JP2005349317A - Fluid mixer - Google Patents

Fluid mixer Download PDF

Info

Publication number
JP2005349317A
JP2005349317A JP2004173484A JP2004173484A JP2005349317A JP 2005349317 A JP2005349317 A JP 2005349317A JP 2004173484 A JP2004173484 A JP 2004173484A JP 2004173484 A JP2004173484 A JP 2004173484A JP 2005349317 A JP2005349317 A JP 2005349317A
Authority
JP
Japan
Prior art keywords
fluid
ejection port
mixing
jet
nozzle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004173484A
Other languages
Japanese (ja)
Other versions
JP4554283B2 (en
Inventor
Fujio Hiroki
富士男 廣木
Atsushi Yumoto
敦史 湯本
Naoki Niwa
直毅 丹羽
Keijiro Yamamoto
圭治郎 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tama TLO Co Ltd
Original Assignee
Tama TLO Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tama TLO Co Ltd filed Critical Tama TLO Co Ltd
Priority to JP2004173484A priority Critical patent/JP4554283B2/en
Publication of JP2005349317A publication Critical patent/JP2005349317A/en
Application granted granted Critical
Publication of JP4554283B2 publication Critical patent/JP4554283B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fluid mixer capable of mixing two fluids without using the energy of electricity or the like from the outside and a mechanical movable part. <P>SOLUTION: The fluid mixer is constituted so that the first jet orifice 11 of a first mixing nozzle 10 and the second jet orifice 21 of a second mixing nozzle 20 are arranged coaxially in opposed relationship, the first and second jet orifices 11 and 21 have an almost rectangular shape and the first fluid is ejected from the first jet orifice 11 while the second fluid is ejected from the second jet orifice 21 to mix first and second fluids in the space (mixture region MR) between the first and second jet orifices 11 and 21. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は流体混合装置に関し、特に気体同士、液体同士、固気二相流同士または気体と固気二相流などを混合する流体混合装置に関する。   The present invention relates to a fluid mixing apparatus, and more particularly to a fluid mixing apparatus that mixes gases, liquids, solid-gas two-phase flows, or gas and solid-gas two-phase flows.

気体同士や液体同士などの流体の混合は、例えば図7に示すY字型流体混合装置を用いて行うことができる。
Y字型流体混合装置は、第1流体100が流される第1流入口101と第2流体110が流される第2流入口111が合流部120で合流して混合し、第1流体100と第2流体110の混合物が取り出し口130から取り出される構成である。
Mixing of fluids such as gases or liquids can be performed using, for example, a Y-shaped fluid mixing device shown in FIG.
In the Y-shaped fluid mixing device, the first inlet 101 through which the first fluid 100 flows and the second inlet 111 through which the second fluid 110 flows are joined and mixed at the junction 120, and the first fluid 100 and the first fluid 100 are mixed. In this configuration, the mixture of the two fluids 110 is taken out from the outlet 130.

上記のY字型流体混合装置において、第1流体と第2流体をそれぞれ同時に流入させても、流体の物性値やレイノルズ数などの影響で、合流部において混合しないで実質的に分離したままで取り出し口から出てきてしまい、均一に混合させることが困難なことがある。
そこで、第1流体と第2流体をより均一に混合するために、外部からのエネルギーを用いて、第1流体と第2流体の取り出し口への流入を機械的に制御し、均一に混合する方法がある。より具体的には、図7に示すように、第1流体と第2流体を交互に取り出し口に流入するようにする。この交互に流入させる流体の量をより少なくすることにより、第1流体と第2流体をより均一に混合することが可能となる。
In the above Y-shaped fluid mixing device, even if the first fluid and the second fluid are allowed to flow simultaneously, they remain substantially separated without being mixed at the junction due to the influence of the physical properties of the fluid, the Reynolds number, etc. It may come out of the outlet and be difficult to mix uniformly.
Therefore, in order to mix the first fluid and the second fluid more uniformly, the inflow of the first fluid and the second fluid to the take-out port is mechanically controlled by using energy from the outside, and the fluid is uniformly mixed. There is a way. More specifically, as shown in FIG. 7, the first fluid and the second fluid are alternately introduced into the take-out port. By reducing the amount of fluid alternately flowing in, the first fluid and the second fluid can be mixed more uniformly.

ところで、近年、ナノテクノロジーの重要性が高まりつつあり、ナノサイズオーダーの材料技術が発展してきており、ナノサイズの粒子(以下ナノ粒子とも称する)はナノテクノロジーを支える基幹技術であり、ナノ粒子の製造技術が急速に進展している。
ナノ粒子のアプリケーションとしては、種々の分野に渡る多種多様な用途が検討さており、近年、例えば、反応、コーティング、焼結、粉砕、混練、造粒、打錠および成形など、各層材料プロセスの工程にナノ粒子を利用する技術が注目を集めている。
By the way, in recent years, the importance of nanotechnology has been increasing, and nano-sized material technology has been developed. Nano-sized particles (hereinafter also referred to as nanoparticles) are fundamental technologies that support nanotechnology. Manufacturing technology is advancing rapidly.
As the application of nanoparticles, a wide variety of uses in various fields are being studied. In recent years, for example, the process of each layer material process such as reaction, coating, sintering, grinding, kneading, granulation, tableting and molding. In particular, technology using nanoparticles is attracting attention.

中でも、設計の高度化および複雑化に伴い、製造した2種類あるいはそれ以上の異なった物質、性質の粉体を混ぜ合わせて一様な均一組成を得る精密混合技術の開発が期待されている。
とりわけ、ナノ粒子の生成から混合までを一体のドライプロセスで行うことがでいる技術の開発に大きな注目が集められている。
In particular, with the advancement of design and complexity, it is expected to develop a precision mixing technique that obtains a uniform uniform composition by mixing two or more kinds of manufactured substances and powders having different properties.
In particular, a great deal of attention has been focused on the development of technology that can perform the production from nanoparticle generation to mixing in an integrated dry process.

