JP2005353891A - Semiconductor device and method of manufacturing the same - Google Patents

Semiconductor device and method of manufacturing the same Download PDF

Info

Publication number
JP2005353891A
JP2005353891A JP2004173910A JP2004173910A JP2005353891A JP 2005353891 A JP2005353891 A JP 2005353891A JP 2004173910 A JP2004173910 A JP 2004173910A JP 2004173910 A JP2004173910 A JP 2004173910A JP 2005353891 A JP2005353891 A JP 2005353891A
Authority
JP
Japan
Prior art keywords
pad electrode
semiconductor device
aluminum
electrode
bump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004173910A
Other languages
Japanese (ja)
Other versions
JP4716400B2 (en
Inventor
Taku Kaneoka
卓 金岡
Yutaro Ehata
雄太郎 江畑
Masashi Sawara
政司 佐原
Yoshio Miyama
吉生 深山
Kentaro Yamada
健太郎 山田
Hideaki Kanazawa
英明 金澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renesas Technology Corp
Original Assignee
Renesas Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renesas Technology Corp filed Critical Renesas Technology Corp
Priority to JP2004173910A priority Critical patent/JP4716400B2/en
Publication of JP2005353891A publication Critical patent/JP2005353891A/en
Application granted granted Critical
Publication of JP4716400B2 publication Critical patent/JP4716400B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/1301Shape
    • H01L2224/13016Shape in side view
    • H01L2224/13018Shape in side view comprising protrusions or indentations
    • H01L2224/13019Shape in side view comprising protrusions or indentations at the bonding interface of the bump connector, i.e. on the surface of the bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/16227Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the bump connector connecting to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29075Plural core members
    • H01L2224/2908Plural core members being stacked
    • H01L2224/29082Two-layer arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/2919Material with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29199Material of the matrix
    • H01L2224/2929Material of the matrix with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/819Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector with the bump connector not providing any mechanical bonding
    • H01L2224/81901Pressing the bump connector against the bonding areas by means of another connector
    • H01L2224/81903Pressing the bump connector against the bonding areas by means of another connector by means of a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8385Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester
    • H01L2224/83851Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester being an anisotropic conductive adhesive
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing a semiconductor device capable of contributing to the reduction of recesses and projections at a top of a bump electrode. <P>SOLUTION: At the time of forming a bump electrode 23 by electroplating on a pad electrode 17 exposed from a surface protective film in the pre-process of forming the pad electrode, the forming temperature of an aluminum-based wiring material is turned to 200-450°C. When the aluminum-based wiring material is formed in the temperature range, it is considered that a grain as a formation unit becomes large, the area of a grain boundary is reduced as a whole when the grain becomes large, and the recesses and projections of a surface after removing a natural oxide film on the pad electrode are reduced. Thus, the recess 24 on the end face of the top of the bump electrode formed on the pad electrode can be turned to a small value such as 1 micrometer or the like. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、フリップチップボンディング等に利用されるバンプ電極を備えた半導体装置及びその製造方法に関し、例えば異方性導電性フィルムを挟んでフリップチップボンディングに供される半導体装置の製造に適用して有効な技術に関する。   The present invention relates to a semiconductor device provided with a bump electrode used for flip chip bonding and the like, and a method for manufacturing the same. For example, the present invention is applied to manufacture of a semiconductor device used for flip chip bonding with an anisotropic conductive film interposed therebetween. It relates to effective technology.

異方性導電性フィルムを用いて半導体装置のバンプ電極を回路基板の端子に結合する技術として、特開平11−16946号公報には、バンプ電極の先端面に異方性導電性フィルムの導電粒子より少し小さい凹凸を形成して導電粒子を確実に捕捉し、電気的接合状態を良好にすることが記載される。   As a technique for bonding a bump electrode of a semiconductor device to a terminal of a circuit board using an anisotropic conductive film, Japanese Patent Application Laid-Open No. 11-16946 discloses a conductive particle of an anisotropic conductive film on a tip surface of a bump electrode. It is described that a slightly smaller unevenness is formed to reliably capture the conductive particles and to improve the electrical bonding state.

同じく特開2000−124263号公報には、バンプ電極の表面に導電粒子が1個乃至複数個入る凹状を形成して導電粒子を安定に確保し、接触不良を防止する接続方法が記載される。   Similarly, Japanese Patent Application Laid-Open No. 2000-124263 describes a connection method in which a concave shape in which one or a plurality of conductive particles are formed on the surface of a bump electrode is formed to stably secure the conductive particles and prevent contact failure.

特開平4−249326号公報及びその対応米国特許第272111号明細書には、金メッキ下地層の上に非晶質Ni−P層を設け、この非晶質Ni−P層の表面粗さを下地層の表面粗さよりも小さな0.3ミクロンメータ以下とし、これによって電界金メッキ層の光沢むらを改善した電界金メッキパターンを形成する方法について記載される。   In JP-A-4-249326 and the corresponding US Pat. No. 2,721,111, an amorphous Ni—P layer is provided on a gold plating underlayer, and the surface roughness of the amorphous Ni—P layer is reduced. A method of forming an electrogold plating pattern in which the gloss unevenness of the electroplated gold layer is improved by 0.3 micrometer or less, which is smaller than the surface roughness of the base layer, is described.

特開平11−16946号公報(図5)Japanese Patent Laid-Open No. 11-16946 (FIG. 5) 特開2000−124263号公報(図1)JP 2000-124263 A (FIG. 1) 特開平4−249326号公報(図1)JP-A-4-249326 (FIG. 1) 米国特許第272111号明細書(FIG.1(a)〜FIG.1(e))US Pat. No. 2,721,111 (FIG. 1 (a) to FIG. 1 (e))

本発明者は、異方性導電性フィルムを用いた半導体装置の実装技術について検討した。例えばLCD(Liquid Crystal Display)ドライバをCOG(Chip On Glass)実装するとき、LCDが形成されるガラス基板上の電極と半導体チップのバンプ電極との接続に、異方性導電性フィルム中の導電性ビーズを用いる。ビーズは樹脂でコーティングされており非導通であるが、実装に際してLCDドライバをガラス基板に押圧してビーズをつぶすと、コーティング樹脂が破れて、対応するボンディングパッドと電極を導通させることができる。バンプ電極の先端面にビーズの直径以上の窪みがあると、ビーズを充分につぶすことができず、一部の電極とバンプ電極が高抵抗接続となって、実装不良になる。この窪みについて検討したところ、バンプ電極は表面保護膜から露出されるパッド電極の上に電界メッキで形成されるから、バンプ電極の周縁はパッド電極を露出させる表面保護膜の開口周縁の当該表面保護膜の膜厚分盛り上がる。これにより、バンプ電極の先端面には少なくとも表面保護膜の膜厚と同等の窪みを生ずる。しかもその窪みの表面には微細な凹凸が多数形成され、実際の窪みの凹凸は表面保護膜の膜厚を超えていることが明らかにされた。これは、電界メッキがメッキ下地層の凹凸をトレースするためであると考えられる。バンプ電極のメッキ下地層(アンダー・バンプ・メタル)は、アルミニウム配線材料などで形成されるパッド電極に対するバンプ電極のバリアメタル及びメッキ成長の種子として利用されるシード(seed)層から成る。これらはスパッタリング法によって堆積される。本発明者の検討によれば、アンダーバンプメタルを形成する前のパッド電極に対する酸化膜除去のやり方によってバンプ電極先端部の窪みの大きさが左右されることを見出した。この観点は上記文献の何れにも示唆されていない。   This inventor examined the mounting technology of the semiconductor device using the anisotropic conductive film. For example, when an LCD (Liquid Crystal Display) driver is mounted on COG (Chip On Glass), the conductivity in the anisotropic conductive film is used to connect the electrode on the glass substrate on which the LCD is formed and the bump electrode of the semiconductor chip. Use beads. The beads are coated with a resin and are non-conductive. However, when the LCD driver is pressed against the glass substrate during mounting to crush the beads, the coating resin is broken and the corresponding bonding pad and electrode can be made conductive. If the bump electrode has a dent larger than the diameter of the bead, the bead cannot be sufficiently crushed, and a part of the electrode and the bump electrode are connected with high resistance, resulting in poor mounting. As a result of studying this depression, the bump electrode is formed by electroplating on the pad electrode exposed from the surface protective film, so that the periphery of the bump electrode is the surface protection of the opening peripheral edge of the surface protective film exposing the pad electrode. Increases the thickness of the film. As a result, a recess equivalent to at least the film thickness of the surface protective film is formed on the tip surface of the bump electrode. In addition, it was clarified that a lot of fine irregularities were formed on the surface of the depression, and the actual irregularities of the depression exceeded the film thickness of the surface protective film. This is presumably because the electroplating traces the irregularities of the plating base layer. The bump electrode plating underlayer (under bump metal) is composed of a bump electrode barrier metal for a pad electrode formed of an aluminum wiring material or the like and a seed layer used as a seed for plating growth. These are deposited by sputtering. According to the study of the present inventor, it has been found that the size of the depression at the tip of the bump electrode depends on the way of removing the oxide film from the pad electrode before forming the under bump metal. This viewpoint is not suggested in any of the above documents.

