。6ヒスチジン残基が連続して伸長した6-Hisは、金属キレート樹脂上での精製を可能にする(QIAGEN)。タンパク質の発現および精製の方法は、前出のAusubel(1995)10章、16章に記載されている。これらの方法で精製したNAAPを直接用いて以下の実施例17、18、および19の、適用可能なアッセイを行うことができる。
【0381】
14 機能的アッセイ
NAAPの機能は、哺乳動物細胞培養系において生理的に高められたレベルでの、NAAPをコードする配列の発現によって算定する。cDNAを高いレベルで発現する強いプロモーターを持つ哺乳動物発現ベクターにcDNAをサブクローニングする。選択されるベクターには、PCMV SPORTプラスミド(Invitrogen, Carlsbad CA)及びPCR 3.1プラスミド(Invitrogen)が含まれ、どちらもサイトメガロウイルスプロモーターを有する。リポソーム製剤あるいは電気穿孔法を用いて、5〜10μgの組換えベクターをヒト細胞株、例えば内皮由来または造血由来の細胞株に、一過的に形質移入する。更に、標識タンパク質をコードする配列を含む1〜2μgのプラスミドを同時に形質移入する。標識タンパク質の発現により、形質移入された細胞と形質移入されていない細胞を区別する手段が与えられる。また、標識タンパク質の発現によって、cDNAの組換えベクターからの発現を正確に予想できる。標識タンパク質は、例えば緑色蛍光タンパク質(GFP;Clontech)、CD64またはCD64-GFP融合タンパク質から選択できる。自動化された、レーザー光学に基づく技術であるフローサイトメトリー(FCM)を用いて、GFPまたはCD64-GFPを発現する形質移入された細胞を同定し、それらの細胞のアポトーシス状態や他の細胞特性を評価する。FCMは、細胞死に先行するか或いは同時に発生する現象を診断する蛍光分子の取込を検出して計量する。このような現象として挙げられるのは、プロピジウムヨウ化物によるDNA染色によって計測される核DNA内容物の変化、前方散乱光と90°側方散乱光によって計測される細胞サイズと顆粒状性の変化、ブロモデオキシウリジンの取込量の低下によって計測されるDNA合成の下方調節、特異抗体との反応性によって計測される細胞表面及び細胞内におけるタンパンク質の発現の変化、及び蛍光複合アネキシンVタンパク質の細胞表面への結合によって計測される原形質膜組成の変化とがある。フローサイトメトリー法については、Ormerod, M.G.(1994)Flow Cytometry,Oxford, New York NYに記述がある。
【0382】
遺伝子発現に与えるNAAPの影響は、NAAPをコードする配列と、CD64またはCD64-GFPのどちらかとが形質移入された、高度に精製された細胞集団を用いて評価することができる。CD64またはCD64-GFPは、形質移入された細胞表面で発現し、ヒト免疫グロブリンG(IgG)の保存された複数の領域に結合する。形質移入された細胞と形質転換されない細胞とは、ヒトIgGかCD64に対する抗体のどちらかで被覆された磁気ビーズを用いて効率的に分離できる(DYNAL, Lake Success NY)。mRNAは、当業者に周知の方法で細胞から精製できる。NAAPと、目的とする他の遺伝子とをコードするmRNAの発現は、ノーザン分析やマイクロアレイ技術で分析できる。
【0383】
15 NAAP に特異的な抗体の作製
ポリアクリルアミドゲル電気泳動法(PAGE;例えば、Harrington, M.G. (1990) Methods Enzymol. 182:488-495を参照)または他の精製技術で実質的に精製されたNAAP を用いて、標準的なプロトコルで動物(ウサギ、マウス等)を免疫化して抗体を作り出す。
【0384】
或いは、レーザGENEソフトウェア(DNASTAR)を用いてNAAPアミノ酸配列を解析し、免疫原性の高い領域を決定する。そして対応するオリゴペプチドを合成し、このオリゴペプチドを用いて当業者によく知られている方法で抗体を生成する。例えばC末端付近或いは隣接する親水性領域等の、適切なエピトープの選択については、当分野で公知である(前出のAusubel, 1995, 11章)。
【0385】
通常は、長さ約15残基のオリゴペプチドを、FMOC ケミストリを用いるABI 431A ペプチドシンセサイザ(Applied Biosystems)を用いて合成し、N-マレイミドベンゾイル-N-ヒドロキシスクシンイミドエステル(MBS)を用いた反応によってKLH(Sigma-Aldrich, St. Louis MO)に結合させて、免疫原性を高める(前出のAusubel, 1995)。完全フロイントアジュバントにおいて、オリゴペプチド-KLH複合体を用いてウサギを免疫化する。得られた抗血清の抗ペプチド活性及び抗NAAP活性を試験するには、ペプチドまたはNAAPを基板に結合し、1%BSAを用いてブロッキング処理し、ウサギ抗血清と反応させて洗浄し、さらに放射性ヨウ素標識されたヤギ抗ウサギIgGと反応させる。
【0386】
16 特異的抗体を用いる天然 NAAP の精製
天然NAAPあるいは組換えNAAPを実質的に精製するため、NAAPに特異的な抗体群を用いるイムノアフィニティークロマトグラフィーを行う。イムノアフィニティーカラムは、CNBr-活性化したSEPHAROSE(Amersham Biosciences)のような活性化クロマトグラフィー用レジンと抗NAAP抗体とを共有結合させることにより形成する。結合後に、製造者の使用説明書に従ってこのレジンをブロックし、洗浄する。
【0387】
NAAPを有する培養液をイムノアフィニティーカラムに通し、NAAPを優先的に吸着できる条件で(例えば、界面活性剤の存在下で高イオン強度のバッファーで)そのカラムを洗浄する。そのカラムを、抗体とNAAPとの結合を切るような条件で(例えば、或るpH2〜3のバッファー、あるいは高濃度の、例えば尿素またはチオシアン酸イオンなどのカオトロープで)溶出させ、NAAPを収集する。
【0388】
17 NAAP と相互作用する分子の同定
NAAPまたは生物学的に活性なその断片を、125I ボルトンハンター試薬で標識する(Bolton A.E.及びW.M. Hunter (1973) Biochem. J. 133:529)。マルチウェルプレートの各ウェルに予め配列しておいた候補の分子群を、標識したNAAPと共にインキュベートし、洗浄して、標識されたNAAP複合体を有する全てのウェルをアッセイする。様々なNAAP濃度で得られたデータを用いて、候補分子と結合したNAAPの数量、親和性、および会合についての値を計算する。
【0389】
別法では、NAAPと相互作用する分子を、Fields, S.および O. Song(1989, Nature 340:245-246)に記載の酵母2−ハイブリッドシステム(yeast two-hybrid system)を、または、MATCHMAKERシステム(Clontech)など2−ハイブリッドシステムに基づく市販キットを用いて分析する。
【0390】
NAAPはまた、ハイスループット型の酵母2ハイブリッドシステムを使用するPATHCALLINGプロセス(CuraGen Corp., New Haven CT)に用いて、遺伝子の2つの大きなライブラリによってコードされるタンパク質間の全ての相互作用を決定することができる(Nandabalan, K. 他 (2000) 米国特許第6,057,101号)。
【0391】
18 NAAP 活性の実証
NAAP活性を、その、レポーター遺伝子の転写を刺激する能力によって測定する(Liu, H. Y. 他 (1997) EMBO J. 16 : 5289-5298)。このアッセイは、十分に特徴付けられたレポーター遺伝子作成物であるLexAop-LacZを用いる。このLexAop-LacZは、大腸菌LacZ酵素をコードする配列に融合されたLexA DNA転写調節エレメント(LexAop)からなる。融合遺伝子の作成及び発現、細胞への融合遺伝子の導入、及び、LacZ酵素活性の測定方法は、当業者に周知である。NAAPをコードする配列を、LexA転写因子に由来するDNA結合ドメインとNAAPとからなる融合タンパク質、LexA-NAAPの合成を指示するプラスミドにクローニングする。LexA-NAAP融合タンパク質をコードする得られたプラスミドを、LexAop-LacZレポーター遺伝子を持つプラスミドと共に酵母細胞内に導入する。対照細胞と比較したLexA-NAAP形質移入細胞に関連するLacZ酵素活性の量が、NAAPによって刺激された転写の量に比例する。
【0392】
あるいはNAAPの活性は、亜鉛に結合する能力により測定される。5〜10μMのサンプル溶液(2.5 mMの酢酸アンモニウム溶液中(pH 7.4))を0.05 Mの硫酸亜鉛溶液 (Aldrich, Milwaukee WI)と、100μMのジチオスレイトール(10%メタノールを添加)の存在下で混合する。サンプルと硫酸亜鉛溶液とを、20分間インキュベートする。反応溶液をVYDACカラム(Grace Vydac, Hesperia, CA)に通す(約300オングストロームのボアサイズ(bore size)、5μMの粒径)。これにより、亜鉛-サンプル複合体を溶液から単離し、次に質量分析計(PE Sciex, Ontario, Canada)にかける。サンプルに結合した亜鉛の定量には、機能的原子量である63.5 Daを用いる(この原子量を観測したのはWhittal 他(2000) Biochemistry 39:8406-8417である)。