ここで、上記のような2つの流体に含まれるナノ粒子などの粉体の混合や、その他の2つの流体の混合を行うのに、図7に示すようなY字型混合装置のように外部からの電気などのエネルギーを必要とせず、機械的な可動部を持たない流体混合装置が求められている。
山本圭治郎、野本明、川島忠雄、中土宣明:同軸対向衝突噴流の発振現象、油圧と空気圧(1975)pp68−77
Here, in order to mix powders such as nanoparticles contained in the two fluids as described above and other two fluids, an external device such as a Y-shaped mixing device as shown in FIG. There is a need for a fluid mixing device that does not require energy such as electricity and does not have mechanical moving parts.
Shinjiro Yamamoto, Akira Nomoto, Tadao Kawashima, Nobuaki Nakado: Oscillation Phenomenon of Coaxial Opposing Collision Jet, Oil Pressure and Air Pressure (1975) pp 68-77

解決しようとする問題点は、2つの流体に含まれるナノ粒子などの粉体の混合や、その他の2つの流体の混合を行うのに、外部からの電気などのエネルギーを用いず、機械的な可動部を用いないで均一に混合することが困難である点である。   The problem to be solved is that the mixing of powders such as nanoparticles contained in two fluids and the mixing of the other two fluids do not use external energy or other mechanical energy. It is difficult to mix uniformly without using a movable part.

本発明の流体混合装置は、略矩形形状の第1噴き出し口を有する第1混合ノズルと、前記第1噴き出し口と同じ形状の第2噴き出し口を有し、前記第1混合ノズルと同軸上に対向して設けられた第2混合ノズルとを有し、第1噴き出し口から第1流体を噴き出し、前記第2噴き出し口から第2流体を噴き出し、前記第1噴き出し口と前記第2噴き出し口の間の空間において前記第1流体と前記第2流体とを混合する。   The fluid mixing apparatus of the present invention has a first mixing nozzle having a substantially rectangular first outlet and a second outlet having the same shape as the first outlet, and is coaxial with the first mixing nozzle. A second mixing nozzle provided oppositely, ejecting the first fluid from the first ejection port, ejecting the second fluid from the second ejection port, and the first ejection port and the second ejection port. The first fluid and the second fluid are mixed in a space therebetween.

上記の本発明の流体混合装置は、第1混合ノズルの第1噴き出し口と、第2混合ノズルの第2噴き出し口が同軸上に対向して配置されている。
第1噴き出し口と第2噴き出し口は同じ略矩形形状であり、第1噴き出し口から第1流体を噴き出し、第2噴き出し口から第2流体を噴き出して、第1噴き出し口と第2噴き出し口の間の空間において第1流体と第2流体とを混合する。
In the fluid mixing device of the present invention, the first ejection port of the first mixing nozzle and the second ejection port of the second mixing nozzle are arranged coaxially facing each other.
The first ejection port and the second ejection port have the same substantially rectangular shape, the first fluid is ejected from the first ejection port, the second fluid is ejected from the second ejection port, and the first ejection port and the second ejection port are The first fluid and the second fluid are mixed in the space therebetween.

上記の本発明の流体混合装置は、好適には、前記略矩形形状の短辺の長さaと長辺の長さbのアスペクト比(b/a)が2.9以上である。
また、好適には、前記第1混合ノズルと前記第2混合ノズルのノズル間距離が、前記略矩形形状の短辺の長さの4〜35倍の距離である。
In the fluid mixing device of the present invention, preferably, the aspect ratio (b / a) of the short side length a and the long side length b of the substantially rectangular shape is 2.9 or more.
Preferably, the distance between the first mixing nozzle and the second mixing nozzle is 4 to 35 times the length of the short side of the substantially rectangular shape.

上記の本発明の流体混合装置は、好適には、前記第1混合ノズルは、前記第1噴き出し口の近傍において、前記第1噴き出し口へと向かって前記第1流体が流れる空間の広さが、前記第1噴き出し口に近い下流側よりも前記第1噴き出し口から遠い上流側ほど広いテーパー形状となっている部分を有し、前記第2混合ノズルは、前記第2噴き出し口の近傍において、前記第2噴き出し口へと向かって前記第2流体が流れる空間の広さが、前記第2噴き出し口に近い下流側よりも前記第2噴き出し口から遠い上流側ほど広いテーパー形状となっている部分を有する。   In the fluid mixing apparatus of the present invention described above, preferably, the first mixing nozzle has a space in which the first fluid flows in the vicinity of the first ejection port toward the first ejection port. , Having a portion that has a tapered shape wider toward the upstream side farther from the first ejection port than the downstream side near the first ejection port, and the second mixing nozzle is in the vicinity of the second ejection port, A portion in which the space in which the second fluid flows toward the second ejection port has a tapered shape that is wider toward the upstream side farther from the second ejection port than the downstream side near the second ejection port. Have

上記の本発明の流体混合装置は、好適には、前記第1噴き出し口と前記第2噴き出し口の間の空間を挟んで対向するように、前記略矩形形状の長辺方向に配置され、前記第1流体と前記第2流体が前記略矩形形状の長辺方向に拡散していくのを防止する一対の仕切り板を有し、前記略矩形形状の短辺の長さaと長辺の長さbのアスペクト比(b/a)が1.4以上である。
さらに好適には、前記一対の仕切り板の間の距離が、前記略矩形形状の長辺の長さと略等しい。
The fluid mixing device of the present invention is preferably disposed in the long side direction of the substantially rectangular shape so as to face each other with a space between the first ejection port and the second ejection port interposed therebetween, The first fluid and the second fluid have a pair of partition plates that prevent the first fluid and the second fluid from diffusing in the long side direction of the substantially rectangular shape, and the length a of the short side of the substantially rectangular shape and the length of the long side The aspect ratio (b / a) of the thickness b is 1.4 or more.
More preferably, the distance between the pair of partition plates is substantially equal to the length of the long side of the substantially rectangular shape.

本発明の流体混合装置は、2つの流体に含まれるナノ粒子などの粉体の混合や、その他の2つの流体の混合を行うのに、同軸対向衝突噴流の発振現象を利用して、外部からの電気などのエネルギーを用いず、機械的な可動部を用いないで混合することができる。   The fluid mixing device of the present invention uses an oscillation phenomenon of a coaxial opposed collision jet to mix powders such as nanoparticles contained in two fluids and other two fluids from the outside. It is possible to mix without using energy such as electricity and without using a mechanical movable part.

以下に、本発明に係る流体混合装置の実施の形態について、図面を参照して説明する。   Hereinafter, embodiments of a fluid mixing apparatus according to the present invention will be described with reference to the drawings.

第1実施形態
図1(a)は本実施形態に係る流体混合装置の模式構成図である。
第1混合ノズル10の第1噴き出し口11と、第2混合ノズル20の第2噴き出し口21が同軸上に対向して配置されている。
第1噴き出し口11と第2噴き出し口21は同じ略矩形形状であり、第1噴き出し口11から第1流体を第1噴流12として噴き出し、第2噴き出し口21から第2流体を第2噴流22として噴き出して、第1噴き出し口11と第2噴き出し口21の間の空間(混合領域MR)において、第1流体と第2流体とを混合する。
First Embodiment FIG. 1A is a schematic configuration diagram of a fluid mixing apparatus according to the present embodiment.
The first ejection port 11 of the first mixing nozzle 10 and the second ejection port 21 of the second mixing nozzle 20 are disposed so as to be coaxially opposed to each other.
The first ejection port 11 and the second ejection port 21 have the same substantially rectangular shape, the first fluid is ejected from the first ejection port 11 as the first jet 12, and the second fluid is ejected from the second ejection port 21. And the first fluid and the second fluid are mixed in a space (mixing region MR) between the first ejection port 11 and the second ejection port 21.

本実施形態に係る流体混合装置は、装置内に2つの流体を導入する矩形の吹き出し口が形成された混合ノズルを持ち、混合することを目的とした2つの流体の流路は、それぞれこの混合ノズルに接続される。混合ノズルの対向する噴き出し口から噴き出された流体は、噴流となって互いに衝突する。   The fluid mixing apparatus according to the present embodiment has a mixing nozzle in which a rectangular outlet for introducing two fluids is formed in the apparatus. Connected to the nozzle. The fluids ejected from the opposed ejection ports of the mixing nozzle become jets and collide with each other.

図1(b)〜(d)は、上記の第1流体と第2流体とが混合するメカニズムを説明する模式図である。このメカニズムは、非特許文献1に記載の同軸対向衝突噴流の発振現象を利用したものである。
これらの図面において、相対的に高圧である領域を実線で囲み、相対的に低圧である領域を破線で囲んで示している。
FIGS. 1B to 1D are schematic views illustrating a mechanism in which the first fluid and the second fluid are mixed. This mechanism utilizes the oscillation phenomenon of the coaxial opposed collision jet described in Non-Patent Document 1.
In these drawings, a relatively high pressure region is surrounded by a solid line, and a relatively low pressure region is surrounded by a broken line.

図1(b)に示すように、第1混合ノズル10の第1噴き出し口11から圧力P1で第1流体の第1噴流12を噴き出し、一方、第2混合ノズル20の第2噴き出し口21から圧力P2で第2流体の第2噴流22を噴き出す。
このとき、第1噴き出し口11と第2噴き出し口21の間の空間において、第1噴流12と第2噴流22が噴流となって衝突する。
この第1噴流12と第2噴流22が衝突することにより、第1噴き出し口11と第2噴き出し口21の間の空間の中心部に高圧PMの領域が生じ、この結果、第1噴流12と第2噴流22の流れが不安定となる。
As shown in FIG. 1B, the first jet 12 of the first fluid is ejected from the first ejection port 11 of the first mixing nozzle 10 at the pressure P 1 , while the second ejection port 21 of the second mixing nozzle 20 is ejected. the second jet flow 22 at a pressure P 2 of the second fluid from the spouts.
At this time, in the space between the first outlet 11 and the second outlet 21, the first jet 12 and the second jet 22 collide as a jet.
By colliding with the first jet flow 12 and the second jet flow 22, the area of high pressure P M is generated in the central portion of the space between the first ejecting port 11 and the second ejection holes 21, as a result, the first jet flow 12 The flow of the second jet 22 becomes unstable.

上記のように流れが不安定となった第1噴流12および第2噴流22は、図1(c)に示すように、なんらかの外乱によって互いに逆方向に偏向する。第1噴流12および第2噴流22の偏向側は巻込みのために低圧となり、逆に非偏向側は噴流の干渉のために高圧となり、さらに衝突面は高圧であるので、第1噴流12および第2噴流22の偏向はますます増加する。
第1噴流12および第2噴流22の偏向が大きくなると、双方の噴流は互いにすれ違う。このすれ違い面は双方の噴流の巻き込みにより低圧となる。
As shown in FIG. 1C, the first jet 12 and the second jet 22 whose flows are unstable as described above are deflected in opposite directions due to some disturbance. Since the deflection sides of the first jet 12 and the second jet 22 are low in pressure, the non-deflection side is high in pressure due to jet interference, and the collision surface is high in pressure. The deflection of the second jet 22 increases more and more.
When the deflection of the first jet 12 and the second jet 22 is increased, both jets pass each other. This passing surface becomes low pressure due to the entrainment of both jets.

上記の圧力低下は、各ノズルの噴き出し口(11,21)のノズル軸に垂直方向に圧力分布を逆転させ、第1噴流12および第2噴流22を再び引き寄せて衝突状態を形成する。圧力分布が各ノズルの噴き出し口(11,21)のノズル軸に垂直方向に逆転しているので、第1噴流12および第2噴流22の偏向も逆転し、図1(d)に示すような状態となる。   The above pressure drop reverses the pressure distribution in the direction perpendicular to the nozzle axis of the outlet (11, 21) of each nozzle, and draws the first jet 12 and the second jet 22 again to form a collision state. Since the pressure distribution is reversed in the direction perpendicular to the nozzle axis of the ejection port (11, 21) of each nozzle, the deflection of the first jet 12 and the second jet 22 is also reversed, as shown in FIG. It becomes a state.

