JP2005353797A - Semiconductor substrate and method for exposure by charged-particle beam - Google Patents

Semiconductor substrate and method for exposure by charged-particle beam Download PDF

Info

Publication number
JP2005353797A
JP2005353797A JP2004172187A JP2004172187A JP2005353797A JP 2005353797 A JP2005353797 A JP 2005353797A JP 2004172187 A JP2004172187 A JP 2004172187A JP 2004172187 A JP2004172187 A JP 2004172187A JP 2005353797 A JP2005353797 A JP 2005353797A
Authority
JP
Japan
Prior art keywords
semiconductor layer
semiconductor substrate
single crystal
exposed
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004172187A
Other languages
Japanese (ja)
Inventor
Takuhiro Tsuchida
卓洋 土田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Leading Edge Technologies Inc
Original Assignee
Semiconductor Leading Edge Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Leading Edge Technologies Inc filed Critical Semiconductor Leading Edge Technologies Inc
Priority to JP2004172187A priority Critical patent/JP2005353797A/en
Publication of JP2005353797A publication Critical patent/JP2005353797A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Electron Beam Exposure (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an SOI substrate devising a countermeasure to a charging and a method for an exposure to charged-particle beams using the SOI substrate in an charged-particle beam exposure. <P>SOLUTION: In the SOI substrate; a single-crystal silicon film, a resist applied on the surface of the silicon film, and an exposed foundation semiconductor layer can be brought into contact electrically by an antistatic film having a conductivity when the foundation semiconductor layer is exposed by the charged-particle beams, because the foundation semiconductor layer is exposed without forming a single-crystal semiconductor layer and an insulating layer in the partial region of a semiconductor substrate. The resist and the single-crystal semiconductor layer can also be grounded together with the foundation semiconductor layer through a grounding terminal by fixing the SOI substrate under the state on a sample table having the grounding terminal on a surface by using an electrostatic attraction method. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は半導体基板とこれを用いた荷電粒子線露光方法に関し、特に、荷電粒子線露光時に帯電することのないSOI構造を有する半導体基板とこれを用いた荷電粒子線露光方法に関する。   The present invention relates to a semiconductor substrate and a charged particle beam exposure method using the same, and more particularly to a semiconductor substrate having an SOI structure that is not charged during charged particle beam exposure and a charged particle beam exposure method using the same.

荷電粒子線露光装置において半導体基板上に荷電粒子線露光を行う場合、半導体基板を試料台に固定する方法として、一般的には静電吸着法が用いられる。荷電粒子線露光装置は試料室内部が真空に保たれているため、光露光装置で用いられているような真空吸着法を用いて固定することができないからである。
しかし、静電吸着法で半導体基板を固定する場合、半導体基板自身が帯電するという現象により、帯電した電荷の作る電界によって入射荷電粒子線の軌道が曲げられ描画位置精度が大きく低下してしまう。このため、静電吸着法を用いる場合は、半導体基板の帯電を防ぐために何らかの方法で半導体基板を接地する必要がある。
When performing charged particle beam exposure on a semiconductor substrate in a charged particle beam exposure apparatus, an electrostatic adsorption method is generally used as a method for fixing the semiconductor substrate to a sample stage. This is because the charged particle beam exposure apparatus cannot be fixed using the vacuum adsorption method used in the light exposure apparatus because the inside of the sample chamber is kept in vacuum.
However, when the semiconductor substrate is fixed by the electrostatic adsorption method, due to the phenomenon that the semiconductor substrate itself is charged, the trajectory of the incident charged particle beam is bent by the electric field generated by the charged charge, and the drawing position accuracy is greatly reduced. For this reason, when the electrostatic adsorption method is used, it is necessary to ground the semiconductor substrate by some method in order to prevent the semiconductor substrate from being charged.

半導体基板の接地方法としてはいくつかの手段が実施されているが、ここでは、単結晶シリコン基板上に荷電粒子線露光をする場合を例に説明する。
図6は、単結晶シリコン基板と、これを固定する試料台を表す模式図である。
Several means are implemented as a method for grounding a semiconductor substrate. Here, a case where charged particle beam exposure is performed on a single crystal silicon substrate will be described as an example.
FIG. 6 is a schematic diagram showing a single crystal silicon substrate and a sample stage for fixing the single crystal silicon substrate.