【0393】
或いは、NAAPの核酸結合活性を判定する或る方法は、ポリアクリルアミドゲル泳動移動度シフトアッセイを伴う。このアッセイの調製では、NAAPは、NAAP cDNAを有する真核生物発現ベクターを用い、COS7、HeLa、若しくはCHOなど、哺乳類細胞株を形質転換することで発現される。形質転換の後、この細胞株がNAAPを発現し蓄積するのに適した条件下で、これらの細胞を48〜72時間インキュベーションする。可溶化した蛋白質を有する抽出物の調製は、NAAPを発現する細胞から行いうる。この方法は当分野で周知である。NAAPを有する抽出物の各部分を、[32P]標識したRNAまたはDNAに添加する。当分野で公知の技術により放射性核酸をin vitroで合成することが可能である。混合物を5〜10分間バッファーした条件下でRNA分解酵素とDNA分解酵素のインヒビターの存在下で25℃でインキュベートする。インキュベートした後に、サンプルをポリアクリルアミドゲル電気泳動法によって分析する。その後にオートラジオグラフ法により分析する。バンドがオートラジオグラム上に存在すれば、NAAPと放射性転写物との複合体の形成を示す。同様の移動度のバンドは、非形質転換細胞から調製した対照抽出物を用いて準備したサンプル中には見られないであろう。
【0394】
或いはNAAPのメチラーゼ活性を判定する或る方法では、供与体基質と受容体基質との間での放射標識メチル基の転移を測定する。反応混合液(50μl の最終容量)には、15 mMのHEPES(pH 7.9)、1.5 mMのMgCl2、10 mMジチオスレイトール、3%ポリビニルアルコール、1.5μCi [メチル-3H]AdoMet (0.375 μMのAdoMet) (DuPont-NEN)、0.6μgのNAAP、および受容体基質(例えば0.4μgの [35S]RNAまたは 6-メルカプトプリン(6-MP)、最大1 mMの最終濃度)を含む。反応混合液は30℃で30分間、次に65℃ で5分間インキュベートする。
【0395】
[メチル-3H]RNAの分析法は次のとおりである。(1) 50 μlの2×ローディングバッファ(20 mMのTris-HCl(pH 7.6)、1 MのLiCl、1 mMのEDTA、1%ドデシル硫酸ナトリウム(SDS))および50 μlオリゴd(T)-セルロース(1×ローディングバッファ中に10 mg/ml)を反応混液に添加し、インキュベートを室温で振盪しながら30分間おこなう。(2)反応混液を96穴ろ過プレート(真空装置に接続)に移す。(3)各サンプルを逐次洗浄する。これには3つの2.4 mlアリコットの1×オリゴd(T)ローディングバッファ(0.5% SDSまたは 0.1% SDSを有するものと、SDSを有しないもの)を用いる。(4) RNAの溶出を、300 μlの水で96ウェル収集プレートへ行い、シンチレーションバイアル(液体シンチラントを含有)に移し、放射能を判定する。
【0396】
[メチル-3H]6-MPの分析法は次のとおりである。(1) 500 μlの0.5 M ホウ酸バッファ(pH 10.0)を、次に20% (v/v)でトルエンに希釈したイソアミルアルコールの2.5 mlを、反応混液に添加する。(2) サンプルの混合を、10秒間、ボルテックスで良く撹拌しておこなう。(3) 遠心分離を700g で10分間おこなった後、1.5 mlの有機相をシンチレーションバイアル( 0.5 ml 無水エタノールと液体シンチラントとを含有)に移し、放射能を判定する。(4) 結果の補正を、6-MPの、有機相への抽出について行う(約41%)。[methyl-3H]RNAと [methyl-3H]6-MPのいずれにおいても、NAAPの活性は放射能の測定値に比例する。
【0397】
更にDNAMEのDNA修復作用を、対照の、処理していないプラスミドDNAと関連して、シスプラチンまたは紫外線の照射等のDNA損傷剤で処理したプラスミドへの[32P]dATPの取り込みとして測定する(Coudore, F. 他 (1997) FEBS Lett. 414:581-584)。修復酵素の突然変異のために損なわれた内在性修復作用を有する哺乳動物株化細胞、大腸菌または出芽酵母から、細胞抽出物を精製する。細胞抽出を細胞の低浸透圧溶解により調製して、次に300,000xgで遠心分離する。抽出物は非特異的ヌクレアーゼ活性を最小化するように63%硫安で処理する。修復合成アッセイを、細胞抽出で200 μgのタンパク質を含む50μlの反応液量、300ngの損傷したプラスミド、300ngの対照プラスミド、4μMのdATP、20μMの各dCTP、dTTP、dGTP、0.2μMの[32P]dATP、20 mMのHEPES-KOH (pH 7.8)、2.5μgのクレアチンリン酸、7mMのMgCl2、2mMのEGTAで形成する。同一の反応を精製したDNAMEの存在下あるいは非存在下で設定する。3時間30oCでインキュベートした後に、反応混合物を200 μg/ml プロテイナーゼKと0.5% SDSで処理する。プラスミドDNAをフェノール-クロロホルム抽出とエタノール沈澱により反応混合物から精製する。プラスミドDNA修復を標準化するために、直線化したプラスミドのゲル電気泳動法とその後のオートラジオグラフ、切り取られたDNAバンドのシンチレーションカウンター、およびゲルのネガのデンシトメトリを行なうことによって、データを定量化する。
【0398】
或いは、NAAPのタイプIトポイソメラーゼ活性のアッセイを、或るスーパーコイルDNA基質の弛緩(relaxation)に基づき行う。NAAPのインキュベートをその基質と共に、Mg2+ とATPとを欠くバッファ中で行い、反応を終了させ、生成物をアガロースゲルにロードする。変容したトポアイソマーの、スーパーコイル基質からの弁別は、電気泳動でできる。このアッセイはタイプIトポイソメラーゼ活性に特異的である。その理由は、Mg2+とATPとが、タイプIIトポイソメラーゼに必要な補因子だからである。
【0399】
NAAPのタイプIIトポイソメラーゼ活性のアッセイを、或るキネトプラストDNA(KDNA)基質の脱連環(decatenation)に基づいて行い得る。NAAPのインキュベートをKDNAと共に行い、反応を終了させ、生成物をアガロースゲルにロードする。単量体環状KDNAの、連環したKDNAとの弁別は、電気泳動でできる。タイプIトポイソメラーゼ活性とタイプIIトポイソメラーゼ活性とを測定する市販キットはTopogen (Columbus OH)で得られる。
【0400】
NAAPのATP依存性RNAヘリカーゼ巻き戻し活性は、ZhangおよびGrosse (1994; Biochemistry 33:3906-3912)に記載された方法で測定できる。RNA巻き戻し用の基質には 32P-標識RNAを含み、このRNAは二本のRNAストランド(194および130ヌクレオチドの長さ)からなり、17塩基対のduplex領域を持つ。RNA基質を、37℃で30分間、ATP、Mg2+、Tris-HClバッファ(pH 7.5)で可変量のNAAPと共にインキュベートする。次に、10%SDS-ポリアクリルアミドゲルを通す電気泳動法によって一本鎖RNA生成物を二本鎖RNA基質から分離し、オートラジオグラフ法により定量する。回収した一本鎖RNAの量は、調製物中のNAAP量に比例する。
【0401】
あるいはNAAP機能のアッセイは、哺乳動物細胞培養系において生理的に高められたレベルでの、NAAPをコードする配列の発現によって算定する。cDNAを高いレベルで発現する強いプロモーターを持つ哺乳動物発現ベクターにcDNAをサブクローニングする。選択されるベクターとしては、pCMV SPORT(Life Technologies)およびpCR3.1(Invitrogen Corporation, Carlsbad CA)があり、どちらもサイトメガロウイルスプロモーターを持つ。リポソーム製剤或いは電気穿孔法を用いて、5〜10μgの組換えベクターをヒト細胞株、好ましくは内皮由来または造血由来の細胞株に一時的に形質移入する。更に、標識タンパク質をコードする配列を含む1〜2μgのプラスミドを同時に形質移入する。
【0402】
標識タンパク質の発現により、形質移入された細胞と形質移入されていない細胞を区別する手段が与えられる。また、標識タンパク質の発現によって、cDNAの組換えベクターからの発現を正確に予想できる。標識タンパク質は、例えば緑色蛍光タンパク質(GFP; CLONTECH)、CD64またはCD64-GFP融合タンパク質から選択できる。自動化された、レーザー光学に基づく技術であるフローサイトメトリー(FCM)を用いて、GFPまたはCD64-GFPを発現する形質移入された細胞を同定し、それらの細胞のアポトーシス状態や他の細胞特性を評価する。
【0403】
FCMは、細胞死に先行するか或いは同時に発生する現象を診断する蛍光分子の取込を検出して計量する。このような現象として挙げられるのは、プロピジウムヨウ化物によるDNA染色によって計測される核DNA内容物の変化、前方散乱光と90°側方散乱光によって計測される細胞サイズと顆粒状性の変化、ブロモデオキシウリジンの取込量の低下によって計測されるDNA合成の下方調節、特異抗体との反応性によって計測される細胞表面及び細胞内におけるタンパンク質の発現の変化、及び蛍光複合アネキシンVタンパク質の細胞表面への結合によって計測される原形質膜組成の変化とがある。フローサイトメトリー法については、Ormerod, M. G. (1994) Flow Cytometry, Oxford, New York NYに記述がある。