上記の各ノズルの噴き出し口(11,21)のノズル軸に垂直方向に圧力分布と噴流の偏向が逆転する過程が繰り返され、同軸対向して衝突する噴流の発振が生じる。この発振を持続させることで、第1噴流12と第2噴流22を混合することができる。   The process of reversing the pressure distribution and the deflection of the jet flow in the direction perpendicular to the nozzle axis of the nozzle outlet (11, 21) of each nozzle is repeated, and oscillation of the jet flow colliding with each other occurs coaxially. By continuing this oscillation, the first jet 12 and the second jet 22 can be mixed.

第1噴流12と第2噴流22の混合に適した第1混合ノズル10および第2混合ノズル20の形状やノズル間距離、ストロハル数などは、流体の種類やレイノルズ数によって決められる。   The shapes of the first mixing nozzle 10 and the second mixing nozzle 20 suitable for mixing the first jet 12 and the second jet 22, the inter-nozzle distance, the number of strohals, and the like are determined by the type of fluid and the Reynolds number.

例えば、混合しようとする流体の種類などによって依存するが、第1混合ノズル10の第1噴き出し口11および第2混合ノズル20の第2噴き出し口21において、略矩形形状の短辺の長さaと長辺の長さbのアスペクト比(b/a)が2.9以上であることが好ましい。2.9未満では第1噴流12と第2噴流22の混合が不均一になりやすくなり、好ましくない。さらには、アスペクト比を4〜6に設定するとより均一に混合することができるので好ましい。
また、第1混合ノズルと第2混合ノズルのノズル間距離は、略矩形形状の短辺の長さの4〜35倍の距離であることが好ましい。この距離が4倍未満あるいは35倍を越えると、第1噴流12と第2噴流22の混合が不均一になりやすくなり、好ましくない。
For example, although depending on the type of fluid to be mixed, the length a of the short side a of a substantially rectangular shape at the first ejection port 11 of the first mixing nozzle 10 and the second ejection port 21 of the second mixing nozzle 20. The aspect ratio (b / a) of the long side length b is preferably 2.9 or more. If it is less than 2.9, the mixing of the first jet 12 and the second jet 22 tends to be uneven, which is not preferable. Furthermore, it is preferable to set the aspect ratio to 4 to 6 because it can be more uniformly mixed.
Further, the distance between the first mixing nozzle and the second mixing nozzle is preferably 4 to 35 times the length of the short side of the substantially rectangular shape. If this distance is less than 4 times or more than 35 times, the mixing of the first jet 12 and the second jet 22 tends to be uneven, which is not preferable.

さらに、第1噴き出し口11と第2噴き出し口21の間の空間を挟んで対向するように、略矩形形状の長辺方向に配置され、第1流体と第2流体が略矩形形状の長辺方向に拡散していくのを防止する一対の仕切り板(例えば図2の仕切り板30,31参照)を有し、略矩形形状の短辺の長さaと長辺の長さbのアスペクト比(b/a)が1.4以上であることが好ましい。
上記の仕切り板を設けることにより、衝突した噴流が発振しやすくなって、より均一に混合することができるが、この場合の均一に混合可能なアスペクト比の範囲は上記の範囲よりも広がり、1.4以上となる。この場合でも、さらに好ましくは、アスペクト比が2.9以上、またさらに好ましくは4〜6である。
またさらに、一対の仕切り板(30,31)の間の距離は、略矩形形状の長辺の長さと略等しいことがさらに好ましい。これにより第1流体の第1噴流12と第2流体の第2噴流22が、各噴き出し口の略矩形形状の長辺方向に拡散していくのが防止され、発振しやすくする効果を高めることができる。
Furthermore, it arrange | positions in the long side direction of a substantially rectangular shape so that it may oppose on both sides of the space between the 1st ejection port 11 and the 2nd ejection port 21, and the 1st fluid and the 2nd fluid are long sides of a substantially rectangular shape Having a pair of partition plates (see, for example, partition plates 30 and 31 in FIG. 2) that prevent diffusion in the direction, and an aspect ratio of the short side length a and the long side length b of a substantially rectangular shape (B / a) is preferably 1.4 or more.
By providing the partition plate, the collided jet stream is likely to oscillate and can be mixed more uniformly. In this case, the range of the aspect ratio that can be uniformly mixed is wider than the above range. 4 or more. Even in this case, the aspect ratio is more preferably 2.9 or more, and further preferably 4 to 6.
Furthermore, it is more preferable that the distance between the pair of partition plates (30, 31) is substantially equal to the length of the long side of the substantially rectangular shape. As a result, the first jet 12 of the first fluid and the second jet 22 of the second fluid are prevented from diffusing in the long side direction of the substantially rectangular shape of each ejection port, and the effect of facilitating oscillation is enhanced. Can do.

上記の本実施形態に係る流体混合装置によれば、同軸対向衝突噴流の発振現象を利用して、気体同士あるいは液体同士などの混合を行うのに、外部からの電気などのエネルギーを用いず、機械的な可動部を用いないで混合することができる。   According to the fluid mixing device according to the above-described embodiment, by utilizing the oscillation phenomenon of the coaxial opposed collision jet, mixing gases or liquids without using energy such as electricity from the outside, Mixing can be performed without using mechanical moving parts.

さらに、例えば気体の噴流中にナノ粒子などの粉体を流した固気二相流同士を混合することで、2つの噴流中の異種材料粉体を精密混合することも可能である。例えば、超音速フリージェットPVD装置において、蒸発源から得た異種ナノ粒子を混合し、これを対象基板上に蒸着させることで異種材料を均一に物理蒸着することができる。
また、μ−TAS(micro−Total Analysis System)のマイクロフルイディクス素子として活用することも可能である。
Furthermore, for example, by mixing solid-gas two-phase flows in which powders such as nanoparticles are flowed into a gas jet, it is possible to precisely mix different material powders in the two jets. For example, in a supersonic free jet PVD apparatus, different types of materials can be uniformly vapor-deposited uniformly by mixing different types of nanoparticles obtained from an evaporation source and depositing them on a target substrate.
Further, it can be used as a microfluidic element of μ-TAS (micro-Total Analysis System).