本発明の一つの目的は、バンプ電極先端部の窪みを小さくするのに資することができる半導体装置の製造方法を提供することにある。   One object of the present invention is to provide a method of manufacturing a semiconductor device that can contribute to reducing the depression at the tip of the bump electrode.

本発明の別の一つの目的は、狭ピッチのバンプ電極であっても異方性導電性フィルムを用いた実装基板との良好な導電接続を得ることができる半導体装置を提供することにある。   Another object of the present invention is to provide a semiconductor device capable of obtaining a good conductive connection with a mounting substrate using an anisotropic conductive film even with a narrow pitch bump electrode.

本発明の前記並びにその他の目的と新規な特徴は本明細書の記述及び添付図面から明らかになるであろう。   The above and other objects and novel features of the present invention will be apparent from the description of this specification and the accompanying drawings.

本願において開示される発明のうち代表的なものの概要を簡単に説明すれば下記の通りである。   The following is a brief description of an outline of typical inventions disclosed in the present application.

《1》.すなわち、以下の工程を含む半導体装置の製造方法:
(a)半導体基板上に回路を形成し、形成した回路の表面保護膜からアルミニウム系配線材料より成るパッド電極を露出させる工程;
(b)露出された前記パッド電極の表面酸化膜を除去する工程;
(c)前記工程(b)の後に、前記パッド電極の上にアンダーバンプメタルを介して〔アルミニウム系配線材料より成る〕バンプ電極を電界メッキにより形成する工程;
前記工程(a)は以下の下位工程を含む:
(a1)200度C乃至450度Cの温度で前記アルミニウム系配線材料より成るパッド電極を形成する工程。
<< 1 >>. That is, a semiconductor device manufacturing method including the following steps:
(A) forming a circuit on a semiconductor substrate and exposing a pad electrode made of an aluminum-based wiring material from a surface protective film of the formed circuit;
(B) removing the exposed surface oxide film of the pad electrode;
(C) After the step (b), a step of forming a bump electrode [consisting of an aluminum-based wiring material] on the pad electrode through an under bump metal by electroplating;
Said step (a) comprises the following substeps:
(A1) A step of forming a pad electrode made of the aluminum-based wiring material at a temperature of 200 ° C. to 450 ° C.

上記温度範囲でアルミニウム系配線材料より成るパッド電極を形成すると、形成単位とされる粒が大きくなり、粒が大きくなると粒界の面積が全体として少なくなり、酸化膜除去後の表面の凹凸が少なくなると考えられる。上記温度範囲は後述する実験で確認した範囲であり、その上限は更に高温である可能性がある。この製造方法により、アルミニウム系配線材料等から成る電極パッドの表面酸化膜除去をRFエッチ又は酸によるエッチングなどで行なう場合に、バンプ電極の先端部端面の凹凸を例えば1ミクロンメータのような小さな値にすることができるということが、実験結果により裏付けられている。   When a pad electrode made of an aluminum-based wiring material is formed in the above temperature range, the grains that form the formation unit become large. When the grains become large, the area of the grain boundary decreases as a whole, and the surface unevenness after removing the oxide film decreases. It is considered to be. The said temperature range is the range confirmed by the experiment mentioned later, The upper limit may be still higher temperature. With this manufacturing method, when the surface oxide film removal of the electrode pad made of aluminum wiring material or the like is performed by RF etching or acid etching, the bump electrode tip end surface unevenness is a small value such as 1 micrometer. It is supported by experimental results that

《2》.前記項目《1》の半導体装置の製造方法において前記工程(b)は以下の下位工程を含む:
(b1)前記パッド電極の表面酸化膜をRFエッチにより除去する工程。前記RFエッチはプラズマエッチングを意味する。
<< 2 >>. In the method of manufacturing a semiconductor device of item <1>, the step (b) includes the following substeps:
(B1) A step of removing the surface oxide film of the pad electrode by RF etching. The RF etching means plasma etching.

《3》.前記項目《2》記載の半導体装置の製造方法において、前記RFエッチにより除去する厚さは酸化シリコン膜換算で大凡15〜20ナノメータである。RFエッチによるパッド電極表面の削り量が少ないほどバンプ電極先端面の凹凸は小さくなる。これはイオンによる衝撃を受けるほど表面の荒れが蓄積されるので、酸化膜除去量が少ないほど除去後の表面の凹凸が少なくなると考えられるからである。   << 3 >>. In the method of manufacturing a semiconductor device according to item << 2 >>, the thickness removed by the RF etching is approximately 15 to 20 nanometers in terms of a silicon oxide film. As the amount of scraping of the pad electrode surface by RF etching is smaller, the unevenness of the bump electrode tip surface becomes smaller. This is because the surface roughness is accumulated as the impact by the ions is increased. Therefore, it is considered that the unevenness of the surface after the removal decreases as the amount of the oxide film removed decreases.

《4》.前記項目《1》記載の半導体装置の製造方法において前記工程(b)は以下の下位工程を含む:
(b2)前記パッド電極の表面酸化膜をフッ化水素を含む酸性水溶液により除去する工程;
前記工程(a1)における温度の最適範囲は300度C乃至450度Cである。これは実験結果による。
<< 4 >>. In the method of manufacturing a semiconductor device according to item << 1 >>, the step (b) includes the following sub-steps:
(B2) removing the surface oxide film of the pad electrode with an acidic aqueous solution containing hydrogen fluoride;
The optimum temperature range in the step (a1) is 300 ° C. to 450 ° C. This is based on experimental results.

《5》.前記項目《1》記載の半導体装置の製造方法において、前記パッド電極を構成するアルミニウム系配線材料はアルミニウムに銅を含む配線材料から成り、アルミニウムに銅とシリコンを含む配線材料とは異なる。   << 5 >>. In the method of manufacturing a semiconductor device according to item <1>, the aluminum-based wiring material forming the pad electrode is made of a wiring material containing copper in aluminum, and is different from a wiring material containing copper and silicon in aluminum.

《6》.前記項目《3,4》記載の半導体装置の製造方法において、前記工程(c)では前記バンプ電極を立方体もしくは直方体形状に形成する。リフローを伴う所謂ソルダーバンプに比べて狭ピッチ化し易い。   << 6 >>. In the method of manufacturing a semiconductor device according to the item << 3, 4 >>, in the step (c), the bump electrode is formed in a cubic or rectangular parallelepiped shape. Compared to so-called solder bumps with reflow, it is easy to narrow the pitch.

《7》.前記項目《6》記載の半導体装置の製造方法において、前記工程(c)では前記バンプ電極を30ミクロンメータ以下のピッチで複数個並列に形成する。   << 7 >>. In the method of manufacturing a semiconductor device described in the item << 6 >>, in the step (c), a plurality of the bump electrodes are formed in parallel at a pitch of 30 μm or less.

《8》.別の観点による以下の工程を含む半導体装置の製造方法:
(a)半導体基板上に複数の金属配線層を有する回路を形成し、形成した回路の表面保護膜からパッド電極を露出させる工程;
(b)露出された前記パッド電極の表面酸化膜を除去する工程;
(c)上記工程(b)の後に、前記パッド電極の上にアンダーバンプメタルを介してバンプ電極を電界メッキにより形成する工程;
前記パッド電極は、アルミニウムに銅とシリコンを含む配線材料から成り、
前記複数の金属配線層のうち、前記パッド電極と同一の配線層はアルミニウムに銅とシリコンを含む第1の配線材料から成り、
前記複数の金属配線層のうち、前記パッド電極とは異なる配線層はアルミニウムに銅を含む第2の配線材料から成り前記第1の配線材料とは異なる。
<< 8 >>. A semiconductor device manufacturing method including the following steps according to another aspect:
(A) forming a circuit having a plurality of metal wiring layers on a semiconductor substrate and exposing a pad electrode from a surface protective film of the formed circuit;
(B) removing the exposed surface oxide film of the pad electrode;
(C) After the step (b), a step of forming a bump electrode on the pad electrode through an under bump metal by electroplating;
The pad electrode is made of a wiring material containing copper and silicon in aluminum,
Of the plurality of metal wiring layers, the same wiring layer as the pad electrode is made of a first wiring material containing copper and silicon in aluminum,
Of the plurality of metal wiring layers, a wiring layer different from the pad electrode is made of a second wiring material containing copper in aluminum and is different from the first wiring material.

