JP2005354430A - Surface acoustic wave transducer and surface acoustic wave device employing the same - Google Patents

Surface acoustic wave transducer and surface acoustic wave device employing the same Download PDF

Info

Publication number
JP2005354430A
JP2005354430A JP2004173256A JP2004173256A JP2005354430A JP 2005354430 A JP2005354430 A JP 2005354430A JP 2004173256 A JP2004173256 A JP 2004173256A JP 2004173256 A JP2004173256 A JP 2004173256A JP 2005354430 A JP2005354430 A JP 2005354430A
Authority
JP
Japan
Prior art keywords
electrode
acoustic wave
surface acoustic
saw
film thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004173256A
Other languages
Japanese (ja)
Inventor
Kunihito Yamanaka
国人 山中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miyazaki Epson Corp
Original Assignee
Miyazaki Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miyazaki Epson Corp filed Critical Miyazaki Epson Corp
Priority to JP2004173256A priority Critical patent/JP2005354430A/en
Publication of JP2005354430A publication Critical patent/JP2005354430A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a SAW transducer used for an ETC on-vehicle apparatus or the like and a SAW device employing the same whereby a broadband filter characteristic with a reduced in-band deviation can be obtained. <P>SOLUTION: The SAW transducer with a plurality of concatenated basic ranges each having a width equivalent to a wavelength λ of a stimulated SAW is located on a 128±5° rotation Y-cut X propagation lithium niobate substrate. Each of the basic ranges includes a positive electrode finger 1 and a negative electrode finger 2, and the positive electrode finger 1 and the negative electrode finger 2 are arranged in a way that the center distance is almost λ/2. When Al or an alloy whose major component is Al is used for the electrode material, a relation of the electrode film thickness H/λ and the electrode width W/λ normalized by the wavelength λ is 0.38≤W/λ<0.42 in the case of H/λ <0.01, is 0.22≤W/λ<0.42 in the case of 0.01≤H/λ≤0.03, and is 0.08<W/λ≤0.25 in the case of 0.03<H/λ. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、圧電基板にニオブ酸リチウムを用い、弾性表面波の1波長に相当する基本区間において正電極指と負電極指とを1本ずつ配置した弾性表面波変換器に関する。   The present invention relates to a surface acoustic wave transducer in which lithium niobate is used for a piezoelectric substrate and one positive electrode finger and one negative electrode finger are arranged in a basic section corresponding to one wavelength of a surface acoustic wave.

近年、弾性表面波(以下、SAWと称す)デバイスは移動体通信分野で広く利用され、高性能、小型、量産性等の優れた特徴を有することから特に携帯電話に多く用いられる。また、前記SAWデバイスのうち低周波帯で使われるIF用SAWフィルタは、携帯電話のみならずETC車載器やTV用部品としても用いられ広帯域で中心周波数に対し対称な特性、即ち、帯域内の偏差(リップル)の小さい特性が必要とされている。このような仕様を満たすSAWフィルタとしてはトランスバーサル型SAWフィルタが最も適している。   In recent years, surface acoustic wave (hereinafter referred to as SAW) devices have been widely used in the field of mobile communication, and are particularly frequently used in mobile phones because of their excellent characteristics such as high performance, small size, and mass productivity. In addition, the SAW filter for IF used in the low frequency band among the SAW devices is used not only for mobile phones but also for ETC on-board devices and TV components, and has a wide band and symmetrical characteristics with respect to the center frequency, that is, within the band. A characteristic with small deviation (ripple) is required. A transversal SAW filter is most suitable as a SAW filter satisfying such specifications.

図8は従来のトランスバーサル型SAWフィルタを示す平面図であって、圧電基板31の主表面上にSAWの伝搬方向に沿って入力用のSAW変換器32と出力用のSAW変換器33を所定の間隔をあけて配置すると共に、SAW変換器32、33の間に入出力端子間の直達波を遮蔽するためのシールド電極34を配置する。前記SAW変換器32、33はそれぞれ互いに間挿し合う複数の電極指を有する一対のくし形電極より構成されており、SAW変換器32の一方のくし形電極を入力端子INに接続すると共に他方のくし形電極は接地する。そして、SAW変換器33の一方のくし形電極を出力端子OUTに接続すると共に他方のくし形電極は接地する。また、基板端面からの反射波を抑圧するために圧電基板31の長辺方向(SAWの伝搬方向)の両端に吸音材35を塗布する。   FIG. 8 is a plan view showing a conventional transversal SAW filter, in which an input SAW converter 32 and an output SAW converter 33 are arranged on the main surface of the piezoelectric substrate 31 along the SAW propagation direction. And a shield electrode 34 for shielding the direct wave between the input and output terminals is disposed between the SAW converters 32 and 33. Each of the SAW converters 32 and 33 is composed of a pair of comb electrodes having a plurality of electrode fingers which are interleaved with each other. One of the comb electrodes of the SAW converter 32 is connected to the input terminal IN and the other The comb electrode is grounded. Then, one of the comb electrodes of the SAW converter 33 is connected to the output terminal OUT and the other comb electrode is grounded. Further, a sound absorbing material 35 is applied to both ends of the piezoelectric substrate 31 in the long side direction (SAW propagation direction) in order to suppress the reflected wave from the substrate end face.

図8に示すSAW変換器32、33は、電極指を正、負、正と順番に並べ、SAWの波長1λ当たりに正電極指と負電極指を1本ずつ配置したシングル(正規)電極構造である。なお、SAW変換器においては前記シングル電極以外にも多種の電極構造が存在する。その一例として、図9(a)はスプリット(ダブル)電極と呼ばれる電極構造を示している。該スプリット電極構造は、ほぼλ/8の幅を有する電極指をその中心間距離がλ/4となるように正、正、負、負と順番に並べ、SAWの波長1λ当たりに正電極指と負電極指を2本ずつ配置した構造となっている。また他の例として、図9(b)はSAWの励振に方向性を付けた一方向性電極(Single Phase Uni-Directional Transducer:SPUDT)の代表例であるDART(Distributed Acoustic Reflection Transducer)と呼ばれる構造を示している。このDART構造は、T.Kodama, H.Kawabata, Y.Yasuhara and H.Sato:Design of Low-loss SAW Filters Employing Distributed Acoustic Reflection Transducers, IEEE Ultrason.Symp.Proc., pp.59-64 (1986).にて提案された構造であり、1λの間に電極指3本からなる電極指対を配置して、各電極指の幅をW1=3λ/8、W2=W3=λ/8とし、左端を原点0とした時に各電極指の中心位置をd1=λ/4、d2=5λ/8、d3=7λ/8としている。   The SAW converters 32 and 33 shown in FIG. 8 have a single (regular) electrode structure in which electrode fingers are arranged in order of positive, negative, and positive, and one positive electrode finger and one negative electrode finger are arranged for each SAW wavelength 1λ. It is. In the SAW converter, there are various electrode structures other than the single electrode. As an example, FIG. 9A shows an electrode structure called a split (double) electrode. In the split electrode structure, electrode fingers having a width of approximately λ / 8 are arranged in order of positive, positive, negative, and negative so that the distance between the centers is λ / 4, and the positive electrode fingers are arranged per 1λ wavelength of SAW. And two negative electrode fingers are arranged. As another example, FIG. 9B shows a structure called DART (Distributed Acoustic Reflection Transducer) which is a typical example of a single phase unidirectional electrode (SPUDT) in which the direction of SAW excitation is directed. Is shown. This DART structure is described in T. Kodama, H. Kawabata, Y. Yasuhara and H. Sato: Design of Low-loss SAW Filters Employing Distributed Acoustic Reflection Transducers, IEEE Ultrason. Symp. Proc., Pp. 59-64 (1986). The electrode finger pair consisting of three electrode fingers is arranged between 1λ, the width of each electrode finger is W1 = 3λ / 8, W2 = W3 = λ / 8, and the left end The center position of each electrode finger is d1 = λ / 4, d2 = 5λ / 8, and d3 = 7λ / 8, where is the origin 0.