図6より、レジスト601を塗布された単結晶シリコン基板602が試料台603に静電吸着法により固定されている。試料台603表面には、接地端子604が設けられ、単結晶シリコン基板602の裏面と接触している。接地端子604を接地することで、単結晶シリコン基板602は接地され、帯電によるパターン位置ずれを防止する。   As shown in FIG. 6, a single crystal silicon substrate 602 coated with a resist 601 is fixed to a sample stage 603 by an electrostatic adsorption method. A ground terminal 604 is provided on the surface of the sample stage 603 and is in contact with the back surface of the single crystal silicon substrate 602. By grounding the ground terminal 604, the single crystal silicon substrate 602 is grounded, and prevents a pattern position shift due to charging.

一方、半導体基板技術のひとつとしてSOI(Semiconductor On Insulator)技術が注目されている。半導体基板としてSOI基板を用いることにより、より高速化、低消費電力化が期待される。SOI基板とは、通常の単結晶半導体基板と違い、その表面の1マイクロメータ以下の厚さの単結晶半導体層と下地半導体層が薄い絶縁層によって電気的に絶縁された3層構造となっている。この薄い絶縁層によって、通常の半導体基板において素子と基板との間に発生していた寄生容量が抑えられるため、低消費電力化、高速化が可能となる。   On the other hand, SOI (Semiconductor On Insulator) technology has attracted attention as one of semiconductor substrate technologies. By using an SOI substrate as a semiconductor substrate, higher speed and lower power consumption are expected. Unlike a normal single crystal semiconductor substrate, an SOI substrate has a three-layer structure in which a single crystal semiconductor layer having a thickness of 1 micrometer or less and a base semiconductor layer are electrically insulated by a thin insulating layer. Yes. Since this thin insulating layer suppresses the parasitic capacitance generated between the element and the substrate in a normal semiconductor substrate, it is possible to reduce power consumption and speed.

しかし、SOI基板は表面の単結晶半導体層と下地半導体層が絶縁されているため、これを用いた荷電粒子線露光には以下のような問題点がある。   However, since the surface of the SOI substrate is insulated from the single crystal semiconductor layer and the underlying semiconductor layer, the charged particle beam exposure using the SOI substrate has the following problems.

図7は、SOI基板と、これを固定する試料台を表す模式図である。   FIG. 7 is a schematic diagram showing an SOI substrate and a sample table for fixing the SOI substrate.

図7より、単結晶半導体層701と絶縁層702と下地半導体層703より構成されるSOI基板704は、単結晶半導体層701表面にレジスト705を塗布され、試料台706に静電吸着法により固定されている。試料台に設けられた接地端子707と接触している下地半導体層703は接地されるが、単結晶半導体層701は絶縁層702によって絶縁されているので接地することができない。従って、荷電粒子線露光の際に、単結晶半導体層701およびレジスト705が荷電粒子線によって帯電してしまうため、パターンの描画位置精度が低下してしまう。   As shown in FIG. 7, an SOI substrate 704 including a single crystal semiconductor layer 701, an insulating layer 702, and a base semiconductor layer 703 is coated with a resist 705 on the surface of the single crystal semiconductor layer 701 and fixed to a sample stage 706 by an electrostatic adsorption method. Has been. Although the base semiconductor layer 703 that is in contact with the ground terminal 707 provided on the sample stage is grounded, the single crystal semiconductor layer 701 is insulated by the insulating layer 702 and cannot be grounded. Accordingly, since the single crystal semiconductor layer 701 and the resist 705 are charged by the charged particle beam during the charged particle beam exposure, the pattern drawing position accuracy is lowered.

本発明はかかる課題の認識に基づいてなされたものであり、その目的は、荷電粒子線露光において、帯電対策がなされたSOI基板と、これを用いた荷電粒子線露光方法を提供するものである。   The present invention has been made on the basis of recognition of such problems, and an object of the present invention is to provide an SOI substrate in which measures against charging have been taken in charged particle beam exposure, and a charged particle beam exposure method using the same. .

本発明のSOI基板は、半導体基板の一部の領域で単結晶半導体層と絶縁層が形成されずに下地半導体層が露出しているため、これに荷電粒子線露光する際、単結晶シリコン膜とその表面に塗布されたレジストと露出している下地半導体層を導電性を有する帯電防止膜によって電気的に接触させることができる。この状態のSOI基板を、表面に接地端子を備えた試料台に静電吸着法を用いて固定することで、接地端子を介して下地半導体層とともにレジストおよび単結晶半導体層も接地することが可能となる。   In the SOI substrate of the present invention, the single crystal semiconductor layer and the insulating layer are not formed in a partial region of the semiconductor substrate, and the base semiconductor layer is exposed. In addition, the resist applied to the surface thereof and the exposed underlying semiconductor layer can be brought into electrical contact with the conductive antistatic film. By fixing the SOI substrate in this state to a sample stage having a ground terminal on the surface using an electrostatic adsorption method, it is possible to ground the resist and the single crystal semiconductor layer together with the base semiconductor layer via the ground terminal. It becomes.

すなわち、本発明の一態様によれば、
下地半導体層と、前記下地半導体層上に形成された絶縁層と、前記絶縁層上に形成された単結晶半導体層と、を有する半導体基板であって、
前記半導体基板の少なくとも一部の領域において、前記絶縁層と前記単結晶半導体層とが存在せず、前記下地半導体層が露出していることを特徴とする半導体基板が提供される。
ここで、前記下地半導体層が露出している領域が、前記半導体基板の外周部の一部に設けられたものとすることができる。
または、前記下地半導体層が露出している領域が、前記半導体基板の外周部全体に設けられたものとしてもよい。
また、前記下地半導体層が露出している領域が、前記半導体基板の外周部全体および中心部に設けられたものとすることもできる。
That is, according to one aspect of the present invention,
A semiconductor substrate having a base semiconductor layer, an insulating layer formed on the base semiconductor layer, and a single crystal semiconductor layer formed on the insulating layer,
There is provided a semiconductor substrate characterized in that the insulating layer and the single crystal semiconductor layer are not present and the base semiconductor layer is exposed in at least a partial region of the semiconductor substrate.
Here, the region where the base semiconductor layer is exposed may be provided in a part of the outer peripheral portion of the semiconductor substrate.
Alternatively, the region where the base semiconductor layer is exposed may be provided over the entire outer periphery of the semiconductor substrate.
The region where the base semiconductor layer is exposed may be provided in the entire outer peripheral portion and the central portion of the semiconductor substrate.

一方、本発明の他の一態様によれば、
下地半導体層と、前記下地半導体層上に形成された絶縁層と、前記絶縁層上に形成された単結晶半導体層と、を有し、前記半導体基板の少なくとも一部の領域において、前記絶縁層と前記単結晶半導体層とが存在せず前記下地半導体層が露出してなる半導体基板に対する荷電粒子線露光方法であって、
前記半導体基板の裏面側に設けられた前記下地半導体層が、試料台に設けられた接地端子に接触するように固定する工程と、
前記半導体基板の主面側に設けられた単結晶半導体層上にレジストを塗布する工程と、
前記半導体基板の前記レジストが塗布された領域と前記露出した下地半導体層の表面の少なくとも一部の領域を覆うように、帯電防止膜を塗布する工程と、
を備え、
前記下地半導体層を介して、前記帯電防止膜を接地しながら前記半導体基板に荷電粒子線を照射することを特徴とする荷電粒子線露光方法が提供される。
On the other hand, according to another aspect of the present invention,
A base semiconductor layer; an insulating layer formed on the base semiconductor layer; and a single crystal semiconductor layer formed on the insulating layer, wherein the insulating layer is formed in at least a partial region of the semiconductor substrate. And a charged particle beam exposure method for a semiconductor substrate in which the underlying semiconductor layer is exposed without the presence of the single crystal semiconductor layer,
Fixing the base semiconductor layer provided on the back side of the semiconductor substrate so as to contact a ground terminal provided on a sample stage;
Applying a resist on the single crystal semiconductor layer provided on the main surface side of the semiconductor substrate;
Applying an antistatic film so as to cover at least a partial region of the exposed surface of the semiconductor layer and the region of the semiconductor substrate to which the resist is applied;
With
A charged particle beam exposure method is provided, wherein the semiconductor substrate is irradiated with a charged particle beam through the underlayer semiconductor layer while the antistatic film is grounded.

ここで、前記露出した下地半導体層上の前記帯電防止膜の一部を除去する工程をさらに備えたものとすることができる。
また、前記レジスト塗布後に、前記単結晶半導体基板上に塗布された前記レジストの一部を除去して前記単結晶半導体基板の一部を露出させる工程をさらに備えたものとすることもできる。
Here, the method may further include a step of removing a part of the antistatic film on the exposed base semiconductor layer.
The method may further include a step of removing a part of the resist applied on the single crystal semiconductor substrate to expose a part of the single crystal semiconductor substrate after the resist application.

本発明のSOI基板は、その主面において下地半導体層の一部が露出しているため、レジストが塗布された半導体基板の表面を覆うよう形成した帯電防止膜をこの露出した下地半導体層と接触させることにより、レジストと単結晶半導体基板と下地半導体層を同電位に保つことができる。このような状態でSOI基板を試料台に固定して荷電粒子線露光を行う場合、試料台表面に設けられた接地端子をSOI基板の裏面に接触させることによって、下地半導体層とともにレジストおよび単結晶半導体層も接地することができるので、SOI基板の帯電による描画位置精度の低下を防ぐことができる。   In the SOI substrate of the present invention, since a part of the base semiconductor layer is exposed on the main surface, the antistatic film formed so as to cover the surface of the semiconductor substrate coated with the resist is in contact with the exposed base semiconductor layer. Thus, the resist, the single crystal semiconductor substrate, and the base semiconductor layer can be kept at the same potential. When the charged particle beam exposure is performed by fixing the SOI substrate to the sample stage in such a state, the resist and the single crystal are formed together with the base semiconductor layer by bringing the ground terminal provided on the surface of the sample stage into contact with the back surface of the SOI substrate. Since the semiconductor layer can also be grounded, it is possible to prevent a reduction in drawing position accuracy due to the charging of the SOI substrate.

以下、本発明の実施の形態を説明する。
図1は、本発明の第1の実施の形態にかかる半導体基板とこれを荷電粒子線露光装置に固定するまでの手順を表した模式図である。
図1において、(a)に半導体基板の断面図を、(b)〜(d)にこの半導体基板に施す帯電対策の手順を、それぞれ表す。
Embodiments of the present invention will be described below.
FIG. 1 is a schematic view showing a semiconductor substrate according to the first embodiment of the present invention and a procedure until the semiconductor substrate is fixed to a charged particle beam exposure apparatus.
In FIG. 1, (a) shows a cross-sectional view of a semiconductor substrate, and (b) to (d) show a charging countermeasure procedure applied to the semiconductor substrate.

図1(a)より、単結晶半導体層101と絶縁層102と下地半導体層103より構成されるSOI基板104は、一部領域105において、単結晶半導体層101と絶縁層102が形成されておらず、下地半導体層103が露出している。   As shown in FIG. 1A, the SOI substrate 104 including the single crystal semiconductor layer 101, the insulating layer 102, and the base semiconductor layer 103 has the single crystal semiconductor layer 101 and the insulating layer 102 formed in a partial region 105. First, the underlying semiconductor layer 103 is exposed.

まず、図1(b)より、SOI基板101上にレジスト106を塗布した後、このレジスト106の端面を除去し、単結晶半導体層101の一部領域107と露出している下地半導体層105を露出させる。
次に、図1(c)より、SOI基板104上に導電性を備えた帯電防止膜108を塗布した後、この帯電防止膜108の端面を除去し、単結晶半導体層101の一部領域109と、露出している下地半導体層105上の一部領域110を露出させる。このとき、帯電防止膜の除去幅109は、図1(b)におけるレジストの除去幅107より狭くなるようにする。同様に、帯電防止膜の除去幅110についても、露出している下地半導体層幅105より狭くなるようにする。
図1(d)より、図1(b)、(c)の工程によって得られる帯電防止膜108を塗布されたSOI基板104を試料台111に静電吸着法により固定する。試料台111の表面には、接地端子112が設けられている。このため、下地半導体層103の裏面が試料台111の表面に設けられた接地端子112と接触することにより、下地半導体層103だけでなく、レジスト106、単結晶半導体層101、帯電防止膜108も接地することができる。
First, as shown in FIG. 1B, after applying a resist 106 on the SOI substrate 101, the end face of the resist 106 is removed, and a partial region 107 of the single crystal semiconductor layer 101 and an exposed base semiconductor layer 105 are formed. Expose.
Next, as shown in FIG. 1C, after applying an antistatic film 108 having conductivity on the SOI substrate 104, the end face of the antistatic film 108 is removed, and a partial region 109 of the single crystal semiconductor layer 101 is removed. Then, a partial region 110 on the exposed base semiconductor layer 105 is exposed. At this time, the removal width 109 of the antistatic film is made narrower than the removal width 107 of the resist in FIG. Similarly, the removal width 110 of the antistatic film is also made narrower than the exposed base semiconductor layer width 105.
As shown in FIG. 1D, the SOI substrate 104 coated with the antistatic film 108 obtained by the steps of FIGS. 1B and 1C is fixed to the sample stage 111 by the electrostatic adsorption method. A ground terminal 112 is provided on the surface of the sample stage 111. Therefore, when the back surface of the base semiconductor layer 103 is in contact with the ground terminal 112 provided on the surface of the sample stage 111, not only the base semiconductor layer 103 but also the resist 106, the single crystal semiconductor layer 101, and the antistatic film 108 are provided. Can be grounded.

図2は、図1(a)に表すSOI基板の上面図である。便宜上、絶縁層102と同じ形状となる単結晶半導体層101は省略してある。
図2より、単結晶半導体層101と絶縁層102が形成されない領域、すなわち下地半導体層103が露出している領域105は、SOI基板の外周の一部領域に設けられていることが分かる。この領域を介して、レジスト106、単結晶半導体層101、帯電防止膜108が接地されることになる。
FIG. 2 is a top view of the SOI substrate shown in FIG. For convenience, the single crystal semiconductor layer 101 having the same shape as the insulating layer 102 is omitted.
2 that the region where the single crystal semiconductor layer 101 and the insulating layer 102 are not formed, that is, the region 105 where the base semiconductor layer 103 is exposed is provided in a partial region of the outer periphery of the SOI substrate. Through this region, the resist 106, the single crystal semiconductor layer 101, and the antistatic film 108 are grounded.

図3は、本発明の第2の実施の形態にかかる半導体基板とこれを荷電粒子線露光装置に固定するまでの手順を表した模式図である。
図3において、(a)に半導体基板の断面図を、(b)〜(d)にこの半導体基板に施す帯電対策の手順を、それぞれ表す。
FIG. 3 is a schematic diagram showing a semiconductor substrate according to the second embodiment of the present invention and a procedure until it is fixed to a charged particle beam exposure apparatus.
In FIG. 3, (a) shows a cross-sectional view of the semiconductor substrate, and (b) to (d) show a charging countermeasure procedure applied to the semiconductor substrate.

図3(a)より、単結晶半導体層301と絶縁層302と下地半導体層303より構成されるSOI基板304は、一部領域305において、単結晶半導体層301と絶縁層302が形成されておらず、下地半導体層303が露出している。   As shown in FIG. 3A, the SOI substrate 304 including the single crystal semiconductor layer 301, the insulating layer 302, and the base semiconductor layer 303 has the single crystal semiconductor layer 301 and the insulating layer 302 formed in a partial region 305. The underlying semiconductor layer 303 is exposed.

まず、図3(b)より、SOI基板301上にレジスト306を塗布した後、このレジスト306の端面を除去し、露出している下地半導体層303を露出させる。
次に、図3(c)より、SOI基板304上に導電性を備えた帯電防止膜307を塗布した後、この帯電防止膜307の端面を除去し、露出している下地半導体層305上の一部領域308を露出させる。このとき、帯電防止膜の除去幅308は、露出している下地半導体層幅305より狭くなるようにする。
図3(d)より、図3(b)、(c)の工程によって得られる帯電防止膜307を塗布されたSOI基板304を試料台309に静電吸着法により固定する。試料台309の表面には、接地端子310が設けられている。このため、下地半導体層303の裏面が試料台309の表面に設けられた接地端子310と接触することにより、下地半導体層303だけでなく、レジスト306、単結晶半導体層301、帯電防止膜307も接地することができる。
First, as shown in FIG. 3B, a resist 306 is applied on the SOI substrate 301, and then the end surface of the resist 306 is removed to expose the exposed base semiconductor layer 303.
Next, as shown in FIG. 3C, after applying an antistatic film 307 having conductivity on the SOI substrate 304, the end face of the antistatic film 307 is removed, and the exposed base semiconductor layer 305 is exposed. The partial area 308 is exposed. At this time, the removal width 308 of the antistatic film is made narrower than the exposed base semiconductor layer width 305.
3D, the SOI substrate 304 coated with the antistatic film 307 obtained by the steps of FIGS. 3B and 3C is fixed to the sample stage 309 by the electrostatic adsorption method. A ground terminal 310 is provided on the surface of the sample stage 309. For this reason, when the back surface of the base semiconductor layer 303 is in contact with the ground terminal 310 provided on the surface of the sample stage 309, not only the base semiconductor layer 303 but also the resist 306, the single crystal semiconductor layer 301, and the antistatic film 307 are formed. Can be grounded.

図4は、図3(a)に表すSOI基板の上面図である。便宜上、絶縁層302と同じ形状となる単結晶半導体層301は省略してある。
図4より、単結晶半導体層301と絶縁層302が形成されない領域、すなわち下地半導体層303が露出している領域305は、SOI基板の外周の全体に設けられていることが分かる。この領域を介して、レジスト306、単結晶半導体層301、帯電防止膜307が接地されることになる。下地半導体層と接続される領域を外周の全体に設けることで、第1の実施の形態に比べて、基板表面で生じる接地点から近い箇所と遠い箇所との差を小さくすることができる。
FIG. 4 is a top view of the SOI substrate shown in FIG. For convenience, the single crystal semiconductor layer 301 having the same shape as the insulating layer 302 is omitted.
4 that the region where the single crystal semiconductor layer 301 and the insulating layer 302 are not formed, that is, the region 305 where the base semiconductor layer 303 is exposed is provided over the entire periphery of the SOI substrate. Through this region, the resist 306, the single crystal semiconductor layer 301, and the antistatic film 307 are grounded. By providing a region connected to the base semiconductor layer on the entire outer periphery, it is possible to reduce a difference between a location near and far from the grounding point generated on the substrate surface as compared with the first embodiment.

図5は、本発明の別の実施の形態にかかるSOI基板の上面図である。便宜上、絶縁層と同じ形状となる単結晶半導体層は省略してある。
図5より、単結晶絶縁層と絶縁層が形成されない領域、すなわち下地半導体層が露出している領域は、半導体基板の外周の全体501と、中心部502に設けられていることが分かる。このSOI基板にレジストおよび帯電防止膜を塗布する工程は第2の実施の形態と同じである。本実施の形態においては、下地半導体層と接続される領域を外周の全体に加えて中心部にも設けることで、第2の実施の形態に比べて、より安定した接地電位が確保できる。将来的に、半導体基板の口径が大型化された場合に効果を奏する。
FIG. 5 is a top view of an SOI substrate according to another embodiment of the present invention. For convenience, a single crystal semiconductor layer having the same shape as the insulating layer is omitted.
5 that the region where the single crystal insulating layer and the insulating layer are not formed, that is, the region where the base semiconductor layer is exposed is provided in the entire outer periphery 501 and the central portion 502 of the semiconductor substrate. The process of applying a resist and an antistatic film to this SOI substrate is the same as that in the second embodiment. In the present embodiment, by providing a region connected to the base semiconductor layer in the central portion in addition to the entire outer periphery, a more stable ground potential can be ensured as compared with the second embodiment. This is effective when the diameter of the semiconductor substrate is increased in the future.

以上、説明してきたように、本発明のSOI基板を荷電粒子線露光装置の試料台に静電吸着法で装着して荷電粒子線露光を行う場合、試料台に備えられている接地端子を介して接地しながら荷電粒子線露光を行うことで、基板表面とレジストの帯電を防止することができる。留意する点としては、帯電防止膜の端面を除去際に、下地半導体層の露出面に残るように制御するということである。帯電防止膜を確実に下地半導体層に接触させることにより、帯電した電荷による照射荷電粒子線の軌道妨害を抑え、描画精度を維持ことができる。このとき、露光装置自体に特別な変更の必要はなく、従来の仕様のままで使用できる。   As described above, when the charged particle beam exposure is performed by attaching the SOI substrate of the present invention to the sample stage of the charged particle beam exposure apparatus by the electrostatic adsorption method, the grounding terminal provided in the sample stage is used. By performing charged particle beam exposure while grounding, it is possible to prevent the substrate surface and the resist from being charged. It should be noted that when removing the end face of the antistatic film, control is performed so that it remains on the exposed face of the underlying semiconductor layer. By reliably bringing the antistatic film into contact with the underlying semiconductor layer, it is possible to suppress the orbital disturbance of the irradiated charged particle beam due to the charged charges and maintain the drawing accuracy. At this time, there is no need to change the exposure apparatus itself, and the exposure apparatus can be used as it is.

なお、本発明の半導体基板は、これまで説明してきた実施の形態に限定されるものではない。例えば、半導体基板が3層以上の多層構造を有する場合にも適用可能である。また、下地半導体層を露出させる場所もこの限りではない。半導体基板の形状、設計の余裕度に応じて、必要な箇所に設けることが可能である。   The semiconductor substrate of the present invention is not limited to the embodiments described so far. For example, the present invention is also applicable when the semiconductor substrate has a multilayer structure of three or more layers. Further, the place where the base semiconductor layer is exposed is not limited to this. Depending on the shape of the semiconductor substrate and the design margin, it can be provided at a necessary location.

本発明の第1の実施の形態にかかる半導体基板とこれを荷電粒子線露光装置に固定するまでの手順を表した模式図である。It is the schematic diagram showing the procedure until it fixes to the charged particle beam exposure apparatus and the semiconductor substrate concerning the 1st Embodiment of this invention. 本発明の第1の実施の形態にかかる半導体基板の上面図である。1 is a top view of a semiconductor substrate according to a first embodiment of the present invention. 本発明の第2の実施の形態にかかる半導体基板とこれを荷電粒子線露光装置に固定するまでの手順を表した模式図である。It is the schematic diagram showing the procedure until it fixes to the charged particle beam exposure apparatus and the semiconductor substrate concerning the 2nd Embodiment of this invention. 本発明の第2の実施の形態にかかるSOI基板の上面図である。It is a top view of the SOI substrate concerning the 2nd Embodiment of this invention. 本発明の別の実施の形態にかかるSOI基板の上面図である。It is a top view of the SOI substrate concerning another embodiment of this invention. 単結晶シリコン基板と、これを固定する試料台を表す模式図である。It is a schematic diagram showing a single crystal silicon substrate and the sample stand which fixes this. SOI基板と、これを固定する試料台を表す模式図である。It is a schematic diagram showing a SOI substrate and the sample stand which fixes this.

符号の説明Explanation of symbols

101、301、701 単結晶半導体層
102、302、702 絶縁層
103、303、703 下地半導体層
104、304、704 SOI基板
105、305、501、502 下地半導体層露出領域
106、306、601、705 レジスト
108、307 帯電防止膜
111、309、603、706 試料台
112、310、604、707 接地端子
602 単結晶シリコン基板
101, 301, 701 Single crystal semiconductor layers 102, 302, 702 Insulating layers 103, 303, 703 Underlying semiconductor layers 104, 304, 704 SOI substrates 105, 305, 501, 502 Underlying semiconductor layer exposed regions 106, 306, 601, 705 Resist 108, 307 Antistatic film 111, 309, 603, 706 Sample stage 112, 310, 604, 707 Ground terminal 602 Single crystal silicon substrate

Claims (5)

下地半導体層と、前記下地半導体層上に形成された絶縁層と、前記絶縁層上に形成された単結晶半導体層と、を有する半導体基板であって、
前記半導体基板の少なくとも一部の領域において、前記絶縁層と前記単結晶半導体層とが存在せず、前記下地半導体層が露出していることを特徴とする半導体基板。
A semiconductor substrate having a base semiconductor layer, an insulating layer formed on the base semiconductor layer, and a single crystal semiconductor layer formed on the insulating layer,
The semiconductor substrate, wherein the insulating layer and the single crystal semiconductor layer are not present and the base semiconductor layer is exposed in at least a partial region of the semiconductor substrate.
前記下地半導体層が露出している領域が、前記半導体基板の外周部の少なくとも一部に設けられたことを特徴とする請求項1記載の半導体基板。   2. The semiconductor substrate according to claim 1, wherein a region where the base semiconductor layer is exposed is provided in at least a part of an outer peripheral portion of the semiconductor substrate. 前記下地半導体層が露出している領域が、前記半導体基板の中心部に設けられたことを特徴とする請求項1または2に記載の半導体基板。   3. The semiconductor substrate according to claim 1, wherein a region where the base semiconductor layer is exposed is provided in a central portion of the semiconductor substrate. 下地半導体層と、前記下地半導体層上に形成された絶縁層と、前記絶縁層上に形成された単結晶半導体層と、を有し、前記半導体基板の少なくとも一部の領域において、前記絶縁層と前記単結晶半導体層とが存在せず前記下地半導体層が露出してなる半導体基板に対する荷電粒子線露光方法であって、
前記半導体基板の裏面側に設けられた前記下地半導体層が、試料台に設けられた接地端子に接触するように固定する工程と、
前記半導体基板の主面側に設けられた単結晶半導体層上にレジストを塗布する工程と、
前記半導体基板の前記レジストが塗布された領域と前記露出した下地半導体層の表面の少なくとも一部の領域を覆うように、帯電防止膜を塗布する工程と、
を備え、
前記下地半導体層を介して、前記帯電防止膜を接地しながら前記半導体基板に荷電粒子線を照射することを特徴とする荷電粒子線露光方法。
A base semiconductor layer; an insulating layer formed on the base semiconductor layer; and a single crystal semiconductor layer formed on the insulating layer, wherein the insulating layer is formed in at least a partial region of the semiconductor substrate. And a charged particle beam exposure method for a semiconductor substrate in which the underlying semiconductor layer is exposed without the presence of the single crystal semiconductor layer,
Fixing the base semiconductor layer provided on the back side of the semiconductor substrate so as to contact a ground terminal provided on a sample stage;
Applying a resist on the single crystal semiconductor layer provided on the main surface side of the semiconductor substrate;
Applying an antistatic film so as to cover at least a partial region of the exposed surface of the semiconductor layer and the region of the semiconductor substrate to which the resist is applied;
With
A charged particle beam exposure method comprising irradiating the semiconductor substrate with a charged particle beam through the underlayer semiconductor layer while grounding the antistatic film.
前記露出した下地半導体層上の前記帯電防止膜の一部を除去する工程と、
前記レジスト塗布後に、前記単結晶半導体基板上に塗布された前記レジストの一部を除去して前記単結晶半導体基板の一部を露出させる工程と、
の少なくともいずれかをさらに備えたことを特徴とする請求項4記載の荷電粒子線露光方法。
Removing a portion of the antistatic film on the exposed underlying semiconductor layer;
After the resist application, removing a part of the resist applied on the single crystal semiconductor substrate to expose a part of the single crystal semiconductor substrate;
The charged particle beam exposure method according to claim 4, further comprising at least one of the following.
JP2004172187A 2004-06-10 2004-06-10 Semiconductor substrate and method for exposure by charged-particle beam Pending JP2005353797A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004172187A JP2005353797A (en) 2004-06-10 2004-06-10 Semiconductor substrate and method for exposure by charged-particle beam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004172187A JP2005353797A (en) 2004-06-10 2004-06-10 Semiconductor substrate and method for exposure by charged-particle beam

Publications (1)

Publication Number Publication Date
JP2005353797A true JP2005353797A (en) 2005-12-22

Family

ID=35588007

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004172187A Pending JP2005353797A (en) 2004-06-10 2004-06-10 Semiconductor substrate and method for exposure by charged-particle beam

Country Status (1)

Country Link
JP (1) JP2005353797A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5799739A (en) * 1980-12-12 1982-06-21 Toshiba Corp Charged beam exposure method
JPH03208330A (en) * 1990-01-10 1991-09-11 Fujitsu Ltd Manufacture of semiconductor device
JPH08115864A (en) * 1994-10-12 1996-05-07 Hitachi Ltd Manufacture of semiconductor integrated circuit device
JP2001230197A (en) * 2000-02-17 2001-08-24 Sigma Meltec Ltd Method for removing edge film and method for electron beam lithography

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5799739A (en) * 1980-12-12 1982-06-21 Toshiba Corp Charged beam exposure method
JPH03208330A (en) * 1990-01-10 1991-09-11 Fujitsu Ltd Manufacture of semiconductor device
JPH08115864A (en) * 1994-10-12 1996-05-07 Hitachi Ltd Manufacture of semiconductor integrated circuit device
JP2001230197A (en) * 2000-02-17 2001-08-24 Sigma Meltec Ltd Method for removing edge film and method for electron beam lithography

Similar Documents

Publication Publication Date Title
CN105308716B (en) Ion trap apparatus and method for manufacturing same
KR20110066845A (en) Method for routing a chamfered substrate
JP2008112781A (en) Electret element and electrostatic operation device
JP5619542B2 (en) Semiconductor substrate processing method and semiconductor device manufacturing method
JP2007033355A (en) Method of manufacturing semiconductor sensor, and semiconductor sensor
JP2002519845A (en) High sputtering / etching resistance window for plasma processing chamber
JP2005353797A (en) Semiconductor substrate and method for exposure by charged-particle beam
JP2004006444A (en) Method of manufacturing capacitor structure and method of manufacturing capacitor element
JP2023550384A (en) electrostatic clamp
JP2005340574A (en) Semiconductor substrate and method of electrically charged particle line exposure
JP3972988B2 (en) Manufacturing method of semiconductor device
CN102040185B (en) Manufacturing method of load bearing wafer and load bearing wafer
JPH07169828A (en) Decrease of leakage current inside silicon substrate on insulator
JP6890271B2 (en) Semiconductor devices and their manufacturing methods
JP2005279923A (en) Micro electric machine system
JPH0758033A (en) Ecr plasma cvd apparatus
CN112271156B (en) Electrostatic transfer head and manufacturing method thereof
KR101640488B1 (en) Combined structure of electronica de coupling device and method for etching Plasmacluster
JP6007029B2 (en) Substrate processing method
CN107919267B (en) Semiconductor device and manufacturing method thereof
JPH11145046A (en) Manufacture of semiconductor device
US8426935B2 (en) Electronic device, memory device, and method of fabricating the same
JP4675922B2 (en) Capacitor structure manufacturing method and capacitor element manufacturing method
US20170352581A1 (en) Semiconductor wafer and method for manufacturing the same
US7615164B2 (en) Plasma etching methods and contact opening forming methods

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20051005

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060912

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100302

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100608

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100806

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100830