この製造方法は、前記パッド電極を第1の配線材料にて形成すると、第2の配線材料より形成する場合に比べて、バンプ電極の先端部端面の凹凸の状態が、電極パッドの表面酸化膜除去を行なうRFエッチ又は酸によるエッチングの条件に依存する割合が小さくなる、という実験結果に基づく。例えば、RFエッチによる酸化膜除去厚等の条件依存性が小さくなる。したがって、ウェーハプロセスが同一でバンプ電極の形成プロセスが相違する場合にも、バンプ電極の先端部端面の窪みの大きさがバンプ電極の形成プロセス毎に大きくばらつく状態を緩和若しくは抑止可能になる。要するに、バンプ電極形成プロセスが異なってもバンプ電極先端部の窪みの大きさを均一化するのに資することができる。   In this manufacturing method, when the pad electrode is formed of the first wiring material, the unevenness of the end surface of the bump electrode is larger than that of the second wiring material. This is based on the experimental result that the ratio depending on the conditions of RF etching or acid etching for removing becomes small. For example, the condition dependency such as the oxide film removal thickness by RF etching is reduced. Therefore, even when the wafer process is the same and the bump electrode formation process is different, it is possible to alleviate or inhibit the state in which the size of the depression on the end face of the bump electrode greatly varies for each bump electrode formation process. In short, even if the bump electrode forming process is different, it is possible to contribute to uniforming the size of the depression at the tip of the bump electrode.

《9》.異なる観点による以下の構成含む半導体装置:
(a)半導体基板上に形成された回路;
(b)前記形成された回路の表面保護膜から露出するパッド電極;
(c)前記露出された前記パッド電極の上にアンダーバンプメタルを介して金の電界メッキで形成されたバンプ電極;
前記表面保護膜の厚さは0.6ミクロンメータ以上であり、 前記バンプ電極は、前記表面保護膜に重なる周縁部の最大高さ寸法と、前記表面保護膜とは重なりの無い内側部分の高さの平均値との差が、1ミクロンメータ以下であり、更に前記バンプ電極は各々立方体もしくは直方体形状を有し複数個が並列され、並列ピッチは30ミクロンメータ以下である。
<< 9 >>. Semiconductor devices including the following configurations from different viewpoints:
(A) a circuit formed on a semiconductor substrate;
(B) a pad electrode exposed from a surface protective film of the formed circuit;
(C) a bump electrode formed on the exposed pad electrode by gold electroplating through an under bump metal;
The thickness of the surface protective film is 0.6 micrometer or more, and the bump electrode has a maximum height dimension of a peripheral portion that overlaps the surface protective film and a height of an inner portion that does not overlap the surface protective film. The difference from the average value is 1 micrometer or less. Further, each of the bump electrodes has a cubic or rectangular parallelepiped shape, a plurality of the bump electrodes are arranged in parallel, and the parallel pitch is 30 micrometers or less.

バンプ電極の並列ピッチが30ミクロンメータ以下の狭ピッチとされる上記半導体装置に対しても、導電性ビーズ径が2ミクロンメータ程度の異方性導電性フィルムを用いて実装基板と良好な導電接続を得ることが可能になる。   Even with the above semiconductor device in which the parallel pitch of the bump electrodes is a narrow pitch of 30 μm or less, a conductive connection with the mounting substrate using an anisotropic conductive film having a conductive bead diameter of about 2 μm Can be obtained.

本願において開示される発明のうち代表的なものによって得られる効果を簡単に説明すれば下記の通りである。   The effects obtained by the representative ones of the inventions disclosed in the present application will be briefly described as follows.

すなわち、バンプ電極先端部の窪みの大きさを小さくするのに資することができる半導体装置の製造方法を提供することができる。   That is, it is possible to provide a method for manufacturing a semiconductor device that can contribute to reducing the size of the recess at the tip of the bump electrode.

狭ピッチのバンプ電極であっても異方性導電性フィルムを用いた実装基板との良好な導電接続を得ることができる半導体装置を実現することができる。   Even if it is a bump electrode of a narrow pitch, the semiconductor device which can obtain a favorable conductive connection with the mounting board | substrate using an anisotropic conductive film is realizable.

図1にはバンプ電極を有する半導体装置の部分断面図が示される。同図に示される半導体装置1は、特に制限されないが、配線形成層として4層のアルミニウム配線層を有し、能動素子として絶縁ゲート型の電界効果トランジスタ(以下単にMOSトランジスタとも記す)等を有し、半導体基板2上に所要の回路が形成されている。同図には能動素子として代表的に一つのMOSトランジスタTrが示される。2はp型半導体基板、6はチャネル領域、7,8はソース電極・ドレイン電極とされるn型半導体領域、9はゲート酸化膜、10はゲート電極、11はサイドウォールスペーサである。第1層目のアルミニウム配線層としてソース電極・ドレイン電極に接続される信号配線12,13が例示され、第2層目のアルミニウム配線層として信号配線14,15が例示され、第3層目のアルミニウム配線層として信号配線16が例示され、第4層目のアルミニウム配線層としてパッド電極17が例示される。各配線層は酸化シリコンなどによる層間絶縁膜18で絶縁されている。配線層間での配線の接続はスルーホール19を介して行なわれる。   FIG. 1 is a partial cross-sectional view of a semiconductor device having bump electrodes. The semiconductor device 1 shown in the figure is not particularly limited, but has four aluminum wiring layers as wiring formation layers, and has an insulated gate field effect transistor (hereinafter also simply referred to as a MOS transistor) as an active element. A required circuit is formed on the semiconductor substrate 2. In the figure, one MOS transistor Tr is representatively shown as an active element. 2 is a p-type semiconductor substrate, 6 is a channel region, 7 and 8 are n-type semiconductor regions which are used as source and drain electrodes, 9 is a gate oxide film, 10 is a gate electrode, and 11 is a sidewall spacer. The signal wirings 12 and 13 connected to the source / drain electrodes are exemplified as the first aluminum wiring layer, the signal wirings 14 and 15 are exemplified as the second aluminum wiring layer, and the third layer The signal wiring 16 is exemplified as the aluminum wiring layer, and the pad electrode 17 is exemplified as the fourth aluminum wiring layer. Each wiring layer is insulated by an interlayer insulating film 18 made of silicon oxide or the like. Wiring connections between wiring layers are made through through holes 19.

半導体装置1の表面は表面保護膜(ファイナルパッシベーション膜)で覆われている。表面保護膜は、例えばシリコン窒化膜21及びポリイミド樹脂(PiQ)膜22によって形成される。シリコン窒化膜21及びポリイミド樹脂(PiQ)膜22に代えてリンガラス(PSG)膜等を採用することも可能である。   The surface of the semiconductor device 1 is covered with a surface protective film (final passivation film). The surface protective film is formed of, for example, a silicon nitride film 21 and a polyimide resin (PiQ) film 22. Instead of the silicon nitride film 21 and the polyimide resin (PiQ) film 22, a phosphorus glass (PSG) film or the like may be employed.

前記パッド電極17の表面からは前記表面保護膜が除去され、表面保護膜が除去された開口には、アンダーバンプメタル20を介して電界メッキによりバンプ電極23が形成される。前記アンダーバンプメタル20は、金属パッド17に対するバリアメタル層20Aと、メッキ成長の種子として利用されるシードメタル層20Bから成る。バンプ電極23は金メッキにて立方体もしくは直方体形状に形成される。バリアメタル層20AにはTiW又はTi等を採用可能である。シードメタル層20BにはAu又はPdなどを採用可能である。   The surface protective film is removed from the surface of the pad electrode 17, and a bump electrode 23 is formed by electroplating through the under bump metal 20 in the opening from which the surface protective film has been removed. The under bump metal 20 includes a barrier metal layer 20A for the metal pad 17 and a seed metal layer 20B used as a seed for plating growth. The bump electrode 23 is formed in a cubic or rectangular parallelepiped shape by gold plating. TiW, Ti, or the like can be used for the barrier metal layer 20A. Au or Pd can be used for the seed metal layer 20B.