また、上述のSAW変換器を用いてSAWフィルタを形成した場合、図10(a)に示すように電源側インピーダンスRと負荷インピーダンスRとを整合させる為にSAWフィルタの入出力側に整合回路MC1、MC2が取り付けられる。整合回路MC1、MC2においてはQ値が低く、安価なインダクタ(L)を使用することが多いが、製造誤差の大きいLの影響により通過特性の挿入損失や平坦度が劣化してしまう虞がある。このような場合、SAWフィルタと整合回路MC1、MC2のLとの感度を低くする必要がある。図10(b)はSAWフィルタのくし型電極の等価回路図を示したものであるが、SAWフィルタと整合回路MC1、MC2のLとの感度を低下させるには、くし型電極のelectrical Q(=(Ba+ωCt)/Ga)を下げて実効的な励振効率を高めれば良い。このelectrical Qについては、B.Abott and C.S.Hartmann:An Efficient Evaluation of the Electrostatic Fields in IDTs with Periodic Electrode Sequences,IEEE Ultrason.Symp.Proc.,pp157-160(1993).に詳細に説明されている。electrical Qを低くしたSAW変換器を実現できれば、Q値の低い安価なインダクタで整合回路を形成してもフィルタ特性を低損失にでき良好な平坦度を実現できる。 Further, when a SAW filter is formed using the above-described SAW converter, as shown in FIG. 10A, matching is performed on the input / output side of the SAW filter in order to match the power source side impedance RS and the load impedance RL. Circuits MC1 and MC2 are attached. The matching circuits MC1 and MC2 often use an inexpensive inductor (L) having a low Q value. However, there is a risk that the insertion loss and flatness of the pass characteristic may deteriorate due to the influence of L having a large manufacturing error. . In such a case, it is necessary to reduce the sensitivity of the SAW filter and the matching circuits MC1 and MC2 to L. FIG. 10B shows an equivalent circuit diagram of the comb electrode of the SAW filter. In order to reduce the sensitivity between the SAW filter and L of the matching circuits MC1 and MC2, the electrical Q ( = (Ba + ωCt) / Ga) is lowered to increase the effective excitation efficiency. This electrical Q is described in detail in B. Abbot and CSHartmann: An Efficient Evaluation of the Electrostatic Fields in IDTs with Periodic Electrode Sequences, IEEE Ultrason. Symp. Proc., Pp157-160 (1993). If a SAW converter with a low electrical Q can be realized, even if a matching circuit is formed with an inexpensive inductor having a low Q value, the filter characteristics can be reduced and good flatness can be realized.

ここで、上述のシングル電極、スプリット電極、DARTの各電極構造についてelectrical Qを比較した。図11は、シングル電極のelectrical Qを1とした場合にスプリット電極及びDARTのelectrical Qを比較したものである。同図に示すように、シングル電極と比較してスプリット電極は1.305倍、DARTは2.144倍とelectrical Qが大きい。以上から、シングル電極が最もelectrical Qが低く実効的な励振効率に優れていると言える。   Here, electrical Q was compared for each electrode structure of the single electrode, split electrode, and DART described above. FIG. 11 shows a comparison of the electrical Q of the split electrode and DART when the electrical Q of the single electrode is 1. As shown in the figure, the split Q has a larger electrical Q of 1.305 times and the DART has a 2.144 times that of a single electrode. From the above, it can be said that the single electrode has the lowest electrical Q and excellent effective excitation efficiency.

ところで、ETC車載器やTV用部品として用いられるSAWフィルタにおいては広帯域な特性が要求されている。具体的な仕様としては、ETC車載器用では、中心周波数40(MHz)、通過帯域幅4(MHz)以上が要求されており、中心周波数と通過帯域幅の比である比帯域幅は10%以上が必要となる。また、TV部品用においては中心周波数57(MHz)、通過帯域幅5(MHz)以上が要求されており、比帯域幅は8.8%以上が必要となる。このような広帯域な仕様を満足するためには、ニオブ酸リチウム(LN)等の電気機械結合係数kの高い圧電基板を用いる必要がある。 By the way, SAW filters used as ETC in-vehicle devices and TV parts are required to have a wide band characteristic. As specific specifications, for ETC on-board equipment, a center frequency of 40 (MHz) and a pass bandwidth of 4 (MHz) or more are required, and a specific bandwidth that is a ratio of the center frequency to the pass bandwidth is 10% or more. Is required. For TV components, a center frequency of 57 (MHz) and a pass bandwidth of 5 (MHz) or more are required, and a specific bandwidth of 8.8% or more is required. Such in order to satisfy a wide band specifications, it is necessary to use a high piezoelectric substrate having an electromechanical coupling coefficient k 2, such as lithium niobate (LN).

また、低周波数帯に用いられるフィルタの製造上の問題として電極膜厚がある。量産時に製造可能な電極膜厚には限界があり、一般的には1μmを超える膜厚を有する電極を精度良く形成することは困難である。加えて、膜厚が厚くなるほど成膜工程、エッチング工程に要する時間が長くなってしまい作業効率が著しく悪くなってしまう。従って、電極膜厚を薄くしても良好な特性が得られる電極構造を選択する必要がある。   Further, there is an electrode film thickness as a problem in manufacturing a filter used in a low frequency band. There is a limit to the electrode film thickness that can be produced during mass production, and it is generally difficult to accurately form an electrode having a film thickness exceeding 1 μm. In addition, as the film thickness increases, the time required for the film forming process and the etching process becomes longer, and the working efficiency is remarkably deteriorated. Therefore, it is necessary to select an electrode structure that provides good characteristics even when the electrode film thickness is reduced.