また、本実施形態に係る流体混合装置は、機械的可動部を必要としないため、加工・寸法の制約が少なくコンパクトな形状にすることができるため、狭い空間にも設置できる。   In addition, since the fluid mixing apparatus according to the present embodiment does not require a mechanical movable part, it can be formed into a compact shape with few restrictions on processing and dimensions, and can be installed in a narrow space.

第2実施形態
本実施形態は、第1実施形態に係る流体混合装置をより具体的にした流体混合装置である。
図2(a)は、本実施形態に係る流体混合装置の模式構成図である。また、図2(b)は、図2(a)に示す流体混合装置の構造を示すために部分毎に分解して示した模式図である。
また、図3(a)は図2(a)の流体混合装置のA方向からの側面図であり、図3(b)はB方向からの正面図である。
また、図4(a)は図2(a)の流体混合装置のC−C’における断面図であり、図4(b)は平面Dにおける断面図である。
Second Embodiment The present embodiment is a fluid mixing device that is a more specific example of the fluid mixing device according to the first embodiment.
Fig.2 (a) is a schematic block diagram of the fluid mixing apparatus which concerns on this embodiment. Moreover, FIG.2 (b) is the schematic diagram decomposed | disassembled and shown for every part, in order to show the structure of the fluid mixing apparatus shown to Fig.2 (a).
3A is a side view from the A direction of the fluid mixing apparatus of FIG. 2A, and FIG. 3B is a front view from the B direction.
4A is a cross-sectional view taken along the line CC ′ of the fluid mixing apparatus shown in FIG. 2A, and FIG. 4B is a cross-sectional view taken along the plane D.

略矩形形状の第1噴き出し口11が設けられた円盤状の第1混合ノズル10と、同じく略矩形形状の第2噴き出し口21が設けられた円盤状の第2混合ノズル20とが、一対の仕切り板(30,31)で架橋するように接続されている。
第1噴き出し口11と第2噴き出し口21の間の空間が、第1流体の第1噴流と第2流体の第2噴流を混合させる混合領域MRとなる。
A pair of a disk-shaped first mixing nozzle 10 provided with a substantially rectangular first ejection port 11 and a disk-shaped second mixing nozzle 20 provided with a substantially rectangular second ejection port 21. It connects so that it may bridge | crosslink with a partition plate (30, 31).
A space between the first ejection port 11 and the second ejection port 21 is a mixed region MR in which the first jet of the first fluid and the second jet of the second fluid are mixed.

第1混合ノズル10、第2混合ノズル20および一対の仕切り板(30,31)は、例えば一体に形成されており、例えば真鍮やステンレスなどの材料から、NC付きワイヤーカット放電加工装置などを用いて形成されている。あるいは、例えば各部分毎に形成されたものが組み立てられていてもよい。   The first mixing nozzle 10, the second mixing nozzle 20, and the pair of partition plates (30, 31) are formed integrally, for example, using a wire cut electric discharge machine with NC, for example, from a material such as brass or stainless steel. Is formed. Or what was formed for every part, for example may be assembled.

本実施形態のように一対の仕切り板(30,31)を設けている場合には、第1噴き出し口11と第2噴き出し口21の形状は、混合させる流体の種類などにもよるが、短辺の長さaと長辺の長さbのアスペクト比(b/a)が、前述のように、1.4以上以上となっていることが好ましく、2.9以上であることがさらに好ましく、4〜6であることがまたさらに好ましい。
また、第1混合ノズル10の第1噴き出し口11と第2混合ノズル20の第2噴き出し口21の間のノズル間距離cは、混合させる流体の種類など例えば第1噴き出し口11および第2噴き出し口21の略矩形形状の短辺aの長さの4〜35倍の距離であることが前述のように好ましい。
例えば、2つの気体の流体に含まれるナノ粒子などの粉体の混合させる場合には、第1噴き出し口11および第2噴き出し口21の略矩形形状の短辺の長さaと長辺の長さbのアスペクト比(b/a)が4、ノズル間距離が略矩形形状の短辺aの長さの16倍程度と設定することができる。
When a pair of partition plates (30, 31) is provided as in the present embodiment, the shapes of the first ejection port 11 and the second ejection port 21 depend on the type of fluid to be mixed, but are short. As described above, the aspect ratio (b / a) between the side length a and the long side length b is preferably 1.4 or more, and more preferably 2.9 or more. More preferably, it is 4-6.
The inter-nozzle distance c between the first ejection port 11 of the first mixing nozzle 10 and the second ejection port 21 of the second mixing nozzle 20 is the type of fluid to be mixed, such as the first ejection port 11 and the second ejection port. The distance is preferably 4 to 35 times the length of the short side a of the substantially rectangular shape of the mouth 21 as described above.
For example, in the case of mixing powders such as nanoparticles contained in two gaseous fluids, the length a and the length of the short sides of the substantially rectangular shapes of the first ejection port 11 and the second ejection port 21 The aspect ratio (b / a) of the length b can be set to 4 and the distance between the nozzles can be set to about 16 times the length of the short side a having a substantially rectangular shape.

また、一対の仕切り板(30,31)の間の距離dは、第1噴き出し口11および第2噴き出し口21の略矩形形状の長辺の長さbと略等しく設けられている。   The distance d between the pair of partition plates (30, 31) is substantially equal to the length b of the substantially rectangular long sides of the first ejection port 11 and the second ejection port 21.

図5は、本実施形態に係る流体混合装置を用いて流体を混合する様子を示す模式図である。
例えば、第1混合ノズル10の混合領域MRと反対側の面に、第1流体供給管40を接続し、一方、第2混合ノズル20の混合領域MRと反対側に面に、第2流体供給管41を接続する。
ここで、第1流体供給管40から第1流体を供給し、第2流体供給管41から第2流体を供給する。第1流体は第1噴流12となって第1噴き出し口11から混合領域MRへと噴き出し、また、第2流体は第2噴流22となって第2噴き出し口21から混合領域MRへと噴き出し、同軸対向衝突噴流の発振現象により、第1流体と第2流体が混合領域MRで混合する。
混合した流体(50,51)は、混合領域MRに臨む開口部(32,33)から混合領域MRの外部へと流れだし、例えば混合した流体(50,51)がさらに合流した流体52として流れていき、所望の目的に利用される。
FIG. 5 is a schematic diagram showing a state in which fluid is mixed using the fluid mixing apparatus according to the present embodiment.
For example, the first fluid supply pipe 40 is connected to the surface of the first mixing nozzle 10 opposite to the mixing region MR, while the second fluid supply is applied to the surface opposite to the mixing region MR of the second mixing nozzle 20. Connect the tube 41.
Here, the first fluid is supplied from the first fluid supply pipe 40 and the second fluid is supplied from the second fluid supply pipe 41. The first fluid becomes a first jet 12 and jets from the first outlet 11 to the mixing region MR, and the second fluid becomes a second jet 22 and jets from the second jet 21 to the mixing region MR, Due to the oscillation phenomenon of the coaxial opposed collision jet, the first fluid and the second fluid are mixed in the mixing region MR.
The mixed fluid (50, 51) flows out from the opening (32, 33) facing the mixing region MR to the outside of the mixing region MR. For example, the mixed fluid (50, 51) further flows as a joined fluid 52. Used for the desired purpose.

ここで、第1流体供給管40および第2流体供給管41で供給する流体の圧力と、各流体を噴き出す前の混合領域の圧力は、流体の種類などにもよるが、第1流体と第2流体が十分均一に混合するように設定する。
例えば、各流体を噴き出す前の混合領域の圧力を大気圧(0.1MPa)とする場合、第1流体供給管40および第2流体供給管41で供給する流体の圧力を1.1MPa、噴き出し口の上流と下流における圧力比を11と設定することができる。
また、例えば、各流体を噴き出す前の混合領域の圧力を大気圧より減圧する場合には、第1流体供給管40および第2流体供給管41で供給する流体の圧力を60〜90kPa、各流体を噴き出す前の混合領域の圧力を0.5〜2kPaとし、噴き出し口の上流と下流における圧力比を例えば45程度に設定することができる。
Here, the pressure of the fluid supplied through the first fluid supply pipe 40 and the second fluid supply pipe 41 and the pressure in the mixing region before each fluid is ejected depend on the type of the fluid, but the first fluid and the first fluid Set so that the two fluids mix sufficiently uniformly.
For example, when the pressure in the mixing region before each fluid is ejected is atmospheric pressure (0.1 MPa), the pressure of the fluid supplied through the first fluid supply pipe 40 and the second fluid supply pipe 41 is 1.1 MPa, and the ejection port The pressure ratio at the upstream and downstream of can be set to 11.
Further, for example, when the pressure in the mixing region before each fluid is ejected is reduced from the atmospheric pressure, the pressure of the fluid supplied through the first fluid supply pipe 40 and the second fluid supply pipe 41 is 60 to 90 kPa, The pressure in the mixing region before jetting out the gas can be set to 0.5 to 2 kPa, and the pressure ratio between the upstream and the downstream of the jetting port can be set to about 45, for example.

上記の第1流体と第2流体の混合の状況は、例えば、流体混合装置の混合領域における圧力の振動を観測することで、確認することが可能である。
また、超音速フリージェットPVD装置において蒸発源から得た異種ナノ粒子を混合する装置として用いるような場合には、成膜された蒸着膜の均一性を測定することで、第1流体と第2流体の混合の状況を確認することができる。
The mixing state of the first fluid and the second fluid can be confirmed by, for example, observing pressure vibration in the mixing region of the fluid mixing device.
Further, when the supersonic free jet PVD apparatus is used as an apparatus for mixing different kinds of nanoparticles obtained from an evaporation source, the first fluid and the second fluid are measured by measuring the uniformity of the deposited film. The status of fluid mixing can be confirmed.

第1実施形態と同様に、本実施形態に係る流体混合装置によれば、同軸対向衝突噴流の発振現象を利用して、気体同士あるいは液体同士などの混合を行うのに、外部からの電気などのエネルギーを用いず、機械的な可動部を用いないで混合することができる。   Similar to the first embodiment, according to the fluid mixing apparatus according to the present embodiment, the mixing of gases or liquids is performed using the oscillation phenomenon of the coaxial opposed collision jet, and electricity from the outside is used. It is possible to mix without using the energy of the above and without using any mechanical moving parts.

第3実施形態
図6(a)は本実施形態に係る流体混合装置の模式構成図であり、図6(b)は模式断面図である。
第1混合ノズル10および第2混合ノズル20が、第1噴き出し口11および第2噴き出し口21の近傍において、第1噴き出し口11および第2噴き出し口21へと向かって第1流体および第2流体が流れる空間の広さが、それぞれ、第1噴き出し口11および第2噴き出し口21に近い下流側よりも第1噴き出し口11および第2噴き出し口21から遠い上流側ほど広いテーパー形状となっている部分を有しており、これ以外は第1実施形態に係る流体混合装置と同様の構成である。
Third Embodiment FIG. 6A is a schematic configuration diagram of a fluid mixing apparatus according to this embodiment, and FIG. 6B is a schematic cross-sectional view.
The first mixing nozzle 10 and the second mixing nozzle 20 are in the vicinity of the first ejection port 11 and the second ejection port 21 and directed toward the first ejection port 11 and the second ejection port 21. The width of the space through which the gas flows is tapered so that the upstream side farther from the first ejection port 11 and the second ejection port 21 is wider than the downstream side near the first ejection port 11 and the second ejection port 21. Other than this, the configuration is the same as that of the fluid mixing apparatus according to the first embodiment.