前記バンプ電極17の先端面には窪み24が生じている。この窪み24は、メッキの等方成長という性質により、メッキの下地形状がトレースされること等によって形成される。例えば、バンプ電極23の側面の高さをH、バンプ電極の中央部の高さをh、窪み24の深さをGとすると、原理的に、Hはhに等しく、Gはアンダーバンプメタル20の厚さにほぼ等しい、という関係を持つことになる。要するに前記窪み24は、表面保護膜21,22に重ならない部位の直上に位置するバンプ電極の表面部分を意味することになる。窪みはバンプ電極23の先端面における段差として把握してもよい。   A recess 24 is formed on the tip surface of the bump electrode 17. The recess 24 is formed by tracing the base shape of the plating due to the property of isotropic growth of plating. For example, if the height of the side surface of the bump electrode 23 is H, the height of the central portion of the bump electrode is h, and the depth of the recess 24 is G, in principle, H is equal to h, and G is the under bump metal 20. It has a relationship that is almost equal to the thickness of In short, the recess 24 means the surface portion of the bump electrode located immediately above the portion that does not overlap the surface protective films 21 and 22. The depression may be grasped as a step on the tip surface of the bump electrode 23.

前記窪み24の表面には、実際には図2に例示されるように多数の微細な凹凸が形成されている。本明細書において、前記窪み24の大きさは以下のように定義する。即ち、基準位置BHに対してバンプ電極23の最大高さ寸法をA、窪み24における基準位置BHからの最大高さをB、窪み24における基準位置BHからの最低高さをCとすると、前記窪み24の大きさ(深さ)Gは、G=A−(B+C)/2で与える。例えばA=15.8ミクロンメータ(μm)、B=15.2μm、C=14.7μmのとき、G=0.85μmとなる。   In practice, a large number of fine irregularities are formed on the surface of the recess 24 as illustrated in FIG. In the present specification, the size of the recess 24 is defined as follows. That is, assuming that the maximum height dimension of the bump electrode 23 with respect to the reference position BH is A, the maximum height of the recess 24 from the reference position BH is B, and the minimum height of the recess 24 from the reference position BH is C. The size (depth) G of the recess 24 is given by G = A− (B + C) / 2. For example, when A = 15.8 micrometers (μm), B = 15.2 μm, and C = 14.7 μm, G = 0.85 μm.

半導体集積回路1においては前記窪み24の大きさを小さくすることが考慮されている。ここでは、前記窪み24の大きさを小さくするのに、アンダーバンプメタルを形成する前に行われる処理、即ち、パッド電極を形成するときの温度やパッド電極17に対する自然酸化膜の除去処理に着目する。パッド電極17に対する自然酸化膜の除去は、その上に形成されるアンダーバンプメタル20との密着性を良好に保つ為に必須とされる処理である。この自然酸化膜の除去に当たって、除去面が荒れるのを極力抑えるのに資することができる方法を採用した。以下にその法方について説明する。   In the semiconductor integrated circuit 1, it is considered to reduce the size of the recess 24. Here, attention is paid to the process performed before forming the under bump metal to reduce the size of the recess 24, that is, the temperature at which the pad electrode is formed and the process of removing the natural oxide film from the pad electrode 17. To do. Removal of the natural oxide film from the pad electrode 17 is an essential process for maintaining good adhesion to the under bump metal 20 formed thereon. In removing the natural oxide film, a method that can contribute to suppressing the roughening of the removal surface as much as possible was adopted. The method is described below.

図3Aは表面保護膜が完成されたウェーハ状態の半導体装置1における図1に対応する部分断面構造が示される。半導体装置1はこの状態でバンプ電極形成工程に受入れられる。バンプ電極形成工程では先ずパッド電極17に対する自然酸化膜の除去処理が行なわれる。この自然酸化膜除去処理は、ウェーハの表面を不活性ガスイオンによりRFエッチする方法、又はフッ酸を含む酸性混合液によりエッチングする方法とされる。   FIG. 3A shows a partial cross-sectional structure corresponding to FIG. 1 in the semiconductor device 1 in a wafer state in which the surface protective film is completed. The semiconductor device 1 is accepted in the bump electrode forming process in this state. In the bump electrode forming step, first, the natural oxide film is removed from the pad electrode 17. This natural oxide film removing process is a method in which the surface of the wafer is RF-etched with inert gas ions, or a method in which the wafer is etched with an acid mixture containing hydrofluoric acid.

前記RFエッチ法では、高真空において例えばアルゴンイオンをパッド電極17に衝突させてその表面の酸化膜を除去する。このとき前記パッド電極17はアルミニウムに銅を含む配線材料(アルミニウム・銅配線材料)から成り、上記配線材料はアルミニウムに銅とシリコンを含む配線材料(アルミニウム・銅・シリコン配線材料)とは異なる配線材料とされる。配線の形成温度は200度C〜450度Cである。配線の形成には例えばスパッタリング法又は蒸着法などを利用すればよい。上記形成温度は半導体装置の表面温度とされる。上記パッド電極17の自然酸化膜は17μm程度であり、前記スパッタリング法によってこれを除去するための除去厚として、例えば酸化シリコン膜換算で15nm又は20nmを採用する。本明細書においてアルミニウム系配線材料の形成温度は、半導体装置それ自体、特にその表面、の設定温度と把握してよい。   In the RF etching method, for example, argon ions collide with the pad electrode 17 in a high vacuum to remove the oxide film on the surface. At this time, the pad electrode 17 is made of a wiring material (aluminum / copper wiring material) containing copper in aluminum, and the wiring material is different from a wiring material (aluminum / copper / silicon wiring material) containing copper and silicon in aluminum. Made of material. The wiring formation temperature is 200 ° C. to 450 ° C. For example, a sputtering method or a vapor deposition method may be used for forming the wiring. The formation temperature is the surface temperature of the semiconductor device. The natural oxide film of the pad electrode 17 is about 17 μm, and a removal thickness for removing it by the sputtering method is, for example, 15 nm or 20 nm in terms of a silicon oxide film. In this specification, the formation temperature of the aluminum-based wiring material may be grasped as the set temperature of the semiconductor device itself, particularly the surface thereof.

前記酸性溶液によるエッチング法では、例えばフッ化水素(HF)、フッ化アンモニウム(NHF)及び酢酸(CHCOOH)を含む水溶液を用いて、パッド電極17表面のエッチングを行なう。 In the etching method using the acidic solution, the surface of the pad electrode 17 is etched using, for example, an aqueous solution containing hydrogen fluoride (HF), ammonium fluoride (NH 4 F), and acetic acid (CH 3 COOH).

図4Aには金メッキにてバンプ電極23を形成したときのアルミニウム系配線材料の形成温度と、自然酸化膜除去処理条件と、窪み24の大きさとの関係が実験例として示される。同図に示される例はアルミニウム・銅配線材料から構成されたパッド電極17を用いた。L1の傾向線で示される第1の実験例はアルゴンイオンの衝突により酸化シリコン膜換算で25nmを除去した場合である。L2の傾向線で示される第2の実験例はアルゴンイオンの衝突により酸化シリコン膜換算で20nmを除去した場合である。L3の傾向線で示される第3の実験例はアルゴンイオンの衝突により酸化シリコン膜換算で15nmを除去した場合である。L4の傾向線で示される第4の実験例はフッ化水素(HF)、フッ化アンモニウム(NHF)及び酢酸(CHCOOH)を含む水溶液を用いてエッチングを行なった場合である。 FIG. 4A shows, as an experimental example, the relationship between the formation temperature of the aluminum-based wiring material when the bump electrode 23 is formed by gold plating, the natural oxide film removal treatment condition, and the size of the recess 24. In the example shown in the figure, a pad electrode 17 made of an aluminum / copper wiring material is used. The first experimental example indicated by the trend line of L1 is a case where 25 nm in terms of silicon oxide film is removed by collision of argon ions. The second experimental example indicated by the trend line of L2 is a case where 20 nm in terms of silicon oxide film is removed by collision of argon ions. The third experimental example indicated by the trend line of L3 is a case where 15 nm in terms of silicon oxide film is removed by collision of argon ions. A fourth experimental example indicated by a trend line of L4 is a case where etching is performed using an aqueous solution containing hydrogen fluoride (HF), ammonium fluoride (NH 4 F), and acetic acid (CH 3 COOH).