例えば、電極構造をDARTにした場合、SAWの波長λで基準化した電極膜厚H/λは0.03以上が必要である。従って、ETC車載器用では3μm以上もの電極膜厚が必要となり、製造効率が著しく悪くなってしまう。また、電極膜厚H/λを0.03以下としてしまうと十分な方向性が得られず、通過帯域の中央部分のみで低損失となりフィルタ特性が単峰になる欠点があった。   For example, when the electrode structure is DART, the electrode film thickness H / λ normalized by the SAW wavelength λ needs to be 0.03 or more. Therefore, an electrode film thickness of 3 μm or more is required for the ETC on-vehicle device, and the manufacturing efficiency is remarkably deteriorated. Further, when the electrode film thickness H / λ is set to 0.03 or less, sufficient directivity cannot be obtained, and there is a disadvantage that the filter characteristic is unimodal because the loss is low only in the central portion of the passband.

また、橋本研也著,弾性表面波デバイスシミュレーション入門,(株)リアライズ社,pp.85.によると、電気機械結合係数と実現可能な比帯域幅との関係を以下の式で表している。
BW/fo=(2η/2.257)1/2
ここで、BWは挿入損失から3dBダウンした位置における実現可能な最大通過帯域幅、foは中心周波数、kは電気機械結合係数、ηは電極形状を考慮した実効的な励振効率を表すエレメント係数である。図11に示すように、DARTは実効的な励振効率を示すelectrical Qがシングル電極の半分以下であり、上式におけるηが小さいので、シングル電極と比較して実現可能な比帯域幅は狭くなり広帯域化には不利である。また、挿入損失を犠牲にして広帯域化を図ることは可能であるが、いずれにせよフィルタ特性の高性能化は困難である。また、スプリット電極においてもシングル電極と比較して励振効率は低いので広帯域化の点でシングル電極に劣る。
According to Kenya Hashimoto, Introduction to surface acoustic wave device simulation, Realize Co., Ltd., pp.85., The relationship between the electromechanical coupling coefficient and the realizable bandwidth is expressed by the following equation.
BW 3 / fo = (2η 2 k 2 /2.257) 1/2
Here, BW 3 is a maximum passband width that can be realized at a position 3 dB down from the insertion loss, fo is a center frequency, k 2 is an electromechanical coupling coefficient, and η is an element that represents an effective excitation efficiency considering the electrode shape. It is a coefficient. As shown in FIG. 11, DART has an effective excitation efficiency of electrical Q that is less than half that of a single electrode, and η in the above equation is small, so that the realizable bandwidth is narrower than that of a single electrode. It is disadvantageous for widening the bandwidth. Although it is possible to increase the bandwidth at the expense of insertion loss, it is difficult to improve the performance of the filter characteristics anyway. In addition, the split electrode is inferior to the single electrode in terms of wide band because the excitation efficiency is lower than that of the single electrode.

以上から、広帯域化にはシングル電極が最も適した構造であると言えるが、従来のシングル電極においてはSAWの反射が生じると、その反射の方向によって通過帯域の低域もしくは高域のどちらか一方の振幅が持ち上がってしまう為、帯域内偏差が大きくなってしまい、通過帯域が中心周波数に対して非対称になってしまう欠点があった。図12は、図8に示すシングル電極でSAW変換器を形成したトランスバーサル型SAWフィルタにおいて、中心周波数をETC車載器用の40(MHz)とし、電極膜厚H/λ=0.01、電極幅W/λ=0.25とした時のフィルタ特性を示したものであるが、帯域内偏差が大きくなり中心周波数に対し非対称な特性になっているのが分かる。
T.Kodama, H.Kawabata, Y.Yasuhara and H.Sato: Design of Low-loss SAW Filters Employing Distributed Acoustic ReflectionTransducers, IEEE Ultrason.Symp.Proc., pp.59-64 (1986). B.Abott and C.S.Hartmann:An Efficient Evaluation of the Electrostatic Fields in IDTs with Periodic Electrode Sequences,IEEE Ultrason.Symp.Proc.,pp157-160(1993). 橋本研也著,弾性表面波デバイスシミュレーション入門,(株)リアライズ社,pp.85.
From the above, it can be said that the single electrode is the most suitable structure for widening the band, but when the SAW reflection occurs in the conventional single electrode, either the low band or the high band of the pass band is determined depending on the reflection direction. As a result, the in-band deviation becomes large and the passband becomes asymmetric with respect to the center frequency. FIG. 12 shows a transversal SAW filter in which a SAW converter is formed with a single electrode shown in FIG. 8, with a center frequency of 40 (MHz) for ETC on-board equipment, an electrode film thickness H / λ = 0.01, and an electrode width. The filter characteristics when W / λ = 0.25 are shown, but it can be seen that the in-band deviation is large and the characteristics are asymmetric with respect to the center frequency.
T. Kodama, H. Kawabata, Y. Yasuhara and H. Sato: Design of Low-loss SAW Filters Employing Distributed Acoustic Reflection Transducers, IEEE Ultrason.Symp.Proc., Pp. 59-64 (1986). B. Abbot and CSHartmann: An Efficient Evaluation of the Electrostatic Fields in IDTs with Periodic Electrode Sequences, IEEE Ultrason.Symp.Proc., Pp157-160 (1993). Written by Kenya Hashimoto, Introduction to surface acoustic wave device simulation, Realize Inc., pp.85.

ETC車載器用等の広帯域で帯域内偏差の小さい特性が要求されるSAWデバイスにおいて、シングル電極でSAW変換器を形成とすると広帯域化には有利であるが、SAWの反射により帯域内偏差が大きくなってしまい、中心周波数に対し非対称な特性になってしまうという問題があった。   In SAW devices that require a wide band and small in-band deviation characteristics such as for ETC on-board devices, it is advantageous to increase the bandwidth by forming a SAW converter with a single electrode, but the in-band deviation increases due to SAW reflection. As a result, there is a problem that the characteristics become asymmetric with respect to the center frequency.

上記目的を達成するために本発明に係るSAW変換器及びそれを用いたSAWデバイスの請求項1記載の発明は、128±5°回転YカットX伝搬ニオブ酸リチウム基板上に配置して弾性表面波素子を構成するための弾性表面波変換器であって、前記弾性表面波変換器は、励起される弾性表面波の波長λに相当する幅を有した基本区間を複数個連結した構成を備えており、前記基本区間は、正電極指1本と負電極指1本を有し、該正電極指と該負電極指は中心間距離がほぼλ/2となるように配置されており、前記弾性表面波変換器の電極材料をAl又はAlを主成分とする合金とした時に、波長λで基準化した電極膜厚H/λと電極幅W/λとの関係を、H/λ<0.01とした時に0.38≦W/λ<0.42とし、0.01≦H/λ≦0.03とした時に0.22≦W/λ<0.42とし、0.03<H/λとした時に0.08<W/λ≦0.25とすることを特徴としている。   In order to achieve the above object, the SAW converter according to the present invention and the SAW device using the SAW converter according to claim 1 are arranged on a 128 ± 5 ° rotated Y-cut X-propagating lithium niobate substrate to provide an elastic surface. A surface acoustic wave converter for forming a wave element, the surface acoustic wave converter having a configuration in which a plurality of basic sections having a width corresponding to the wavelength λ of a surface acoustic wave to be excited are connected. The basic section has one positive electrode finger and one negative electrode finger, and the positive electrode finger and the negative electrode finger are arranged so that a center-to-center distance is approximately λ / 2. When the electrode material of the surface acoustic wave converter is Al or an alloy containing Al as a main component, the relationship between the electrode film thickness H / λ normalized by the wavelength λ and the electrode width W / λ is expressed as H / λ < When 0.01, 0.38 ≦ W / λ <0.42, and 0.01 ≦ H / λ ≦ 0.0 It is characterized in that a 0.22 ≦ W / lambda and <0.42, 0.03 <0.08 <W / λ ≦ 0.25 when the H / lambda when the.

請求項2に記載の発明は、前記弾性表面波変換器の電極材料をMg又はMgを主成分とする合金とした時に、波長λで基準化した電極膜厚H/λと電極幅W/λとの関係を、H/λ<0.02とした時に0.28≦W/λ<0.42とし、0.02≦H/λ≦0.03とした時に0.20≦W/λ≦0.30とし、0.03<H/λとした時に0.08<W/λ≦0.22とすることを特徴としている。   According to the second aspect of the present invention, when the electrode material of the surface acoustic wave converter is made of Mg or an alloy mainly composed of Mg, the electrode film thickness H / λ and the electrode width W / λ normalized by the wavelength λ. When H / λ <0.02, 0.28 ≦ W / λ <0.42, and when 0.02 ≦ H / λ ≦ 0.03, 0.20 ≦ W / λ ≦ When 0.30 and 0.03 <H / λ, 0.08 <W / λ ≦ 0.22 is set.

請求項3に記載の発明は、前記弾性表面波変換器の電極材料をCu又はCuを主成分とする合金とした時に、波長λで基準化した電極膜厚H/λと電極幅W/λとの関係を、H/λ<0.005とした時に0.25≦W/λ<0.42とし、0.005≦H/λとした時に0.08<W/λ≦0.30とすることを特徴としている。   According to a third aspect of the present invention, when the electrode material of the surface acoustic wave converter is made of Cu or an alloy containing Cu as a main component, the electrode film thickness H / λ and the electrode width W / λ normalized by the wavelength λ. When H / λ <0.005, 0.25 ≦ W / λ <0.42, and when 0.005 ≦ H / λ, 0.08 <W / λ ≦ 0.30. It is characterized by doing.

請求項4に記載の発明は、前記弾性表面波変換器の電極材料をAg又はAgを主成分とする合金とした時に、波長λで基準化した電極膜厚H/λと電極幅W/λとの関係を、H/λ<0.005とした時に0.30≦W/λ<0.42とし、0.005≦H/λとした時に0.08<W/λ≦0.35とすることを特徴としている。   According to a fourth aspect of the present invention, when the electrode material of the surface acoustic wave converter is made of Ag or an alloy containing Ag as a main component, the electrode film thickness H / λ and the electrode width W / λ normalized by the wavelength λ. When H / λ <0.005, 0.30 ≦ W / λ <0.42, and when 0.005 ≦ H / λ, 0.08 <W / λ ≦ 0.35. It is characterized by doing.

請求項5に記載の発明は、前記弾性表面波変換器の電極材料をAu又はAuを主成分とする合金とした時に、波長λで基準化した電極膜厚H/λと電極幅W/λとの関係を、H/λ<0.005とした時に0.18≦W/λ<0.42とし、0.005≦H/λとした時に0.08<W/λ≦0.25とすることを特徴としている。   According to the fifth aspect of the present invention, when the electrode material of the surface acoustic wave converter is made of Au or an alloy containing Au as a main component, the electrode film thickness H / λ and the electrode width W / λ normalized by the wavelength λ. When H / λ <0.005, 0.18 ≦ W / λ <0.42, and when 0.005 ≦ H / λ, 0.08 <W / λ ≦ 0.25. It is characterized by doing.

請求項6に記載の発明は、前記弾性表面波変換器を少なくとも1つ配置した弾性表面波デバイスであることを特徴としている。   The invention described in claim 6 is a surface acoustic wave device in which at least one surface acoustic wave transducer is arranged.

請求項1及び6に記載の発明によれば、圧電基板に128±5°回転YカットX伝搬ニオブ酸リチウムを用い、電極構造をシングル電極とし、電極材料をAl又はAlを主成分とする合金としたSAW変換器及びそれを用いたSAWデバイスにおいて、電極膜厚に応じ反射量が零となるような電極幅を定めたので、広帯域で且つ帯域内偏差を低減したフィルタ特性を実現できる。   According to the first and sixth aspects of the present invention, 128 ± 5 ° rotated Y-cut X-propagating lithium niobate is used for the piezoelectric substrate, the electrode structure is a single electrode, and the electrode material is Al or an alloy mainly composed of Al. In the SAW converter and the SAW device using the SAW converter, the electrode width is set such that the amount of reflection is zero according to the electrode film thickness, so that it is possible to realize a filter characteristic with a wide band and reduced in-band deviation.

請求項2及び6に記載の発明によれば、前記電極材料をMg又はMgを主成分とする合金としたので、Alと比較して膜厚が変動した時の周波数変動量が小さいので製造歩留まりを改善できる。   According to the inventions of claims 2 and 6, since the electrode material is Mg or an alloy containing Mg as a main component, the amount of frequency fluctuation when the film thickness fluctuates as compared with Al is small, so that the production yield Can be improved.

請求項3乃至6に記載の発明によれば、前記電極材料をCu、Ag、Au又はそれらを主成分とする合金としたので、Alと比較して薄い電極膜厚で反射が零となる電極幅を設定することができるので製造効率を改善できる。   According to invention of Claim 3 thru | or 6, since the said electrode material was made into Cu, Ag, Au, or an alloy which has those as a main component, it is an electrode with a thin electrode film thickness and a reflection zero compared with Al. Since the width can be set, the manufacturing efficiency can be improved.

以下、本発明を図面に図示した実施の形態例に基づいて詳細に説明する。図1は本発明に係るSAW変換器の一部分を拡大した図である。該SAW変換器は、圧電基板上に励起されるSAWの波長λに相当する幅を有した基本区間を複数個連結した構成を備えており、1つの基本区間において正電極指1と負電極指2を中心間距離がλ/2となるよう配置したシングル電極である。本実施例では、圧電基板に128±5°回転YカットX伝搬ニオブ酸リチウム(以下、128±5°LNと称す)を用い、電極をAl又はAlを主成分とする合金から形成している。   Hereinafter, the present invention will be described in detail based on the embodiments shown in the drawings. FIG. 1 is an enlarged view of a part of a SAW converter according to the present invention. The SAW converter has a configuration in which a plurality of basic sections having a width corresponding to the wavelength λ of the SAW excited on the piezoelectric substrate are connected, and the positive electrode finger 1 and the negative electrode finger in one basic section. 2 is a single electrode in which the center-to-center distance is λ / 2. In this embodiment, 128 ± 5 ° rotated Y-cut X-propagating lithium niobate (hereinafter referred to as 128 ± 5 ° LN) is used for the piezoelectric substrate, and the electrode is made of Al or an alloy containing Al as a main component. .

前述の通り、従来のシングル電極においてはSAWの反射の影響で帯域内偏差が大きくなってしまい、通過帯域が中心周波数に対し非対称となってしまうという問題があった。本発明では、この問題を鑑みてSAWの反射が零になるように電極幅を設定することで帯域内偏差を小さくし通過帯域の平坦化を図った。なお、本実施例では、K.Hashimoto and M.Yamaguchi:Free So-ftware Products for Simulation and Design of Surface Acoustic Wave and Surface Transverse Wave Devices, Freq. Contr. Symp. Proc., pp.300-307 (1996).に示されているFEM解析ツール「Multi」を用いた。また、128±5°LNの材料定数にはKovacsの定数を使用し、Alの材料定数にはそのソフトウエアに内蔵されている定数をそのまま用いている。   As described above, the conventional single electrode has a problem that the in-band deviation becomes large due to the influence of SAW reflection, and the passband becomes asymmetric with respect to the center frequency. In the present invention, in view of this problem, the in-band deviation is reduced by setting the electrode width so that the SAW reflection becomes zero, and the passband is flattened. In this example, K. Hashimoto and M. Yamaguchi: Free So-ftware Products for Simulation and Design of Surface Acoustic Wave and Surface Transverse Wave Devices, Freq. Contr. Symp. Proc., Pp. 300-307 (1996) The FEM analysis tool “Multi” shown in FIG. The Kovacs constant is used as the material constant of 128 ± 5 ° LN, and the constant incorporated in the software is used as it is as the material constant of Al.

図2は、図1のシングル電極において、電極膜厚H/λを変化させた時の電極幅と反射量との関係を示している。なお、横軸に波長λで基準化した電極幅W/λを、縦軸にモード結合理論における相互結合係数の絶対値|κ12|に波数k0(=2π/λ)を乗じた係数|κ12'|を示しており前記基本区間におけるSAWの反射量を表している。同図より、H/λ=0.01とした時はW/λ=0.38付近、H/λ=0.02とした時はW/λ=0.28付近、H/λ=0.03とした時はW/λ=0.25付近で反射量がほぼ零となる。このように、シングル電極において反射量が零となる電極幅が存在し、また、電極膜厚を大きくするほど反射量が零になる電極幅が小さくなることが確認された。   FIG. 2 shows the relationship between the electrode width and the reflection amount when the electrode film thickness H / λ is changed in the single electrode of FIG. The horizontal axis represents the electrode width W / λ normalized by the wavelength λ, and the vertical axis represents the coefficient | κ12 ′ obtained by multiplying the absolute value | κ12 | of the mutual coupling coefficient in the mode coupling theory by the wave number k0 (= 2π / λ). | Represents the SAW reflection amount in the basic section. From the same figure, when H / λ = 0.01, W / λ = 0.38, when H / λ = 0.02, W / λ = 0.28, H / λ = 0. When 03 is set, the reflection amount becomes almost zero near W / λ = 0.25. Thus, it was confirmed that there is an electrode width where the reflection amount becomes zero in the single electrode, and that the electrode width where the reflection amount becomes zero decreases as the electrode film thickness increases.

図3は、電極膜厚をH/λ=0.01とし、電極幅を反射量がほぼ零となるW/λ=0.38とした時のSAW変換器を用いたトランスバーサル型SAWフィルタの通過特性を示している。なお、中心周波数をETC車載器用の40MHzとしている。同図から挿入損失から3dBダウンした位置において比帯域幅が5MHz以上、即ち、10%以上もの広帯域な特性が得られ、また、図11に示す従来のシングル電極の通過特性と比較して帯域内偏差が大幅に小さくなり中心周波数に対して対称な特性が得られていることが分かる。   FIG. 3 shows a transversal SAW filter using a SAW converter when the electrode film thickness is H / λ = 0.01 and the electrode width is W / λ = 0.38 where the reflection amount is almost zero. The pass characteristics are shown. The center frequency is 40 MHz for ETC on-vehicle equipment. From the figure, a characteristic having a wide bandwidth of 5 MHz or more, that is, 10% or more is obtained at a position 3 dB down from the insertion loss, and in comparison with the pass characteristic of the conventional single electrode shown in FIG. It can be seen that the deviation is greatly reduced, and a symmetrical characteristic with respect to the center frequency is obtained.

このように、本発明においては、圧電基板に128±5°LNを用い、SAW変換器の電極構造をシングル電極にした場合において、電極膜厚とSAWの反射が零となる電極幅の関係を見出し、帯域内偏差を大幅に小さくできた。   Thus, in the present invention, when 128 ± 5 ° LN is used for the piezoelectric substrate and the electrode structure of the SAW converter is a single electrode, the relationship between the electrode film thickness and the electrode width at which SAW reflection is zero is obtained. The headline and in-band deviation could be greatly reduced.

ところで、前記シングル電極において電極幅をW/λ<0.08、もしくは0.42<W/λとすると製造効率が悪くなってしまうので、0.08<W/λ<0.42の範囲内で反射量が零となる電極幅を設定する必要がある。従って、H/λ<0.01とした時には0.38≦W/λ<0.42とし、0.01≦H/λ≦0.03とした時には0.22≦W/λ<0.42とし、0.03<H/λとした時には0.08<W/λ≦0.25の範囲内に設定するのが好ましい。   By the way, in the single electrode, if the electrode width is W / λ <0.08 or 0.42 <W / λ, the manufacturing efficiency is deteriorated. Therefore, within the range of 0.08 <W / λ <0.42. Therefore, it is necessary to set the electrode width at which the reflection amount becomes zero. Therefore, when H / λ <0.01, 0.38 ≦ W / λ <0.42, and when 0.01 ≦ H / λ ≦ 0.03, 0.22 ≦ W / λ <0.42. When 0.03 <H / λ, it is preferably set within the range of 0.08 <W / λ ≦ 0.25.