本実施形態に係る流体混合装置は、第1混合ノズル10および第2混合ノズル20から噴き出す第1噴流12と第2噴流22の噴流速度を高め、第1流体と第2流体をより均一に混合させることができる。   The fluid mixing device according to the present embodiment increases the jet velocity of the first jet 12 and the second jet 22 ejected from the first mixing nozzle 10 and the second mixing nozzle 20, and more uniformly mixes the first fluid and the second fluid. Can be made.

本発明は上記の説明に限定されない。
例えば、第1流体と第2流体が混合領域から各噴き出し口の略矩形形状の長辺方向に拡散していくのを防止する一対の仕切り板は、設けられている方が好ましいが、必ずしもなくてもよい。
混合する流体は、気体同士、液体同士あるいは固気二相流同士など、種々の流体に適用することができる。
その他、本発明の要旨を逸脱しない範囲で、種々の変更が可能である。
The present invention is not limited to the above description.
For example, it is preferable that a pair of partition plates for preventing the first fluid and the second fluid from diffusing from the mixing region in the long side direction of the substantially rectangular shape of each ejection port is not necessarily provided. May be.
The fluids to be mixed can be applied to various fluids such as gases, liquids, or solid-gas two-phase flows.
In addition, various modifications can be made without departing from the scope of the present invention.

本発明の流体混合装置は、気体同士あるいは液体同士、さらには気体の噴流中にナノ粒子などの粉体を流した固気二相流同士を混合する装置に適用でき、例えば超音速フリージェットPVD装置において蒸発源から得た異種ナノ粒子を混合する装置に適用できる。   The fluid mixing device of the present invention can be applied to a device that mixes gas or liquids, and also solid-gas two-phase flows in which powders such as nanoparticles are flowed into a gas jet, such as supersonic free jet PVD. The present invention can be applied to an apparatus for mixing different kinds of nanoparticles obtained from an evaporation source in the apparatus.

図1(a)は第1実施形態に係る流体混合装置の模式構成図であり、図1(b)〜(d)は、第1流体と第2流体とが混合するメカニズムを説明する模式図である。Fig.1 (a) is a schematic block diagram of the fluid mixing apparatus which concerns on 1st Embodiment, FIG.1 (b)-(d) is a schematic diagram explaining the mechanism in which a 1st fluid and a 2nd fluid mix. It is. 図2(a)は、第2実施形態に係る流体混合装置の模式構成図であり、図2(b)は、図2(a)に示す流体混合装置の構造を示すために部分毎に分解して示した模式図である。FIG. 2A is a schematic configuration diagram of a fluid mixing apparatus according to the second embodiment, and FIG. 2B is an exploded view of each part to show the structure of the fluid mixing apparatus shown in FIG. It is the schematic diagram shown. 図3(a)は図2(a)の流体混合装置のA方向からの側面図であり、図3(b)はB方向からの正面図である。3A is a side view from the A direction of the fluid mixing apparatus of FIG. 2A, and FIG. 3B is a front view from the B direction. 図4(a)は図2(a)の流体混合装置のC−C’における断面図であり、図4(b)は平面Dにおける断面図である。図2は4A is a cross-sectional view taken along the line C-C ′ of the fluid mixing apparatus shown in FIG. 2A, and FIG. 4B is a cross-sectional view taken along the plane D. Figure 2 図5は、第2実施形態に係る流体混合装置を用いて流体を混合する様子を示す模式図である。FIG. 5 is a schematic diagram illustrating a state in which fluid is mixed using the fluid mixing apparatus according to the second embodiment. 図6(a)は第3実施形態に係る流体混合装置の模式構成図であり、図6(b)は模式断面図である。Fig.6 (a) is a schematic block diagram of the fluid mixing apparatus based on 3rd Embodiment, FIG.6 (b) is a schematic cross section. 図7は従来例に係るY字型流体混合装置の模式図である。FIG. 7 is a schematic diagram of a Y-shaped fluid mixing apparatus according to a conventional example.

符号の説明Explanation of symbols

10…第1混合ノズル
11…第1噴き出し口
12…第1噴流
20…第2混合ノズル
21…第2噴き出し口
22…第2噴流
30,31…仕切り板
32,33…開口部
40…第1流体供給管
41…第2流体供給管
50,51…混合した流体
52…合流した流体
100…第1流体
101…第1流入口
110…第2流体
111…第2流入口
120…合流部
130…取り出し口
MR…混合領域
DESCRIPTION OF SYMBOLS 10 ... 1st mixing nozzle 11 ... 1st ejection port 12 ... 1st jet 20 ... 2nd mixing nozzle 21 ... 2nd ejection port 22 ... 2nd jet 30, 31 ... Partition plate 32, 33 ... Opening 40 ... 1st Fluid supply pipe 41 ... Second fluid supply pipe 50,51 ... Mixed fluid 52 ... Merging fluid 100 ... First fluid 101 ... First inlet 110 ... Second fluid 111 ... Second inlet 120 ... Merging section 130 ... Outlet MR ... Mixed area

Claims (6)

略矩形形状の第1噴き出し口を有する第1混合ノズルと、
前記第1噴き出し口と同じ形状の第2噴き出し口を有し、前記第1混合ノズルと同軸上に対向して設けられた第2混合ノズルと
を有し、
第1噴き出し口から第1流体を噴き出し、前記第2噴き出し口から第2流体を噴き出し、前記第1噴き出し口と前記第2噴き出し口の間の空間において前記第1流体と前記第2流体とを混合する
流体混合装置。
A first mixing nozzle having a substantially rectangular first outlet;
A second ejection nozzle having the same shape as the first ejection opening, and a second mixing nozzle provided coaxially facing the first mixing nozzle;
The first fluid is ejected from the first ejection port, the second fluid is ejected from the second ejection port, and the first fluid and the second fluid are discharged in a space between the first ejection port and the second ejection port. Mixing Fluid mixing device.
前記略矩形形状の短辺の長さaと長辺の長さbのアスペクト比(b/a)が2.9以上である
請求項1に記載の流体混合装置。
The fluid mixing device according to claim 1, wherein an aspect ratio (b / a) between the length “a” of the short side and the length “b” of the long side of the substantially rectangular shape is 2.9 or more.
前記第1混合ノズルと前記第2混合ノズルのノズル間距離が、前記略矩形形状の短辺の長さの4〜35倍の距離である
請求項1に記載の流体混合装置。
The fluid mixing apparatus according to claim 1, wherein a distance between the first mixing nozzle and the second mixing nozzle is a distance of 4 to 35 times a length of a short side of the substantially rectangular shape.
前記第1混合ノズルは、前記第1噴き出し口の近傍において、前記第1噴き出し口へと向かって前記第1流体が流れる空間の広さが、前記第1噴き出し口に近い下流側よりも前記第1噴き出し口から遠い上流側ほど広いテーパー形状となっている部分を有し、
前記第2混合ノズルは、前記第2噴き出し口の近傍において、前記第2噴き出し口へと向かって前記第2流体が流れる空間の広さが、前記第2噴き出し口に近い下流側よりも前記第2噴き出し口から遠い上流側ほど広いテーパー形状となっている部分を有する
請求項1に記載の流体混合装置。
In the first mixing nozzle, the space of the first fluid flowing toward the first ejection port in the vicinity of the first ejection port is larger than the downstream side close to the first ejection port. It has a portion that has a taper shape that is wider toward the upstream side from one outlet,
In the second mixing nozzle, in the vicinity of the second ejection port, the space in which the second fluid flows toward the second ejection port is larger than the downstream side close to the second ejection port. The fluid mixing apparatus according to claim 1, wherein the fluid mixing apparatus has a portion having a tapered shape that is wider toward the upstream side farther from the two ejection openings.
前記第1噴き出し口と前記第2噴き出し口の間の空間を挟んで対向するように、前記略矩形形状の長辺方向に配置され、前記第1流体と前記第2流体が前記略矩形形状の長辺方向に拡散していくのを防止する一対の仕切り板を有し、
前記略矩形形状の短辺の長さaと長辺の長さbのアスペクト比(b/a)が1.4以上である
請求項1に記載の流体混合装置。
The first fluid and the second fluid are arranged in the long side direction of the substantially rectangular shape so as to face each other with a space between the first ejection port and the second ejection port interposed therebetween. Having a pair of partition plates that prevent diffusion in the long side direction,
The fluid mixing device according to claim 1, wherein an aspect ratio (b / a) between the length “a” of the short side and the length “b” of the long side of the substantially rectangular shape is 1.4 or more.
前記一対の仕切り板の間の距離が、前記略矩形形状の長辺の長さと略等しい
請求項5に記載の流体混合装置。
The fluid mixing device according to claim 5, wherein a distance between the pair of partition plates is substantially equal to a length of a long side of the substantially rectangular shape.
JP2004173484A 2004-06-11 2004-06-11 Fluid mixing device Active JP4554283B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004173484A JP4554283B2 (en) 2004-06-11 2004-06-11 Fluid mixing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004173484A JP4554283B2 (en) 2004-06-11 2004-06-11 Fluid mixing device

Publications (2)

Publication Number Publication Date
JP2005349317A true JP2005349317A (en) 2005-12-22
JP4554283B2 JP4554283B2 (en) 2010-09-29

Family

ID=35584214

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004173484A Active JP4554283B2 (en) 2004-06-11 2004-06-11 Fluid mixing device

Country Status (1)

Country Link
JP (1) JP4554283B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5658530A (en) * 1979-10-17 1981-05-21 Konishiroku Photo Ind Co Ltd Dispersing method
JPS5659128U (en) * 1979-10-15 1981-05-21
JPH09131520A (en) * 1995-11-09 1997-05-20 Toyo Tire & Rubber Co Ltd Two-pack mixer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5659128U (en) * 1979-10-15 1981-05-21
JPS5658530A (en) * 1979-10-17 1981-05-21 Konishiroku Photo Ind Co Ltd Dispersing method
JPH09131520A (en) * 1995-11-09 1997-05-20 Toyo Tire & Rubber Co Ltd Two-pack mixer

Also Published As

Publication number Publication date
JP4554283B2 (en) 2010-09-29

Similar Documents

Publication Publication Date Title
JP7049381B2 (en) Process-enhanced microfluidic equipment
US7934865B2 (en) Micromixer
US6935768B2 (en) Method and statistical micromixer for mixing at least two liquids
EP3068526B1 (en) Microfluidic device for high-volume production and processing of monodisperse emulsions and method
JP5604038B2 (en) Reaction apparatus and reaction plant
CN110913983B (en) Fluid reactor
JP6842249B2 (en) Fine bubble generation nozzle
JP2008086889A (en) Fluid mixing method, micro-device and its fabricating method
JP4932655B2 (en) Microdevice and fluid mixing method
US20090034362A1 (en) Microdevice and method for joining fluids
JP2009241001A (en) Micromixer
JP6159711B2 (en) Liquid ejecting apparatus and liquid ejecting method
JP2010188046A (en) Shower device
JP4554283B2 (en) Fluid mixing device
JP2003164745A (en) Microreactor
JP2004202476A (en) Particle production method and microchannel structure therefor
EP1968733A1 (en) Fluid mixing apparatus, integrated fluid mixing apparatus, fluid mixing system and process for producing a fluid mixing apparatus
JP4298671B2 (en) Micro device
JP2007196218A (en) Fluid mixing unit, fluid mixing device and fluid mixing system integrating the same
KR20170041441A (en) Injection Nozzle Having Control Unit of Flow
KR20240003122A (en) Nozzle for mixing and dispensing multiple substances
Montanero Microfluidic Configurations for Producing Tip Streaming
JP2019167587A (en) Aerosol quantitative feeder and aerosol deposition apparatus
Melzig et al. Microfluidic spray drying device for process-oriented product development with low sample consumption
JP2021010864A (en) nozzle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070515

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100323

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100524

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100615

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100714

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4554283

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250