図4Aの実験結果より、アルミニウム系配線材料の形成温度が高いほど窪みの大きさGは小さくなった。これは、アルミニウム系配線材料の形成するときの温度が高くなると、形成単位とされる粒が大きくなり、粒が大きくなると粒界の面積が全体として少なくなり、酸化膜除去後の表面の凹凸が少なくなるからであると考えられる。また、RFエッチによる削り量が少ないほど窪みの大きさGは小さくなった。これはイオン衝撃を受けるほど表面の荒れが蓄積されるので、除去量が少ないほど除去後の表面の凹凸が少なくなるからであると考えられる。例えば目標とするバンプ電極23の窪み24の大きさGを1μm以下とする場合には、酸性溶液によるエッチング法ではアルミニウム系配線材料の形成温度を300度C以上、RFエッチ法では除去量が酸化シリコン膜換算で20nm以下で代表されるようにアルミニウム酸化膜を除去できる範囲で少ない方がよい、という結果を得た。図3Aで説明したパッド電極17の自然酸化膜除去処理はその条件を考慮したものである。   From the experimental results shown in FIG. 4A, the size G of the dent was smaller as the formation temperature of the aluminum-based wiring material was higher. This is because when the temperature at which the aluminum-based wiring material is formed increases, the grains that form the unit increase, and when the grains increase, the area of the grain boundary decreases as a whole, and the unevenness of the surface after removal of the oxide film is reduced. This is thought to be because it decreases. In addition, the size G of the dent became smaller as the amount of scraping by RF etching was smaller. This is presumably because surface roughness increases as the ion bombardment is applied, so that the smaller the removal amount, the less the surface irregularities after removal. For example, when the target size G of the recess 24 of the bump electrode 23 is set to 1 μm or less, the formation temperature of the aluminum-based wiring material is 300 ° C. or more in the etching method using an acidic solution, and the removal amount is oxidized in the RF etching method As represented by 20 nm or less in terms of silicon film, the result is that it is better that the aluminum oxide film is smaller within the range that can be removed. The natural oxide film removal process of the pad electrode 17 described with reference to FIG. 3A takes the condition into consideration.

図4Bには金メッキにてバンプ電極23を形成したときのアルミニウム系配線材料の形成温度と、自然酸化膜除去処理条件と、窪み24の大きさとの関係が別の実験結果に基づいて示される。同図に示される例はアルミニウム・銅・シリコン配線材料から構成されたパッド電極17を用いた点が図4Aの実験条件とは相違される。この実験例では、削り量等の処理の相違による窪み量Gに大差はなかった。これは、アルミニウム・銅・シリコン配線材料から構成されたパッド電極17はアルミニウム・銅配線材料から構成されたパッド電極に比べて硬いので、酸化膜除去時における削り量の相違は表面の荒れに実質的な影響を与え難いからであると考えられる。温度による影響は図4Aと同じ傾向を持つ。この実験結果より、アルミニウム・銅・シリコン配線材料から構成されたパッド電極17を用いれば、バンプ電極23の窪み24の大きさが、電極パッド17の表面酸化膜除去を行なうRFエッチ又は酸によるエッチングの条件に依存する割合が小さくなり、ウェーハプロセスが同一でバンプ電極23の形成プロセスが相違する場合にも、バンプ電極23の窪み24の大きさがバンプ電極23の形成プロセス毎に大きくばらつく状態を緩和若しくは抑止可能になる。   FIG. 4B shows the relationship between the formation temperature of the aluminum-based wiring material when the bump electrode 23 is formed by gold plating, the natural oxide film removal treatment condition, and the size of the recess 24 based on another experimental result. The example shown in the figure is different from the experimental condition of FIG. 4A in that a pad electrode 17 made of an aluminum / copper / silicon wiring material is used. In this experimental example, there was no great difference in the amount of depression G due to the difference in processing such as the amount of cutting. This is because the pad electrode 17 made of aluminum / copper / silicon wiring material is harder than the pad electrode made of aluminum / copper wiring material. This is thought to be because it is difficult to exert a positive influence. The effect of temperature has the same tendency as in FIG. 4A. From this experimental result, if the pad electrode 17 made of an aluminum / copper / silicon wiring material is used, the size of the recess 24 of the bump electrode 23 is determined by RF etching or acid etching for removing the surface oxide film of the electrode pad 17. Even when the wafer process is the same and the formation process of the bump electrode 23 is different, the size of the depression 24 of the bump electrode 23 varies greatly for each formation process of the bump electrode 23. Can be mitigated or deterred.

図3B乃至図3Fには前記パッド電極17に対する自然酸化膜の除去処理に続くバンプ電極形成までの製造プロセスを順を追って説明するための断面図が示される。   3B to 3F are cross-sectional views for explaining the manufacturing process up to the formation of the bump electrode subsequent to the removal process of the natural oxide film on the pad electrode 17 in order.

自然酸化膜の除去処理の後、図3Bのように、アンダーバンプメタル20をウェーハ表面の全面にスパッタリングにて堆積する。例えばアンバーバンプメタル20として、バリアメタル層20AにはTiを採用し、シードメタル層20BにはPdを採用する。この後、図3Cのようにアンダーバンプメタル20の上に例えばポジ型のホトレジストを塗布し、バンプ電極を形成する部分を除いて露光し、未露光部分にレジストパターン25を残す。次に、図3Dのように、残ったレジストパターン25から露出されるアンダーバンプメタル20の上に電界メッキにより金をメッキし、バンプ電極23を形成する。次にウェーハの表面からレジストパターン25を除去し(図3E)、表面に露出しているアンダーバンプメタル20をエッチングにて除去する(図3F)。この後、形成されたバンプ電極20に対して硬度を下げるためのアニールを行なう。   After the removal process of the natural oxide film, as shown in FIG. 3B, the under bump metal 20 is deposited on the entire surface of the wafer by sputtering. For example, as the amber bump metal 20, Ti is adopted for the barrier metal layer 20A, and Pd is adopted for the seed metal layer 20B. After that, as shown in FIG. 3C, for example, a positive type photoresist is applied on the under bump metal 20 and exposed except for a portion where the bump electrode is formed, leaving a resist pattern 25 in the unexposed portion. Next, as shown in FIG. 3D, gold is plated on the under bump metal 20 exposed from the remaining resist pattern 25 by electroplating to form the bump electrode 23. Next, the resist pattern 25 is removed from the surface of the wafer (FIG. 3E), and the under bump metal 20 exposed on the surface is removed by etching (FIG. 3F). Thereafter, the formed bump electrode 20 is annealed to reduce the hardness.

図5には前記半導体装置の実装形態が例示される。同図において半導体装置1は液晶ドライバLSIとされる。ガラス基板30にはTFT(薄膜トランジスタ)型の液晶ディスプレイ31が形成され、液晶ディスプレイ31の駆動端子に接続する多数の実装用配線パターン32が形成されている。実装用配線パターン32には異方性導電性フィルムを挟んで前記半導体装置1の対応するボンディングパッドが電気的に結合されている。この種の実装形態はCOG実装と称される。   FIG. 5 illustrates a mounting form of the semiconductor device. In the figure, the semiconductor device 1 is a liquid crystal driver LSI. A thin film transistor (TFT) type liquid crystal display 31 is formed on the glass substrate 30, and a number of wiring patterns 32 for mounting connected to the drive terminals of the liquid crystal display 31 are formed. A corresponding bonding pad of the semiconductor device 1 is electrically coupled to the mounting wiring pattern 32 with an anisotropic conductive film interposed therebetween. This type of implementation is referred to as COG implementation.

図6Aには実装用配線パターン32と前記半導体装置1の対応するボンディングパッドとの間に異方性導電性フィルムを介在させた実装完了前の状態が示され、図6Bには実装完了後の状態が示される。   FIG. 6A shows a state before the completion of mounting in which an anisotropic conductive film is interposed between the wiring pattern 32 for mounting and the corresponding bonding pad of the semiconductor device 1, and FIG. 6B shows the state after the completion of mounting. The status is indicated.

異方性導電性フィルム34は、特に制限されないが、接着剤層34Aと導電粒子層34Bの2層構造とされる。導電粒子層34Bのみの単層であってもよい。導電粒子層34Bには樹脂の中に多数の導電粒子として導電性ビーズ35が混入されている。導電性ビーズ35は中心部に樹脂を核として有し、その周りを金属殻で覆い、更にその外側を樹脂殻で覆った構成を有し、外から所定以上の圧力が作用されると外側の樹脂殻が破れて金属殻が露出されるようになっている。金属殻が露出したとき導電性ビーズ35の外径は当然小さくなる。1層構造の場合、導電粒子層34Bの樹脂は接着剤を兼ねる。したがって、2層構造は単層構造に比べてバンプ電極による導電粒子捕捉率が上がるように導電粒子層34Bの樹脂の特性がチューニングされている。   The anisotropic conductive film 34 is not particularly limited, but has a two-layer structure of an adhesive layer 34A and a conductive particle layer 34B. A single layer of only the conductive particle layer 34B may be used. In the conductive particle layer 34B, conductive beads 35 are mixed in the resin as a large number of conductive particles. The conductive bead 35 has a resin core at the center, is covered with a metal shell, and is further covered with a resin shell. When a predetermined pressure is applied from the outside, The resin shell is broken and the metal shell is exposed. When the metal shell is exposed, the outer diameter of the conductive beads 35 is naturally reduced. In the case of a single layer structure, the resin of the conductive particle layer 34B also serves as an adhesive. Therefore, the resin characteristics of the conductive particle layer 34B are tuned so that the two-layer structure has a higher conductive particle capture rate by the bump electrode than the single-layer structure.

