JP2005354558A - Differential amplification circuit - Google Patents

Differential amplification circuit Download PDF

Info

Publication number
JP2005354558A
JP2005354558A JP2004175196A JP2004175196A JP2005354558A JP 2005354558 A JP2005354558 A JP 2005354558A JP 2004175196 A JP2004175196 A JP 2004175196A JP 2004175196 A JP2004175196 A JP 2004175196A JP 2005354558 A JP2005354558 A JP 2005354558A
Authority
JP
Japan
Prior art keywords
differential
mos transistor
source
constant current
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004175196A
Other languages
Japanese (ja)
Inventor
Masahiro Hikuma
裕洋 日隈
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2004175196A priority Critical patent/JP2005354558A/en
Publication of JP2005354558A publication Critical patent/JP2005354558A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a variable gain differential amplification circuit exhibiting good linearity to a differential input voltage. <P>SOLUTION: The differential amplification circuit comprises a first differential MOS transistor M1 and a second differential MOS transistor M2, a first constant current source 11 connected with the source of the first differential MOS transistor M1 and a second constant current source 12 connected with the source of the second differential MOS transistor M2, and a variable resistor element 20 connected between the sources of the first differential MOS transistor M1 and the second differential MOS transistor M2. The variable resistor element 20 comprises twelve P channel type MOS transistors M3-M14 connected in series and having gates being applied with a DC control voltage VCNT commonly through an operational amplifier 16. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、差動増幅回路に関し、特にMOSトランジスタを用いて構成される差動増幅回路に関する。   The present invention relates to a differential amplifier circuit, and more particularly to a differential amplifier circuit configured using MOS transistors.

従来、差動増幅回路の一種として、差動入力型の演算トランスコンダクタンス増幅回路(Operational Transconductance Amplifier Circuit、以下OTA回路と称する)が知られている。図3は基本的なOTA回路の回路図である。   Conventionally, a differential input type operational transconductance amplifier circuit (hereinafter referred to as an OTA circuit) is known as a type of differential amplifier circuit. FIG. 3 is a circuit diagram of a basic OTA circuit.

このOTA回路は第1の差動MOSトランジスタM1、第2の差動MOSトランジスタM2と、第1の差動MOSトランジスタM1のソースに接続された第1の定電流源1(定電流値I0)、第2の差動MOSトランジスタM2のソースに接続された第2の定電流源2(定電流値I0)と、第1の差動MOSトランジスタM1と第2の差動MOSトランジスタM2のソース間に接続された抵抗値Rsを有する抵抗素子3(フローティング抵抗とも呼ばれる)とを備えている。   The OTA circuit includes a first differential MOS transistor M1, a second differential MOS transistor M2, and a first constant current source 1 (constant current value I0) connected to the source of the first differential MOS transistor M1. The second constant current source 2 (constant current value I0) connected to the source of the second differential MOS transistor M2, and between the sources of the first differential MOS transistor M1 and the second differential MOS transistor M2 And a resistance element 3 having a resistance value Rs (also called a floating resistance).

第1の差動MOSトランジスタM1のゲートには第1の差動入力電圧VINPが印加され、第2の差動MOSトランジスタM2のゲートには第2の差動入力電圧VINNが印加される。第1の差動入力信号VINPと第2の差動入力電圧VINNとは、コモン電位VCMを基準として互いに逆相の電圧である。   The first differential input voltage VINP is applied to the gate of the first differential MOS transistor M1, and the second differential input voltage VINN is applied to the gate of the second differential MOS transistor M2. The first differential input signal VINP and the second differential input voltage VINN are voltages having opposite phases with respect to the common potential VCM.

いま、第1の差動MOSトランジスタM1及び第2の差動MOSトランジスタM2が飽和領域で動作するものとし、差動入力電圧がΔVだけ変化したとすると、VINP=VCM+ΔV、VINN=VCM−ΔVで表される。   Now, assuming that the first differential MOS transistor M1 and the second differential MOS transistor M2 operate in the saturation region, and the differential input voltage changes by ΔV, VINP = VCM + ΔV and VINN = VCM−ΔV. expressed.

また、第1の差動MOSトランジスタM1のソース電位をV1、第2の差動MOSトランジスタM2のソース電位をV2とすると、V1=V0+ΔV、V2=V0−ΔVとなる。このV1,V2の電位差2ΔVによって抵抗素子3には電流IRが流れる。ここで電流IRは、IR=2ΔV/Rsで表される。従って、第1の差動MOSトランジスタM1のドレインである第1の出力端子4から第1の出力電流I0−IRが得られ、第2の差動MOSトランジスタM2のドレインである第2の出力端子5から第2の出力電流I0+IRが得られる。   When the source potential of the first differential MOS transistor M1 is V1, and the source potential of the second differential MOS transistor M2 is V2, V1 = V0 + ΔV and V2 = V0−ΔV. The current IR flows through the resistance element 3 due to the potential difference 2ΔV between V1 and V2. Here, the current IR is represented by IR = 2ΔV / Rs. Accordingly, the first output current I0-IR is obtained from the first output terminal 4 which is the drain of the first differential MOS transistor M1, and the second output terminal which is the drain of the second differential MOS transistor M2. 5 gives a second output current I0 + IR.

このOTA回路の抵抗素子3は、図4のOTA回路に示すように、第1の差動MOSトランジスタM1と第2の差動MOSトランジスタM2の間に並列接続された2つのMOSトランジスタM3,M4で構成することができる。図4のOTA回路では、差動入力電圧に対する抵抗素子3の線形性を保つために、MOSトランジスタM3のゲートに第2の差動入力電圧VINNが印加され、MOSトランジスタM4のゲートに第1の差動入力電圧VINPが印加されている。   The resistance element 3 of the OTA circuit includes two MOS transistors M3 and M4 connected in parallel between the first differential MOS transistor M1 and the second differential MOS transistor M2, as shown in the OTA circuit of FIG. Can be configured. In the OTA circuit of FIG. 4, in order to maintain the linearity of the resistive element 3 with respect to the differential input voltage, the second differential input voltage VINN is applied to the gate of the MOS transistor M3, and the first differential voltage is applied to the gate of the MOS transistor M4. A differential input voltage VINP is applied.

OTA回路については例えば、特許文献1,2に記載されている。
特開平5−259761号公報 特開平11−214935号公報
The OTA circuit is described in Patent Documents 1 and 2, for example.
JP-A-5-259761 JP-A-11-214935

ところで、図4のOTA回路を可変ゲイン増幅回路(Variable Gain Amplifier Circuit)に応用するには、抵抗素子3を可変抵抗素子で構成する必要がある。そこで、図5の回路に示すように、直流制御電圧VCNTをオペアンプ6を通してMOSトランジスタM3,4のゲートに印加するとともに、第1の差動入力信号VINPと第2の差動入力電圧VINNのAC成分を、コンデンサと抵抗で構成されるハイパスフィルタ回路7,8を通してあるDC成分に移し変える必要がある。このDC成分がMOSトランジスタM3,M4の線形性を保つ要素となる。   Incidentally, in order to apply the OTA circuit of FIG. 4 to a variable gain amplifier circuit, it is necessary to configure the resistance element 3 with a variable resistance element. Therefore, as shown in the circuit of FIG. 5, the DC control voltage VCNT is applied to the gates of the MOS transistors M3 and M4 through the operational amplifier 6, and the AC of the first differential input signal VINP and the second differential input voltage VINN is applied. It is necessary to transfer the component to a certain DC component through high-pass filter circuits 7 and 8 composed of capacitors and resistors. This DC component is an element for maintaining the linearity of the MOS transistors M3 and M4.

しかしながら、このような回路構成ではハイパスフィルタ回路7,8が必要となるので回路規模が大きくなり、また、第1の差動入力信号VINPと第2の差動入力電圧VINNが低周波信号である場合にはハイパスフィルタ回路7,8の定数(抵抗値、コンデンサ値)を大きくする必要があり、このOTA回路をLSIに組み込む場合にLSIのピン数が増えるおそれがある。   However, in such a circuit configuration, the high-pass filter circuits 7 and 8 are required, so that the circuit scale becomes large, and the first differential input signal VINP and the second differential input voltage VINN are low frequency signals. In this case, it is necessary to increase the constants (resistance value, capacitor value) of the high-pass filter circuits 7 and 8, and when this OTA circuit is incorporated in an LSI, the number of pins of the LSI may increase.

一方、図6に示すように、可変抵抗素子を直流制御電圧VCNTで制御された1つのMOSトランジスタM5で構成することも考えられるが、図7に示すように、第1の差動入力信号VINPと第2の差動入力電圧VINNの振幅変化に応じてV1,V2が変化すると、それに応じてMOSトランジスタM5のソース電位が変動するため、Vsg(ゲートドレイン間電圧)が大きく変化してしまい、抵抗素子としての線形性が悪くなり、差動増幅の線形増幅特性が悪化するという問題がある。   On the other hand, as shown in FIG. 6, the variable resistance element may be composed of one MOS transistor M5 controlled by the DC control voltage VCNT. However, as shown in FIG. 7, the first differential input signal VINP is used. When V1 and V2 change according to the amplitude change of the second differential input voltage VINN, the source potential of the MOS transistor M5 changes accordingly, so that Vsg (gate-drain voltage) changes greatly. There is a problem that the linearity as the resistance element is deteriorated and the linear amplification characteristic of the differential amplification is deteriorated.

そこで、本発明の差動増幅回路は、第1及び第2の差動トランジスタと、前記第1の差動トランジスタの電流経路に接続された第1の定電流源と、前記第2の差動トランジスタの電流経路に接続された第2の定電流源と、前記第1の差動トランジスタと前記第2の差動トランジスタの間に接続された可変抵抗素子と、を備え、前記可変抵抗素子は、直流制御電圧がそれぞれのゲートに共通に印加され、直列接続された複数のMOSトランジスタから成ることを特徴とするものである。   Therefore, a differential amplifier circuit according to the present invention includes first and second differential transistors, a first constant current source connected to a current path of the first differential transistor, and the second differential transistor. A second constant current source connected to the current path of the transistor; and a variable resistance element connected between the first differential transistor and the second differential transistor, the variable resistance element comprising: A DC control voltage is commonly applied to the respective gates, and is composed of a plurality of MOS transistors connected in series.

本発明の差動増幅回路によれば、可変抵抗素子を、直流制御電圧がそれぞれのゲートに共通に印加され、直列接続された複数のMOSトランジスタによって構成したので、可変抵抗素子の抵抗値は差動入力電圧の振幅にあまり依存しなくなり、可変抵抗素子の線形性が保たれ、良好な線形性を有する差動増幅特性が得られる。また、可変抵抗素子の抵抗値は直流制御電圧だけで制御されるので、ハイパスフィルタ回路が不要となり、回路規模も小さくできるという利点を有している。   According to the differential amplifier circuit of the present invention, since the variable resistance element is configured by a plurality of MOS transistors connected in series with a DC control voltage commonly applied to each gate, the resistance value of the variable resistance element is different. It becomes less dependent on the amplitude of the dynamic input voltage, the linearity of the variable resistance element is maintained, and a differential amplification characteristic having good linearity is obtained. Further, since the resistance value of the variable resistance element is controlled only by the DC control voltage, there is an advantage that a high-pass filter circuit is unnecessary and the circuit scale can be reduced.

次に本発明の第1の実施形態に係る差動増幅回路について図面を参照しながら説明する。図1はこの差動増幅回路(OTA回路)の回路図である。この差動増幅回路は、可変ゲイン増幅回路であって、第1の差動MOSトランジスタM1、第2の差動MOSトランジスタM2と、第1の差動MOSトランジスタM1のソースに接続された第1の定電流源11(定電流値I0)、第2の差動MOSトランジスタM2のソースに接続された第2の定電流源12(定電流値I0)と、第1の差動MOSトランジスタM1と第2の差動MOSトランジスタM2のソース間に接続された、可変抵抗素子20とを備える。第1の差動MOSトランジスタM1、第2の差動MOSトランジスタM2はいずれもPチャネル型である。   Next, a differential amplifier circuit according to a first embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a circuit diagram of the differential amplifier circuit (OTA circuit). The differential amplifier circuit is a variable gain amplifier circuit, and includes a first differential MOS transistor M1, a second differential MOS transistor M2, and a first differential MOS transistor M1 connected to a source of the first differential MOS transistor M1. Constant current source 11 (constant current value I0), a second constant current source 12 (constant current value I0) connected to the source of the second differential MOS transistor M2, and a first differential MOS transistor M1 And a variable resistance element 20 connected between the sources of the second differential MOS transistor M2. Both the first differential MOS transistor M1 and the second differential MOS transistor M2 are P-channel type.

この可変抵抗素子20は、直流制御電圧VCNTがオペアンプ16を通してそれぞれのゲートに共通に印加され、直列接続された12個のPチャネル型MOSトランジスタM3〜M14から成る。   The variable resistance element 20 includes 12 P-channel MOS transistors M3 to M14 connected in series, with a DC control voltage VCNT applied in common to each gate through an operational amplifier 16.

第1の差動MOSトランジスタM1のゲートには第1の差動入力電圧VINPが印加され、第2の差動MOSトランジスタM2のゲートには第2の差動入力電圧VINNが印加される。第1の差動入力信号VINPと第2の差動入力電圧VINNとは、コモン電位VCMを基準として互いに逆相の電圧である。   The first differential input voltage VINP is applied to the gate of the first differential MOS transistor M1, and the second differential input voltage VINN is applied to the gate of the second differential MOS transistor M2. The first differential input signal VINP and the second differential input voltage VINN are voltages having opposite phases with respect to the common potential VCM.

いま、第1の差動MOSトランジスタM1及び第2の差動MOSトランジスタM2が飽和領域で動作するものとし、差動入力電圧がΔVだけ変化したとすると、VINP=VCM+ΔV、VINN=VCM−ΔVで表される。   Now, assuming that the first differential MOS transistor M1 and the second differential MOS transistor M2 operate in the saturation region, and the differential input voltage changes by ΔV, VINP = VCM + ΔV and VINN = VCM−ΔV. expressed.

また、第1の差動MOSトランジスタM1のソース電位をV1、第2の差動MOSトランジスタM2のソース電位をV2とすると、V1=V0+ΔV、V2=V0−ΔVとなる。このV1,V2の電位差2ΔVによって可変抵抗素子20には電流IRが流れる。ここで電流IRは、IR=2ΔV/RXで表される。RXは12個のMOSトランジスタM3〜M14で構成される直列抵抗の抵抗値である。   When the source potential of the first differential MOS transistor M1 is V1, and the source potential of the second differential MOS transistor M2 is V2, V1 = V0 + ΔV and V2 = V0−ΔV. A current IR flows through the variable resistance element 20 due to the potential difference 2ΔV between V1 and V2. Here, the current IR is represented by IR = 2ΔV / RX. RX is a resistance value of a series resistor composed of 12 MOS transistors M3 to M14.

第1の差動MOSトランジスタM1のドレインである第1の出力端子14から第1の出力電流I0−IRが得られ、第2の差動MOSトランジスタM2のドレインである第2の出力端子15から第2の出力電流I0+IRが得られる。   A first output current I0-IR is obtained from the first output terminal 14 which is the drain of the first differential MOS transistor M1, and from the second output terminal 15 which is the drain of the second differential MOS transistor M2. A second output current I0 + IR is obtained.

ここで、12個のMOSトランジスタM3〜M14の個々のソースドレイン間電圧Vdsは電位差(V1−V2)がこれらのMOSトランジスタM3〜M14によって分割されることで0V付近になり、これらのMOSトランジスタM3〜M14はいずれも線形領域で動作することになる。この線形領域でのMOSトランジスタの抵抗値をRMOSとすると、これは数1で表される。   Here, the source-drain voltage Vds of the twelve MOS transistors M3 to M14 becomes close to 0V by dividing the potential difference (V1-V2) by these MOS transistors M3 to M14, and these MOS transistors M3 -M14 will all operate in the linear region. If the resistance value of the MOS transistor in this linear region is RMOS, this is expressed by the following equation (1).

Figure 2005354558
ここで、Wはチャネル幅、Lはチャネル長、μはキャリア移動度、Coxはゲート酸化膜容量、Vsgはゲートソース間電圧、Vtpはしきい値電圧である。
Figure 2005354558
Here, W is the channel width, L is the channel length, μ is the carrier mobility, Cox is the gate oxide film capacitance, Vsg is the gate-source voltage, and Vtp is the threshold voltage.

12個のMOSトランジスタM3〜M14の接続点の電位(ソース電位)を図1に示すようにV3,V4,V5,・・・V13とすると、これらの電位とV1,V2,ΔVとの関係は図2のようになる。即ち、これらのMOSトランジスタM3〜M14のそれぞれのソース電位は異なり、Vsgもトランジスタ毎に異なる。つまり、数1から個々のMOSトランジスタの抵抗値は異なることとなる。   Assuming that the potentials (source potentials) at the connection points of the 12 MOS transistors M3 to M14 are V3, V4, V5,... V13 as shown in FIG. As shown in FIG. That is, the source potentials of these MOS transistors M3 to M14 are different, and Vsg is also different for each transistor. That is, the resistance value of each MOS transistor is different from Equation 1.

しかしながら、これらMOSトランジスタM3〜M14のソース電位の平均は、ほぼ一定に保たれるので、これらMOSトランジスタM3〜M14で構成される直列抵抗のトータル抵抗値は差動入力電圧(第1の差動入力電圧VINP及び第2の第2の差動入力電圧VINN)の振幅の変化に対してほぼ依存しなくなる。即ち、差動入力電圧に対する可変抵抗素子20の線形性が良好となり、良好な線形性を有する差動増幅特性が得られる。   However, since the average of the source potentials of these MOS transistors M3 to M14 is kept substantially constant, the total resistance value of the series resistors formed by these MOS transistors M3 to M14 is the differential input voltage (first differential). The input voltage VINP and the second differential input voltage VINN) are substantially independent of changes in amplitude. That is, the linearity of the variable resistance element 20 with respect to the differential input voltage becomes good, and a differential amplification characteristic having good linearity can be obtained.

本発明の実施形態に係る差動増幅回路(OTA回路)の回路図である。1 is a circuit diagram of a differential amplifier circuit (OTA circuit) according to an embodiment of the present invention. 本発明の実施形態に係る差動増幅回路(OTA回路)の動作を説明する図である。It is a figure explaining operation | movement of the differential amplifier circuit (OTA circuit) which concerns on embodiment of this invention. 従来例に係るOTA回路の回路図である。It is a circuit diagram of the OTA circuit which concerns on a prior art example. 従来例に係るOTA回路の回路図である。It is a circuit diagram of the OTA circuit which concerns on a prior art example. 従来例に係るOTA回路の回路図である。It is a circuit diagram of the OTA circuit which concerns on a prior art example. 従来例に係るOTA回路の回路図である。It is a circuit diagram of the OTA circuit which concerns on a prior art example. 図6のOTA回路の動作を説明する図である。FIG. 7 is a diagram for explaining the operation of the OTA circuit of FIG. 6.

符号の説明Explanation of symbols

11 第1の定電流源 12 第2の定電流源 14 第1の出力端子
15 第2の出力端子 16 オペアンプ 20 可変抵抗素子
DESCRIPTION OF SYMBOLS 11 1st constant current source 12 2nd constant current source 14 1st output terminal 15 2nd output terminal 16 Operational amplifier 20 Variable resistance element

Claims (2)

第1及び第2の差動トランジスタと、前記第1の差動トランジスタの電流経路に接続された第1の定電流源と、前記第2の差動トランジスタの電流経路に接続された第2の定電流源と、前記第1の差動トランジスタと前記第2の差動トランジスタの間に接続された可変抵抗素子と、を備え、前記可変抵抗素子は、直流制御電圧がそれぞれのゲートに共通に印加され、直列接続された複数のMOSトランジスタから成ることを特徴とする差動増幅回路。 A first constant current source connected to the current path of the first differential transistor; a second constant current source connected to the current path of the second differential transistor; A constant current source; and a variable resistance element connected between the first differential transistor and the second differential transistor, wherein the variable resistance element has a DC control voltage common to each gate. A differential amplifier circuit comprising a plurality of MOS transistors applied and connected in series. 前記第1及び第2の差動トランジスタはMOSトランジスタで構成されることを特徴とする請求項1に記載の差動増幅回路。 2. The differential amplifier circuit according to claim 1, wherein the first and second differential transistors are composed of MOS transistors.
JP2004175196A 2004-06-14 2004-06-14 Differential amplification circuit Pending JP2005354558A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004175196A JP2005354558A (en) 2004-06-14 2004-06-14 Differential amplification circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004175196A JP2005354558A (en) 2004-06-14 2004-06-14 Differential amplification circuit

Publications (1)

Publication Number Publication Date
JP2005354558A true JP2005354558A (en) 2005-12-22

Family

ID=35588606

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004175196A Pending JP2005354558A (en) 2004-06-14 2004-06-14 Differential amplification circuit

Country Status (1)

Country Link
JP (1) JP2005354558A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008023530A1 (en) * 2006-08-21 2008-02-28 Asahi Kasei Emd Corporation Transconductance amplifier
US7847635B2 (en) 2006-08-28 2010-12-07 Asahi Kasei Emd Corporation Transconductance amplifier
KR101042255B1 (en) * 2008-09-05 2011-06-17 주식회사 동부하이텍 semiconductor device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008023530A1 (en) * 2006-08-21 2008-02-28 Asahi Kasei Emd Corporation Transconductance amplifier
US7768349B2 (en) 2006-08-21 2010-08-03 Asahi Kasei Emd Corporation Transconductance amplifier
JP4855470B2 (en) * 2006-08-21 2012-01-18 旭化成エレクトロニクス株式会社 Transconductance amplifier
US7847635B2 (en) 2006-08-28 2010-12-07 Asahi Kasei Emd Corporation Transconductance amplifier
KR101113378B1 (en) * 2006-08-28 2012-03-13 아사히 가세이 일렉트로닉스 가부시끼가이샤 Transconductance amplifier
KR101042255B1 (en) * 2008-09-05 2011-06-17 주식회사 동부하이텍 semiconductor device

Similar Documents

Publication Publication Date Title
US7345530B1 (en) Regulated switch driving scheme in switched-capacitor amplifiers with opamp-sharing
JP4991785B2 (en) Semiconductor integrated circuit device
US6897701B2 (en) Method and structure for improving the linearity of MOS switches
JP4920374B2 (en) MOS resistance control device, MOS attenuator
US7453318B2 (en) Operational amplifier for outputting high voltage output signal
JP2010268350A (en) Termination resistance adjusting circuit
KR101926003B1 (en) Ultra-low working voltage rail to rail operational amplifier and differential input amplification-stage circuit and output-stage circuit thereof
JP2009105810A (en) Amplifying apparatus and bias circuit
TWI381651B (en) Digital to analog converter and method thereof
US20110095813A1 (en) Mos transistor resistor, filter, and integrated circuit
US20090184752A1 (en) Bias circuit
JP2009105811A (en) AMPLIFYING DEVICE AND Gm COMPENSATING BIAS CIRCUIT
EP1435693B1 (en) Amplification circuit
US9369098B2 (en) Inverting amplifier
US6724258B1 (en) Highly-linear, wide-input-range, wide control-range, low-voltage differential voltage controlled transconductor
JP2007251507A (en) Differential amplifier circuit
KR100576716B1 (en) Transconductor circuit of compensating the distortion of output current
EP2058944A1 (en) Transconductance amplifier
GB2368478A (en) Linear transconductance amplifier
Shedge et al. Analysis and design of CMOS source followers and super source follower
JP2005354558A (en) Differential amplification circuit
US20190260334A1 (en) Operational amplifier circuit capable of improving linearity relation between loading current and input voltage difference
JP2009094878A (en) Differential amplification circuit
US6400185B2 (en) Fixed transconductance bias apparatus
US9455676B2 (en) Semiconductor circuit and amplifier circuit