【0404】
遺伝子発現に与えるNAAPの影響は、NAAPをコードする配列と、CD64またはCD64-GFPのどちらかとが形質移入された、高度に精製された細胞集団を用いて評価することができる。CD64またはCD64-GFPは、形質移入された細胞表面で発現し、ヒト免疫グロブリンG(IgG)の保存された複数の領域に結合する。形質移入された細胞と形質移入されない細胞とは、ヒトIgGかCD64に対する抗体のどちらかで被覆された磁気ビーズを用いて効率的に分離できる(DYNAL, Inc., Lake Success NY)。mRNAは、当業者に周知の方法で細胞から精製できる。NAAPと、目的とする他の遺伝子とをコードするmRNAの発現は、ノーザン分析やマイクロアレイ技術で分析できる。
【0405】
NAAPのプソイドウリジン合成酵素活性のアッセイには、トリチウム(3H) 放出アッセイを、Nurse 他(1995、 RNA 1:102112)を改作して行い、RNA中の3H-放射標識Uが異性化されてプソイドウリジン(Ψ)になるときに、ウリジル酸(U)のピリミジン成分のC5 位置からの3Hの放出を測定する。典型的な500 μlアッセイ混液の内容は、50 mMのHEPESバッファ(pH 7.5)、100 mM酢酸アンモニウム、5 mMジチオスレイトール、1 mMのEDTA、30 単位のRNase阻害剤、および0.1〜4.2 μMの [53H]tRNA (約1 μCi/nmolのtRNA)である。反応を開始するには、5 μlより少量のNAAPの濃縮溶液(またはNAAP含有サンプル)を添加し、インキュベートを5分間37 ℃で行う。NAAPを加えた後、反応混液の一部を様々な経過時間(最長30分まで)に採取し、NoritSA3 (12% w/v)を含有する1 mlの0.1 MのHClに希釈して反応を停止する。停止した反応混液の遠心分離を5分間、最大速度のマイクロ遠心機で行い、上澄みのろ過を、グラスウールの詰め物を通して行う。ペレットを、1 mlの0.1 M HCl中で2回、再懸濁して洗浄した後、遠心分離する。洗浄後の上澄みの各々を、別々にグラスウールの詰め物に通し、元のろ過物と混合する。混合したろ過物の一部を、シンチレーション液(最大10ml)と混合し、シンチレーションカウンタでカウントする。RNAから放出された3Hの量、また可溶性ろ液に存在する3Hの量が、サンプルにおけるプソイドウリジン合成酵素活性の量に比例する(Ramamurthy, V. (1999) J. Biol. Chem. 274:22225-22230)。
【0406】
あるいはNAAPのプソイドウリジン合成酵素活性のアッセイは、30 ℃〜37 ℃Cで、次の混液で行う。すなわち100 mMのTrisHCl (pH 8.0)、100 mM 酢酸アンモニウム、5 mMのMgCl2、2 mMジチオスレイトール、0.1 mMのEDTA、および1〜2 fmolの[32P]放射標識ランオフ(runoff)転写物(産生はin vitro で、適切なRNAポリメラーゼすなわちT7またはSP6で行う)を基質として含む混液である。NAAPを加えて反応を開始させるか、反応液に加えずに対照サンプルとする。インキュベート後、RNAをフェノール-クロロホルムで抽出し、エタノール中に沈殿させる。また、完全に加水分解して3-ヌクレオチド一リン酸にするためRNase T2を用いる。水解物の分析には2次元薄層クロマトグラフィを用い、32P放射ラベルの量(ΨMPおよびUMPスポット中に存在する量)の評価を、薄層クロマトグラフィプレートをフィルムまたはPhosphorImager スクリーンに曝した後に行う。基質RNA中のウリジル酸残基の相対数を考慮してΨMPとUMPとの相対量を判定し、この量を用いてtRNA分子の量に対するΨの相対量を計算する(モルΨ/tRNAモル、またはモルΨ/tRNAモル/分で表す)。この量が、NAAPサンプル中のプソイドウリジン合成酵素活性の量に一致する(前出のLecointe)。
【0407】
NAAPのN2,N2-ジメチルグアノシン転移酵素((m2 2G)メチルトランスフェラーゼ)活性の測定は、160μl反応混液に以下を含有して行う。すなわち100 mMのTris-HCl (pH 7.5)、0.1 mMのEDTA、10 mMのMgCl2、20 mMのNH4Cl、1mMジチオスレイトール、6.2μMのS-アデノシル-L-[メチル-3H]メチオニン(30〜70 Ci/mM)、8μgのm2 2G-欠損tRNAまたは野生型tRNA(酵母由来)および約100μgの精製NAAPまたはNAAP含有サンプルを含む。反応液を30℃で90分間インキュベートし、氷上で冷却する。各反応液の一部を、100μg BSAを含む1 mlの水に希釈する。1 mlの2 M HClを各サンプルに加え、酸性不溶性産物を氷上で20分間沈殿させた後、収集のためのろ過をガラス繊維フィルターで行う。収集した物質の洗浄を数回、塩酸で行い、液体シンチレーションカウンターを用いて定量する。3Hが、m2 2Gを欠損した酸性不溶性tRNAに取り込まれる量が、NAAPサンプル中のN2,N2-ジメチルグアノシン転移酵素活性の量に比例する。基質tRNAを含まない反応、または既に修飾された野生型tRNAを含む反応は対照反応として役だち、この反応では酸性不溶性3H-標識産物は得られないはずである。
【0408】
NAAPのポリアデニル化活性の測定には、in vitro のポリアデニル化反応を用いる。反応混合液の作製は氷上で行い、以下を含む。10 μl の 5 mM ジチオスレイトール、0.025% (v/v) NONIDET P40、50 mMクレアチンリン酸、6.5% (w/v)ポリビニルアルコール、0.5ユニット/μlのRNAGUARD (Amersham Pharmacia Biotech)、0.025 μg/μlクレアチン・キナーゼ、1.25 mM コルジセピン5'三リン酸、および3.75 mMのMgCl2で、総容量25 μlとする。60 fmolのCstF、50 fmolのCPSF、240 fmolのPAP、4 μlの未精製CF II、又は部分的に精製したCF IIと、可変量CF Iを次に反応混液に加える。容量を調整して23.5μlにするため、以下を有するバッファを加える。50 mMのTrisHCl(pH 7.9)、10% (v/v)グリセロール、および0.1 mMのNa-EDTAである。最終的な硫酸アンモニウム濃度は20 mM未満とする。反応を氷上で開始するため、15 fmol の 32P標識mRNA前駆体テンプレートと、2.5 μgの無標識tRNAを含む1.5 μlの水を加える。反応液を次にインキュベートする。これは30 ℃で75〜90分間行い、停止するには75 μl (約2倍量)のプロテイナーゼKミックス(0.2 MのTris-HCl(pH 7.9)、300 mMのNaCl、25 mMのNaEDTA、2% (w/v) SDS)、1 μlの10 mg/mlプロテイナーゼK、0.25 μlの20 mg/mlグリコーゲンおよび23.75 μlの水を加える。インキュベート後、RNAをエタノールで沈殿させ、分析を6% (w/v)ポリアクリルアミド、8.3 M尿素シーケンシングゲル上で行う。乾燥したゲルの感光を、オートラジオグラフィで、またはホスホイメージャー(phosphoimager)で行う。切断活性を判定するには、切断産物の量を、mRNA前駆体テンプレートの量と比較する。いずれかのポリペプチド成分を反応から除くことと、NAAPを代替することとは、mRNA前駆体ポリアデニル化におけるNAAPの特定の生物機能を同定する上で有用である(前出のRuegseggerおよびその中の参考文献)。
【0409】
tRNA合成酵素活性は、[14C]−標識されたアミノ酸の存在下で基質tRNAのアミノアシル化として測定される。NAAPは緩衝液中で、[14C]−標識されたアミノ酸と好適な同族tRNA(例えば、[14C]アラニンおよび tRNAala)と共にインキュベートされる。14C-標識の産物は遊離[14C]アミノ酸からクロマトグラフィーによって分離され、取り込まれた[14C]はシンチレーションカウンタで測定される。このアッセイでは、14C-標識産物の量がNAAPの活性に比例する。
【0410】
あるいはNAAP活性を測定するため、NAAP含有サンプルのインキュベートを、以下を含む溶液で行う。1 mMのATP、5 mMのHepes-KOH (pH 7.0)、2.5 mMのKCl、1.5 mM塩化マグネシウム、および0.5 mMのDTTであり、また誤ってアシル化した[14C]-Glu-tRNAGln (例えば1μM)および同様の濃度の無標識Lグルタミンをも含む。反応を停止させるため3 M酢酸ナトリウム(pH 5.0)を加えた後、混液の抽出を同量の水‐飽和フェノールで行い、水相と有機相とを分離する遠心分離を15,000 x g、室温で1分間おこなう。水相の沈殿を3倍量のエタノール、-70℃で15分間おこなう。沈殿したアミノアシルtRNAを回収する遠心分離を15,000 x g、4℃で15分間おこなう。ペレットの再懸濁を25 mMのKOHで行い、脱アシル化を65℃で10分間おこない、中和を0.1 MのHClで行い(最終pH 6〜7)、真空乾燥する。乾燥ペレットの再懸濁を水中で行い、セルロースTLCプレート上にスポットする。プレートの展開を、イソプロパノール/蟻酸/水またはアンモニア/水/クロロホルム/メタノール中で行う。イメージを濃度計分析し、GluとGlnとの相対量の計算を、スポットのRf値と相対強度とに基づき行う。NAAP活性の計算を、GluがGlu-tRNAGln としてアシル化され転換した結果のGlnの量に基づき行う(Curnow, A.W. 他(1997) Proc. Natl. Acad. Sci. USA 94:11819-26)。
【0411】
19 NAAP アゴニスト及びアンタゴニストの同定
NAAPの活性化若しくは抑制のアゴニスト若しくはアンタゴニストを、実施例18で記述したアッセイを用いてテストし得る。アゴニストはNAAP活性の増加を引き起こし、アンタゴニストはNAAP活性の減少を引き起こす。
【0412】
当業者は、本発明の範囲及び精神から逸脱することなく本発明の記載した組成物、方法及びシステムの種々の改変を行い得る。本発明は新規で有用なタンパク質、それらをコードするポリヌクレオチド(薬物発見プロセスに使用可能)、およびこれらの組成物を使って病気および状態の検出、診断および治療を行う方法を提供することを理解されたい。本発明について説明するにあたり特定の好適実施例に関連して説明を行ったが、本発明の範囲が、そのような特定の実施例に不当に制限されるべきではないことを理解されたい。これらの実施態様の記述が網羅的であると考えたり、本発明を開示されている形態そのものだけに限定するものであると考えたりするべきでもない。さらに、ある実施態様の要素を一つ以上の他の実施態様の要素と簡単に組み合わせなおすことができる。こうした組み合わせにより、本発明の範囲内で数多くの実施態様を形成することができる。本発明の範囲は、以下の請求項目およびそれらと同等な語句によって定義すると意図されている。
【0413】
(表の簡単な説明)
表1は、本発明の完全長ポリヌクレオチドおよびポリペプチド実施態様の命名の概略である。
【0414】
表2は、本発明のポリペプチド実施態様のGenBank識別番号と、最も近いGenBank相同体の注釈(annotation)と、PROTEOMEデータベース識別番号と、PROTEOMEデータベース相同体群の注釈とを示す。各ポリペプチドとそのGenBank相同体が一致する確率スコアも併せて示す。
【0415】
表3は、推定上のモチーフおよびドメインを含むポリペプチド実施例の構造的な特徴、並びにポリペプチドの分析に用いた方法、アルゴリズム、および検索可能なデータベースを示す。
【0416】
表4は、ポリヌクレオチド実施態様のアセンブリに用いたcDNA断片および/またはゲノムDNA断片のリスト、並びにポリヌクレオチドの選択された断片のリストを示す。
【0417】
表5はポリヌクレオチド実施態様の代表的なcDNAライブラリを示す。
【0418】
表6は、表5に示したcDNAライブラリの作製に用いた組織及びベクターを説明する付表である。
【0419】
表7は、ポリヌクレオチドとポリペプチドの分析に用いたツール、プログラム、アルゴリズムを、適用可能な説明、引用文献及び閾値パラメータと共に示す。
【0420】
表8は、ポリヌクレオチド実施態様に見られる一塩基多型を、種々のヒト集団での対立遺伝子(アレル)頻度と共に示す。
【0421】
【表1−1】
Figure 2005502329
【0422】
【表1−2】
Figure 2005502329
【0423】
【表2−1】
Figure 2005502329
【0424】
【表2−2】
Figure 2005502329
【0425】
【表2−3】
Figure 2005502329
【0426】
【表2−4】
Figure 2005502329
【0427】
【表2−5】
Figure 2005502329
【0428】
【表3−1】
Figure 2005502329
【0429】
【表3−2】
Figure 2005502329
【0430】
【表3−3】
Figure 2005502329
【0431】
【表3−4】
Figure 2005502329
【0432】
【表3−5】
Figure 2005502329
【0433】
【表3−6】
Figure 2005502329
【0434】
【表3−7】
Figure 2005502329
【0435】
【表3−8】
Figure 2005502329
【0436】
【表3−9】
Figure 2005502329
【0437】
【表3−10】
Figure 2005502329
【0438】
【表3−11】
Figure 2005502329
【0439】
【表3−12】
Figure 2005502329
【0440】
【表3−13】
Figure 2005502329
【0441】
【表3−14】
Figure 2005502329
【0442】
【表3−15】
Figure 2005502329
【0443】
【表3−16】
Figure 2005502329
【0444】
【表3−17】
Figure 2005502329
【0445】
【表3−18】
Figure 2005502329
【0446】
【表3−19】
Figure 2005502329
【0447】
【表3−20】
Figure 2005502329
【0448】
【表3−21】
Figure 2005502329
【0449】
【表3−22】
Figure 2005502329
【0450】
【表3−23】
Figure 2005502329
【0451】
【表3−24】
Figure 2005502329
【0452】
【表3−25】
Figure 2005502329
【0453】
【表3−26】
Figure 2005502329
【0454】
【表3−27】
Figure 2005502329
【0455】
【表3−28】
Figure 2005502329
【0456】
【表3−29】
Figure 2005502329
【0457】
【表3−30】
Figure 2005502329
【0458】
【表3−31】
Figure 2005502329
【0459】
【表3−32】
Figure 2005502329
【0460】
【表3−33】
Figure 2005502329
【0461】
【表3−34】
Figure 2005502329
【0462】
【表3−35】
Figure 2005502329
【0463】
【表3−36】
Figure 2005502329
【0464】
【表3−37】
Figure 2005502329
【0465】
【表3−38】
Figure 2005502329
【0466】
【表3−39】
Figure 2005502329
【0467】
【表3−40】
Figure 2005502329
【0468】
【表3−41】
Figure 2005502329
【0469】
【表3−42】
Figure 2005502329
【0470】
【表4−1】
Figure 2005502329
【0471】
【表4−2】
Figure 2005502329
【0472】
【表4−3】
Figure 2005502329
【0473】
【表4−4】
Figure 2005502329
【0474】
【表4−5】
Figure 2005502329
【0475】
【表4−6】
Figure 2005502329
【0476】
【表4−7】
Figure 2005502329
【0477】
【表4−8】
Figure 2005502329
【0478】
【表4−9】
Figure 2005502329
【0479】
【表4−10】
Figure 2005502329
【0480】
【表4−11】
Figure 2005502329
【0481】
【表4−12】
Figure 2005502329
【0482】
【表4−13】
Figure 2005502329
【0483】
【表4−14】
Figure 2005502329
【0484】
【表4−15】
Figure 2005502329
【0485】
【表4−16】
Figure 2005502329
【0486】
【表4−17】
Figure 2005502329
【0487】
【表4−18】
Figure 2005502329
【0488】
【表4−19】
Figure 2005502329
【0489】
【表4−20】
Figure 2005502329
【0490】
【表4−21】
Figure 2005502329
【0491】
【表4−22】
Figure 2005502329
【0492】
【表5−1】
Figure 2005502329
【0493】
【表5−2】
Figure 2005502329
【0494】
【表6−1】
Figure 2005502329
【0495】
【表6−2】
Figure 2005502329
【0496】
【表6−3】
Figure 2005502329
【0497】
【表6−4】
Figure 2005502329
【0498】
【表6−5】
Figure 2005502329
【0499】
【表6−6】
Figure 2005502329
【0500】
【表6−7】
Figure 2005502329
【0501】
【表6−8】
Figure 2005502329
【0502】
【表7−1】
Figure 2005502329
【0503】
【表7−2】
Figure 2005502329
【0504】
【表8−1】
Figure 2005502329
【0505】
【表8−2】
Figure 2005502329
【0506】
【表8−3】
Figure 2005502329

Claims (127)

  1. 以下の(a)乃至(i)からなる群から選択した単離されたポリペプチド。
    (a) SEQ ID NO:1-36(配列番号1乃至36)からなる群から選択したアミノ酸配列を含むポリペプチド
    (b) SEQ ID NO:1、SEQ ID NO:3-7、SEQ ID NO:10-21、SEQ ID NO:24-30、SEQ ID NO:32、NAAP/34およびSEQ ID NO:36からなる群から選択した或るアミノ酸配列に対して少なくとも90%が同一であるような天然アミノ酸配列を含むポリペプチド
    (c) SEQ ID NO:35のアミノ酸配列に対して少なくとも91%が同一であるような天然アミノ酸配列を含むポリペプチド
    (d) SEQ ID NO:9のアミノ酸配列に対して少なくとも95%が同一であるような天然アミノ酸配列を含むポリペプチド
    (e) SEQ ID NO:22のアミノ酸配列に対して少なくとも97%が同一であるような天然アミノ酸配列を含むポリペプチド
    (f) SEQ ID NO:2、SEQ ID NO:33からなる群から選択した或るアミノ酸配列に対して少なくとも98%が同一であるような天然アミノ酸配列を含むポリペプチド
    (g) SEQ ID NO:23およびSEQ ID NO:31からなる群から選択したアミノ酸配列に対して少なくとも99%が同一であるような天然アミノ酸配列を含むポリペプチド
    (h) SEQ ID NO:1-36からなる群から選択したアミノ酸配列を有するポリペプチドの生物学的活性断片
    (i) SEQ ID NO:1-36からなる群から選択したアミノ酸配列を有するポリペプチドの免疫原性断片
  2. SEQ ID NO:1-36からなる群から選択したアミノ酸配列を含む、請求項1に記載の単離されたポリペプチド。
  3. 請求項1のポリペプチドをコードする単離されたポリヌクレオチド。
  4. 請求項2のポリペプチドをコードする単離されたポリヌクレオチド。
  5. SEQ ID NO:37-72からなる群から選択したポリヌクレオチド配列を含む、請求項4に記載の単離されたポリヌクレオチド。
  6. 請求項3に記載のポリヌクレオチドに機能的に連結したプロモーター配列を含む組換えポリヌクレオチド。
  7. 請求項6に記載の組換えポリヌクレオチドを用いて形質転換した細胞。
  8. 請求項6に記載の組換えポリヌクレオチドを含む遺伝形質転換生物体。
  9. 請求項1のポリペプチドを生産する方法であって、
    (a) 前記ポリペプチドの発現に好適な条件下で、請求項1のポリペプチドをコードするポリヌクレオチドに機能的に連結したプロモーター配列を含む組換えポリヌクレオチドで形質転換される細胞を培養する過程と、
    (b) そのように発現した前記ポリペプチドを回収する過程とからなり、前記組換えポリヌクレオチドが、請求項1に記載の前記ポリペプチドをコードするポリヌクレオチドに機能的に連結したプロモーター配列を含むことを特徴とする方法。
  10. 前記ポリペプチドが、SEQ ID NO:1-36からなる群から選択した或るアミノ酸配列を含むことを特徴とする、請求項9に記載の方法。
  11. 請求項1に記載のポリペプチドと特異結合するような単離された抗体。
  12. 以下の(a)乃至(i)からなる群から選択した単離されたポリヌクレオチド。
    (a) SEQ ID NO:37-72からなる群から選択したポリヌクレオチド配列を含むポリヌクレオチド
    (b) SEQ ID NO:37-43およびSEQ ID NO:46-71からなる群から選択した或るポリヌクレオチド配列に対して少なくとも90%が同一であるような天然ポリヌクレオチド配列を含むポリヌクレオチド
    (c) SEQ ID NO:72のポリヌクレオチド配列に対して少なくとも92%が同一であるような天然ポリヌクレオチド配列を持つポリヌクレオチド
    (d) SEQ ID NO:45のポリヌクレオチド配列に対して少なくとも95%が同一であるような天然ポリヌクレオチド配列を持つポリヌクレオチド
    (e) (a)のポリヌクレオチドに相補的なポリヌクレオチド
    (f) (b)のポリヌクレオチドに相補的なポリヌクレオチド
    (g) (c)のポリヌクレオチドに相補的なポリヌクレオチド
    (h) (d)のポリヌクレオチドに相補的なポリヌクレオチド
    (i) (a)〜(h)のRNA等価物
  13. 請求項12に記載のポリヌクレオチドの少なくとも60の連続したヌクレオチドを含む単離されたポリヌクレオチド。
  14. 請求項12に記載のポリヌクレオチドの配列を有する標的ポリヌクレオチドをサンプル中から検出する方法であって、
    (a) 前記サンプル中の前記標的ポリヌクレオチドに相補的な配列を持つ少なくとも20の連続したヌクレオチドを持つプローブを用いて前記サンプルをハイブリダイズする過程と、
    (b) 前記ハイブリダイゼーション複合体の存在・不存在を検出し、該複合体が存在する場合にはオプションでその量を検出する過程、とを含み、前記プローブと前記標的ポリヌクレオチドあるいはその断片との間でハイブリダイゼーション複合体が形成される条件下で、プローブが前記標的ポリヌクレオチドに特異的にハイブリダイズすることを特徴とする方法。
  15. 前記プローブが少なくとも60の連続したヌクレオチドを含むことを特徴とする請求項14に記載の方法。
  16. 請求項12に記載のポリヌクレオチドの配列を有する標的ポリヌクレオチドをサンプル中から検出する方法であって、
    (a) ポリメラーゼ連鎖反応増幅を用いて前記標的ポリヌクレオチドまたはその断片を増幅する過程と、
    (b) 前記の増幅した標的ポリヌクレオチドまたはその断片の有無を検出し、該標的ポリヌクレオチドまたはその断片が存在する場合にはオプションでその量を検出する過程を含むことを特徴とする方法。
  17. 請求項1のポリペプチドと、薬剤として許容できる賦形剤とを含むことを特徴とする組成物。
  18. 前記ポリペプチドが、SEQ ID NO:1-36からなる群から選択したアミノ酸配列を含むことを特徴とする請求項17に記載の組成物。
  19. 機能的NAAPの発現の低下に関連する疾患や病態の治療方法であって、そのような治療を要する患者への請求項17の組成物の投与を含む治療方法。
  20. 請求項1に記載のポリペプチドのアゴニストとして有効性を確認するために化合物をスクリーニングする方法であって、
    (a) 請求項1のポリペプチドを含むサンプルを化合物に曝すステップと、
    (b) 前記サンプルにおいてアゴニスト活性を検出するステップとを含むことを特徴とするスクリーニング方法。
  21. 請求項20に記載の方法によって同定したアゴニスト化合物と、薬剤として許容できる賦形剤とを含むことを特徴とする組成物。
  22. 機能的NAAPの発現の低下に関連する疾患や病態の治療方法であって、そのような治療を要する患者への請求項21の組成物の投与を含む治療方法。
  23. 請求項1に記載のポリペプチドのアンタゴニストとして有効性を確認するために化合物をスクリーニングする方法であって、
    (a) 請求項1のポリペプチドを含むサンプルを化合物に曝すステップと、
    (b) 前記サンプルにおいてアンタゴニスト活性を検出するステップとを含むことを特徴とするスクリーニング方法。
  24. 請求項23に記載の方法によって同定したアンタゴニスト化合物と、薬剤として許容できる賦形剤とを含むことを特徴とする組成物。
  25. 機能的NAAPの過剰発現に関連する疾患や病態の治療方法であって、そのような治療を要する患者への請求項24の組成物の投与を含む治療方法。
  26. 請求項1に記載のポリペプチドに特異結合する化合物をスクリーニングする方法であって、
    (a) 請求項1のポリペプチドを適切な条件下で少なくとも1つの試験化合物と混合する過程と、
    (b) 請求項1のポリペプチドの試験化合物との結合を検出し、それによって請求項1のポリペプチドに特異結合する化合物を同定する過程を含む方法。
  27. 請求項1に記載のポリペプチドの活性を調節する化合物をスクリーニングする方法であって、
    (a) 請求項1のポリペプチドの活性が許容される条件下で、請求項1のポリペプチドを少なくとも1つの試験化合物と混合する過程と、
    (b) 請求項1に記載のポリペプチドの活性を試験化合物の存在下で算定する過程と、
    (c) 試験化合物の存在下での請求項1のポリペプチドの活性を、試験化合物の不存在下での請求項1のポリペプチドの活性と比較する過程を含み、試験化合物の存在下での請求項1のポリペプチドの活性の変化が、請求項1のポリペプチドの活性を調節する化合物を標示するような方法。
  28. 請求項5の配列を含む標的ポリヌクレオチドの発現を変容させるのに効果的な化合物をスクリーニングする方法であって、
    (a) 前記標的ポリヌクレオチドの発現に好適な条件下で、該標的ポリヌクレオチドを含むサンプルを化合物に曝露する過程と、
    (b) 前記標的ポリヌクレオチドの発現改変を検出する過程と、
    (c) 可変量の前記化合物の存在下と前記化合物の不存在下で、前記標的ポリヌクレオチドの発現を比較する過程とを含むことを特徴とする方法。
  29. 試験化合物の毒性を算定する方法であって、
    (a) 核酸を含む生物学的サンプルを前記試験化合物で処理する過程と、
    (b) 処理した前記生物学的サンプルの核酸と、請求項12のポリヌクレオチドの少なくとも20の連続するヌクレオチドを持つプローブをハイブリダイズさせる過程であって、このハイブリダイゼーションゼーションが、前記プローブと前記生物学的サンプル中の標的ポリヌクレオチドとの間で特異的なハイブリダイゼーション複合体が形成される条件下で行われ、前記標的ポリヌクレオチドが、請求項12のポリヌクレオチドまたはその断片のポリヌクレオチド配列を含むポリヌクレオチドである、前記過程と、
    (c) ハイブリダイゼーション複合体の収量を定量する過程と、
    (d) 前記処理された生物学的サンプル中のハイブリタイゼーション複合体の量を、処理されていない生物学的サンプル中のハイブリタイゼーション複合体の量と比較する過程とを含み、前記処理された生物学的サンプル中のハイブリタイゼーション複合体の量の差が、前記試験化合物の毒性を標示するような方法。
  30. 生物学的サンプル中のNAAPの発現に関連する症状または疾患に対する診断試験法であって、
    (a) 前記生物学的サンプルと請求項11の抗体との混合を、前記抗体が前記ポリペプチドに結合し、抗体とポリペプチドとの複合体を形成するのに適した条件下で行う過程と、
    (b) 前記複合体を検出する過程とを含み、前記複合体の存在が、前記生物学的サンプル中の前記ポリペプチドの存在と相関することを特徴とする方法。
  31. 請求項11の抗体であって、
    (a) キメラ抗体
    (b) 単鎖抗体
    (c) Fab断片
    (d) F(ab')2 断片
    (e) またはヒト化抗体である抗体。
  32. 請求項11に記載の抗体と、許容できる賦形剤とを含む組成物。
  33. 被検者におけるNAAPの発現に関連する症状又は疾患の診断方法であって、請求項32に記載の組成物の有効量を前記被検者に投与する過程を含むことを特徴とする方法。
  34. 前記抗体が標識されることを特徴とする請求項32に記載の組成物。
  35. 被検者におけるNAAPの発現に関連する症状又は疾患の診断方法であって、請求項34に記載の組成物の有効量を前記被検者に投与する過程を含むことを特徴とする方法。
  36. 請求項11に記載の抗体の特異性を有するポリクローナル抗体を調製する方法であって、
    (a) 抗体反応を誘発する条件下で、SEQ ID NO:1-36からなる群から選択したアミノ酸配列またはその免疫原性断片を含むポリペプチドを用いて動物を免疫化する過程と、
    (b) 前記動物から抗体を単離する過程と、
    (c) 前記単離された抗体を前記ポリペプチドでスクリーニングし、それによって、SEQ ID NO:1-36からなる群から選択したアミノ酸配列を含むポリペプチドに特異結合するポリクローナル抗体を同定する過程とを含むような方法。
  37. 請求項36に記載の方法で産出したポリクローナル抗体。
  38. 請求項37に記載のポリクローナル抗体及び適切なキャリアーを含む組成物。
  39. 請求項11に記載の抗体の特異性を有するモノクローナル抗体を作製する方法であって、
    (a) 抗体反応を誘発する条件下で、SEQ ID NO:1-36からなる群から選択したアミノ酸配列またはその免疫原性断片を含むポリペプチドを用いて動物を免疫化する過程と、
    (b) 前記動物から抗体産出細胞を単離する過程と、
    (c) 前記抗体産出細胞と不死化した細胞とを融合して、モノクローナル抗体を産出するハイブリドーマ細胞を形成する過程と、
    (d) 前記ハイブリドーマ細胞を培養する過程と、
    (e) SEQ ID NO:1-36からなる群から選択したアミノ酸配列を含むポリペプチドに特異結合するようなモノクローナル抗体を前記培養物から単離する過程とを含むことを特徴とする方法。
  40. 請求項39に記載の方法で産出したモノクローナル抗体。
  41. 請求項40に記載のモノクローナル抗体及び適切なキャリアーを含む組成物。
  42. Fab発現ライブラリをスクリーニングすることにより産出されることを特徴とする請求項11に記載の抗体。
  43. 組換え免疫グロブリンライブラリのスクリーニングにより前記抗体を産出することを特徴とする請求項11に記載の抗体。
  44. SEQ ID NO:1-36からなる群から選択したアミノ酸配列を含むポリペプチドをサンプル中で検出する方法であって、
    (a) 請求項11に記載の抗体と前記ポリペプチドとの特異結合を許容する条件下で、前記抗体と1サンプルとをインキュベートする過程と、
    (b) 特異結合を検出する過程とを含み、該特異結合が、SEQ ID NO:1-36からなる群から選択したアミノ酸配列を有するポリペプチドがサンプル中に存在することを標示することを特徴とする方法。
  45. SEQ ID NO:1-36 からなる群から選択したアミノ酸配列を有するポリペプチドを精製する方法であって、
    (a) 請求項11に記載の抗体と前記ポリペプチドとの特異結合を許容する条件下で、前記抗体と1サンプルとをインキュベートする過程と、
    (b) 前記サンプルから前記抗体を分離し、SEQ ID NO:1-36からなる群から選択したアミノ酸配列を含む精製ポリペプチドを得る過程とを含むことを特徴とする方法。
  46. マイクロアレイの少なくとも1つが請求項13に記載のポリヌクレオチドであることを特徴とするマクロアレイ。
  47. ポリヌクレオチドを含むサンプルの発現プロファイルを作製する方法であって、
    (a) サンプル中のポリヌクレオチドを標識化する過程
    (b) ハイブリダイゼーション複合体が形成されるのに適した条件下で請求項46のマイクロアレイのエレメントとサンプル中の標識化ポリヌクレオチドとを接触させる過程と、
    (c) サンプル中のポリヌクレオチドの発現を定量する過程を含む方法
  48. 或る固体基板上の固有の物理的位置に付着された種々のヌクレオチド分子を有するアレイであって、少なくとも1つの前記ヌクレオチド分子が、或る標的ポリヌクレオチドの少なくとも30の連続したヌクレオチド群と特異的にハイブリダイズ可能な最初のオリゴヌクレオチドまたはポリヌクレオチド配列を含み、前記の標的ポリヌクレオチドが請求項12に記載のポリヌクレオチドであることを特徴とするアレイ。
  49. 請求項48に記載のアレイで、前記の最初のオリゴヌクレオチドまたはポリヌクレオチドの配列が前記の標的ポリヌクレオチドの少なくとも30の連続したヌクレオチドに完全に相補的であることを特徴とするアレイ。
  50. 請求項48に記載のアレイで、前記の最初のオリゴヌクレオチドまたはポリヌクレオチドの配列が前記の標的ポリヌクレオチドの少なくとも60の連続したヌクレオチドに完全に相補的であることを特徴とするアレイ。
  51. 請求項48に記載のアレイで、前記の最初のオリゴヌクレオチドまたはポリヌクレオチドの配列が前記の標的ポリヌクレオチドに完全に相補的であることを特徴とするアレイ。
  52. 請求項48に記載のアレイで、マイクロアレイであることを特徴とするアレイ。
  53. 請求項48に記載のアレイで、前記のオリゴヌクレオチドまたはポリヌクレオチドの最初の配列を含むヌクレオチド分子にハイブリダイズした前記の標的ポリヌクレオチドを有することを特徴とするアレイ。
  54. 請求項48に記載のアレイで、リンカーが少なくとも1つの前記のヌクレオチド分子と前記の固体基板を連結していることを特徴とするアレイ。
  55. 請求項48に記載のアレイで、基板上の固有の物理的位置の各々が複数のヌクレオチド分子を含み、任意の単一の固有の物理的位置でのその複数のヌクレオチド分子は同一の配列を有し、基板上の固有の物理的位置の各々は、基板上の別の固有の物理的位置でのヌクレオチド分子の配列とは異なる配列を有するヌクレオチド分子を含むことを特徴とするアレイ。
  56. SEQ ID NO:1のアミノ酸配列を含む請求項1に記載のポリペプチド。
  57. SEQ ID NO:2のアミノ酸配列を含む請求項1に記載のポリペプチド。
  58. SEQ ID NO:3のアミノ酸配列を含む請求項1に記載のポリペプチド。
  59. SEQ ID NO:4のアミノ酸配列を含む請求項1に記載のポリペプチド。
  60. SEQ ID NO:5のアミノ酸配列を含む請求項1に記載のポリペプチド。
  61. SEQ ID NO:6のアミノ酸配列を含む請求項1に記載のポリペプチド。
  62. SEQ ID NO:7のアミノ酸配列を含む請求項1に記載のポリペプチド。
  63. SEQ ID NO:8のアミノ酸配列を含む請求項1に記載のポリペプチド。
  64. SEQ ID NO:9のアミノ酸配列を含む請求項1に記載のポリペプチド。
  65. SEQ ID NO:10のアミノ酸配列を含む請求項1に記載のポリペプチド。
  66. SEQ ID NO:11のアミノ酸配列を含む請求項1に記載のポリペプチド。
  67. SEQ ID NO:12のアミノ酸配列を含む請求項1に記載のポリペプチド。
  68. SEQ ID NO:13のアミノ酸配列を含む請求項1に記載のポリペプチド。
  69. SEQ ID NO:14のアミノ酸配列を含む請求項1に記載のポリペプチド。
  70. SEQ ID NO:15のアミノ酸配列を含む請求項1に記載のポリペプチド。
  71. SEQ ID NO:1のアミノ酸配列を含む請求項1に記載のポリペプチド。
  72. SEQ ID NO:1のアミノ酸配列を含む請求項1に記載のポリペプチド。
  73. SEQ ID NO:18のアミノ酸配列を含む請求項1に記載のポリペプチド。
  74. SEQ ID NO:19のアミノ酸配列を含む請求項1に記載のポリペプチド。
  75. SEQ ID NO:20のアミノ酸配列を含む請求項1に記載のポリペプチド。
  76. SEQ ID NO:21のアミノ酸配列を含む請求項1に記載のポリペプチド。
  77. SEQ ID NO:22のアミノ酸配列を含む請求項1に記載のポリペプチド。
  78. SEQ ID NO:23のアミノ酸配列を含む請求項1に記載のポリペプチド。
  79. SEQ ID NO:24のアミノ酸配列を含む請求項1に記載のポリペプチド。
  80. SEQ ID NO:25のアミノ酸配列を含む請求項1に記載のポリペプチド。
  81. SEQ ID NO:26のアミノ酸配列を含む請求項1に記載のポリペプチド。
  82. SEQ ID NO:27のアミノ酸配列を含む請求項1に記載のポリペプチド。
  83. SEQ ID NO:28のアミノ酸配列を含む請求項1に記載のポリペプチド。
  84. SEQ ID NO:29のアミノ酸配列を含む請求項1に記載のポリペプチド。
  85. SEQ ID NO:30のアミノ酸配列を含む請求項1に記載のポリペプチド。
  86. SEQ ID NO:31のアミノ酸配列を含む請求項1に記載のポリペプチド。
  87. SEQ ID NO:32のアミノ酸配列を含む請求項1に記載のポリペプチド。
  88. SEQ ID NO:33のアミノ酸配列を含む請求項1に記載のポリペプチド。
  89. SEQ ID NO:34のアミノ酸配列を含む請求項1に記載のポリペプチド。
  90. SEQ ID NO:35のアミノ酸配列を含む請求項1に記載のポリペプチド。
  91. SEQ ID NO:36のアミノ酸配列を含む請求項1に記載のポリペプチド。
  92. SEQ ID NO:37のポリヌクレオチド配列を含む請求項12に記載のポリヌクレオチド。
  93. SEQ ID NO:38のポリヌクレオチド配列を含む請求項12に記載のポリヌクレオチド。
  94. SEQ ID NO:39のポリヌクレオチド配列を含む請求項12に記載のポリヌクレオチド。
  95. SEQ ID NO:40のポリヌクレオチド配列を含む請求項12に記載のポリヌクレオチド。
  96. SEQ ID NO:41のポリヌクレオチド配列を含む請求項12に記載のポリヌクレオチド。
  97. SEQ ID NO:42のポリヌクレオチド配列を含む請求項12に記載のポリヌクレオチド。
  98. SEQ ID NO:43のポリヌクレオチド配列を含む請求項12に記載のポリヌクレオチド。
  99. SEQ ID NO:44のポリヌクレオチド配列を含む請求項12に記載のポリヌクレオチド。
  100. SEQ ID NO:45のポリヌクレオチド配列を含む請求項12に記載のポリヌクレオチド。
  101. SEQ ID NO:46のポリヌクレオチド配列を含む請求項12に記載のポリヌクレオチド。
  102. SEQ ID NO:47のポリヌクレオチド配列を含む請求項12に記載のポリヌクレオチド。
  103. SEQ ID NO:48のポリヌクレオチド配列を含む請求項12に記載のポリヌクレオチド。
  104. SEQ ID NO:49のポリヌクレオチド配列を含む請求項12に記載のポリヌクレオチド。
  105. SEQ ID NO:50のポリヌクレオチド配列を含む請求項12に記載のポリヌクレオチド。
  106. SEQ ID NO:51のポリヌクレオチド配列を含む請求項12に記載のポリヌクレオチド。
  107. SEQ ID NO:52のポリヌクレオチド配列を含む請求項12に記載のポリヌクレオチド。
  108. SEQ ID NO:53のポリヌクレオチド配列を含む請求項12に記載のポリヌクレオチド。
  109. SEQ ID NO:54のポリヌクレオチド配列を含む請求項12に記載のポリヌクレオチド。
  110. SEQ ID NO:55のポリヌクレオチド配列を含む請求項12に記載のポリヌクレオチド。
  111. SEQ ID NO:56のポリヌクレオチド配列を含む請求項12に記載のポリヌクレオチド。
  112. SEQ ID NO:57のポリヌクレオチド配列を含む請求項12に記載のポリヌクレオチド。
  113. SEQ ID NO:58のポリヌクレオチド配列を含む請求項12に記載のポリヌクレオチド。
  114. SEQ ID NO:59のポリヌクレオチド配列を含む請求項12に記載のポリヌクレオチド。
  115. SEQ ID NO:60のポリヌクレオチド配列を含む請求項12に記載のポリヌクレオチド。
  116. SEQ ID NO:61のポリヌクレオチド配列を含む請求項12に記載のポリヌクレオチド。
  117. SEQ ID NO:62のポリヌクレオチド配列を含む請求項12に記載のポリヌクレオチド。
  118. SEQ ID NO:63のポリヌクレオチド配列を含む請求項12に記載のポリヌクレオチド。
  119. SEQ ID NO:64のポリヌクレオチド配列を含む請求項12に記載のポリヌクレオチド。
  120. SEQ ID NO:65のポリヌクレオチド配列を含む請求項12に記載のポリヌクレオチド。
  121. SEQ ID NO:66のポリヌクレオチド配列を含む請求項12に記載のポリヌクレオチド。
  122. SEQ ID NO:67のポリヌクレオチド配列を含む請求項12に記載のポリヌクレオチド。
  123. SEQ ID NO:68のポリヌクレオチド配列を含む請求項12に記載のポリヌクレオチド。
  124. SEQ ID NO:69のポリヌクレオチド配列を含む請求項12に記載のポリヌクレオチド。
  125. SEQ ID NO:70のポリヌクレオチド配列を含む請求項12に記載のポリヌクレオチド。
  126. SEQ ID NO:71のポリヌクレオチド配列を含む請求項12に記載のポリヌクレオチド。
  127. SEQ ID NO:72のポリヌクレオチド配列を含む請求項12に記載のポリヌクレオチド。
JP2003507251A 2001-06-22 2002-06-21 核酸結合タンパク質 Pending JP2005502329A (ja)

Applications Claiming Priority (9)

Application Number Priority Date Filing Date Title
US30051801P 2001-06-22 2001-06-22
US30189201P 2001-06-29 2001-06-29
US30178701P 2001-06-29 2001-06-29
US30179201P 2001-06-29 2001-06-29
US30189301P 2001-06-29 2001-06-29
US30340501P 2001-07-06 2001-07-06
US30344201P 2001-07-06 2001-07-06
US36443802P 2002-03-15 2002-03-15
PCT/US2002/021179 WO2003000864A2 (en) 2001-06-22 2002-06-21 Nucleic acid-associated proteins

Publications (1)

Publication Number Publication Date
JP2005502329A true JP2005502329A (ja) 2005-01-27

Family

ID=27575360

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003507251A Pending JP2005502329A (ja) 2001-06-22 2002-06-21 核酸結合タンパク質

Country Status (5)

Country Link
EP (1) EP1427841A2 (ja)
JP (1) JP2005502329A (ja)
AU (1) AU2002326332A1 (ja)
CA (1) CA2450969A1 (ja)
WO (1) WO2003000864A2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017115798A1 (ja) * 2015-12-28 2017-07-06 北海道公立大学法人 札幌医科大学 腫瘍抗原ペプチド

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0307127D0 (en) * 2003-03-27 2003-04-30 Pharma Pacific Pty Ltd Interferon-alpha induced gene

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017115798A1 (ja) * 2015-12-28 2017-07-06 北海道公立大学法人 札幌医科大学 腫瘍抗原ペプチド

Also Published As

Publication number Publication date
WO2003000864A2 (en) 2003-01-03
AU2002326332A1 (en) 2003-01-08
WO2003000864A8 (en) 2003-12-18
WO2003000864A3 (en) 2003-11-20
EP1427841A2 (en) 2004-06-16
CA2450969A1 (en) 2003-01-03

Similar Documents

Publication Publication Date Title
WO2004087875A2 (en) Nucleic acid-associated proteins
WO2003094848A2 (en) Nucleic acid-associated proteins
JP2005502335A (ja) 細胞成長、分化および細胞死関連タンパク質
US20050176944A1 (en) Intracellular signaling molecules
WO2003054219A2 (en) Nucleic acid-associated proteins
WO2003076586A2 (en) Nucleic acid-associated proteins
US20040137448A1 (en) Nucleic acid-associated proteins
JP2005508636A (ja) 核酸結合タンパク質
JP2005507652A (ja) 核酸結合タンパク質
JP2004533829A (ja) 細胞成長、分化および細胞死関連タンパク質
JP2005502329A (ja) 核酸結合タンパク質
JP2004537295A (ja) 核酸結合タンパク質
WO2003010329A2 (en) Nucleic acid-associated proteins
JP2004509610A (ja) 核内ホルモン受容体
JP2005503150A (ja) 分泌タンパク質
US20050118582A1 (en) Nucleic acid-associated proteins
JP2005512531A (ja) 核酸結合タンパク質
JP2005504509A (ja) 核酸関連タンパク質
JP2005521382A (ja) 細胞成長、分化および細胞死関連タンパク質
JP2005508600A (ja) 核酸関連タンパク質
WO2002079389A2 (en) Nucleic acid-associated proteins
JP2005508142A (ja) 疾患検出および治療用分子
JP2005508606A (ja) 核酸関連タンパク質
JP2002517246A (ja) 遺伝子発現調節タンパク質
WO2003046151A2 (en) Nucleic acid-associated proteins