これまで、電極材料をAl又はAlを主成分とする合金とした場合についてのみ説明してきたが、これ以外の電極材料についても本発明を適用できる。以下、Al以外の電極材料とした場合について説明する。   So far, only the case where the electrode material is Al or an alloy containing Al as a main component has been described, but the present invention can be applied to other electrode materials. Hereinafter, a case where an electrode material other than Al is used will be described.

図4は前記シングル電極の電極材料をMgとした場合における電極膜厚H/λを変化させた時の電極幅W/λと反射量|κ12'|の関係を示している。同図より、電極材料をMgとした場合においてもAlと同様に反射量が零となる電極幅が存在し、電極膜厚を大きくすると反射量が零となる電極幅が小さくなることが分かる。具体的に反射量が零となる電極幅は、H/λ=0.02でW/λ=0.28付近、H/λ=0.03でW/λ=0.22付近であり、H/λ<0.02とした時には0.28≦W/λ<0.42とし、0.02≦H/λ≦0.03とした時には0.20≦W/λ≦0.30とし、0.03<H/λとした時には0.08<W/λ≦0.22とするのが好ましい。また、MgはAlと比較して膜厚が変動した時の周波数変動量が小さいので製造歩留まりを改善できる。   FIG. 4 shows the relationship between the electrode width W / λ and the reflection amount | κ12 ′ | when the electrode film thickness H / λ is changed when the electrode material of the single electrode is Mg. From the figure, it can be seen that even when the electrode material is Mg, there is an electrode width where the amount of reflection is zero, as in Al, and when the electrode film thickness is increased, the electrode width where the amount of reflection is zero is reduced. Specifically, the electrode width at which the reflection amount is zero is H / λ = 0.02 and W / λ = 0.28, H / λ = 0.03 and W / λ = 0.22, When /λ<0.02, 0.28 ≦ W / λ <0.42, and when 0.02 ≦ H / λ ≦ 0.03, 0.20 ≦ W / λ ≦ 0.30 and 0 When 0.03 <H / λ, 0.08 <W / λ ≦ 0.22 is preferable. Further, since Mg has a small frequency fluctuation amount when the film thickness fluctuates as compared with Al, the manufacturing yield can be improved.

図5は前記シングル電極の電極材料をCuとした場合において、電極膜厚H/λを変化させた時の電極幅W/λと反射量|κ12'|の関係を示している。Alと比較して全体的に反射量が小さく、同じ膜厚条件において反射量が零となる電極幅の値が小さい。具体的に反射量が零となる電極幅は、H/λ=0.005でW/λ=0.25付近、H/λ=0.01でW/λ=0.12付近であり、H/λ<0.005とした時には0.25≦W/λ<0.42とし、0.005≦H/λとした時には0.08<W/λ≦0.30とするのが好ましい。   FIG. 5 shows the relationship between the electrode width W / λ and the reflection amount | κ12 ′ | when the electrode film thickness H / λ is changed when the electrode material of the single electrode is Cu. Compared to Al, the reflection amount is generally small, and the value of the electrode width at which the reflection amount becomes zero under the same film thickness condition is small. Specifically, the electrode width at which the reflection amount becomes zero is H / λ = 0.005 and W / λ = 0.25, H / λ = 0.01 and W / λ = 0.12. When /λ<0.005, it is preferable that 0.25 ≦ W / λ <0.42, and when 0.005 ≦ H / λ, 0.08 <W / λ ≦ 0.30.

図6は前記シングル電極の電極材料をAgとした場合における電極膜厚H/λを変化させた時の電極幅W/λと反射量|κ12'|の関係を示している。CuのようにAlと比較して全体的に反射量が小さく、同じ膜厚条件において反射量が零となる電極幅の値が小さい。具体的に反射量が零となる電極幅は、H/λ=0.005でW/λ=0.30付近、H/λ=0.01でW/λ=0.12付近であり、H/λ<0.005とした時には0.30≦W/λ<0.42とし、0.005≦H/λとした時には0.08<W/λ≦0.35とするのが好ましい。   FIG. 6 shows the relationship between the electrode width W / λ and the reflection amount | κ12 ′ | when the electrode film thickness H / λ is changed when the electrode material of the single electrode is Ag. Like Cu, the reflection amount is generally smaller than that of Al, and the electrode width value at which the reflection amount becomes zero under the same film thickness condition is small. Specifically, the electrode width at which the reflection amount becomes zero is H / λ = 0.005 and W / λ = 0.30, H / λ = 0.01 and W / λ = 0.12. When /λ<0.005, it is preferable to satisfy 0.30 ≦ W / λ <0.42, and when 0.005 ≦ H / λ, 0.08 <W / λ ≦ 0.35.

図7は前記シングル電極の電極材料をAuとした場合における電極膜厚H/λを変化させた時の電極幅W/λと反射量|κ12'|の関係を示している。Cu、AgのようにAlと比較して全体的に反射量が小さく、同じ膜厚条件において反射量が零となる電極幅の値が小さい。具体的に反射量が零となる電極幅は、H/λ=0.005でW/λ=0.18付近、H/λ=0.01でW/λ=0.07付近であり、H/λ<0.005とした時には0.18≦W/λ<0.42とし、0.005≦H/λとした時には0.08<W/λ≦0.25とするのが好ましい。   FIG. 7 shows the relationship between the electrode width W / λ and the reflection amount | κ12 ′ | when the electrode film thickness H / λ is changed when the electrode material of the single electrode is Au. The total reflection amount is small compared to Al, such as Cu and Ag, and the value of the electrode width at which the reflection amount is zero under the same film thickness condition is small. Specifically, the electrode width at which the reflection amount is zero is H / λ = 0.005 and W / λ = 0.18, H / λ = 0.01 and W / λ = 0.07, When /λ<0.005, 0.18 ≦ W / λ <0.42, and when 0.005 ≦ H / λ, 0.08 <W / λ ≦ 0.25 is preferable.

このようにAl以外の電極材料としても反射が零となる電極幅が存在することが確認された。一般的に、電極幅はW/λ=0.25、即ち電極幅と電極間スペースとの比率が1:1の時が最も実効的な結合係数が高く広帯域な特性が得られる。電極材料をAlとした場合は、W/λ=0.25で反射量が零となる電極膜厚はH/λ=0.03であり、低周波帯で用いる場合は膜厚を1μm以上に厚くしなければならず製造効率が悪くなってしまう。従って、膜厚を薄くしなければならない場合は電極材料をCu、Ag、Auにすれば良い。例えば、電極材料をCuとした場合、図5に示すようにW/λ=0.25で反射量が零となる電極膜厚はH/λ=0.005であり、Alと比較して格段に薄い膜厚で結合係数が高く、且つ反射が零となる条件を両立させることが可能となるので、より広帯域で帯域内偏差の小さいフィルタ特性を実現できる。   Thus, it was confirmed that there is an electrode width where reflection is zero even with an electrode material other than Al. In general, when the electrode width is W / λ = 0.25, that is, when the ratio between the electrode width and the inter-electrode space is 1: 1, the most effective coupling coefficient is high and a broadband characteristic is obtained. When the electrode material is Al, the electrode thickness at which the reflection amount becomes zero when W / λ = 0.25 is H / λ = 0.03, and when used in the low frequency band, the thickness is 1 μm or more. It must be made thicker, and the production efficiency will deteriorate. Therefore, when the film thickness must be reduced, the electrode material may be Cu, Ag, or Au. For example, when the electrode material is Cu, as shown in FIG. 5, the electrode film thickness at which the reflection amount becomes zero when W / λ = 0.25 is H / λ = 0.005, which is much higher than that of Al. In addition, it is possible to satisfy both the conditions of a thin film thickness, a high coupling coefficient, and zero reflection, thereby realizing a filter characteristic with a wider band and a smaller in-band deviation.