図6Aの状態から半導体装置1を押圧すると、バンプ電極23に押されて接着剤層34Aが側方に流れ出し、導電粒子層34Bの導電性ビーズ35がバンプ電極23の先端面と実装用配線パターン32との間に挟まれてつぶされ、導電性ビーズ35の金属殻がバンプ電極23の先端面と実装用配線パターン32の双方に接触することにより、両者の電気的接続が達成され、且つ接着剤層34Aの接着力によりガラス基板30に対する半導体装置1の実装状態が維持される。   When the semiconductor device 1 is pressed from the state shown in FIG. 6A, the adhesive layer 34A flows to the side by being pressed by the bump electrode 23, and the conductive beads 35 of the conductive particle layer 34B are connected to the front end surface of the bump electrode 23 and the mounting wiring pattern. When the metal shell of the conductive bead 35 is brought into contact with both the front end surface of the bump electrode 23 and the mounting wiring pattern 32, electrical connection between them is achieved and adhesion is achieved. The mounting state of the semiconductor device 1 on the glass substrate 30 is maintained by the adhesive force of the agent layer 34A.

導電性ビーズ35の金属殻がバンプ電極23の先端面と実装用配線パターン32の双方に接触して、全てのボンディングパッドで良好な電気的接触を達成するためには、窪み24の大きさは導電性ビーズ35の直径からそのつぶれ代を差し引いた値よりも小さくなければならない。このとき、半導体装置1のバンプ電極の並列ピッチは30μmであり、そのような狭ピッチにおいて導電性ビーズ35の外径は2μm程度が最適とされる。バンプ電極の狭ピッチにおいて導電性ビーズ35の外径が大き過ぎると、隣接するボンディングパッド間の絶縁が不良になる虞があり、また、小さ過ぎれば、前記窪みの大きさとの関係で導電性ビーズ35をつぶすことが出来なくなってしまう。前記アンダーバンプメタル20を形成するときの前処理で説明した通り、半導体装置1では、アルミニウム系配線材料の形成温度、アルミニウム系配線材料より成るパッド電極17に対する自然酸化膜の除去量を制御することによって窪みの大きさGを1μm以下としている。したがって、粒径が大凡2μmの導電性ビーズ35を持つ異方性導電性フィルム34を用いたCOG実装において半導体装置1と液晶ディスプレイ31との良好な電気的接続を保証することができる。   In order for the metal shell of the conductive beads 35 to contact both the front end surface of the bump electrode 23 and the mounting wiring pattern 32 to achieve good electrical contact with all the bonding pads, the size of the recess 24 is It must be smaller than the value obtained by subtracting the collapse allowance from the diameter of the conductive beads 35. At this time, the parallel pitch of the bump electrodes of the semiconductor device 1 is 30 μm, and at such a narrow pitch, the outer diameter of the conductive beads 35 is optimally about 2 μm. If the outer diameter of the conductive beads 35 is too large at a narrow pitch of the bump electrodes, there is a risk that the insulation between adjacent bonding pads may be poor, and if it is too small, the conductive beads 35 are related to the size of the recess. 35 can no longer be crushed. As described in the pretreatment when forming the under bump metal 20, in the semiconductor device 1, the formation temperature of the aluminum wiring material and the removal amount of the natural oxide film with respect to the pad electrode 17 made of the aluminum wiring material are controlled. Therefore, the size G of the depression is set to 1 μm or less. Therefore, it is possible to ensure good electrical connection between the semiconductor device 1 and the liquid crystal display 31 in COG mounting using the anisotropic conductive film 34 having the conductive beads 35 having a particle diameter of approximately 2 μm.

半導体装置1において、実際に、目標とする窪みの大きさGが決まるときは、図4Aの実験結果から予測されるアルミニウム系配線材料の形成温度及びRFエッチ量、酸によるエッチング量で酸化膜除去処理を行なえばよい。例えば、目標とする窪みの大きさGを1μmとするとき、アルミニウム系配線材料の形成温度400度Cで、前記混合酸性溶液を用いてエッチング処理を行ない、或いはアルミニウム系配線材料の形成温度300度Cで酸化シリコン膜換算20nmのRFエッチを行なって、酸化膜を除去すればよい。図4Aの実験結果は0.18μmプロセス世代で製造される半導体装置において保護膜厚が0.6μmの場合とされるが、その他に、0.18μmプロセス世代で製造される半導体装置において保護膜厚が0.6μmよりも厚い場合にはさらにアルミニウム系配線材料の形成温度を高くし、酸化膜除去量を減らして凹凸の発生を抑えるようにすればよい。また、0.35μmプロセス世代で製造される半導体装置では配線ピッチが広いのでこれに応じてバンプ電極の配列ピッチは大きくてもよく、導電性ビーズの粒径が大きくなっても隣接バンプ電極間のリークの虞もないので、窪みは0.18μmプロセス世代で製造される半導体装置の場合よりも大きくてよい。このような場合にはアルミニウム系配線材料の形成に適用する温度範囲は200度Cから450度Cのように広くても、またエッチングによるパッド電極上の自然酸化膜除去量が多くなってもよい。要するに、自然酸化膜除去のエッチング条件をラフにしてもよい。アルミニウム系配線材料の形成温度条件に関して言えば、先端的なプロセス世代に限定しなければ200度C〜400度C、0.18μmプロセス世代でのような先端的なプロセス世代に限定すれば300度C〜450度C、0.13μmプロセス世代でのような将来のプロセス世代を考慮すれば350度C〜450度C、というように、高温側に条件を狭めるようにすればよい。   In the semiconductor device 1, when the target recess size G is actually determined, the oxide film is removed by the formation temperature of the aluminum-based wiring material, the RF etch amount, and the etching amount by acid predicted from the experimental result of FIG. 4A. What is necessary is just to process. For example, when the target recess size G is 1 μm, etching is performed using the mixed acidic solution at an aluminum wiring material forming temperature of 400 ° C., or an aluminum wiring material forming temperature of 300 ° C. The oxide film may be removed by performing RF etching of 20 nm in terms of silicon oxide film with C. The experimental result of FIG. 4A is that the protective film thickness is 0.6 μm in the semiconductor device manufactured in the 0.18 μm process generation. In addition, the protective film thickness is in the semiconductor device manufactured in the 0.18 μm process generation. If the thickness is larger than 0.6 μm, the formation temperature of the aluminum-based wiring material may be further increased to reduce the oxide film removal amount to suppress the occurrence of unevenness. Moreover, since the wiring pitch is wide in the semiconductor device manufactured in the 0.35 μm process generation, the arrangement pitch of the bump electrodes may be large according to this, and even if the particle size of the conductive beads is large, the gap between the adjacent bump electrodes is large. Since there is no risk of leakage, the recess may be larger than in the case of a semiconductor device manufactured in a 0.18 μm process generation. In such a case, the temperature range applied to the formation of the aluminum-based wiring material may be as wide as 200 ° C. to 450 ° C., or the natural oxide film removal amount on the pad electrode by etching may be increased. . In short, the etching conditions for removing the natural oxide film may be rough. Regarding the formation temperature condition of the aluminum-based wiring material, if it is not limited to the advanced process generation, it is 200 degrees C to 400 degrees C. If it is limited to the advanced process generation such as 0.18 μm process generation, it is 300 degrees. Considering future process generations such as C to 450 ° C. and 0.13 μm process generation, the conditions may be narrowed to the high temperature side such as 350 ° C. to 450 ° C.

以上本発明者によってなされた発明を実施形態に基づいて具体的に説明したが、本発明はそれに限定されるものではなく、その要旨を逸脱しない範囲において種々変更可能であることは言うまでもない。   Although the invention made by the present inventor has been specifically described based on the embodiments, it is needless to say that the present invention is not limited thereto and can be variously modified without departing from the gist thereof.

例えば、半導体装置の表面保護膜の種類は上記に限定されず、PiQを省くなど、適宜変更可能である。また、RFエッチによる自然酸化膜の除去は、その他のドライ洗浄法に置換え可能である。アルミニウム・銅配線材料から成るパッド電極はSi以外のその他の金属が含有してもよい。銅の配合は1%に限定されない。バンプ電極の配列ピッチは30μmに限定されない。例えば40μm以下のような配列ピッチであってもよい。表面保護膜の厚さは1.3μmであっても、0.6μmであっても、その他の厚さであってもよい。窪みの目標値は1.5μm、1.0μm、0.8μm、或いはその他の値であってもよい。本発明に係る半導体装置は、LCDドライバLSIに限定されず、マイクロコンピュータ、アクセラレータ、メモリ等、種々の半導体装置に適用可能である。   For example, the type of the surface protective film of the semiconductor device is not limited to the above, and can be appropriately changed such as omitting PiQ. The removal of the natural oxide film by RF etching can be replaced with other dry cleaning methods. The pad electrode made of an aluminum / copper wiring material may contain other metals other than Si. The blending of copper is not limited to 1%. The arrangement pitch of the bump electrodes is not limited to 30 μm. For example, the arrangement pitch may be 40 μm or less. The thickness of the surface protective film may be 1.3 μm, 0.6 μm, or any other thickness. The target value of the depression may be 1.5 μm, 1.0 μm, 0.8 μm, or other values. The semiconductor device according to the present invention is not limited to the LCD driver LSI, and can be applied to various semiconductor devices such as a microcomputer, an accelerator, and a memory.

バンプ電極を有する半導体装置の部分縦断面図である。It is a fragmentary longitudinal cross-sectional view of the semiconductor device which has a bump electrode. バンプ電極先端面における窪みの段差寸法の定義を説明するための波形図である。It is a wave form diagram for demonstrating the definition of the level | step difference dimension of the hollow in a bump electrode front end surface. 表面保護膜が完成されたウェーハ状態の半導体装置における図1に対応する縦断面図である。It is a longitudinal cross-sectional view corresponding to FIG. 1 in the semiconductor device of the wafer state in which the surface protective film was completed. パッド電極に対する自然酸化膜の除去処理に続いてアンダーバンプメタルをウェーハ表面の全面にスパッタリングにて堆積した状態を示す図1に対応する縦断面図である。It is a longitudinal cross-sectional view corresponding to FIG. 1 which shows the state which deposited the under bump metal on the whole surface of the wafer surface by sputtering following the removal process of the natural oxide film with respect to a pad electrode. アンダーバンプメタルの上にポジ型のホトレジストを塗布してレジストパターンを残した状態を示す図1に対応する縦断面図である。2 is a longitudinal sectional view corresponding to FIG. 1 showing a state in which a positive photoresist is applied on an under bump metal and a resist pattern is left. FIG. レジスタパターンから露出されるアンダーバンプメタルの上に電界メッキにより金をメッキしてバンプ電極を形成した状態を示す図1に対応する縦断面図である。It is a longitudinal cross-sectional view corresponding to FIG. 1 which shows the state which plated gold by the electroplating on the under bump metal exposed from a register pattern, and formed the bump electrode. ウェーハの表面からレジストパターン25を除去した状態を示す図1に対応する縦断面図である。It is a longitudinal cross-sectional view corresponding to FIG. 1 which shows the state which removed the resist pattern 25 from the surface of the wafer. 表面に露出しているアンダーバンプメタルをエッチングにて除去した状態を示す図1に対応する縦断面図である。It is a longitudinal cross-sectional view corresponding to FIG. 1 which shows the state which removed the under bump metal exposed on the surface by etching. 金メッキにてバンプ電極を形成したときのアルミニウム系配線材料の形成温度と自然酸化膜除去処理条件と窪みの寸法との関係を示す実験結果の説明図である。It is explanatory drawing of the experimental result which shows the relationship between the formation temperature of the aluminum-type wiring material when a bump electrode is formed by gold plating, the natural oxide film removal process conditions, and the dimension of a hollow. 金メッキにてバンプ電極を形成したときのアルミニウム系配線材料の形成温度と自然酸化膜除去処理条件と窪みの寸法との関係を示す別の実験結果の説明図である。It is explanatory drawing of another experimental result which shows the relationship between the formation temperature of the aluminum-type wiring material when forming a bump electrode by gold plating, the natural oxide film removal process conditions, and the dimension of a hollow. 半導体装置の実装形態を例示する正面図である。It is a front view which illustrates the mounting form of a semiconductor device. 実装用配線パターンと半導体装置の対応するボンディングパッドとの間に異方性導電性フィルムを介在させた実装完了前の状態を示す縦断面図である。It is a longitudinal cross-sectional view which shows the state before the completion of mounting which interposed the anisotropic conductive film between the wiring pattern for mounting, and the corresponding bonding pad of a semiconductor device. 実装用配線パターンと半導体装置の対応するボンディングパッドとの間に異方性導電性フィルムを介在させた実装完了後の状態を示す縦断面図である。It is a longitudinal cross-sectional view which shows the state after the completion of mounting which interposed the anisotropic conductive film between the wiring pattern for mounting, and the corresponding bonding pad of a semiconductor device.

符号の説明Explanation of symbols

1 半導体装置
2 半導体基板
12,13 第1層目のアルミニウム配線層に形成された信号配線
14,15 第2層目のアルミニウム配線層に形成された信号配線
16 第3層目のアルミニウム配線層に形成された信号配線
17 第4層目のアルミニウム配線層に形成されたパッド電極
20 アンダーバンプメタル
20A バリアメタル層
20B シードメタル層
21 表面保護膜を構成するシリコン窒化膜
22 表面保護膜を構成するポリイミド樹脂膜
23 バンプ電極
24 窪み
30 ガラス基板
31 液晶ディスプレイ
32 実装用配線パターン
34 異方性導電性フィルム
34A 接着剤層
34B 導電粒子層
35 導電性ビーズ
DESCRIPTION OF SYMBOLS 1 Semiconductor device 2 Semiconductor substrate 12, 13 Signal wiring formed in the first aluminum wiring layer 14, 15 Signal wiring formed in the second aluminum wiring layer 16 In the third aluminum wiring layer Signal wiring formed 17 Pad electrode formed on the fourth aluminum wiring layer 20 Under bump metal 20A Barrier metal layer 20B Seed metal layer 21 Silicon nitride film constituting the surface protective film 22 Polyimide constituting the surface protective film Resin film 23 Bump electrode 24 Dimple 30 Glass substrate 31 Liquid crystal display 32 Wiring pattern for mounting 34 Anisotropic conductive film 34A Adhesive layer 34B Conductive particle layer 35 Conductive bead

Claims (9)

以下の工程を含む半導体装置の製造方法:
(a)半導体基板上に回路を形成し、形成した前記回路の表面保護膜から、アルミニウム系配線材料より成るパッド電極を露出させる工程;
(b)露出された前記パッド電極の表面酸化膜を除去する工程;
(c)前記工程(b)の後に、前記パッド電極の上にアンダーバンプメタルを介してバンプ電極を電界メッキにより形成する工程;
前記工程(a)は以下の下位工程を含む:
(a1)200度C乃至450度Cの温度で前記アルミニウム系配線材料より成るパッド電極を形成する工程。
A semiconductor device manufacturing method including the following steps:
(A) forming a circuit on a semiconductor substrate and exposing a pad electrode made of an aluminum-based wiring material from a surface protective film of the formed circuit;
(B) removing the exposed surface oxide film of the pad electrode;
(C) After the step (b), a step of forming a bump electrode on the pad electrode through an under bump metal by electroplating;
Said step (a) comprises the following substeps:
(A1) A step of forming a pad electrode made of the aluminum-based wiring material at a temperature of 200 ° C. to 450 ° C.
請求項1記載の半導体装置の製造方法において前記工程(b)は以下の下位工程を含む:
(b1)前記パッド電極の表面酸化膜をRFエッチにより除去する工程。
2. The method of manufacturing a semiconductor device according to claim 1, wherein the step (b) includes the following sub-steps:
(B1) A step of removing the surface oxide film of the pad electrode by RF etching.
請求項2記載の半導体装置の製造方法において、前記RFエッチにより除去する厚さは酸化シリコン膜換算で大凡15〜20ナノメータである。 3. The method of manufacturing a semiconductor device according to claim 2, wherein a thickness removed by the RF etching is about 15 to 20 nanometers in terms of a silicon oxide film. 請求項1記載の半導体装置の製造方法において前記工程(b)は以下の下位工程を含む:
(b2)前記パッド電極の表面酸化膜をフッ化水素を含む酸性水溶液により除去する工程;
前記工程(a1)における温度は300度C乃至450度Cである。
2. The method of manufacturing a semiconductor device according to claim 1, wherein the step (b) includes the following sub-steps:
(B2) removing the surface oxide film of the pad electrode with an acidic aqueous solution containing hydrogen fluoride;
The temperature in the step (a1) is 300 ° C. to 450 ° C.
請求項1記載の半導体装置の製造方法において、
前記パッド電極を構成するアルミニウム系配線材料は、アルミニウムに銅を含む配線材料から成り、アルミニウムに銅とシリコンを含む配線材料とは異なる。
In the manufacturing method of the semiconductor device according to claim 1,
The aluminum-based wiring material constituting the pad electrode is made of a wiring material containing copper in aluminum, and is different from a wiring material containing copper and silicon in aluminum.
請求項3又は4記載の半導体装置の製造方法において、前記工程(c)では前記バンプ電極を立方体もしくは直方体形状に形成する。 5. The method of manufacturing a semiconductor device according to claim 3, wherein in the step (c), the bump electrode is formed in a cubic or rectangular parallelepiped shape. 請求項6記載の半導体装置の製造方法において、前記工程(c)では前記バンプ電極を40ミクロンメータ以下のピッチで複数個並列に形成する。 7. The method of manufacturing a semiconductor device according to claim 6, wherein in the step (c), a plurality of the bump electrodes are formed in parallel at a pitch of 40 microns or less. 以下の工程を含む半導体装置の製造方法:
(a)半導体基板上に複数の金属配線層を有する回路を形成し、形成した回路の表面保護膜からパッド電極を露出させる工程;
(b)露出された前記パッド電極の表面酸化膜を除去する工程;
(c)上記工程(b)の後に、前記パッド電極の上にアンダーバンプメタルを介してバンプ電極を電界メッキにより形成する工程;
前記パッド電極は、アルミニウムに銅とシリコンを含む配線材料から成り、
前記複数の金属配線層のうち、前記パッド電極と同一の配線層はアルミニウムに銅とシリコンを含む第1の配線材料から成り、
前記複数の金属配線層のうち、前記パッド電極とは異なる配線層はアルミニウムに銅を含む第2の配線材料から成り前記第1の配線材料とは異なる。
A semiconductor device manufacturing method including the following steps:
(A) forming a circuit having a plurality of metal wiring layers on a semiconductor substrate and exposing a pad electrode from a surface protective film of the formed circuit;
(B) removing the exposed surface oxide film of the pad electrode;
(C) After the step (b), a step of forming a bump electrode on the pad electrode through an under bump metal by electroplating;
The pad electrode is made of a wiring material containing copper and silicon in aluminum,
Of the plurality of metal wiring layers, the same wiring layer as the pad electrode is made of a first wiring material containing copper and silicon in aluminum,
Of the plurality of metal wiring layers, a wiring layer different from the pad electrode is made of a second wiring material containing copper in aluminum and different from the first wiring material.
以下の構成含む半導体装置:
(a)半導体基板上に形成された回路;
(b)前記形成された回路の表面保護膜から露出するパッド電極;
(c)前記露出された前記パッド電極の上にアンダーバンプメタルを介して金の電界メッキで形成されたバンプ電極;
前記表面保護膜の厚さは0.6ミクロンメータ以上であり、
前記バンプ電極は、前記表面保護膜に重なる周縁部の最大高さ寸法と、前記表面保護膜とは重なりの無い内側部分の高さの平均値との差が、1ミクロンメータ以下であり、
更に前記バンプ電極は各々立方体形状を有し複数個が並列され、並列ピッチは30ミクロンメータ以下である。
A semiconductor device including the following configuration:
(A) a circuit formed on a semiconductor substrate;
(B) a pad electrode exposed from a surface protective film of the formed circuit;
(C) a bump electrode formed on the exposed pad electrode by gold electroplating through an under bump metal;
The thickness of the surface protective film is 0.6 micrometer or more,
The bump electrode, the difference between the maximum height dimension of the peripheral edge overlapping the surface protective film and the average value of the height of the inner portion that does not overlap the surface protective film is 1 micrometer or less,
Further, each of the bump electrodes has a cubic shape, and a plurality of the bump electrodes are arranged in parallel, and the parallel pitch is 30 micrometers or less.
JP2004173910A 2004-06-11 2004-06-11 Manufacturing method of semiconductor device Expired - Fee Related JP4716400B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004173910A JP4716400B2 (en) 2004-06-11 2004-06-11 Manufacturing method of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004173910A JP4716400B2 (en) 2004-06-11 2004-06-11 Manufacturing method of semiconductor device

Publications (2)

Publication Number Publication Date
JP2005353891A true JP2005353891A (en) 2005-12-22
JP4716400B2 JP4716400B2 (en) 2011-07-06

Family

ID=35588087

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004173910A Expired - Fee Related JP4716400B2 (en) 2004-06-11 2004-06-11 Manufacturing method of semiconductor device

Country Status (1)

Country Link
JP (1) JP4716400B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03148847A (en) * 1989-11-06 1991-06-25 Fuji Electric Co Ltd Manufacture of semiconductor element
JP2001107254A (en) * 1999-10-05 2001-04-17 Fujitsu Ltd DEPOSITION METHOD OF Ni ELECTRODE LAYER
JP2001110833A (en) * 1999-10-06 2001-04-20 Matsushita Electronics Industry Corp Semiconductor device
JP2002026054A (en) * 2000-07-12 2002-01-25 Seiko Epson Corp Method for fabricating semiconductor device
JP2003124246A (en) * 2001-10-12 2003-04-25 Sharp Corp Semiconductor device and manufacturing method thereof
JP2003174056A (en) * 2001-12-07 2003-06-20 Murata Mfg Co Ltd Electronic part element, manufacturing method therefor and electronic part device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03148847A (en) * 1989-11-06 1991-06-25 Fuji Electric Co Ltd Manufacture of semiconductor element
JP2001107254A (en) * 1999-10-05 2001-04-17 Fujitsu Ltd DEPOSITION METHOD OF Ni ELECTRODE LAYER
JP2001110833A (en) * 1999-10-06 2001-04-20 Matsushita Electronics Industry Corp Semiconductor device
JP2002026054A (en) * 2000-07-12 2002-01-25 Seiko Epson Corp Method for fabricating semiconductor device
JP2003124246A (en) * 2001-10-12 2003-04-25 Sharp Corp Semiconductor device and manufacturing method thereof
JP2003174056A (en) * 2001-12-07 2003-06-20 Murata Mfg Co Ltd Electronic part element, manufacturing method therefor and electronic part device

Also Published As

Publication number Publication date
JP4716400B2 (en) 2011-07-06

Similar Documents

Publication Publication Date Title
US5631499A (en) Semiconductor device comprising fine bump electrode having small side etch portion and stable characteristics
US20060175686A1 (en) Semiconductor device and fabrication method thereof
US6847117B2 (en) Semiconductor device including a passivation film to cover directly an interface of a bump and an intermediated layer
US20090200664A1 (en) Manufacturing method of semiconductor apparatus and semiconductor apparatus
US20050242446A1 (en) Integrated circuit package with different hardness bump pad and bump and manufacturing method therefor
JP2005116632A (en) Semiconductor device and manufacturing method thereof
JP2003203940A (en) Semiconductor chip and wiring base board and manufacturing method of them, semiconductor wafer, semiconductor device, circuit base board and electronic instrument
JP2010508673A (en) Metallization layer stack without terminal aluminum metal layer
US20130256871A1 (en) Semiconductor chip device with fragmented solder structure pads
JP3459234B2 (en) Semiconductor device and manufacturing method thereof
US20170358545A1 (en) Semiconductor device and method of fabricating the same
US20080017993A1 (en) Semiconductor device and method of manufacturing the same
US20040222520A1 (en) Integrated circuit package with flat metal bump and manufacturing method therefor
US20080197490A1 (en) Conductive structure for a semiconductor integrated circuit and method for forming the same
JP4716400B2 (en) Manufacturing method of semiconductor device
CN109346419B (en) Semiconductor device and method for manufacturing the same
JPH09199505A (en) Semiconductor device and its manufacture
US20110291270A1 (en) Manufacturing method of semiconductor device, and mounting structure thereof
US20080174011A1 (en) Semiconductor structure and method for forming the same
JP3147698B2 (en) Bump electrode and manufacturing method thereof
KR100848741B1 (en) Semiconductor device and manufacturing method thereof
TW202030846A (en) Semiconductor device and manufacturing method
KR20080030011A (en) Semiconductor device and manufacturing method thereof
JP4702827B2 (en) Semiconductor device and manufacturing method thereof
TWI240342B (en) Aluminum cap for reducing scratch and wire-bond bridging of bond pads

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100223

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100416

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100507

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110304

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110324

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110325

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140408

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees