JP2005351776A - Electrostatic floating type gyroscope system - Google Patents

Electrostatic floating type gyroscope system Download PDF

Info

Publication number
JP2005351776A
JP2005351776A JP2004173166A JP2004173166A JP2005351776A JP 2005351776 A JP2005351776 A JP 2005351776A JP 2004173166 A JP2004173166 A JP 2004173166A JP 2004173166 A JP2004173166 A JP 2004173166A JP 2005351776 A JP2005351776 A JP 2005351776A
Authority
JP
Japan
Prior art keywords
gyro
detection
signal
electrode
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004173166A
Other languages
Japanese (ja)
Other versions
JP4425066B2 (en
Inventor
Masakatsu Matsumoto
政勝 松本
Keisuke Fukatsu
恵輔 深津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokimec Inc
Original Assignee
Tokimec Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokimec Inc filed Critical Tokimec Inc
Priority to JP2004173166A priority Critical patent/JP4425066B2/en
Publication of JP2005351776A publication Critical patent/JP2005351776A/en
Application granted granted Critical
Publication of JP4425066B2 publication Critical patent/JP4425066B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Micromachines (AREA)
  • Gyroscopes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To substantially preclude a displacement detecting signal from being affected even when generating a control voltage by pulse width modulation. <P>SOLUTION: Outputs of the control voltages A, B are executed by the pulse width modulation 41, as to a control circuit 40, displacement detecting electrodes impressed with no control voltage are allocated to both impression side electrodes 22 impressed with an impression signal C from an impression signal generating circuit 31, and detecting side electrodes 23 used for detecting detection signals D, E, as to the plurality electrodes 21-25 formed in a gyro case 20, and the impression side electrodes 22 or the detecting side electrodes 23 are arranged dispersedly to be adjacent to an electrostatic supporting electrodes 24. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明は、ジャイロ機構部と電子回路とを備えた静電浮上型ジャイロ装置に関する。
ジャイロ機構部は、ジャイロロータとジャイロケースとを含み、ジャイロロータをジャイロケース内で静電支持力によって浮動的に支持する。ジャイロロータは、回転動作等の適正な動作のため、真空中に置かれる。
電子回路部は、ジャイロ機構部に接続され、ジャイロロータとジャイロケースとの相対変位を検出して、ジャイロロータの姿勢制御と回転駆動を行う。
詳しくは、姿勢制御用の制御電圧の生成手法およびそれに適合した変位検出手法に関する。
The present invention relates to an electrostatic levitation gyro apparatus including a gyro mechanism and an electronic circuit.
The gyro mechanism unit includes a gyro rotor and a gyro case, and supports the gyro rotor in a floating manner in the gyro case by electrostatic support force. The gyro rotor is placed in a vacuum for proper operation such as rotational operation.
The electronic circuit unit is connected to the gyro mechanism unit, detects the relative displacement between the gyro rotor and the gyro case, and performs attitude control and rotational driving of the gyro rotor.
More specifically, the present invention relates to a method for generating a control voltage for attitude control and a displacement detection method adapted thereto.

小形化に適した静電浮上型ジャイロは、船舶や航空機ばかりか自動車等の移動体にも使用されており、慣性空間に対する加速度等を検出するために、慣性を具有した機械部品からなるジャイロ機構部と、静電支持力の制御や相対変位の検出等を担う電子回路部とを備えている。すなわち、静電浮上型ジャイロ装置は、回転体であるジャイロロータと、それを静電浮上可能かつ回転可能に内蔵するジャイロケースと、これに形成や付設されているケース付属部材を利用してジャイロロータとジャイロケースとの相対変位を検出する変位検出回路と、上記の又は別のケース付属部材を利用してジャイロロータの姿勢制御および回転駆動を行う制御回路とを備えたものである。   Electrostatic levitation type gyros suitable for downsizing are used not only for ships and aircraft but also for moving objects such as automobiles. Gyro mechanism consisting of mechanical parts with inertia to detect acceleration to inertial space etc. And an electronic circuit unit for controlling electrostatic support force and detecting relative displacement. In other words, the electrostatic levitation type gyro apparatus uses a gyro rotor that is a rotating body, a gyro case in which it is electrostatically levitated and rotatably incorporated, and a case attachment member that is formed or attached to the gyro rotor. A displacement detection circuit that detects the relative displacement between the rotor and the gyro case, and a control circuit that performs attitude control and rotational drive of the gyro rotor using the above or another case attachment member.

静電浮上型ジャイロ装置は長年の改良により進歩しているが、初期のものでは(例えば特許文献1の図11等を参照)、ジャイロロータが球体であり、静電支持用のケース付属部材はジャイロケースに複数形成された対向対の電極であり、回転駆動用のケース付属部材はジャイロケースに複数装着された対向対のコイルであり、変位検出用のケース付属部材はジグザグ模様の変位を検出する複数の光学的ピックアップであり、変位検出回路は模様の変位から角度変位を求めるようになっており、制御回路は、姿勢制御のため対向対の電極に接続されており、更にジャイロロータを回転させるためコイルに交流電圧を印加するようになっていた。   The electrostatic levitation type gyro device has been improved by improvements over many years. However, in the initial one (see, for example, FIG. 11 of Patent Document 1), the gyro rotor is a sphere, and the case supporting member for electrostatic support is A pair of opposed electrodes formed on the gyro case, the case attachment member for rotational drive is a pair of opposed coils mounted on the gyro case, and the case attachment member for displacement detection detects zigzag pattern displacement The displacement detection circuit calculates the angular displacement from the displacement of the pattern, and the control circuit is connected to the opposite pair of electrodes for posture control, and further rotates the gyro rotor Therefore, an AC voltage is applied to the coil.

それを改良したものでは、ジャイロロータを円盤状にしたものがある(例えば特許文献1の図1,図2等を参照)。この場合、対数こそ三対から四対に増えているが、この場合も、静電支持用のケース付属部材は、ジャイロケースに複数配置された対向対の電極であり、回転駆動用のケース付属部材は、ジャイロケースに複数配置された対向対のコイルである。また、変位検出用のケース付属部材は、ジャイロロータの孔を挟んで対向配置された発行素子および受光素子であり、変位検出回路は、上記の孔の偏倚による受光量の変化からジャイロロータの相対変位を求めるようになっており、制御回路は、ジャイロロータを回転させるためコイルに交番電圧を印加するとともに、ジャイロロータのジャイロケースに対する姿勢を一定に維持するため、検出された相対変位に応じて増減する姿勢制御用電圧を生成して対向対の電極に印加するようになっている。   As an improved version, there is a gyro rotor in a disk shape (see, for example, FIGS. 1 and 2 of Patent Document 1). In this case, the number of logarithms has increased from three to four, but in this case as well, the case attachment member for electrostatic support is a pair of opposed electrodes arranged on the gyro case, and the case for rotation drive is attached. The member is a pair of opposed coils arranged in the gyro case. Further, the case attachment member for displacement detection is an issuance element and a light receiving element that are arranged opposite to each other across the hole of the gyro rotor. According to the detected relative displacement, the control circuit applies an alternating voltage to the coil to rotate the gyro rotor and maintains a constant attitude of the gyro rotor with respect to the gyro case. A posture control voltage that increases or decreases is generated and applied to the opposite pair of electrodes.

次に改良したものは(例えば特許文献2参照)、ジャイロロータが円盤状であり、静電支持用のケース付属部材も、ジャイロケースに複数配置された対向対の電極であるが、その静電支持用電極の詳細構造や、他のケース付属部材が改良されている。すなわち、静電支持用電極はそれぞれ径方向に分割されて隣り合う隣接電極(電極対,電極群)になり、回転駆動用のケース付属部材は、ジャイロケースの両内面で円状に列設された多数の回転駆動用電極の対向対になっている。それに伴って、制御回路は、ジャイロロータ姿勢制御用の制御電圧を生成してそれを静電支持用電極に印加するとともに、ジャイロロータ回転駆動用の制御電圧を生成してそれを回転駆動用電極に印加するようになっている。   The next improvement (see, for example, Patent Document 2) is that the gyro rotor is disk-shaped, and the case supporting member for electrostatic support is also a plurality of opposed pairs of electrodes arranged in the gyro case. The detailed structure of the supporting electrode and other case attachment members have been improved. That is, the electrostatic support electrodes are each divided in the radial direction to become adjacent adjacent electrodes (electrode pairs, electrode groups), and the case attachment members for rotational driving are arranged in a circle on both inner surfaces of the gyro case. In addition, a large number of rotational drive electrodes are opposed to each other. Along with this, the control circuit generates a control voltage for gyro rotor attitude control and applies it to the electrostatic support electrode, and also generates a control voltage for gyro rotor rotation drive and applies it to the rotation drive electrode. To be applied.

また、変位検出用のケース付属部材も、ジャイロケースの両内面に形成された電極になっており、制御電圧の印加されない変位検出用電極も、ジャイロケースの両内面に形成されている。そして、変位検出回路は、変位検出用電極を介してジャイロロータとジャイロケースとの相対変位検出用信号の送受を行う信号検出回路になっている。具体的には、制御電圧の印加されない変位検出用電極が、相対変位検出用信号の検出に用いられる検出側電極になっていて、信号検出回路の入力側に接続されるのに対し、相対変位検出用信号を印加される印加側電極には、姿勢制御用の制御電圧の印加される静電支持用電圧が兼用されていて、信号検出回路は、周波数弁別可能な幾つかの変位検出用印加信号を姿勢制御用の制御電圧に重畳させて静電支持用電圧に印加するとともに、変位検出用電極から変位検出用印加信号に係る信号成分を抽出して変位検出用検出信号を生成するようになっている。   The displacement detection case attachment member is also an electrode formed on both inner surfaces of the gyro case, and the displacement detection electrode to which no control voltage is applied is also formed on both inner surfaces of the gyro case. The displacement detection circuit is a signal detection circuit that transmits and receives a relative displacement detection signal between the gyro rotor and the gyro case via the displacement detection electrode. Specifically, the displacement detection electrode to which no control voltage is applied is the detection-side electrode used for detecting the relative displacement detection signal and is connected to the input side of the signal detection circuit, whereas the relative displacement The application-side electrode to which the detection signal is applied is also used as an electrostatic support voltage to which a control voltage for posture control is applied, and the signal detection circuit has several displacement detection applications capable of frequency discrimination. A signal is superimposed on a control voltage for attitude control and applied to the electrostatic support voltage, and a signal component related to the displacement detection application signal is extracted from the displacement detection electrode to generate a displacement detection detection signal. It has become.

更に改良を加えた静電浮上型ジャイロ装置では(例えば特許文献3参照)、ジャイロロータが環状になり、ジャイロケースに形成されている静電支持用電極がジャイロロータを囲むように配置されている。静電支持用電極は、この場合も、複数の対向対からなり、その各々が隣接電極(電極対,電極群)からなるが、この隣接電極は、周方向に分割されて隣り合っている。なお、回転駆動用電極は、円状列設の対向対であり、制御回路は、ジャイロロータの姿勢制御用および回転駆動用の制御電圧を生成してそれぞれ静電支持用電極および回転駆動用電極に印加するものである。また、信号検出回路は、変位検出用印加信号を姿勢制御用の制御電圧に重畳させ、制御電圧の印加されない変位検出用電極から変位検出用印加信号に係る信号成分を抽出して変位検出用検出信号を生成するようになっている。   In a further improved electrostatic levitation gyro apparatus (see, for example, Patent Document 3), the gyro rotor has an annular shape, and the electrostatic support electrodes formed on the gyro case are arranged so as to surround the gyro rotor. . In this case, the electrostatic support electrode is also composed of a plurality of opposed pairs, each of which is composed of an adjacent electrode (electrode pair, electrode group). The adjacent electrodes are divided in the circumferential direction and are adjacent to each other. The rotational drive electrodes are circularly arranged opposing pairs, and the control circuit generates control voltages for attitude control and rotational drive of the gyro rotor to respectively provide electrostatic support electrodes and rotational drive electrodes. To be applied. The signal detection circuit also superimposes the displacement detection application signal on the attitude control control voltage, extracts a signal component related to the displacement detection application signal from the displacement detection electrode to which no control voltage is applied, and detects displacement detection. A signal is generated.

特開平7−071965号公報 (図1、図2、図11)JP-A-7-071965 (FIGS. 1, 2, and 11) 特開平08−320231号公報 (第1頁)JP 08-320231 A (first page) 特開2001−235329号公報 (第1頁)JP 2001-235329 A (first page)

[先行特許出願1] 特願2002−362031号
[先行特許出願2] 特願2003−099695号
また、変位検出用信号の流れを従来と逆転させたものもある(先行特許出願1,2参照)。具体的には、信号検出回路について、制御電圧の印加されない変位検出用電極に変位検出用印加信号を印加し、制御回路から静電支持用電極に姿勢制御用の制御電圧を印加するところから変位検出用印加信号に係る信号成分を分離抽出して変位検出用検出信号を生成するようになっている。変位検出用信号の分離抽出は、制御電圧の出力段回路における差動電流を検出するのと(先行特許出願1参照)、逆相の制御電圧から同相成分を検出するのとがあり(先行特許出願2参照)、後者の同相検出手法は静電支持用電極が複数の対向対からなりその各々が隣接電極からなることを前提とするが、前者の電流検出手法や従来の信号検出手法にはそのような制約が無い。
[Prior Patent Application 1] Japanese Patent Application No. 2002-362031 [Prior Patent Application 2] Japanese Patent Application No. 2003-099695 In addition, there is also one in which the flow of a displacement detection signal is reversed from the conventional one (see Prior Patent Applications 1 and 2) . Specifically, with respect to the signal detection circuit, displacement is applied from the position where the displacement detection application signal is applied to the displacement detection electrode to which no control voltage is applied, and the attitude control control voltage is applied from the control circuit to the electrostatic support electrode. A displacement detection detection signal is generated by separating and extracting signal components related to the detection application signal. The separation and extraction of the displacement detection signal includes detection of a differential current in the output stage circuit of the control voltage (refer to the prior patent application 1) and detection of the in-phase component from the control voltage of the opposite phase (prior patent). The latter in-phase detection method is based on the premise that the electrostatic support electrodes are made up of a plurality of opposed pairs, each of which is made up of adjacent electrodes. However, the former current detection method and the conventional signal detection method include There are no such restrictions.

ところで、これらの信号検出回路や制御回路のうち演算部分はデジタルシグナルプロセッサやマイクロプロセッサの採用等によりデジタル化が進んでいるが、静電支持用電極に印加される姿勢制御用の制御電圧は依然としてアナログ信号であり、そのため、制御電圧の出力段回路には高価なアナログアンプが必要であった。
そこで、原価低減のため、制御電圧の出力も、デジタル化・スイッチ化して、高価なアンプを不要とすることが望まれる。具体的にはパルス幅変調を採用したい。
By the way, the arithmetic part of these signal detection circuits and control circuits has been digitized due to the adoption of digital signal processors and microprocessors, etc., but the control voltage for posture control applied to the electrostatic support electrode is still Therefore, an expensive analog amplifier is required for the output stage circuit of the control voltage.
Therefore, in order to reduce the cost, it is desired that the output of the control voltage is also digitized and switched so that an expensive amplifier is unnecessary. Specifically, I would like to adopt pulse width modulation.

しかしながら、制御電圧をパルス化すると、変位検出用信号の重畳が難しくなるうえ、変位検出用信号に大きなスイッチングノイズが重畳してしまう。
そこで、制御電圧の生成をパルス幅変調で行っても、その影響が変位検出用信号にはほとんど及ばないよう、信号検出のための部材等に工夫を凝らすことが技術的な課題となる。
However, when the control voltage is pulsed, it is difficult to superimpose the displacement detection signal, and large switching noise is superimposed on the displacement detection signal.
Therefore, it is a technical problem to devise a signal detection member or the like so that even if the control voltage is generated by pulse width modulation, the influence hardly affects the displacement detection signal.

本発明の静電浮上型ジャイロ装置は、このような課題を解決するために創案されたものであり、ジャイロロータを静電浮上可能かつ回転可能に内蔵するジャイロケースと、これに形成されている複数の電極のうち静電支持用電極および回転駆動用電極に前記ジャイロロータの姿勢制御用および回転駆動用の制御電圧をそれぞれ生成して印加する制御回路と、前記複数電極のうち前記制御電圧の印加されない変位検出用電極を介して前記ジャイロロータと前記ジャイロケースとの相対変位検出用信号の送受を行う信号検出回路とを備えた静電浮上型ジャイロ装置において、前記制御回路が、前記制御電圧の生成をパルス幅変調にて行うものであり、前記変位検出用電極が、前記信号検出回路の出力側に接続され前記相対変位検出用信号を印加される印加側電極と、前記信号検出回路の入力側に接続され前記相対変位検出用信号の検出に用いられる検出側電極とからなり、前記検出側電極または前記印加側電極が、前記静電支持用電極に近接して分散配置されている、というものである。   The electrostatic levitation type gyro apparatus of the present invention has been devised to solve such a problem, and is formed in a gyro case in which a gyro rotor is built up so as to be electrostatically levitateable and rotatable. A control circuit for generating and applying control voltages for attitude control and rotation drive of the gyro rotor to the electrostatic support electrode and the rotation drive electrode among the plurality of electrodes, and of the control voltage of the plurality of electrodes, In an electrostatic levitation gyro apparatus comprising a signal detection circuit that transmits and receives a relative displacement detection signal between the gyro rotor and the gyro case via a displacement detection electrode that is not applied, the control circuit includes the control voltage The displacement detection electrode is connected to the output side of the signal detection circuit to apply the relative displacement detection signal. An application side electrode and a detection side electrode connected to the input side of the signal detection circuit and used for detecting the relative displacement detection signal. The detection side electrode or the application side electrode is used for the electrostatic support. It is said that they are distributed in the vicinity of the electrodes.

このような本発明の静電浮上型ジャイロ装置にあっては、相対変位検出用信号が、変位検出用電極のうち印加側電極に印加され、それからジャイロロータを経て、変位検出用電極のうち検出側電極から検出されるが、印加側電極および検出側電極の何れか一方または双方が静電支持用電極に近接して分散配置されていて、各静電支持用電極の容量変化が弁別可能な又は分割可能な状態で相対変位検出用信号に反映されるので、相対変位検出用信号に基づいてジャイロロータとジャイロケースとの相対変位を算出することが可能である。しかも、この場合、相対変位検出用信号の送受に用いられる電極が、印加側電極も検出側電極も共に、制御電圧の印加されない変位検出用電極であることから、ジャイロロータのところは別としてそれ以外のところでは相対変位検出用信号と制御電圧とが完全に分離されるので、制御電圧がパルスであってもそのスイッチングノイズが相対変位検出用信号に及ぶ割合は激減する。   In the electrostatic levitation type gyro apparatus of the present invention, the relative displacement detection signal is applied to the application side electrode among the displacement detection electrodes, and then detected from the displacement detection electrode via the gyro rotor. Detected from the side electrode, but either or both of the application side electrode and the detection side electrode are distributed in the vicinity of the electrostatic support electrode, and the capacitance change of each electrostatic support electrode can be discriminated. Alternatively, since it is reflected in the relative displacement detection signal in a state where it can be divided, it is possible to calculate the relative displacement between the gyro rotor and the gyro case based on the relative displacement detection signal. In addition, in this case, the electrodes used for transmission and reception of the relative displacement detection signal are displacement detection electrodes to which no control voltage is applied in both the application side electrode and the detection side electrode. Since the relative displacement detection signal and the control voltage are completely separated from each other, even if the control voltage is a pulse, the ratio of the switching noise to the relative displacement detection signal is drastically reduced.

このような本発明の静電浮上型ジャイロ装置について、これを実施するための具体的な形態を、以下の実施例1〜3により説明する。   About the electrostatic levitation type gyro apparatus of the present invention as described above, specific modes for carrying out this will be described with reference to the following first to third embodiments.

本発明の静電浮上型ジャイロ装置の実施例1について、その具体的な構成を、図面を引用して説明する。図1は、(a)がジャイロ機構部の縦断面図、(b)がジャイロケースにおける電極の平面配置図、(c)が信号検出回路および制御回路の要部ブロック図、(d)が幾つかの信号に関する波形例である。   A specific configuration of the electrostatic levitation gyro apparatus according to the first embodiment of the present invention will be described with reference to the drawings. 1A is a longitudinal sectional view of the gyro mechanism, FIG. 1B is a plan view of electrodes in the gyro case, FIG. 1C is a block diagram of the main parts of the signal detection circuit and the control circuit, and FIG. It is an example of a waveform regarding the signal.

この静電浮上型ジャイロ装置は、ジャイロ機構部については特許文献3等に開示された環状のジャイロロータ10を採用し、信号検出回路30については先行特許出願1,2等に開示された逆転方式を採用していて制御電圧A,Bの印加されない変位検出用電極22に印加信号発生回路31から変位検出用印加信号Cを印加するようになっているが、ジャイロケース20における電極21〜25の配置や,信号検出回路30における信号検出方式32,制御回路40の制御電圧出力段回路41などが改良されている。   This electrostatic levitation type gyro apparatus employs an annular gyro rotor 10 disclosed in Patent Document 3 for the gyro mechanism, and a reverse rotation system disclosed in the prior patent applications 1 and 2 for the signal detection circuit 30. The displacement detection application signal C is applied from the application signal generation circuit 31 to the displacement detection electrode 22 to which the control voltages A and B are not applied, but the electrodes 21 to 25 of the gyro case 20 are applied. The arrangement, the signal detection method 32 in the signal detection circuit 30, the control voltage output stage circuit 41 of the control circuit 40, and the like are improved.

すなわち、軸対称の環状に形成されたジャイロロータ10と、これを静電浮上可能かつ回転可能に内蔵するジャイロケース20と、これに形成されている複数の電極21〜25のうち静電支持用電極24,25および回転駆動用電極21にジャイロロータ10の姿勢制御用の制御電圧A,Bおよび回転駆動用の制御電圧をそれぞれ生成して印加する制御回路40と、複数の電極21〜25のうち制御電圧A等の印加されない変位検出用電極22,23を介してジャイロロータ10とジャイロケース20との相対変位検出用信号C,D,Eの送受を行う信号検出回路30とを備えた静電浮上型ジャイロ装置において、次のような改良が施されている。   That is, the gyro rotor 10 formed in an axially symmetric annular shape, the gyro case 20 in which the gyro rotor 10 can be electrostatically levitated and rotated, and the plurality of electrodes 21 to 25 formed on the gyro rotor 20 are for electrostatic support. A control circuit 40 that generates and applies control voltages A and B for attitude control of the gyro rotor 10 and a control voltage for rotation driving to the electrodes 24 and 25 and the rotation driving electrode 21, respectively, and a plurality of electrodes 21 to 25 Among them, a static detection circuit 30 provided with a signal detection circuit 30 for transmitting / receiving relative displacement detection signals C, D, E between the gyro rotor 10 and the gyro case 20 via displacement detection electrodes 22, 23 to which no control voltage A or the like is applied. The following improvements have been made to the electrolevitation gyro device.

先ず、制御回路40については、最終段の制御電圧出力段回路41にパルス幅変調方式のものが採用されて、制御回路40は姿勢制御用制御電圧A,Bの生成をパルス幅変調にて行うものとなっている。また、相対変位検出用信号の送受については、電極が、印加側も検出側も共に、制御電圧の印加されない変位検出用電極になっている。すなわち、変位検出用電極22,23は、信号検出回路30の出力側に接続され相対変位検出用印加信号Cを印加されるが姿勢制御用制御電圧A,B等は印加されない印加側電極22と、信号検出回路30の入力側に接続され印加信号Cに係る相対変位検出用検出信号D,Eの検出に用いられるがやはり姿勢制御用制御電圧A,Bは印加されない検出側電極23とからなる。さらに、そのうち検出側電極23は、静電支持用電極24に近接して分散配置されている。印加側電極22は、適宜な空き領域に対称形で分散している。   First, with respect to the control circuit 40, the final control voltage output stage circuit 41 employs a pulse width modulation type, and the control circuit 40 generates the attitude control control voltages A and B by pulse width modulation. It has become a thing. For transmission / reception of the relative displacement detection signal, the electrode is a displacement detection electrode to which no control voltage is applied on both the application side and the detection side. That is, the displacement detection electrodes 22 and 23 are connected to the output side of the signal detection circuit 30 and are applied with the relative displacement detection application signal C, but are not applied with the attitude control control voltages A and B. And a detection side electrode 23 connected to the input side of the signal detection circuit 30 and used for detection of relative displacement detection detection signals D and E related to the applied signal C, but to which the attitude control control voltages A and B are not applied. . Furthermore, the detection-side electrodes 23 are distributed in the vicinity of the electrostatic support electrodes 24. The application side electrode 22 is distributed symmetrically in an appropriate empty region.

各部材について詳述すると、ジャイロ機構部については(図1(a)参照)、ジャイロロータ10が、シリコン等の導電体からなり、1本のスピン軸(対称軸)周りに安定して回転するよう、環状に形成されている。ジャイロケース20は、ガラス等の絶縁物からなる上側底部材と下側底部材とスペーサとを組み合わせて構成され、内部に環状の真空空間が形成されている。ジャイロケース20からジャイロロータ10に静電支持力や回転駆動力を作用させるために、ジャイロケース20の内表面には、金属膜パターン等からなる多数の電極21〜25が形成されている。   When describing each member in detail, as for the gyro mechanism (see FIG. 1A), the gyro rotor 10 is made of a conductor such as silicon and rotates stably around one spin axis (symmetric axis). It is formed in an annular shape. The gyro case 20 is configured by combining an upper bottom member made of an insulator such as glass, a lower bottom member, and a spacer, and an annular vacuum space is formed therein. In order to apply an electrostatic support force or a rotational driving force to the gyro rotor 10 from the gyro case 20, a large number of electrodes 21 to 25 made of a metal film pattern or the like are formed on the inner surface of the gyro case 20.

これらの電極21〜25は(図1(a),(b)参照)、何れも複数個・多数個が対向配置された回転駆動用電極21と相対変位検出用の印加側電極22と相対変位検出用の検出側電極23と静電支持用電極24と静電支持用電極25とからなる。そのうち電極21〜24は、ジャイロケース20の上側底部材にも下側底部材にも環状内部空間に臨んで円状に列設されており上側底部材の各々と下側底部材の各々とが一対一で対向している。静電支持用電極25は、ジャイロケース20の環状内部空間に臨む両周面に放射状・円環状に列設されており両周面の各々が一対一で対向している。   These electrodes 21 to 25 (see FIGS. 1 (a) and 1 (b)) are a plurality of and a plurality of rotation driving electrodes 21 arranged opposite to each other, an application side electrode 22 for detecting relative displacement, and a relative displacement. It comprises a detection-side electrode 23 for detection, an electrostatic support electrode 24, and an electrostatic support electrode 25. Among them, the electrodes 21 to 24 are circularly arranged on both the upper bottom member and the lower bottom member of the gyro case 20 so as to face the annular inner space, and each of the upper bottom member and each of the lower bottom members is arranged. It is facing one-on-one. The electrostatic support electrodes 25 are arranged in a radial / annular fashion on both circumferential surfaces facing the annular inner space of the gyro case 20, and each of the circumferential surfaces faces each other in a one-to-one relationship.

回転駆動用電極21は等角に多数個たとえば12個が列設され、静電支持用電極24,25は、スピン軸(その軸方向を本明細書ではZ方向とする)を中心に直交する四方(本明細書ではそのうち相反する2方向を纏めてX方向としそれに直交する相反2方向を纏めてY方向とし相反2方向を区別するときには正負を付加する)に分散して配置され、それに一対一で対応して但し重ならないよう径方向にずらして検出側電極23が分散配置されている。印加側電極22は、検出側電極23同士の間隙や静電支持用電極25同士の間隙に配置されている。   A large number of, for example, twelve rotational drive electrodes 21 are arranged at equal angles, and the electrostatic support electrodes 24 and 25 are orthogonal to each other about the spin axis (the axial direction is the Z direction in this specification). Dispersed in four directions (in this specification, two opposite directions are collectively defined as the X direction and the two opposite directions orthogonal to the Y direction are collectively defined as the Y direction, and positive and negative are added). However, the detection-side electrodes 23 are dispersedly arranged so as to be shifted in the radial direction so as not to overlap with each other. The application side electrode 22 is disposed in the gap between the detection side electrodes 23 or the gap between the electrostatic support electrodes 25.

回転駆動用電極21は、順次循環駆動のため個別に制御回路40の出力段回路それぞれに接続され、印加側電極22は、同じ印加信号Cを印加するため相互に接続されて信号検出回路30の出力側の印加信号発生回路31に共通接続され、検出側電極23は、ジャイロロータ10の各部の相対変位を区別して検出するため個別に信号検出回路30の入力側の電流電圧変換回路32それぞれに接続され、静電支持用電極24,25は、ジャイロロータ10の各部に適切な静電引力を働かせるため個別に制御回路40の制御電圧出力段回路41それぞれに接続されている。   The rotational drive electrodes 21 are individually connected to each output stage circuit of the control circuit 40 for sequential circulation driving, and the application side electrodes 22 are connected to each other to apply the same application signal C, and the signal detection circuit 30 The detection-side electrode 23 is commonly connected to the output-side applied signal generation circuit 31, and is individually connected to the current-voltage conversion circuit 32 on the input side of the signal detection circuit 30 in order to distinguish and detect the relative displacement of each part of the gyro rotor 10. The electrostatic support electrodes 24 and 25 are individually connected to the control voltage output stage circuit 41 of the control circuit 40 in order to apply appropriate electrostatic attraction to each part of the gyro rotor 10.

このような電極配置と結線とにより、X方向に対向配置の静電支持用電極25からX方向に正負の静電引力が生じ、Y方向に対向配置の静電支持用電極25からY方向に正負の静電引力が生じ、X方向に対向配置の静電支持用電極24からY方向軸線周り回転のθ方向に正負の静電引力が生じ、Y方向に対向配置の静電支持用電極24からX方向軸線周り回転のφ方向に正負の静電引力が生じ、ジャイロケース20の上下の底部材に対向配置の静電支持用電極24からZ方向に正負の静電引力が生じるものとなっている。   By such electrode arrangement and connection, positive and negative electrostatic attractive forces are generated in the X direction from the electrostatic support electrodes 25 opposed in the X direction, and in the Y direction from the electrostatic support electrodes 25 arranged in the Y direction. Positive and negative electrostatic attractive forces are generated, and positive and negative electrostatic attractive forces are generated in the θ direction of rotation around the Y direction axis from the electrostatic supporting electrodes 24 arranged opposite to each other in the X direction, and electrostatic supporting electrodes 24 arranged opposite to each other in the Y direction. Positive and negative electrostatic attractive forces are generated in the φ direction of rotation around the X-direction axis, and positive and negative electrostatic attractive forces are generated in the Z direction from the electrostatic support electrodes 24 arranged opposite to the upper and lower bottom members of the gyro case 20. ing.

制御回路40は(図1(c)参照)、ジャイロロータ10とジャイロケース20とのスピン軸周り以外の相対変位すなわちX方向変位とY方向変位とZ方向変位とφ方向変位とθ方向変位とから、公知の演算を行って、姿勢制御用制御電圧A,B等を生成し、それぞれを複数の電極21〜25のうち各方向の静電支持用電極24,25に印加する等のことで、それらの相対変位をゼロにする姿勢制御を行うようになっている。また、ジャイロロータ10のZ軸周りの回転状態から、やはり公知の演算を行って、回転駆動用の制御電圧たとえば三相のパルス状信号を生成し、それらを回転駆動用電極21へ循環的に印加する等のことで、ジャイロロータ10を一定速度で回転させる回転制御を行うようにもなっている。なお、ジャイロロータ10の回転状態は、回転駆動用電極21の容量変化から検出され、それ以外の相対変位ΔX,ΔY,ΔZ,Δφ,Δθは、静電支持用電極に近接配置された検出側電極23の容量変化から検出されるようになっている。   The control circuit 40 (see FIG. 1C) is a relative displacement of the gyro rotor 10 and the gyro case 20 other than around the spin axis, that is, an X direction displacement, a Y direction displacement, a Z direction displacement, a φ direction displacement, and a θ direction displacement. From the above, a known calculation is performed to generate control voltages A and B for attitude control, and each is applied to the electrostatic support electrodes 24 and 25 in each direction among the plurality of electrodes 21 to 25. Then, posture control is performed so that their relative displacements are zero. Also, a known calculation is performed from the rotational state of the gyro rotor 10 around the Z-axis to generate a rotational drive control voltage, for example, a three-phase pulse signal, which is cyclically transmitted to the rotational drive electrode 21. Rotation control for rotating the gyro rotor 10 at a constant speed is also performed by applying it. The rotational state of the gyro rotor 10 is detected from a change in the capacitance of the rotational drive electrode 21, and the other relative displacements ΔX, ΔY, ΔZ, Δφ, Δθ are detected on the detection side disposed close to the electrostatic support electrode. It is detected from the capacitance change of the electrode 23.

制御回路40から静電支持用電極24,25に送出される姿勢制御用制御電圧A,B等は、制御電圧出力段回路41によってパルス幅変調されるようになっている(図1(d)参照)。具体的には、制御電圧出力段回路41は、ジャイロロータ10の運動に影響しないほど高い周波数たとえば数百kHz以上でスイッチングしながら高位電源電圧たとえば5Vと低位電源電圧たとえば接地電圧の0Vとの何れかを出力するが、そのディーティ比を変えることにより平均電圧を所望の電圧に一致させるようになっている。   The attitude control control voltages A, B, etc. sent from the control circuit 40 to the electrostatic support electrodes 24, 25 are pulse width modulated by the control voltage output stage circuit 41 (FIG. 1 (d)). reference). Specifically, the control voltage output stage circuit 41 switches between a high power supply voltage, for example, 5 V and a low power supply voltage, for example, 0 V of the ground voltage, while switching at a high frequency such as several hundred kHz or more so as not to affect the motion of the gyro rotor 10. The average voltage is made to coincide with a desired voltage by changing the duty ratio.

また、制御回路40は、対向対の静電支持用電極24に送出される姿勢制御用制御電圧A,Bについては、姿勢制御用制御電圧Aが5Vのときには姿勢制御用制御電圧Bが0Vになり姿勢制御用制御電圧Aが0Vのときには姿勢制御用制御電圧Bが5Vになるような一対の制御電圧をそれぞれの制御電圧出力段回路41から出力するようになっている。これにより、ジャイロロータ10が適正に浮上していれば、ディーティ比が50%より大きいか小さいかに応じて正方向か負方向か何れかの方向に静電引力が生じ、その静電引力の大きさがディーティ比の50%からの偏倚に応じて変化するものとなる。   In addition, the control circuit 40 sets the attitude control control voltage B to 0 V when the attitude control control voltage A is 5 V. When the attitude control control voltage A is 0V, a pair of control voltages such that the attitude control control voltage B is 5V are output from the respective control voltage output stage circuits 41. As a result, if the gyro rotor 10 is properly lifted, an electrostatic attractive force is generated in either the positive direction or the negative direction depending on whether the duty ratio is larger or smaller than 50%. The size changes according to the deviation from 50% of the duty ratio.

信号検出回路30は(図1(c)参照)、出力側の相対変位検出用印加信号供給回路として印加信号発生回路31を具え、入力側の相対変位検出用検出信号生成回路として電流電圧変換回路32及び引算回路33を具えたものである。印加信号発生回路31は、やはりジャイロロータ10の運動に影響しないほど高い周波数たとえば数百kHz以上の印加信号Cを生成するが、この印加信号Cは、一定の周波数および一定の振幅を持った適宜な波形たとえば正弦波や(図1(d)参照),三角波(図示せず),矩形波(図示せず)などであって、例えば0V〜5Vの電源電圧の許す範囲でなるべく大きな一定の電流振幅をとるようになっている。   The signal detection circuit 30 (see FIG. 1C) includes an application signal generation circuit 31 as an output signal supply circuit for detecting relative displacement on the output side, and a current-voltage conversion circuit as a detection signal generation circuit for detection of relative displacement on the input side. 32 and a subtracting circuit 33. The applied signal generation circuit 31 generates an applied signal C having a frequency that is high enough not to affect the motion of the gyro rotor 10, for example, several hundred kHz or more. The applied signal C is appropriately set with a constant frequency and a constant amplitude. Such as a sine wave (see FIG. 1 (d)), a triangular wave (not shown), a rectangular wave (not shown), etc., for example, a constant current as large as possible within the range allowed by a power supply voltage of 0V to 5V. The amplitude is taken.

電流電圧変換回路32(図1(c)参照)は、検出側電極23毎に設けられ、それぞれ接続先の検出側電極23から検出した検出信号D,Eについて電流信号から電圧信号に変換するようになっている。引算回路33は、対向対の検出側電極23毎に即ちそれに対応した一対の電流電圧変換回路32毎に設けられ、対をなす検出信号D,Eについて、それらが電流電圧変換回路32にて電圧信号に変換された後で、差を算出するようになっている。検出信号D等は(図1(d)参照)、印加信号Cの電流を分割した電流信号であるが、検出側電極23ひいては静電支持用電極24とジャイロロータ10における対峙面との距離に応じてそこの静電容量が変化することに基づき、ジャイロロータ10の変位に応じて電流の分割状態が変化するので、該当電極23の各配置部位におけるジャイロロータ10とジャイロケース20との相対変位を反映したものとなる。   A current-voltage conversion circuit 32 (see FIG. 1C) is provided for each detection-side electrode 23, and converts the detection signals D and E detected from the detection-side electrode 23 to which the connection is made from a current signal into a voltage signal. It has become. The subtraction circuit 33 is provided for each of the opposing pair of detection-side electrodes 23, that is, for each of the pair of current-voltage conversion circuits 32 corresponding to the detection-side electrodes 23. After being converted into a voltage signal, the difference is calculated. The detection signal D or the like (see FIG. 1D) is a current signal obtained by dividing the current of the applied signal C, but the distance between the detection-side electrode 23 and the electrostatic support electrode 24 and the opposite surface of the gyro rotor 10 is determined. Accordingly, the divided state of the current changes according to the displacement of the gyro rotor 10 on the basis of the change in the electrostatic capacitance therefor, so the relative displacement between the gyro rotor 10 and the gyro case 20 at each arrangement portion of the corresponding electrode 23. Will be reflected.

さらに、それら多数の引算回路33による検出信号は、一旦、X方向の正方向および負方向に配置された静電支持用電極25について相対変位ΔXを反映するものと、Y方向の正方向および負方向に配置された静電支持用電極25について相対変位ΔYを反映するものと、X方向の正方向に配置された静電支持用電極24について相対変位ΔZ+Δθを反映するものと、X方向の負方向に配置された静電支持用電極24について相対変位ΔZ−Δθを反映するものと、Y方向の正方向に配置された静電支持用電極24について相対変位ΔZ+Δφを反映するものと、Y方向の負方向に配置された静電支持用電極24について相対変位ΔZ−Δφを反映するものとの6個に纏められ、それからA/D変換および適宜な加減演算が施されて、相対変位ΔX,ΔY,ΔZ,Δφ,Δθを反映するものに集約され、制御回路40での姿勢制御用制御電圧の演算に供されるようになっている。   Further, the detection signals from the numerous subtraction circuits 33 once reflect the relative displacement ΔX with respect to the electrostatic support electrodes 25 arranged in the positive and negative directions in the X direction, and the positive and negative directions in the Y direction. The electrostatic support electrode 25 arranged in the negative direction reflects the relative displacement ΔY, the electrostatic support electrode 24 arranged in the positive X direction reflects the relative displacement ΔZ + Δθ, and the X direction The electrostatic support electrode 24 arranged in the negative direction reflects the relative displacement ΔZ−Δθ, the electrostatic support electrode 24 arranged in the positive Y direction reflects the relative displacement ΔZ + Δφ, and Y The electrostatic support electrodes 24 arranged in the negative direction of the direction are grouped into six that reflect the relative displacement ΔZ−Δφ, and then subjected to A / D conversion and appropriate addition / subtraction operation to obtain the relative displacement ΔX. , Y, ΔZ, Δφ, are collected into reflects the [Delta] [theta], is adapted to be subjected to calculation of the attitude control for the control voltage at the control circuit 40.

この実施例1の静電浮上型ジャイロ装置について、その使用態様及び動作を、図面を引用して説明する。図1(d)は、幾つかの信号に関する波形例である。   The use mode and operation of the electrostatic levitation gyro apparatus according to the first embodiment will be described with reference to the drawings. FIG. 1D shows examples of waveforms related to several signals.

信号検出回路30により検出側電極23の容量変化に基づいて相対変位ΔX,ΔY,ΔZ,Δφ,Δθが検出され、それを入力した制御回路40の姿勢制御および回転駆動によってジャイロロータ10がジャイロケース20内の中立位置に浮上して回転し続け、更にそれらに基づいて、静電浮上型ジャイロに作用した加速度等が演算され検知されるのは、従来通りなので、それについての更なる説明は割愛して、以下、従来とは相違する動作等を中心に説明する。すなわち、制御回路40の出力する姿勢制御用制御電圧A,B等が制御電圧出力段回路41にてパルス幅変調されるようになったことや、そのように制御電圧をパルス化しても改造後の変位検出用電極22,23及び信号検出回路30によりスイッチングノイズの影響を排して適切に相対変位の検出が行われることを説明する。   Relative displacements ΔX, ΔY, ΔZ, Δφ, and Δθ are detected by the signal detection circuit 30 based on the capacitance change of the detection-side electrode 23, and the gyro rotor 10 is moved to the gyro case by the attitude control and rotational drive of the control circuit 40 that inputs the relative displacements. Since it is as usual that the acceleration acting on the electrostatic levitation type gyroscope is calculated and detected based on these, it continues to float and rotate at the neutral position in 20, and further explanation thereof is omitted. In the following, description will be made centering on operations that are different from the conventional ones. That is, the attitude control control voltages A, B, etc. output from the control circuit 40 are pulse-width modulated by the control voltage output stage circuit 41. It will be explained that the displacement detection electrodes 22 and 23 and the signal detection circuit 30 eliminate the influence of the switching noise and appropriately detect the relative displacement.

姿勢制御用制御電圧A,B等は(図1(d)参照)、制御回路40から静電支持用電極24,25に送出されるが、その際、制御電圧出力段回路41によってパルス幅変調されて、例えば振幅5Vのパルス信号になる(図1(d)参照)。その周波数は一定であるが、パルス幅はディーティ比50%を基準に増減する。そのディーティ比が増えると姿勢制御用制御電圧A,Bの平均電圧が上がり、ディーティ比が減ると姿勢制御用制御電圧A,Bの平均電圧が下がるが、その平均電圧がジャイロロータ10における静電支持用電極24対峙部位に対する有効な静電引力となる。   The control voltages A and B for attitude control (see FIG. 1D) are sent from the control circuit 40 to the electrostatic support electrodes 24 and 25. At this time, the control voltage output stage circuit 41 performs pulse width modulation. Thus, for example, the pulse signal has an amplitude of 5 V (see FIG. 1D). The frequency is constant, but the pulse width increases and decreases with a duty ratio of 50% as a reference. When the duty ratio increases, the average voltage of the attitude control control voltages A and B increases, and when the duty ratio decreases, the average voltage of the attitude control control voltages A and B decreases. It becomes an effective electrostatic attraction force with respect to the supporting electrode 24 opposite to the part.

また、対向対の静電支持用電極24に印加される姿勢制御用制御電圧A,Bを対比してみると、姿勢制御用制御電圧Aが5Vのとき姿勢制御用制御電圧Bは0Vになり、姿勢制御用制御電圧Aが0Vのとき姿勢制御用制御電圧Bは5Vになるので、ジャイロロータ10の電位が姿勢制御用制御電圧A,Bの印加によって不所望に変動することはない。また、ディーティ比の増減が反対になるが増減量すなわち偏倚は等しいので、50%からのディーティ比の偏倚に応じてジャイロロータ10には正方向にも負方向にも静電支持力が作用する。   Further, when comparing the attitude control control voltages A and B applied to the opposing electrostatic support electrodes 24, when the attitude control control voltage A is 5V, the attitude control control voltage B becomes 0V. Since the attitude control control voltage B is 5 V when the attitude control control voltage A is 0 V, the potential of the gyro rotor 10 does not fluctuate undesirably by the application of the attitude control control voltages A and B. Further, although the increase / decrease in the duty ratio is opposite, the increase / decrease amount, that is, the deviation is the same, so that the electrostatic support force acts on the gyro rotor 10 in both the positive direction and the negative direction according to the deviation of the duty ratio from 50%. .

一方、印加信号Cは(図1(d)参照)、印加信号発生回路31から印加側電極22に印加されるが、印加側電極22が分散しているうえ互いに接続されているので、ジャイロロータ10が変位してもそれと印加側電極22との合計容量はあまり変化しない。そして、印加信号Cは、周波数も最大電流も一定であるが、最大電流ができるだけ大きくなるよう、電圧振幅が電源電圧を目一杯利用した例えば5Vの正弦波にされる。   On the other hand, the applied signal C (see FIG. 1 (d)) is applied from the applied signal generation circuit 31 to the application side electrode 22, but the application side electrode 22 is dispersed and connected to each other, so that the gyro rotor Even if 10 is displaced, the total capacity of it and the application side electrode 22 does not change much. The applied signal C is a sine wave having a voltage amplitude of, for example, 5 V that makes full use of the power supply voltage so that the maximum current is as large as possible, although the frequency and the maximum current are constant.

印加側電極22に印加された印加信号Cは、ジャイロロータ10を介して分散配置の検出側電極23に伝わり、検出信号D,E等となって、それぞれ該当する電流電圧変換回路32で検出される。その際、印加信号Cが各検出側電極23の容量に応じて検出側電極23に分配されるので、検出信号D,E等は(図1(d)参照)、ジャイロロータ10が検出側電極23に近寄ると、振幅・信号レベルが増大し、ジャイロロータ10が検出側電極23から離れると、振幅・信号レベルが減少する態様で、相対変位を反映する。   The applied signal C applied to the application side electrode 22 is transmitted to the detection side electrodes 23 in a distributed arrangement via the gyro rotor 10 and becomes detection signals D, E, etc., which are detected by the corresponding current-voltage conversion circuits 32 respectively. The At this time, since the applied signal C is distributed to the detection side electrode 23 according to the capacitance of each detection side electrode 23, the detection signals D and E (see FIG. 1D), the gyro rotor 10 is detected by the detection side electrode. When approaching 23, the amplitude / signal level increases, and when the gyro rotor 10 moves away from the detection-side electrode 23, the amplitude / signal level decreases, reflecting the relative displacement.

対向対の検出側電極23から抽出される検出信号D,Eも対比してみると、それらは振幅の異なる相似波形であり、ジャイロロータ10の変位状態に応じて、検出信号Dの振幅・信号レベルが増大するときには検出信号Eの振幅・信号レベルが減少し、検出信号Dの振幅・信号レベルが減少するときには検出信号Eの振幅・信号レベルが増大する、という関係にある。そこで、検出信号D,Eをそれぞれ電流電圧変換回路32で検出してから引算回路33にて統合した相対変位検出用検出信号は、ジャイロロータ10とジャイロケース20との各部での相対変位を正方向にも負方向にも的確に反映したものとなる。   Comparing the detection signals D and E extracted from the opposing detection electrode 23, they are similar waveforms having different amplitudes, and the amplitude / signal of the detection signal D depends on the displacement state of the gyro rotor 10. When the level increases, the amplitude / signal level of the detection signal E decreases, and when the amplitude / signal level of the detection signal D decreases, the amplitude / signal level of the detection signal E increases. Therefore, the detection signals D and E detected by the current-voltage conversion circuit 32 and then integrated by the subtraction circuit 33 are used to detect the relative displacement at each part of the gyro rotor 10 and the gyro case 20. It accurately reflects both the positive and negative directions.

こうして、この静電浮上型ジャイロ装置にあっては、姿勢制御用制御電圧A,B等をパルス化することで、制御電圧出力段回路41から高価なアナログアンプ等を省くことが出来て、装置が安価になっているが、それにとどまらず更に相対変位検出用信号の送受に関して、印加信号Cの印加される印加側電極22にも、検出信号D,E等の検出される検出側電極23にも、制御電圧の印加されない変位検出用電極を割り当てたことにより、ジャイロケース20の電極やそれに接続された信号線については制御電圧と相対変位検出用信号との重畳が解消されたので、制御電圧がパルス化されてもそのスイッチングノイズの悪影響が相対変位検出用信号に及ぶことがない。例え及んでも僅かにすぎない。   Thus, in this electrostatic levitation type gyro device, it is possible to omit an expensive analog amplifier or the like from the control voltage output stage circuit 41 by pulsing the attitude control control voltages A, B, etc. However, the relative displacement detection signal transmission / reception is not limited to this, but the application side electrode 22 to which the application signal C is applied is also applied to the detection side electrode 23 to which the detection signals D and E are detected. However, since the displacement detection electrode to which the control voltage is not applied is assigned, the superposition of the control voltage and the relative displacement detection signal is eliminated for the electrode of the gyro case 20 and the signal line connected thereto. Even if the signal is pulsed, the switching noise does not adversely affect the relative displacement detection signal. Even if it compares, it is only a few.

図2にジャイロケースにおける電極23,24の平面配置図を示した本発明の静電浮上型ジャイロ装置が上述した実施例1のものと相違するのは、検出側電極23の静電支持用電極24に対する位置ずれが径方向でなく周方向になっていることである。
上例では静電支持用電極24の内径側に一つずつ形成されていた検出側電極23が、本例では、二つに分かれて静電支持用電極24の周方向両脇に配置されている。形成箇所は分かれても、図示しない配線にて接続されている。
The electrostatic levitation type gyro apparatus according to the present invention, in which the plan view of the electrodes 23 and 24 in the gyro case is shown in FIG. 2, is different from that of the first embodiment described above. That is, the positional deviation with respect to 24 is not in the radial direction but in the circumferential direction.
In the above example, the detection side electrodes 23 formed one by one on the inner diameter side of the electrostatic support electrode 24 are divided into two in this example and arranged on both sides in the circumferential direction of the electrostatic support electrode 24. Yes. Even if the formation locations are separated, they are connected by wiring (not shown).

そして、そのような検出側電極23から合わせて検出される相対変位検出用検出信号は、検出側電極23の間に形成されている静電支持用電極24とジャイロロータ10との静電容量の変化ひいてはジャイロロータ10とジャイロケース20との相対変位を反映したものとなる。そのため、この場合も、上例と同様、制御電圧がパルス幅変調にて生成されるが、そのスイッチングの影響が変位検出用信号に及ぶことはほとんどない。   The relative displacement detection detection signal detected from the detection side electrode 23 is the capacitance of the electrostatic support electrode 24 and the gyro rotor 10 formed between the detection side electrodes 23. As a result, the change reflects the relative displacement between the gyro rotor 10 and the gyro case 20. Therefore, in this case as well, as in the above example, the control voltage is generated by pulse width modulation, but the influence of the switching hardly affects the displacement detection signal.

図3にジャイロケースにおける電極23,24の平面配置図を示した本発明の静電浮上型ジャイロ装置が上述した実施例1,2のものと相違するのは、検出側電極23の静電支持用電極24に対する位置ずれを径方向でなく周方向にする際に検出側電極23でなく静電支持用電極24を二つに分けたことである。
すなわち、静電支持用電極24は、ジャイロロータ10を挟むようにして向かい合う複数の対向対からなり、その各々がジャイロケース20の上側か下側か何れかの底部材において周方向に分かれた隣接電極(24+,24−)からなるが、この隣接電極の間に検出側電極23が一つずつ配置されている。
The electrostatic levitation type gyro apparatus according to the present invention, in which the plan view of the electrodes 23 and 24 in the gyro case is shown in FIG. 3, is different from that of the first and second embodiments described above. This is because the electrostatic support electrode 24 is divided into two parts instead of the detection-side electrode 23 when the positional deviation with respect to the electrode 24 is changed to the circumferential direction instead of the radial direction.
That is, the electrostatic support electrode 24 is composed of a plurality of opposing pairs facing each other with the gyro rotor 10 sandwiched therebetween, each of which is an adjacent electrode separated in the circumferential direction on the bottom member on either the upper side or the lower side of the gyro case 20 ( 24+, 24-)), and one detection side electrode 23 is arranged between the adjacent electrodes.

この場合、隣接電極の何れか一方(24+)には姿勢制御用制御電圧A等が印加され、他方(24−)には姿勢制御用制御電圧B等が印加される。その対向対における隣接電極にも同様に姿勢制御用制御電圧A,Bが印加されるが、その際、上側底部材における隣接電極のうち姿勢制御用制御電圧Aの印加される電極と下側底部材において対向する電極には姿勢制御用制御電圧Bが印加され、上側底部材における隣接電極のうち姿勢制御用制御電圧Bの印加される電極と下側底部材において対向する電極には姿勢制御用制御電圧Aが印加されるので、ジャイロロータ10の電位が一層安定する。また、検出側電極23が相対変位を最も良く反映するところに配置されているので、検出精度が向上する。   In this case, the attitude control control voltage A or the like is applied to one of the adjacent electrodes (24+), and the attitude control control voltage B or the like is applied to the other (24−). Similarly, the posture control control voltages A and B are also applied to the adjacent electrodes in the opposing pair. At this time, of the adjacent electrodes in the upper bottom member, the electrode to which the posture control control voltage A is applied and the lower bottom portion The control voltage B for posture control is applied to the electrodes facing each other in the material, and the electrode for posture control is applied to the electrodes opposed to the electrode to which the posture control control voltage B is applied among the adjacent electrodes in the upper bottom member. Since the control voltage A is applied, the potential of the gyro rotor 10 is further stabilized. Further, since the detection-side electrode 23 is disposed where the relative displacement is reflected best, the detection accuracy is improved.

[その他]
なお、上記実施例では、環状ジャイロロータを具体例に採って説明したが、本発明の適用は、これに限られる訳でなく、その他のものにも可能であり、例えば円板状・円盤状ジャイロロータの装置にも適用することができる。
また、上記実施例では、検出側電極23が静電支持用電極24に近接して分散配置されていたが、印加側電極22を静電支持用電極24に近接して分散配置しても良い。印加側電極22と検出側電極23のうち何れか一方がそのようになっていれば、他方は分散していても集中していても良い。
[Others]
In the above embodiment, the annular gyro rotor has been described as a specific example, but the application of the present invention is not limited to this, and can be applied to other types, for example, a disk shape or a disk shape. The present invention can also be applied to a gyro rotor device.
In the above embodiment, the detection-side electrodes 23 are dispersedly arranged close to the electrostatic support electrodes 24. However, the application-side electrodes 22 may be dispersedly arranged close to the electrostatic support electrodes 24. . If either one of the application side electrode 22 and the detection side electrode 23 is so, the other may be dispersed or concentrated.

本発明の実施例1について、静電浮上型ジャイロ装置の構造等を示し、(a)がジャイロ機構部の縦断面図、(b)がジャイロケースにおける電極の平面配置図、(c)が信号検出回路および制御回路の要部ブロック図、(d)が信号波形例である。Example 1 of the present invention shows the structure of an electrostatic levitation gyro device, (a) is a longitudinal sectional view of a gyro mechanism, (b) is a plan view of electrodes in a gyro case, and (c) is a signal. The principal part block diagram of a detection circuit and a control circuit, (d) is an example of a signal waveform. 本発明の実施例2について、ジャイロケースにおける電極の平面配置図である。It is a plane arrangement figure of an electrode in a gyro case about Example 2 of the present invention. 本発明の実施例3について、ジャイロケースにおける電極の平面配置図である。It is a plane arrangement figure of the electrode in a gyro case about Example 3 of the present invention.

符号の説明Explanation of symbols

10 ジャイロロータ(ジャイロ機構部)
20 ジャイロケース(ジャイロ機構部)
21 ロータ駆動用電極(制御電極、ロータ駆動系)
22 印加側電極(変位検出用電極、変位検出系)
23 検出側電極(変位検出用電極、変位検出系)
24 静電支持用電極(姿勢制御用電極、制御電極、拘束制御系)
25 静電支持用電極(姿勢制御用電極、制御電極、拘束制御系)
30 信号検出回路(変位検出回路、変位検出系)
31 印加信号発生回路(相対変位検出用印加信号供給回路)
32 電流電圧変換回路(相対変位検出用検出信号生成回路)
33 引算回路(差算出、相対変位検出用検出信号生成回路)
40 制御回路(姿勢制御演算、ロータ回転演算、拘束制御系、ロータ駆動系)
41 制御電圧出力段回路(PWM、パルス幅変調回路)
A 姿勢制御用制御電圧(一面側、一方側)
B 姿勢制御用制御電圧(他面側、対向側)
C 印加信号(相対変位検出用信号、共通)
D 検出信号(相対変位検出用信号、一面側、一方側)
E 検出信号(相対変位検出用信号、他面側、対向側)
10 Gyro rotor (gyro mechanism)
20 Gyro case (Gyro mechanism)
21 Rotor drive electrode (control electrode, rotor drive system)
22 Application-side electrode (displacement detection electrode, displacement detection system)
23 Detection-side electrode (displacement detection electrode, displacement detection system)
24 Electrostatic support electrodes (posture control electrodes, control electrodes, restraint control system)
25 Electrostatic support electrodes (posture control electrodes, control electrodes, restraint control system)
30 Signal detection circuit (displacement detection circuit, displacement detection system)
31 Applied signal generation circuit (applied signal supply circuit for detecting relative displacement)
32 Current-voltage conversion circuit (detection signal generation circuit for detecting relative displacement)
33 Subtraction circuit (difference calculation, detection signal generation circuit for detecting relative displacement)
40 control circuit (attitude control calculation, rotor rotation calculation, constraint control system, rotor drive system)
41 Control voltage output stage circuit (PWM, pulse width modulation circuit)
A Attitude control voltage (one side, one side)
B Control voltage for attitude control (other side, opposite side)
C Applied signal (relative displacement detection signal, common)
D Detection signal (Relative displacement detection signal, one side, one side)
E Detection signal (Relative displacement detection signal, other side, opposite side)

Claims (1)

ジャイロロータを静電浮上可能かつ回転可能に内蔵するジャイロケースと、これに形成されている複数の電極のうち静電支持用電極および回転駆動用電極に前記ジャイロロータの姿勢制御用および回転駆動用の制御電圧をそれぞれ生成して印加する制御回路と、前記複数電極のうち前記制御電圧の印加されない変位検出用電極を介して前記ジャイロロータと前記ジャイロケースとの相対変位検出用信号の送受を行う信号検出回路とを備えた静電浮上型ジャイロ装置において、前記制御回路が、前記制御電圧の生成をパルス幅変調にて行うものであり、前記変位検出用電極が、前記信号検出回路の出力側に接続され前記相対変位検出用信号を印加される印加側電極と、前記信号検出回路の入力側に接続され前記相対変位検出用信号の検出に用いられる検出側電極とからなり、前記検出側電極または前記印加側電極が、前記静電支持用電極に近接して分散配置されていることを特徴とする静電浮上型ジャイロ装置。   A gyro case in which the gyro rotor is electrostatically levitated and rotatably incorporated, and among the plurality of electrodes formed on the gyro rotor, the electrostatic support electrode and the rotation drive electrode are used for attitude control and rotation drive of the gyro rotor. The control circuit for generating and applying the control voltage is transmitted and received through the displacement detection electrode to which the control voltage is not applied among the plurality of electrodes, and a relative displacement detection signal is transmitted and received between the gyro rotor and the gyro case. In the electrostatic levitation gyro apparatus including a signal detection circuit, the control circuit performs generation of the control voltage by pulse width modulation, and the displacement detection electrode is provided on an output side of the signal detection circuit. Connected to the application side electrode to which the relative displacement detection signal is applied, and connected to the input side of the signal detection circuit and used to detect the relative displacement detection signal It consists of a detection side electrode, the detection-side electrode or the application-side electrode, an electrostatic levitation type gyro apparatus characterized by being distributed in proximity to the electrostatic supporting electrode.
JP2004173166A 2004-06-10 2004-06-10 Electrostatic levitation gyroscope Expired - Fee Related JP4425066B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004173166A JP4425066B2 (en) 2004-06-10 2004-06-10 Electrostatic levitation gyroscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004173166A JP4425066B2 (en) 2004-06-10 2004-06-10 Electrostatic levitation gyroscope

Publications (2)

Publication Number Publication Date
JP2005351776A true JP2005351776A (en) 2005-12-22
JP4425066B2 JP4425066B2 (en) 2010-03-03

Family

ID=35586382

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004173166A Expired - Fee Related JP4425066B2 (en) 2004-06-10 2004-06-10 Electrostatic levitation gyroscope

Country Status (1)

Country Link
JP (1) JP4425066B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008080888A (en) * 2006-09-26 2008-04-10 Japan Aerospace Exploration Agency Non- contact type rigid body rotation control device
JP2009257859A (en) * 2008-04-15 2009-11-05 Tokyo Keiki Inc Electrostatic leviation gyroscope apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008080888A (en) * 2006-09-26 2008-04-10 Japan Aerospace Exploration Agency Non- contact type rigid body rotation control device
JP2009257859A (en) * 2008-04-15 2009-11-05 Tokyo Keiki Inc Electrostatic leviation gyroscope apparatus

Also Published As

Publication number Publication date
JP4425066B2 (en) 2010-03-03

Similar Documents

Publication Publication Date Title
US7316161B2 (en) Rotation rate sensor
US10734878B2 (en) Spherical wheel motor and control system thereof
JP5524045B2 (en) Vibrating gyroscope using piezoelectric film
EP3152822A1 (en) Methods and systems for controllably moving multiple moveable stages in a displacement device
JP4583538B2 (en) Gyro device
JP2009271052A (en) Parametric amplification of mems gyroscope by capacitance modulation
JP2006153798A (en) Rotation-vibration type angular velocity sensor
JP2007304099A (en) Use of electrode for negating lift effect of inertial sensor
FI127287B (en) Microelectromechanical sensor device with improved quadrature compensation
JP4425066B2 (en) Electrostatic levitation gyroscope
CN206282031U (en) A kind of 3 D electromagnetic suspension micro mirror
JP4733923B2 (en) Method and apparatus for operation of a two-axis MEMS device using three actuating elements
US20230243653A1 (en) Vibrating-type gyroscope element and angular velocity sensor comprising same
JP2007316037A (en) Angular velocity sensor
US6856067B2 (en) Device and method for electrostatically levitating a disk and method for using an electrostatic levitated disk as a sensor
JP2008309527A (en) Electrostatic float type gyro apparatus
CN100489538C (en) Dual-mode diamagnetic sensitive mass micro-accelerometer
JP2013108929A (en) Vibration type gyro with high accuracy
CN101216309B (en) Circular and multi-ring shaped axial magnetizing permanent magnetism antimagnetic rotor electrostatic rotating micro gyroscope
JP5199720B2 (en) Electrostatic levitation gyroscope
JP4219200B2 (en) Capacitance detection type self-diagnosis 3-axis acceleration sensor
JP4237474B2 (en) Electrostatic levitated gyro signal detection circuit
JP4667940B2 (en) Inertial sensor device
CN100565109C (en) Circle and multi-ring shaped axial and radial magnetizing permanent magnetism antimagnetic rotor electrostatic rotating micro-gyroscope
JP2006170802A (en) Electrostatic floating gyroscopic apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070427

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091201

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091208

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121218

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131218

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees