JP2005348524A - Controller for hybrid vehicle - Google Patents

Controller for hybrid vehicle Download PDF

Info

Publication number
JP2005348524A
JP2005348524A JP2004165513A JP2004165513A JP2005348524A JP 2005348524 A JP2005348524 A JP 2005348524A JP 2004165513 A JP2004165513 A JP 2004165513A JP 2004165513 A JP2004165513 A JP 2004165513A JP 2005348524 A JP2005348524 A JP 2005348524A
Authority
JP
Japan
Prior art keywords
power storage
storage device
power
storage amount
hybrid vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004165513A
Other languages
Japanese (ja)
Inventor
Takezo Yamaguchi
武蔵 山口
Hiroshi Iwano
岩野  浩
Susumu Komiyama
晋 小宮山
Hideaki Watanabe
英明 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2004165513A priority Critical patent/JP2005348524A/en
Publication of JP2005348524A publication Critical patent/JP2005348524A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Hybrid Electric Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hybrid vehicle controller where fuel consumption is low. <P>SOLUTION: This hybrid vehicle controller which is equipped with an internal combustion engine 1, a generator 2, and an accumulator 3 that accumulates power generated by a drive motor 4 at regeneration and supplies the power to the drive motor 4 at acceleration, etc. of a vehicle, computes the first SOC for performing the cranking at start of the vehicle. Moreover, this distributes the tolerable amount of electric accumulation of the accumulator 3 into the second SOC for high-efficiency operation charge and the third SOC for regenerative running charge. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は蓄電装置を備えたハイブリット車両に関するものであり、特に燃費向上に関するものである。   The present invention relates to a hybrid vehicle equipped with a power storage device, and more particularly to an improvement in fuel consumption.

従来、蓄電装置を備えたハイブリット車両で、走行中に蓄電装置に充電された電力を次回のエンジン起動のために蓄え、次回のエンジン起動時に走行中に充電された電力によってクランキングを行い、蓄電装置の温度が低い場合でもエンジンを速やかに始動させるものが、特許文献1に開示されている。
特開平11−355967号公報
Conventionally, in a hybrid vehicle equipped with a power storage device, the power charged in the power storage device during traveling is stored for the next engine start-up, and cranking is performed by the power charged during travel at the next engine start-up, Patent Document 1 discloses that the engine is started quickly even when the temperature of the apparatus is low.
JP 11-355967 A

しかし、上記の発明では、次回のエンジン起動時に必要となる電力を常に蓄電装置に蓄えておくので、走行中の充放電に利用できる蓄電装置の許容蓄電量が小さくなり、且つ、車両の回生走行によって発電される電力を充電するために蓄電装置の許容蓄電量を確保しておくと、条件によってはハイブリット車両の燃費向上効果を十分に得ることができないといった問題点がある。   However, in the above invention, since the electric power necessary for the next engine start-up is always stored in the power storage device, the allowable power storage amount of the power storage device that can be used for charging / discharging during traveling is reduced, and the vehicle is regeneratively driven. If the allowable power storage amount of the power storage device is secured in order to charge the power generated by the vehicle, there is a problem that the fuel efficiency improvement effect of the hybrid vehicle cannot be sufficiently obtained depending on the conditions.

本発明ではこのような問題点を解決するために発明されたもので、低温時の起動性を確保すると共に、蓄電装置の許容蓄電量を有効に活用し、燃費効率の良いハイブリット車両を提供することを目的とする。   The present invention was devised to solve such problems, and provides a hybrid vehicle with high fuel efficiency by ensuring startability at low temperatures and effectively utilizing the allowable power storage amount of the power storage device. For the purpose.

本発明では、車両を駆動させるための電力を発電する発電装置と、車両を電力により駆動させ、かつ車両の回生走行時には発電する駆動装置と、発電装置と駆動装置と電気的に接続して電力を蓄え、また駆動装置に電力を供給する蓄電装置と、を備えたハイブリット車両において、車両起動時に発電装置を起動させるために必要な蓄電装置の第1蓄電量を算出する第1蓄電量算出手段を備える。また、蓄電装置の上限蓄電量から第1蓄電量を引いた蓄電装置の許容容量を発電装置、または回生時の駆動装置による充電量である第2蓄電量と、第3蓄電量とで分担したときのハイブリット車両の燃費効率を判定する燃費効率判定手段と、燃費効率判定手段に基づいて燃費効率が最良となるように、第2蓄電量と、第3蓄電量との充電分担比率を配分する比率配分手段を備える。   In the present invention, a power generation device that generates electric power for driving a vehicle, a drive device that drives the vehicle with electric power and generates electric power during regenerative travel of the vehicle, and the power generation device and the drive device are electrically connected to each other to generate electric power. First storage amount calculation means for calculating a first storage amount of the storage device necessary for starting the power generation device when the vehicle is started in a hybrid vehicle comprising: a storage device that stores power and supplying power to the drive device Is provided. Further, the allowable capacity of the power storage device obtained by subtracting the first power storage amount from the upper limit power storage amount of the power storage device is shared between the second power storage amount that is the amount of charge by the power generation device or the driving device during regeneration and the third power storage amount. The fuel charge efficiency determination means for determining the fuel efficiency of the hybrid vehicle at the time, and the charge sharing ratio between the second power storage amount and the third power storage amount are allocated so that the fuel efficiency becomes the best based on the fuel efficiency determination means Providing ratio distribution means.

本発明によると、次回のハイブリット車両起動時に発電装置をクランキングする際に必要な蓄電装置の蓄電量を確保した後に、蓄電装置の許容容量を燃費効率が大きくなるように発電装置による充電量である第2蓄電量と、回生時の駆動装置による充電量である第3蓄電量とに配分し、蓄電装置3の充放電を制御するので、ハイブリット車両の燃費効率を良くすることができる。   According to the present invention, after securing the power storage amount of the power storage device necessary for cranking the power generation device at the next start of the hybrid vehicle, the allowable capacity of the power storage device is determined by the amount of charge by the power generation device so as to increase the fuel efficiency. Allocation to a certain second power storage amount and a third power storage amount that is a charge amount by the driving device at the time of regeneration is performed, and charging / discharging of the power storage device 3 is controlled, so that fuel efficiency of the hybrid vehicle can be improved.

本発明の第1実施形態の構成を図1のブロック図を用いて説明する。この実施形態はシリーズハイブリット車両である。   The configuration of the first embodiment of the present invention will be described with reference to the block diagram of FIG. This embodiment is a series hybrid vehicle.

シリーズハイブリット車両は車両を駆動させる駆動系として、ガソリンなどを燃焼させて出力を生じる内燃機関1と、内燃機関1と直結し内燃機関1の出力を電力に変換し、車両起動時にクランキングを行う発電機2と、電力を蓄える蓄電装置3と、電力で駆動する駆動装置である駆動モータ4を備える(内燃機関1と発電機2が発電装置を構成する)。   The series hybrid vehicle is a drive system that drives the vehicle, and generates an output by burning gasoline or the like, and is directly connected to the internal combustion engine 1 to convert the output of the internal combustion engine 1 into electric power, and performs cranking when the vehicle is started. A generator 2, a power storage device 3 that stores electric power, and a drive motor 4 that is a drive device that is driven by electric power are provided (the internal combustion engine 1 and the generator 2 constitute a power generation device).

蓄電装置3は、発電機2によって変換された電力を蓄え、その電力を駆動モータ4に供給する。また、回生走行時に駆動モータ4によって得られた電力を蓄える。蓄電装置3は、例えばニッケル水素、リチウムイオンなどを用いた二次電池、または電気二重層キャパシタが使用される。なお、車両起動時にクランキングを行う際には蓄電装置3は発電機2に電力を供給する。   The power storage device 3 stores the electric power converted by the generator 2 and supplies the electric power to the drive motor 4. Moreover, the electric power obtained by the drive motor 4 at the time of regenerative travel is stored. As the power storage device 3, for example, a secondary battery using nickel hydride, lithium ions, or the like, or an electric double layer capacitor is used. Note that the power storage device 3 supplies power to the generator 2 when cranking is performed when the vehicle is started.

駆動モータ4は、蓄電装置3に蓄えられた電力によってトルクを発生させ、そのトルクをファイナルギヤ6を介して、タイヤ5に伝達し、車両を走行させる。また、図示しない制動装置によって車両が減速する回生走行時に、回生エネルギーによって電力を発生させ、その電力の一部を蓄電装置3へ充電する。   The drive motor 4 generates torque by the electric power stored in the power storage device 3, transmits the torque to the tire 5 via the final gear 6, and causes the vehicle to travel. Further, during regenerative traveling in which the vehicle decelerates by a braking device (not shown), electric power is generated by regenerative energy, and a part of the electric power is charged to the power storage device 3.

この駆動系では、内燃機関1からの出力を発電機2によって電力に変換し、主にその電力を使用して駆動モータ4でトルクを発生させ、そのトルクをタイヤに伝達して走行する。また、発電機2によって余剰に発電された電力は蓄電装置3に充電され、回生走行時には駆動モータ4によって発電された電力の一部も蓄電装置3に充電される。蓄電装置3に充電された電力は、加速時などに駆動モータ4への補助的な電力として使用される。また補機類などでも使用される。   In this drive system, the output from the internal combustion engine 1 is converted into electric power by the generator 2, and torque is generated mainly by the drive motor 4 using the electric power, and the torque is transmitted to the tire to travel. Further, the power generated excessively by the generator 2 is charged in the power storage device 3, and part of the power generated by the drive motor 4 is also charged in the power storage device 3 during regenerative travel. The power charged in the power storage device 3 is used as auxiliary power to the drive motor 4 during acceleration or the like. Also used in auxiliary machinery.

車両を制御する制御系としては、内燃機関1の出力を制御する内燃機関コントローラ7と、発電機2の回転速度、すなわち発電機2で発電する電力をベクトル制御する発電機コントローラ8と、駆動モータ4のトルクをベクトル制御する駆動モータコントローラ10を備える。また、蓄電装置3の電圧、電流を検出し、蓄電装置3の蓄電量(以下、SOC(State Of Charge))を算出する蓄電装置コントローラ9を備える。さらに蓄電装置3のSOCと図示しないスロットルのスロットル開度によって内燃機関コントローラ7へ出力指令を出し、発電機コントローラ8へ電動機2の回転指令を出し、駆動モータコントローラ10にモータトルク指令を出す統合コントローラ11を備える。   The control system for controlling the vehicle includes an internal combustion engine controller 7 for controlling the output of the internal combustion engine 1, a generator controller 8 for vector control of the rotational speed of the generator 2, that is, the electric power generated by the generator 2, and a drive motor. A drive motor controller 10 for vector-controlling the torque 4 is provided. The power storage device 3 includes a power storage device controller 9 that detects the voltage and current of the power storage device 3 and calculates the amount of power stored in the power storage device 3 (hereinafter, SOC (State Of Charge)). Further, an integrated controller that issues an output command to the internal combustion engine controller 7 according to the SOC of the power storage device 3 and a throttle opening of a throttle (not shown), issues a rotation command of the motor 2 to the generator controller 8, and issues a motor torque command to the drive motor controller 10. 11 is provided.

次に制御系における蓄電装置3の充放電制御を図2のフローチャートを用いて説明する。なお、この制御は例えば、10msの所定の周期毎に繰り返し演算される。この制御によって、次回の車両起動時に発電装置2がクランキングするために必要な蓄電装置3の蓄電量である第1SOCを確保し、更に蓄電装置3の許容蓄電量を車両の燃費効率がほぼ最良となるように内燃機関1と発電機2による充電を行う蓄電量である第2SOC(第2蓄電量)と、駆動モータ4で回生走行充電を行う蓄電量である第3SOC(第3蓄電量)を設定する。第2SOC、第3SOCについては後述する。   Next, charge / discharge control of the power storage device 3 in the control system will be described with reference to the flowchart of FIG. In addition, this control is repeatedly calculated for every predetermined period of 10 ms, for example. With this control, the first SOC, which is the amount of power stored in the power storage device 3 necessary for cranking the power generation device 2 at the next vehicle start-up, is secured, and the allowable power storage amount of the power storage device 3 is set to be substantially the best in fuel efficiency of the vehicle. The second SOC (second power storage amount) that is the amount of power charged by the internal combustion engine 1 and the generator 2 and the third SOC (third power storage amount) that is the power storage amount that performs regenerative running charging by the drive motor 4 Set. The second SOC and the third SOC will be described later.

ステップS201は、次回の車両起動時に発電装置2がクランキングするために必要な蓄電装置3の第1SOCを確保するための制御であり、その詳細について、図3のフローチャートを用いて説明する。   Step S201 is control for securing the first SOC of the power storage device 3 necessary for cranking the power generation device 2 at the next vehicle start-up, and details thereof will be described with reference to the flowchart of FIG.

まず、ステップS301では、蓄電装置3の全体の蓄電量を検出し、蓄電装置3の温度Tsと蓄電装置3のSOCと蓄電装置3の内部抵抗Rの関係をまとめたマップから内部抵抗Rを推定する(内部抵抗推定手段)。このマップは予め実験などによって作成され、統合コントローラ10内に備えられる。なお、温度Tsは次回の車両起動時の蓄電装置3の温度であり、この制御で用いる温度Tsは推定されたものであり、今回の起動時の蓄電装置3の温度を図示しない温度センサによって検出し、記憶した温度とする(温度推定手段)。この温度Tsは、GPS装置などによって、車両の現在の位置を検出し、その近辺の気象情報に基づいて推定してもよい。   First, in step S301, the total amount of electricity stored in power storage device 3 is detected, and internal resistance R is estimated from a map summarizing the relationship between temperature Ts of power storage device 3, SOC of power storage device 3, and internal resistance R of power storage device 3. (Internal resistance estimation means). This map is created in advance by experiments or the like and provided in the integrated controller 10. The temperature Ts is the temperature of the power storage device 3 at the next vehicle start-up, and the temperature Ts used in this control is estimated, and the temperature of the power storage device 3 at the current start-up is detected by a temperature sensor (not shown). And the stored temperature (temperature estimation means). The temperature Ts may be estimated based on weather information in the vicinity of the vehicle by detecting the current position of the vehicle using a GPS device or the like.

ステップS302では、次回の車両起動時に必要な蓄電装置3の電圧であるV0(V)を次式
V0=Vmin+(Pstr×R×1000)/Vmin 式(1)
によって算出する。ここで、V0は、蓄電装置3から電力を電動機2に供給できる下限の電圧(開放電圧)であり、Vmin(V)は、蓄電装置3、もしくは車両システムの構成上から決まる使用可能な電圧範囲の下限値であり、Pstr(kW)は内燃機関1を起動するために必要な電力である。蓄電装置3のSOCは蓄電装置3の電圧によって求めることができるので、予め用意した蓄電装置3のSOCと蓄電装置3の電圧との関係を示したマップから内燃機関1をクランキングするために必要な蓄電装置3のSOCを求める。なお、このマップは予め実験によって求める。
In step S302, V0 (V), which is the voltage of power storage device 3 required at the next vehicle start-up, is expressed by the following equation: V0 = Vmin + (Pstr × R × 1000) / Vmin equation (1)
Calculated by Here, V0 is a lower limit voltage (open voltage) at which power can be supplied from the power storage device 3 to the electric motor 2, and Vmin (V) is a usable voltage range determined by the configuration of the power storage device 3 or the vehicle system. Pstr (kW) is electric power necessary for starting the internal combustion engine 1. Since the SOC of the power storage device 3 can be obtained from the voltage of the power storage device 3, it is necessary for cranking the internal combustion engine 1 from a map showing the relationship between the SOC of the power storage device 3 and the voltage of the power storage device 3 prepared in advance. The SOC of the power storage device 3 is obtained. This map is obtained by experiments in advance.

しかし、蓄電装置3の温度が低い場合には、蓄電装置3の出力は低くなり、クランキングに必要な出力を供給できない場合がある。その場合には蓄電装置3を放電させ、その放電によって蓄電装置3を暖め、蓄電装置3の出力を高める。ステップS303では、蓄電装置3を暖機するために必要なSOCを算出する。そのSOCは蓄電装置3の温度Tsにより決まるので、予め蓄電装置3の温度Tsと蓄電装置3を暖めるために必要なSOCの関係を予め実験によって求める。   However, when the temperature of the power storage device 3 is low, the output of the power storage device 3 is low, and the output necessary for cranking may not be supplied. In that case, the power storage device 3 is discharged, the power storage device 3 is warmed by the discharge, and the output of the power storage device 3 is increased. In step S303, the SOC required to warm up the power storage device 3 is calculated. Since the SOC is determined by the temperature Ts of the power storage device 3, the relationship between the temperature Ts of the power storage device 3 and the SOC required to warm the power storage device 3 is obtained in advance by experiments.

ステップS304では、ステップS302で求めたSOCにこのステップで求めたSOCを加え、第1SOCを算出する。その後図2のフローチャートのステップS202へ戻る。蓄電装置3の内部抵抗R、温度Tsに応じて第1SOCを算出するので、第1SOCを正確に算出することができる(ステップS301からステップS304が第1蓄電量算出手段を構成する)。   In step S304, the SOC obtained in this step is added to the SOC obtained in step S302 to calculate the first SOC. Thereafter, the process returns to step S202 in the flowchart of FIG. Since the first SOC is calculated according to the internal resistance R and the temperature Ts of the power storage device 3, the first SOC can be calculated accurately (steps S301 to S304 constitute the first power storage amount calculation means).

ステップS202では、ステップS201において次回の車両起動時に必要な第1SOCが算出されたので、走行時に使用可能な蓄電装置3の許容蓄電量を算出する。その許容蓄電量は、蓄電装置3の上限蓄電量から第1SOCを除いた範囲である。   In step S202, since the first SOC required at the next vehicle start-up is calculated in step S201, the allowable power storage amount of the power storage device 3 that can be used during traveling is calculated. The allowable power storage amount is a range obtained by removing the first SOC from the upper limit power storage amount of the power storage device 3.

ステップS203では、ステップS202で算出した蓄電装置3の許容蓄電量の中で、車両の回生走行で駆動モータ4によって発電される電力を充電(以下、回生走行充電)するための蓄電装置3の蓄電量と、内燃機関1の高効率運転によって生じる電力によって充電(以下、高効率運転充電)される蓄電装置の蓄電量の比率を算出する。この時の比率により決定された高効率運転充電の蓄電量を第2SOCとする。また、回生走行充電の蓄電量を第3SOCとする。第3SOCは蓄電装置3の許容蓄電量から第2SOCを除いたものである。この第2SOC、第3SOCの算出方法について、図4のフローチャートを用いて説明する。なお、高効率運転とは、ハイブリット車両全体での燃費効率が高効率となるような動作点、すなわち内燃機関1での出力、蓄電装置3の充放電を制御する(特開2002−171604号公報に記載)ことであり、このとき内燃機関1では、車両の走行と補機類などで使用される電力に変換可能な出力(消費出力)よりも高い出力によって運転されている場合があり、発電機2によって電力に変換された余分な電力は蓄電装置3に充電される。   In step S203, the power storage of the power storage device 3 for charging the power generated by the drive motor 4 during the regenerative travel of the vehicle (hereinafter referred to as regenerative travel charge) in the allowable power storage amount of the power storage device 3 calculated in step S202. The ratio between the amount and the amount of power stored in the power storage device that is charged by the electric power generated by the high-efficiency operation of the internal combustion engine 1 (hereinafter referred to as high-efficiency operation charging) is calculated. The amount of electricity stored in the high efficiency operation charge determined by the ratio at this time is defined as the second SOC. Further, the storage amount of the regenerative travel charge is assumed to be the third SOC. The third SOC is obtained by removing the second SOC from the allowable power storage amount of the power storage device 3. A method of calculating the second SOC and the third SOC will be described with reference to the flowchart of FIG. Note that high-efficiency driving controls the operating point at which the fuel efficiency of the entire hybrid vehicle becomes high, that is, the output in the internal combustion engine 1 and the charge / discharge of the power storage device 3 (Japanese Patent Laid-Open No. 2002-171604). In this case, the internal combustion engine 1 may be operated with an output higher than an output (consumption output) that can be converted into electric power used for traveling of the vehicle and auxiliary machinery. Excess electric power converted into electric power by the machine 2 is charged in the power storage device 3.

ステップS401では、ステップS202で算出した利用可能な蓄電装置3の許容蓄電量を読み込む。   In step S401, the allowable power storage amount of the available power storage device 3 calculated in step S202 is read.

ステップS402では、図5に示すような蓄電装置3の許容蓄電量を回生走行充電、または高効率運転充電を行った場合の燃費効率を示すマップより、蓄電装置3の許容蓄電量の全てを回生走行充電に配分する場合から、蓄電装置3の許容蓄電量の全てを高効率運転充電に配分する場合まで、その比率を変化させ、それぞれの場合の燃費効率を算出する(燃費効率判定手段)。そして、各充電による燃費効率の合計値(以下、燃費向上効果)が最良となる比率を決定する、すなわち第2SOC、第3SOCを決定する(比率配分手段)。なお、回生走行充電と、高効率運転充電は、蓄電装置3の充電能力によって上限(例えば、許容電流値など)が決まるために、ほぼ同一の所定の蓄電量によって、燃費効率はそれぞれ飽和する。   In step S402, all of the allowable power storage amount of the power storage device 3 is regenerated from the map showing the fuel efficiency when the allowable power storage amount of the power storage device 3 as shown in FIG. The ratio is changed from the case of allocating to running charge to the case of allocating all of the allowable power storage amount of power storage device 3 to high-efficiency driving charge, and the fuel efficiency of each case is calculated (fuel efficiency determination means). Then, the ratio at which the total value of fuel efficiency by each charge (hereinafter referred to as fuel efficiency improvement effect) is the best is determined, that is, the second SOC and the third SOC are determined (ratio distribution means). In addition, since the upper limit (for example, allowable current value) of the regenerative running charge and the high-efficiency operation charge is determined by the charging capacity of the power storage device 3, the fuel efficiency is saturated by almost the same predetermined power storage amount.

図5のような関係は、例えば市街地、高速道路、山岳地など道路種別の代表的な走行パターンをそれぞれ設けており、蓄電装置3の許容蓄電量によって各走行パターンでの回生走行充電と、高効率運転充電との燃費効率を記憶したものである(記憶手段)。回生走行充電と、高効率運転充電の燃費効率は各走行パターンによって異なる。   The relationship as shown in FIG. 5 is provided with typical driving patterns of road types such as urban areas, highways, and mountainous areas, for example. The fuel efficiency with the efficient driving charge is stored (storage means). The fuel efficiency of regenerative driving charge and high-efficiency driving charge differs depending on each driving pattern.

図5は市街地走行での関係図であり、回生走行時充電を行った方が、高効率運転充電よりも燃費向上効果が大きくなる。特に、蓄電装置3の許容蓄電量が少ない場合には回生走行充電を行った際の燃費向上効果がより顕著に表れる。これは、市街地走行では、赤信号での減速から停止、青信号に変わってからの発進、加速が多く繰り返されるためである。そのため市街地走行では、回生走行充電を優先的に配分するように、蓄電装置3の許容蓄電量を第2SOC、第3SOCへ配分するので、燃費の良い走行を行うことができるのである。   FIG. 5 is a relationship diagram in urban driving, and the effect of improving fuel efficiency is greater when charging during regenerative driving than when charging with high efficiency driving. In particular, when the allowable power storage amount of the power storage device 3 is small, the fuel efficiency improvement effect when performing regenerative travel charging appears more remarkably. This is because when driving in an urban area, deceleration from a red traffic light to stop, start and acceleration after changing to a green traffic light are repeated many times. Therefore, in city driving, the allowable power storage amount of the power storage device 3 is distributed to the second SOC and the third SOC so that the regenerative driving charge is preferentially distributed, so that driving with good fuel consumption can be performed.

一方、高速道路走行では、料金所を通過した後、目的地に到着するまで減速する機会が少なく、高効率運転充電による燃費向上効果が、回生走行充電による燃費向上効果よりも大きくなる。なお、各走行パターンによって燃費向上効果の絶対値も変化する。各走行パターンは、運転者によって変更される。または位置検出手段、道路種別判断手段であるGPS装置を備えている場合には、車両の位置情報と地図情報を照らし合わせて、走行パターンは変更される。このように回生走行充電と高効率運転充電のうち燃費効率の高い方を優先的に配分するように、蓄電装置3の許容蓄電量を第2SOC、第3SOCへ配分するので、燃費効率の良い走行を行うことができるのである。   On the other hand, in highway driving, there is little opportunity to decelerate until it reaches the destination after passing through the toll gate, and the fuel efficiency improvement effect by the high efficiency driving charge is greater than the fuel efficiency improvement effect by the regenerative driving charge. Note that the absolute value of the fuel efficiency improvement effect also varies depending on each traveling pattern. Each traveling pattern is changed by the driver. Alternatively, when a GPS device that is a position detection unit and a road type determination unit is provided, the traveling pattern is changed by comparing the vehicle position information and the map information. As described above, the allowable power storage amount of the power storage device 3 is distributed to the second SOC and the third SOC so that the higher fuel efficiency of the regenerative travel charge and the high efficiency drive charge is preferentially distributed. Can be done.

また、各走行パターンを用いない場合には、基準代表走行パターンを用いる。これは統計的な車両走行パターン(例えば、市街地、高速道路、山岳の走行割合)に基づいて作成されたものである。各走行パターンを備えずに、基準代表走行パターンを備えることで統合コントローラ11の負荷を低減することができる。なお、この基準代表走行パターンは、車両の走行毎のデータを蓄積し、データに基づいて更新するようにしてもよい。その場合は、アクセル・ブレーキ操作、ステアリング操作、速度などから車両の走行状態を検出し、蓄積する(走行状態検出手段)。蓄積したデータより基準代表走行パターンを更新する。これにより、例えば高速道路を走行する機会の多い車両は基準代表走行パターンが高速道路での走行パターンに近いものとなる。この基準代表走行パターンは、車両ではなく、ICカードなどを用いて運転者毎に備えるようにしてもよい。   In addition, when each traveling pattern is not used, the reference representative traveling pattern is used. This is created on the basis of a statistical vehicle travel pattern (for example, a travel ratio of urban areas, highways, and mountains). By providing the reference representative running pattern without providing each running pattern, the load on the integrated controller 11 can be reduced. The reference representative traveling pattern may be accumulated based on data for each traveling of the vehicle and updated based on the data. In that case, the running state of the vehicle is detected and stored from the accelerator / brake operation, the steering operation, the speed, etc. (running state detecting means). The reference representative travel pattern is updated from the accumulated data. As a result, for example, a vehicle that frequently travels on an expressway has a reference representative travel pattern that is close to the travel pattern on the expressway. This reference representative travel pattern may be provided for each driver using an IC card or the like instead of the vehicle.

また、S402での説明した第2SOC、第3SOCの配分方法について異なる配分方法を用いる場合を説明する。その配分方法は、蓄電装置3の許容蓄電量に応じて燃費向上効果の合計値が最大となる第2SOC、第3SOCを予め求め、マップに収めておき、そのマップに従って第2SOC、第3SOCを配分する。   Further, a case will be described in which different allocation methods are used for the second SOC and third SOC allocation methods described in S402. According to the allocation method, the second SOC and the third SOC with which the total value of the fuel efficiency improvement effect is maximized according to the allowable power storage amount of the power storage device 3 is obtained in advance and stored in the map, and the second SOC and the third SOC are allocated according to the map. To do.

ここで使用するマップについて図6を用いて詳しく説明する。図6の横軸には回生走行充電のための第3SOCをとり、縦軸には高効率運転充電のための第2SOCをとる。そして各SOCに配分したときの燃費向上効果の合計値が等しい値を等高線で表している。また、太い実線は蓄電装置3の許容蓄電量を第2SOCと、第3SOCに配分した場合に燃費向上効果の合計値が一番高くなる値をトレースしたものである。例えば、蓄電装置3の許容蓄電量がαである場合には、高効率運転のための第2SOCはEeα、回生走行充電のための第3SOCはErαとなるように配分される。   The map used here will be described in detail with reference to FIG. The horizontal axis in FIG. 6 represents the third SOC for regenerative running charging, and the vertical axis represents the second SOC for high-efficiency driving charging. And the value with the same total value of the fuel consumption improvement effect when it distributes to each SOC is represented by the contour line. The thick solid line traces the value at which the total value of the fuel efficiency improvement effect is highest when the allowable power storage amount of the power storage device 3 is distributed to the second SOC and the third SOC. For example, when the allowable power storage amount of the power storage device 3 is α, the second SOC for high-efficiency operation is allocated to Eeα, and the third SOC for regenerative travel charging is allocated to Erα.

なお図6は市街地における走行パターンであり、市街地走行では回生走行充電を行う機会が多く、回生走行充電による燃費向上効果が高くなるので、蓄電装置3の許容蓄電量は、回生走行充電を優先し、例えば車両速度が上がり、回生走行で得る電力が、蓄電装置3で充電可能な上限電力に近づくと、徐々に高効率運転充電のための第2SOCを増加させる。   FIG. 6 shows a driving pattern in an urban area. In urban driving, there are many opportunities to perform regenerative driving charging, and the fuel efficiency improvement effect by the regenerative driving charging is enhanced. Therefore, the allowable power storage amount of the power storage device 3 is given priority to regenerative driving charging. For example, when the vehicle speed increases and the power obtained by regenerative travel approaches the upper limit power that can be charged by the power storage device 3, the second SOC for high-efficiency operation charging is gradually increased.

また市街地走行では、図7に示すように蓄電装置3の許容蓄電量が或る所定値Er1となるまでは、蓄電装置3の許容蓄電量を全て第3SOCとし、回生走行充電を行い、所定値Er1よりも蓄電装置3の許容蓄電量が大きい場合は、所定値Er1よりも大きい範囲を第2SOCとして、高効率運転充電を行うマップを使用してもよい。所定値Er1は蓄電装置3で充電可能な上限電力であり、回生走行時に発電する駆動モータ4の発電効率や、蓄電装置3などの充電効率などによって決定される。また、この所定値Er1は蓄電装置3などを劣化させないように設定される。この走行では蓄電装置3の許容蓄電量が所定値Er1以下のときは蓄電装置3の許容蓄電量は全て第3SOCとなり、第2SOCは第1SOCと等しくなる。   In urban driving, as shown in FIG. 7, until the allowable power storage amount of the power storage device 3 reaches a certain predetermined value Er1, all the allowable power storage amount of the power storage device 3 is set to the third SOC, and regenerative travel charging is performed. When the allowable storage amount of the power storage device 3 is larger than Er1, a map that performs high-efficiency operation charging may be used with the range larger than the predetermined value Er1 as the second SOC. The predetermined value Er1 is the upper limit power that can be charged by the power storage device 3, and is determined by the power generation efficiency of the drive motor 4 that generates power during regenerative travel, the charging efficiency of the power storage device 3, and the like. The predetermined value Er1 is set so as not to deteriorate the power storage device 3 and the like. In this travel, when the allowable power storage amount of the power storage device 3 is equal to or less than the predetermined value Er1, the allowable power storage amount of the power storage device 3 is all the third SOC, and the second SOC is equal to the first SOC.

また、高速道路走行では回生走行充電を行う機会が少なく、高効率運転充電による燃費向上効果が高くなるので、図8に示すように蓄電装置3の許容蓄電量が或る所定値Er2となるまでは、第2SOCとして高効率運転によって充電し、所定値Er2よりも蓄電装置3の許容蓄電量が大きい場合は、所定値Er2よりも大きい範囲を第3SOCとして回生走行充電を行うマップを使用してもよい。所定値Er2は車両の加速時などに駆動モータ4を駆動させるために必要となる蓄電量である。この走行では、蓄電装置3の許容蓄電量が所定値Er2よりも少ない場合には、第2SOCは蓄電装置3の上限蓄電量と等しくなる。図7、図8などのマップは各走行パターンにそれぞれ設けられる。以上のように図4に示すフローチャートより、燃費向上効果の高い第2SOC、第3SOCを算出することができる。   Further, there are few opportunities to perform regenerative travel charging on highway traveling, and the fuel efficiency improvement effect by high-efficiency driving charging is increased. Therefore, until the allowable power storage amount of the power storage device 3 reaches a certain predetermined value Er2 as shown in FIG. Is charged by high-efficiency driving as the second SOC, and when the allowable power storage amount of the power storage device 3 is larger than the predetermined value Er2, a map for performing regenerative running charging using the range larger than the predetermined value Er2 as the third SOC is used. Also good. The predetermined value Er2 is the amount of electricity necessary for driving the drive motor 4 when the vehicle is accelerated. In this traveling, when the allowable power storage amount of the power storage device 3 is smaller than the predetermined value Er2, the second SOC becomes equal to the upper limit power storage amount of the power storage device 3. Maps such as FIG. 7 and FIG. 8 are provided for each traveling pattern. As described above, the second SOC and the third SOC that have a high fuel efficiency improvement effect can be calculated from the flowchart shown in FIG.

その後ステップS204ヘ進み。蓄電装置3の充放電を行う。このステップS204では、第3SOCの範囲で回生走行による充電を行い、第2SOCの範囲内において、高効率運転によって充放電を行う。これによって、燃費向上効果の大きい走行をすることができる。   Thereafter, the process proceeds to step S204. The power storage device 3 is charged and discharged. In this step S204, charging by regenerative travel is performed within the range of the third SOC, and charging and discharging are performed by high-efficiency operation within the range of the second SOC. As a result, it is possible to travel with great fuel efficiency improvement.

本発明の制御装置をパラレルハイブリット車両に用いる事も可能であり、次にパラレルハイブリット車両について図10を用いて説明する。   The control device of the present invention can also be used for a parallel hybrid vehicle. Next, the parallel hybrid vehicle will be described with reference to FIG.

パラレルハイブリット車両は、ガソリンなどを燃焼させて出力を生じる内燃機関31と、内燃機関31の出力軸の回転速度、回転半径を変化させる変速機34と、変速機34の回転速度を更に減速する減速装置35と、内燃機関1と同一にまたは単独に車両の動力となるモータ33と、モータ33に電力を供給し、また車両減速時に回生エネルギーを蓄える蓄電装置42を備える。内燃機関31とモータ33はクラッチ32によって連結可能、すなわちクラッチ32によって車両の走行は、内燃機関31とモータ33の動力による走行と、モータ33のみの動力による走行に切り換えられる。内燃機関31、モータ33の駆動力は、減速装置35によって減速されファイナルギヤ36を介してタイヤ37に伝達され車両が走行する。   The parallel hybrid vehicle is an internal combustion engine 31 that generates output by burning gasoline or the like, a transmission 34 that changes the rotational speed and rotational radius of the output shaft of the internal combustion engine 31, and a deceleration that further reduces the rotational speed of the transmission 34. A device 35, a motor 33 that is the same as or independently of the internal combustion engine 1, and power for the vehicle, and a power storage device 42 that supplies electric power to the motor 33 and stores regenerative energy when the vehicle is decelerated. The internal combustion engine 31 and the motor 33 can be connected by a clutch 32, that is, the travel of the vehicle by the clutch 32 is switched between travel by the power of the internal combustion engine 31 and the motor 33 and travel by the power of the motor 33 alone. The driving force of the internal combustion engine 31 and the motor 33 is decelerated by the reduction gear 35 and is transmitted to the tire 37 via the final gear 36 so that the vehicle travels.

クラッチ32は、パウダークラッチであり、伝達トルクを調整することができる。なお、乾式単板クラッチや湿式多板クラッチを用いても良い。   The clutch 32 is a powder clutch and can adjust the transmission torque. A dry single plate clutch or a wet multi-plate clutch may be used.

変速機34は、無段変速機であり、油圧装置38から圧油が供給され、ベルト式の無段変速機を用いた場合ではベルトとクランプとが潤滑される。なお、油圧装置38の圧油を供給する図示しないオイルポンプは、モータ39によって駆動される。この変速機34はベルト式の他にトロイダル式無段変速機、または段階的に変速する変速機、さらには、遊星歯車を用いた変速機でも良い。遊星歯車を用いた変速機では、例えば、内燃機関31の出力軸をキャリアに、モータ33の出力軸をサンギヤに、またリングギヤを減速装置35に結合する。これによってサンギヤの回転数を変化させることにより、キャリアとリングギヤの回転数を無段階に変化させることが可能であり、このとき内燃機関31の駆動力を減速装置35に伝達しない状態を作り出せることが可能なので、クラッチ32を設けなくてもよい。   The transmission 34 is a continuously variable transmission, and is supplied with pressure oil from a hydraulic device 38. When a belt type continuously variable transmission is used, the belt and the clamp are lubricated. An oil pump (not shown) that supplies the pressure oil of the hydraulic device 38 is driven by a motor 39. The transmission 34 may be a toroidal continuously variable transmission in addition to the belt type, a transmission that changes in stages, or a transmission that uses planetary gears. In a transmission using a planetary gear, for example, the output shaft of the internal combustion engine 31 is coupled to a carrier, the output shaft of a motor 33 is coupled to a sun gear, and the ring gear is coupled to a reduction gear 35. Thus, by changing the rotation speed of the sun gear, it is possible to change the rotation speed of the carrier and the ring gear steplessly. At this time, it is possible to create a state in which the driving force of the internal combustion engine 31 is not transmitted to the reduction gear 35. Since it is possible, the clutch 32 may not be provided.

モータ33とモータ39は交流電動機であり、モータ33と蓄電装置42の間にインバータ40、モータ39と蓄電装置42との間にインバータ41をそれぞれ設けている。インバータ40、41によって、モータ33から蓄電装置42に充電される電力は交流から直流へ変換され、蓄電装置42からモータ33、39に供給される電力は直流から交流へ変換される。モータ33、39は直流電動機を使用してもよく、その場合インバータ40、41の代わりにDC−DCコンバータを使用する。   The motor 33 and the motor 39 are AC electric motors, and an inverter 40 is provided between the motor 33 and the power storage device 42, and an inverter 41 is provided between the motor 39 and the power storage device 42. The inverters 40 and 41 convert the power charged from the motor 33 to the power storage device 42 from AC to DC, and the power supplied from the power storage device 42 to the motors 33 and 39 is converted from DC to AC. The motors 33 and 39 may use DC motors, and in that case, DC-DC converters are used instead of the inverters 40 and 41.

蓄電装置42はリチウム・イオン電池、ニッケル・水素電池、鉛電池などの二次電池、または、電気二重層キャパシタを用いる。   The power storage device 42 uses a secondary battery such as a lithium-ion battery, a nickel-hydrogen battery, or a lead battery, or an electric double layer capacitor.

また、内燃機関31の出力などを制御する統合コントローラ44を備える。   An integrated controller 44 that controls the output of the internal combustion engine 31 and the like is also provided.

また、内燃機関1の代わりに燃料電池51を用いても良い。ここで燃料電池車両について図11を用いて説明する。   Further, a fuel cell 51 may be used instead of the internal combustion engine 1. Here, the fuel cell vehicle will be described with reference to FIG.

燃料電池車両は、図示しない水素供給装置と同じく図示しない酸化剤供給装置とから供給される原料によって発電する燃料電池51と、燃料電池51の発電電力を制御する燃料電池コントローラ52を備える。なお、燃料電池51は、固体高分子型燃料電池を使用するが、この他にリン酸、溶融炭酸塩型など種々のタイプの燃料電池を使用してもよい。また、水素供給装置は水素ボンベ、または改質器を備えた装置を使用してもよい。他の構成については内燃機関1、発電機2を用いた場合と同じである。   The fuel cell vehicle includes a fuel cell 51 that generates power using raw materials supplied from an oxidant supply device (not shown) as well as a hydrogen supply device (not shown), and a fuel cell controller 52 that controls the generated power of the fuel cell 51. In addition, although the polymer electrolyte fuel cell is used for the fuel cell 51, various types of fuel cells such as phosphoric acid and molten carbonate type may be used. The hydrogen supply device may be a hydrogen cylinder or a device provided with a reformer. About another structure, it is the same as the case where the internal combustion engine 1 and the generator 2 are used.

本発明の第1実施形態の効果について説明する。   The effect of 1st Embodiment of this invention is demonstrated.

本発明を用いない場合には、蓄電装置3の温度が低くなり、蓄電装置3を暖めるために第1SOCを多く確保すると図9に示すように、蓄電装置3の許容蓄電量が少なくなる。この場合、許容蓄電容量の増減によって回生走行充電と、高効率運転充電の燃費向上効果が変化する。そのため、許容蓄電容量の増減によって所望の燃費向上効果を得ることができない。   When the present invention is not used, if the temperature of the power storage device 3 is lowered and a large amount of the first SOC is secured to warm the power storage device 3, the allowable power storage amount of the power storage device 3 decreases as shown in FIG. In this case, the fuel efficiency improvement effect of regenerative running charging and high-efficiency driving charging changes depending on the increase / decrease in the allowable storage capacity. Therefore, the desired fuel efficiency improvement effect cannot be obtained by increasing or decreasing the allowable storage capacity.

また、蓄電装置3の許容蓄電量への充電は車両の回生走行で発電される電力をより多く充電するように制御することが考えられるが、図5に示すように回生走行充電と、高効率運転充電とでは、燃費向上効果が異なるために、蓄電装置3の許容蓄電量を使用する際には、回生走行充電と、高効率運転充電のうち、燃費向上効果の高い要因で充電を行った方がよい。そのため、本発明を用いない場合では十分な燃費向上効果を得ることができない。   In addition, it is conceivable to charge the power storage device 3 to the allowable power storage amount so as to charge more electric power generated by the regenerative travel of the vehicle. However, as shown in FIG. Since the fuel efficiency improvement effect differs from the driving charge, when using the allowable power storage amount of the power storage device 3, charging was performed by a factor having a high fuel efficiency improvement effect among the regenerative traveling charging and the high efficiency driving charging. Better. Therefore, when the present invention is not used, a sufficient fuel efficiency improvement effect cannot be obtained.

本発明では、車両の次回起動時に必要な蓄電装置3の第1SOCを除いた蓄電装置3の許容蓄電量を高効率運転充電のための第2SOCと、回生走行充電のための第3SOCに配分したときの燃費効率をそれぞれ算出し、その燃費向上効果の合計値が一番高くなるように蓄電装置3の許容蓄電量を第2SOCと、第3SOCに配分し、蓄電装置3の充放電を制御するので、車両の次回起動のための第1SOCを確保し、さらに車両の燃費効率を良くすることができる。   In the present invention, the allowable power storage amount of the power storage device 3 excluding the first SOC of the power storage device 3 required at the next start-up of the vehicle is distributed to the second SOC for high-efficiency operation charging and the third SOC for regenerative travel charging. The fuel consumption efficiency of the power storage device 3 is calculated, and the allowable power storage amount of the power storage device 3 is distributed to the second SOC and the third SOC so that the total value of the fuel efficiency improvement effect becomes the highest, and the charge / discharge of the power storage device 3 is controlled. Therefore, the first SOC for the next start-up of the vehicle can be ensured, and the fuel efficiency of the vehicle can be improved.

また、車両が走行する道路の種別を判断し、各道路の種別に応じて回生走行充電と高効率運転充電の燃費向上効果の合計値を算出し、第2SOC、第3SOCを決定するので、車両燃費効率を更に良くすることができる。   In addition, the type of road on which the vehicle travels is determined, the total value of the fuel efficiency improvement effect of regenerative travel charging and high-efficiency driving charging is calculated according to the type of each road, and the second SOC and the third SOC are determined. The fuel efficiency can be further improved.

第1SOCは、蓄電装置3の内部抵抗と次回起動時の温度を基に推定されるので、第1SOCを正確に算出することができ、走行に使用可能な蓄電装置3の許容蓄電量を正確に算出することができる。そのため次回の車両の起動性を確保し、蓄電装置3の蓄電量を無駄なく利用できるので、ハイブリット車両の燃費効率を更に良くすることができる。   Since the first SOC is estimated based on the internal resistance of the power storage device 3 and the temperature at the next start-up, the first SOC can be accurately calculated, and the allowable power storage amount of the power storage device 3 that can be used for traveling is accurately determined. Can be calculated. Therefore, the startability of the next vehicle is ensured, and the amount of power stored in the power storage device 3 can be used without waste, so that the fuel efficiency of the hybrid vehicle can be further improved.

蓄電装置3の許容蓄電量を有効に利用し、車両の燃費向上効果が大きくなるように第2SOC、第3SOCを設定するので、蓄電装置3は容量が小さい蓄電装置を使用することができ、蓄電装置3を小型にすることができる。   Since the second SOC and the third SOC are set so that the allowable power storage amount of the power storage device 3 is effectively used and the fuel efficiency improvement effect of the vehicle is increased, the power storage device 3 can use a power storage device having a small capacity. The apparatus 3 can be reduced in size.

本発明は上記した実施形態に限定されるものではなく、その技術的思想の範囲内でなしうるさまざまな変更、改良が含まれることは言うまでもない。   It goes without saying that the present invention is not limited to the above-described embodiments, and includes various modifications and improvements that can be made within the scope of the technical idea.

蓄電装置を備えたハイブリット車両に利用することができる。   The present invention can be used for a hybrid vehicle including a power storage device.

本発明の第1実施形態であるシリーズハイブリット車両の構成を示すブロック図である。1 is a block diagram showing a configuration of a series hybrid vehicle according to a first embodiment of the present invention. 本発明の蓄電装置の充放電を行うフローチャートである。It is a flowchart which charges / discharges the electrical storage apparatus of this invention. 本発明の第1SOCを算出するフローチャートである。It is a flowchart which calculates 1st SOC of this invention. 本発明の第2SOCを算出するフローチャートである。It is a flowchart which calculates 2nd SOC of this invention. 本発明の回生走行による充電と、高効率運転による充電と、燃費向上効果との関係を示すマップである。It is a map which shows the relationship between the charge by the regenerative driving | running | working of this invention, the charge by highly efficient driving | operation, and a fuel consumption improvement effect. 本発明の市街地走行での回生走行による充電と、高効率運転による充電と、燃費向上効果との関係を示すマップである。It is a map which shows the relationship between the charge by the regenerative driving | running | working in the city driving | running | working of this invention, the charge by a highly efficient driving | operation, and a fuel consumption improvement effect. 本発明の市街地走行での回生走行による充電と、高効率運転による充電と、燃費向上効果との関係を示すマップである。It is a map which shows the relationship between the charge by the regenerative driving | running | working in the city driving | running | working of this invention, the charge by a highly efficient driving | operation, and a fuel consumption improvement effect. 本発明の高速道路走行での回生走行による充電と、高効率運転による充電と、燃費向上効果との関係を示すマップである。It is a map which shows the relationship between the charge by the regenerative driving | running | working in the highway driving | running | working of this invention, the charge by a highly efficient driving | operation, and a fuel consumption improvement effect. 本発明を用いない場合の蓄電装置の温度における蓄電装置のSOCの変化を示すマップである。It is a map which shows the change of SOC of the electrical storage apparatus in the temperature of the electrical storage apparatus at the time of not using this invention. 本発明をパラレルハイブリット車両に用いた構成を示すブロック図である。It is a block diagram which shows the structure which used this invention for the parallel hybrid vehicle. 本発明を燃料電池車両に用いた構成を示すブロック図である。It is a block diagram which shows the structure which used this invention for the fuel cell vehicle.

符号の説明Explanation of symbols

1 内燃機関
2 発電機
3 蓄電装置
4 駆動モータ
7 内燃機関コントローラ
8 発電機コントローラ
9 蓄電装置コントローラ
10 駆動モータコントローラ
11 統合コントローラ
DESCRIPTION OF SYMBOLS 1 Internal combustion engine 2 Generator 3 Power storage device 4 Drive motor 7 Internal combustion engine controller 8 Generator controller 9 Power storage device controller 10 Drive motor controller 11 Integrated controller

Claims (6)

車両を駆動させるための電力を発生させる発電装置と、
前記車両を電力により駆動させ、かつ前記車両の回生走行時には電力を発生させる駆動装置と、
前記発電装置と前記駆動装置と電気的に接続して電力を蓄え、また前記駆動装置に電力を供給する蓄電装置と、を備えたハイブリット車両制御装置において、
前記ハイブリット車両起動時に前記発電装置を起動させるために必要な前記蓄電装置の蓄電量を算出する第1蓄電量算出手段と、
前記蓄電装置の上限蓄電量から前記第1蓄電量算出手段によって算出された前記第1蓄電量を除いた前記蓄電装置の許容蓄電量を、前記発電装置により充電される第2蓄電量と、前記回生走行時の前記駆動装置により充電される第3蓄電量とで分担したときの前記ハイブリット車両の燃費効率を判定する燃費効率判定手段と、
前記燃費効率判定手段に基づいて前記燃費効率が最良となるように、前記第2蓄電量と、前記第3蓄電量との充電分担比率を配分する比率配分手段と、を備えたことを特徴とするハイブリット車両制御装置。
A power generator for generating electric power for driving the vehicle;
A driving device for driving the vehicle with electric power and generating electric power during regenerative running of the vehicle;
In a hybrid vehicle control device comprising: a power storage device that electrically connects the power generation device and the drive device to store electric power, and supplies electric power to the drive device;
First power storage amount calculating means for calculating a power storage amount of the power storage device required to start the power generation device when the hybrid vehicle is started;
An allowable storage amount of the power storage device obtained by subtracting the first storage amount calculated by the first storage amount calculation unit from an upper limit storage amount of the storage device; a second storage amount charged by the power generation device; and Fuel efficiency determination means for determining fuel efficiency of the hybrid vehicle when it is shared with the third power storage amount charged by the drive device during regenerative travel;
And ratio distribution means for allocating a charge sharing ratio between the second power storage amount and the third power storage amount so that the fuel efficiency is best based on the fuel efficiency determination means. A hybrid vehicle control device.
前記ハイブリット車両が走行する道路種別に応じた前記燃費向上効果を記憶する記憶手段を備え、
前記燃費効率判定手段は、前記許容蓄電量と前記記憶手段に基づいて前記燃費効率を判定することを特徴とする請求項1に記載のハイブリット車両制御装置。
Storage means for storing the fuel efficiency improvement effect according to the type of road on which the hybrid vehicle travels,
The hybrid vehicle control device according to claim 1, wherein the fuel efficiency determination unit determines the fuel efficiency based on the allowable storage amount and the storage unit.
前記ハイブリット車両の位置を検出する位置検出手段と、
前記前記位置検出手段によって検出された前記ハイブリット車両の走行している道路種別を判断する道路種別判断手段と、を備え、
前記燃費効率判定手段は、前記道路種別判断手段と前記記憶手段に基づいて前記燃費効率を判定することを特徴とする請求項2に記載のハイブリット車両制御装置。
Position detecting means for detecting the position of the hybrid vehicle;
Road type determination means for determining the road type on which the hybrid vehicle detected by the position detection means is running,
3. The hybrid vehicle control device according to claim 2, wherein the fuel efficiency determination unit determines the fuel efficiency based on the road type determination unit and the storage unit.
前記燃費効率判定手段は、前記ハイブリット車両の走行状態を検出する走行状態検出手段を備え、前記走行状態に応じて前記燃費効率判定手段を更新することを特徴とする請求項1に記載のハイブリット車両制御装置。   2. The hybrid vehicle according to claim 1, wherein the fuel efficiency determination unit includes a traveling state detection unit that detects a traveling state of the hybrid vehicle, and updates the fuel efficiency determination unit according to the traveling state. Control device. 前記比率配分手段は、前記蓄電装置の許容蓄電量が所定値よりも少ない場合には、前記道路種別に応じて、前記蓄電装置の許容蓄電量を前記発電装置、もしくは前記駆動装置のどちらか一方により充電し、
前記蓄電装置の許容蓄電量が所定値よりも多い場合には、前記所定値よりも多い部分をもう一方から充電することを特徴とする請求項1から4のいずれか一つに記載のハイブリット車両制御装置。
When the allowable storage amount of the power storage device is less than a predetermined value, the ratio distribution unit determines the allowable storage amount of the power storage device as either the power generation device or the drive device according to the road type. Charged by
5. The hybrid vehicle according to claim 1, wherein, when the allowable power storage amount of the power storage device is larger than a predetermined value, a portion larger than the predetermined value is charged from the other side. 6. Control device.
前記第1蓄電量算出手段は、前記蓄電装置の内部抵抗を推定する内部抵抗推定手段と、
前記蓄電装置の温度を推定する温度推定手段と、を備え、
前記内部抵抗と前記温度に応じて前記第1蓄電量を算出することを特徴とする請求項1から5のいずれか一つに記載のハイブリット車両制御装置。
The first power storage amount calculation means includes an internal resistance estimation means for estimating an internal resistance of the power storage device;
Temperature estimation means for estimating the temperature of the power storage device,
6. The hybrid vehicle control device according to claim 1, wherein the first storage amount is calculated according to the internal resistance and the temperature.
JP2004165513A 2004-06-03 2004-06-03 Controller for hybrid vehicle Pending JP2005348524A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004165513A JP2005348524A (en) 2004-06-03 2004-06-03 Controller for hybrid vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004165513A JP2005348524A (en) 2004-06-03 2004-06-03 Controller for hybrid vehicle

Publications (1)

Publication Number Publication Date
JP2005348524A true JP2005348524A (en) 2005-12-15

Family

ID=35500391

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004165513A Pending JP2005348524A (en) 2004-06-03 2004-06-03 Controller for hybrid vehicle

Country Status (1)

Country Link
JP (1) JP2005348524A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008038466A1 (en) * 2006-09-28 2008-04-03 Toyota Jidosha Kabushiki Kaisha Vehicle control device, vehicle control method, program for causing computer to execute vehicle control method, and recording medium having program recorded thereon
WO2008105274A1 (en) * 2007-02-21 2008-09-04 Toyota Jidosha Kabushiki Kaisha Vehicle and its control method
JP2011201393A (en) * 2010-03-25 2011-10-13 Mitsubishi Motors Corp Hybrid vehicle
JP2011526562A (en) * 2008-07-03 2011-10-13 プジョー シトロエン オートモビル エス アー Electrical storage method and system
JP2011235802A (en) * 2010-05-12 2011-11-24 Nippon Soken Inc System and method for control of hybrid vehicle
JP2013085390A (en) * 2011-10-11 2013-05-09 Toyota Central R&D Labs Inc Power supply system
CN110103773A (en) * 2019-05-22 2019-08-09 福建工程学院 A kind of electric car continual mileage prediction technique and system

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008038466A1 (en) * 2006-09-28 2008-04-03 Toyota Jidosha Kabushiki Kaisha Vehicle control device, vehicle control method, program for causing computer to execute vehicle control method, and recording medium having program recorded thereon
US8285433B2 (en) 2006-09-28 2012-10-09 Toyota Jidosha Kabushiki Kaisha Vehicle control device, vehicle control method, and recording medium having program recorded thereon
WO2008105274A1 (en) * 2007-02-21 2008-09-04 Toyota Jidosha Kabushiki Kaisha Vehicle and its control method
US8424624B2 (en) 2007-02-21 2013-04-23 Toyota Jidosha Kabushiki Kaisha Vehicle and control method of vehicle
JP2011526562A (en) * 2008-07-03 2011-10-13 プジョー シトロエン オートモビル エス アー Electrical storage method and system
JP2011201393A (en) * 2010-03-25 2011-10-13 Mitsubishi Motors Corp Hybrid vehicle
JP2011235802A (en) * 2010-05-12 2011-11-24 Nippon Soken Inc System and method for control of hybrid vehicle
JP2013085390A (en) * 2011-10-11 2013-05-09 Toyota Central R&D Labs Inc Power supply system
CN110103773A (en) * 2019-05-22 2019-08-09 福建工程学院 A kind of electric car continual mileage prediction technique and system

Similar Documents

Publication Publication Date Title
CN101489824B (en) Vehicle power control device
EP2774802B1 (en) Vehicle and vehicle control method
US6580977B2 (en) High efficiency fuel cell and battery for a hybrid powertrain
US7791216B2 (en) Method and system for use with a vehicle electric storage system
JP5958868B2 (en) Power generation control device
JP4962604B2 (en) Control device for hybrid vehicle and hybrid vehicle including the same
EP3034370A1 (en) Hybrid vehicle
CN101443978A (en) Charge/discharge control device and charge/discharge control method for power storage device, and electric-powered vehicle
JP5729475B2 (en) Vehicle and vehicle control method
CN102883933A (en) Hybrid-vehicle control device and hybrid vehicle provided therewith
JP2007022118A (en) Control unit of hybrid vehicle
WO2010133330A1 (en) Multi component propulsion systems for road vehicles
CN105050854A (en) Power source controller
JP2005151721A (en) Controller of vehicle
US11312360B2 (en) Control system for vehicle
JP2012240566A (en) Electric travel controller for hybrid vehicle
JP2010000833A (en) Control device for hybrid vehicle
CN106976397A (en) Motor vehicle driven by mixed power
CN102358162B (en) Hybrid oil-electricity energy-saving power device and control method thereof
JP4192658B2 (en) Vehicle control apparatus and control method
JP2005348524A (en) Controller for hybrid vehicle
US9302597B2 (en) Vehicle and method of controlling vehicle
CN105235678B (en) Motor vehicle driven by mixed power
JP2005143173A (en) Hybrid vehicle
JP2023173679A (en) Hybrid vehicle controller