これまで電極材料を単一の材料とした場合について説明してきたが、Al、Cu、Mg、Ag、Au及び他の金属類を組み合わせた合金であっても良い。その場合には、Al、Cu、Mg、Ag、Auのいずれかが90wt%以上含まれている方が好ましい。また、本発明のSAW変換器をトランスバーサル型SAWフィルタ以外のSAWデバイスに適用できるのことは言うまでもない。   The case where the electrode material is a single material has been described so far, but an alloy in which Al, Cu, Mg, Ag, Au, and other metals are combined may be used. In that case, it is preferable that 90 wt% or more of any of Al, Cu, Mg, Ag, and Au is contained. It goes without saying that the SAW converter of the present invention can be applied to SAW devices other than transversal SAW filters.

本発明に係る弾性表面波変換器の基本区間を示す。The basic section of the surface acoustic wave converter concerning the present invention is shown. 電極材料をAlとした場合の電極幅と反射量の関係を示す。The relationship between the electrode width and the amount of reflection when the electrode material is Al is shown. 電極材料をAlとした場合の通過特性を示す。The passage characteristic when the electrode material is Al is shown. 電極材料をMgとした場合の電極幅と反射量の関係を示す。The relationship between the electrode width when the electrode material is Mg and the amount of reflection is shown. 電極材料をCuとした場合の電極幅と反射量の関係を示す。The relationship between the electrode width and the amount of reflection when the electrode material is Cu is shown. 電極材料をAgとした場合の電極幅と反射量の関係を示す。The relationship between the electrode width and the amount of reflection when the electrode material is Ag is shown. 電極材料をAuとした場合の電極幅と反射量の関係を示す。The relationship between the electrode width and the reflection amount when the electrode material is Au is shown. 従来のシングル電極で構成したトランスバーサル型SAWフィルタを示す。The transversal type | mold SAW filter comprised by the conventional single electrode is shown. (a)にスプリット(ダブル)電極を、(b)にDARTを示す。(A) shows a split (double) electrode, and (b) shows DART. (a)にSAWフィルタに外部整合回路を取り付けた時の簡略図を、(b)にくし型電極の等価回路図を示す。(A) shows a simplified diagram when an external matching circuit is attached to the SAW filter, and (b) shows an equivalent circuit diagram of the comb-shaped electrode. 各電極構造とelectrical Qの比較を示す。A comparison of each electrode structure and electrical Q is shown. 従来のシングル電極で構成したトランスバーサル型SAWフィルタの通過特性を示す。The transmission characteristic of the transversal type SAW filter comprised by the conventional single electrode is shown.

符号の説明Explanation of symbols

1:正電極指
2:負電極指
31:圧電基板
32、33:SAW変換器
34:シールド電極
35:吸音材
1: Positive electrode finger 2: Negative electrode finger 31: Piezoelectric substrate 32, 33: SAW converter 34: Shield electrode 35: Sound absorbing material

Claims (6)

128±5°回転YカットX伝搬ニオブ酸リチウム基板上に配置して弾性表面波素子を構成するための弾性表面波変換器であって、
前記弾性表面波変換器は、励起される弾性表面波の波長λに相当する幅を有した基本区間を複数個連結した構成を備えており、
前記基本区間は、正電極指と負電極指とを1本ずつ有し、該正電極指と該負電極指は中心間距離がほぼλ/2となるように配置されており、
前記弾性表面波変換器の電極材料をAl又はAlを主成分とする合金とした時に、波長λで基準化した電極膜厚H/λと電極幅W/λとの関係を、H/λ<0.01とした時に0.38≦W/λ<0.42とし、0.01≦H/λ≦0.03とした時に0.22≦W/λ<0.42とし、0.03<H/λとした時に0.08<W/λ≦0.25としたことを特徴とする弾性表面波変換器。
A surface acoustic wave converter for constituting a surface acoustic wave device by being arranged on a 128 ± 5 ° rotated Y-cut X-propagating lithium niobate substrate,
The surface acoustic wave converter has a configuration in which a plurality of basic sections having a width corresponding to the wavelength λ of the surface acoustic wave to be excited are connected.
The basic section has one positive electrode finger and one negative electrode finger, and the positive electrode finger and the negative electrode finger are arranged so that the center-to-center distance is approximately λ / 2.
When the electrode material of the surface acoustic wave converter is Al or an alloy containing Al as a main component, the relationship between the electrode film thickness H / λ normalized by the wavelength λ and the electrode width W / λ is expressed as H / λ < 0.38 ≦ W / λ <0.42 when 0.01, 0.22 ≦ W / λ <0.42 when 0.01 ≦ H / λ ≦ 0.03, and 0.03 < A surface acoustic wave transducer characterized in that 0.08 <W / λ ≦ 0.25 when H / λ.
前記弾性表面波変換器の電極材料をMg又はMgを主成分とする合金とした時に、波長λで基準化した電極膜厚H/λと電極幅W/λとの関係を、H/λ<0.02とした時に0.28≦W/λ<0.42とし、0.02≦H/λ≦0.03とした時に0.20≦W/λ≦0.30とし、0.03<H/λとした時に0.08<W/λ≦0.22としたことを特徴とする請求項1に記載の弾性表面波変換器。   When the electrode material of the surface acoustic wave converter is Mg or an alloy containing Mg as a main component, the relationship between the electrode film thickness H / λ normalized by the wavelength λ and the electrode width W / λ is expressed as H / λ < When 0.02, 0.28 ≦ W / λ <0.42, and when 0.02 ≦ H / λ ≦ 0.03, 0.20 ≦ W / λ ≦ 0.30, and 0.03 < 2. The surface acoustic wave transducer according to claim 1, wherein 0.08 <W / λ ≦ 0.22 when H / λ. 前記弾性表面波変換器の電極材料をCu又はCuを主成分とする合金とした時に、波長λで基準化した電極膜厚H/λと電極幅W/λとの関係を、H/λ<0.005とした時に0.25≦W/λ<0.42とし、0.005≦H/λとした時に0.08<W/λ≦0.30としたことを特徴とする請求項1に記載の弾性表面波変換器。   When the electrode material of the surface acoustic wave converter is Cu or an alloy containing Cu as a main component, the relationship between the electrode film thickness H / λ and the electrode width W / λ normalized by the wavelength λ is expressed as H / λ < 2. When 0.005 is satisfied, 0.25 ≦ W / λ <0.42, and when 0.005 ≦ H / λ is satisfied, 0.08 <W / λ ≦ 0.30. A surface acoustic wave transducer according to claim 1. 前記弾性表面波変換器の電極材料をAg又はAgを主成分とする合金とした時に、波長λで基準化した電極膜厚H/λと電極幅W/λとの関係を、H/λ<0.005とした時に0.30≦W/λ<0.42とし、0.005≦H/λとした時に0.08<W/λ≦0.35としたことを特徴とする請求項1に記載の弾性表面波変換器。   When the electrode material of the surface acoustic wave converter is Ag or an alloy containing Ag as a main component, the relationship between the electrode film thickness H / λ and the electrode width W / λ normalized by the wavelength λ is expressed as H / λ < 2. When 0.005 is satisfied, 0.30 ≦ W / λ <0.42, and when 0.005 ≦ H / λ is satisfied, 0.08 <W / λ ≦ 0.35. A surface acoustic wave transducer according to claim 1. 前記弾性表面波変換器の電極材料をAu又はAuを主成分とする合金とした時に、波長λで基準化した電極膜厚H/λと電極幅W/λとの関係を、H/λ<0.005とした時に0.18≦W/λ<0.42とし、0.005≦H/λとした時に0.08<W/λ≦0.25としたことを特徴とする請求項1に記載の弾性表面波変換器。   When the electrode material of the surface acoustic wave transducer is Au or an alloy containing Au as a main component, the relationship between the electrode film thickness H / λ and the electrode width W / λ normalized by the wavelength λ is expressed as H / λ < 2. When 0.005 is satisfied, 0.18 ≦ W / λ <0.42, and when 0.005 ≦ H / λ is satisfied, 0.08 <W / λ ≦ 0.25. A surface acoustic wave transducer according to claim 1. 請求項1乃至5のいずれかに記載の弾性表面波変換器を少なくとも1つ配置した弾性表面波デバイス。
A surface acoustic wave device in which at least one surface acoustic wave transducer according to claim 1 is disposed.
JP2004173256A 2004-06-10 2004-06-10 Surface acoustic wave transducer and surface acoustic wave device employing the same Pending JP2005354430A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004173256A JP2005354430A (en) 2004-06-10 2004-06-10 Surface acoustic wave transducer and surface acoustic wave device employing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004173256A JP2005354430A (en) 2004-06-10 2004-06-10 Surface acoustic wave transducer and surface acoustic wave device employing the same

Publications (1)

Publication Number Publication Date
JP2005354430A true JP2005354430A (en) 2005-12-22

Family

ID=35588498

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004173256A Pending JP2005354430A (en) 2004-06-10 2004-06-10 Surface acoustic wave transducer and surface acoustic wave device employing the same

Country Status (1)

Country Link
JP (1) JP2005354430A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007125733A1 (en) * 2006-04-24 2007-11-08 Murata Manufacturing Co., Ltd. Elastic surface wave device
WO2007125734A1 (en) * 2006-04-24 2007-11-08 Murata Manufacturing Co., Ltd. Elastic surface wave device
JPWO2008041404A1 (en) * 2006-09-29 2010-02-04 株式会社村田製作所 Boundary acoustic wave device and manufacturing method thereof

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007125733A1 (en) * 2006-04-24 2007-11-08 Murata Manufacturing Co., Ltd. Elastic surface wave device
WO2007125734A1 (en) * 2006-04-24 2007-11-08 Murata Manufacturing Co., Ltd. Elastic surface wave device
US7569972B2 (en) 2006-04-24 2009-08-04 Murata Manufacturing Co., Ltd. Surface acoustic wave device
JPWO2007125733A1 (en) * 2006-04-24 2009-09-10 株式会社村田製作所 Surface acoustic wave device
JPWO2007125734A1 (en) * 2006-04-24 2009-09-10 株式会社村田製作所 Surface acoustic wave device
US7705515B2 (en) 2006-04-24 2010-04-27 Murata Manufacturing Co., Ltd. Surface acoustic wave device
JP4636178B2 (en) * 2006-04-24 2011-02-23 株式会社村田製作所 Surface acoustic wave device
JP4636179B2 (en) * 2006-04-24 2011-02-23 株式会社村田製作所 Surface acoustic wave device
CN101421921B (en) * 2006-04-24 2012-09-26 株式会社村田制作所 Elastic surface wave device
JPWO2008041404A1 (en) * 2006-09-29 2010-02-04 株式会社村田製作所 Boundary acoustic wave device and manufacturing method thereof

Similar Documents

Publication Publication Date Title
US7479855B2 (en) Longitudinally-coupled-resonator-type elastic wave filter device
JP6959819B2 (en) Multiplexer
US9035725B2 (en) Acoustic wave device
US9847770B2 (en) Elastic wave resonator, elastic wave filter apparatus, and duplexer
JP3226472B2 (en) Surface acoustic wave multimode filter
US7728699B2 (en) Acoustic wave filter
US7211925B2 (en) Surface acoustic wave device and branching filter
JP6284800B2 (en) Surface acoustic wave device and filter
KR100290803B1 (en) Surface acoustic wave device
JPH0955640A (en) Surface acoustic wave filter
WO2009131227A1 (en) Elastic surface wave device, and communication device using the former device
JP2009027689A (en) Surface acoustic wave filter, and antenna duplexer using the same
CN111937305A (en) Elastic wave element, elastic wave filter, branching filter, and communication device
US6504454B2 (en) Longitudinally coupled surface acoustic wave filter
US10090823B2 (en) Elastic wave resonator and ladder filter
US8686809B2 (en) Ladder-type filter including a dielectric film having a side surface with a heightwise inclination
JP2005354430A (en) Surface acoustic wave transducer and surface acoustic wave device employing the same
JP2002217680A (en) Ladder-type surface acoustic wave filter
JP2005278154A (en) One-directional surface acoustic wave transducer and surface acoustic wave device using it
JP2006311330A (en) Surface acoustic wave device
JP2001298346A (en) Surface acoustic wave device
JP2010263296A (en) Elastic boundary wave device
JP4506394B2 (en) Unidirectional surface acoustic wave transducer and surface acoustic wave device using the same
JP4710186B2 (en) Vertically coupled double mode SAW filter
JP2005311799A (en) Unidirectional surface acoustic wave transducer and surface acoustic wave device using it