JP2005347725A - One chip high-tension photoelectric cell continuously arranging many single crystal si particulates - Google Patents

One chip high-tension photoelectric cell continuously arranging many single crystal si particulates Download PDF

Info

Publication number
JP2005347725A
JP2005347725A JP2004194718A JP2004194718A JP2005347725A JP 2005347725 A JP2005347725 A JP 2005347725A JP 2004194718 A JP2004194718 A JP 2004194718A JP 2004194718 A JP2004194718 A JP 2004194718A JP 2005347725 A JP2005347725 A JP 2005347725A
Authority
JP
Japan
Prior art keywords
type
polycrystalline layer
photoelectric cell
single crystal
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004194718A
Other languages
Japanese (ja)
Inventor
Saburo Shimokawa
三郎 下川
Toshihiko Kawaguchi
俊彦 川口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ZEO SYSTEM KK
Geosystem Co Ltd Japan
Original Assignee
ZEO SYSTEM KK
Geosystem Co Ltd Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ZEO SYSTEM KK, Geosystem Co Ltd Japan filed Critical ZEO SYSTEM KK
Priority to JP2004194718A priority Critical patent/JP2005347725A/en
Publication of JP2005347725A publication Critical patent/JP2005347725A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To save the labor of a photoelectric cell connection and obtain a light receiving electric power of high efficiency-output by integrating a plurality of photoelectric units each having high sensitivity to infrared rays on a glass substrate to output a high voltage. <P>SOLUTION: The thickness of three layers of a 8N type (or 6P type) polycrystalline layer, a 7I type silicon polycrystalline layer and a 6P type (or 8N type) polycrystalline layer is set to the thickness that effectively absorbs infrared rays (λ= about 700 to 1,000 nm) to form the photoelectric cell unit having high sensitivity to the infrared rays. A plurality of the photoelectric cell units are integrated on a sheet of glass substrate to configure a one-tip photoelectric cell. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

発明の詳細な説明Detailed Description of the Invention

発明に属する技術分野Technical field belonging to the invention

太陽電地等の光電池で、ワンチップに集積された赤外線域で高感度な光電池素子。  Photovoltaic elements such as solar power, with high sensitivity in the infrared region integrated on a single chip.

光電池は使用する材料により最小単位の発電電圧が決る。最小単位電圧以上の電圧を取り出す為には、単位発電素子を直列に複数個接続しなければならない。複数個接続する為には、単位発電素子を複数個並べて各々を電線で接続(例えば、ボンデング)しているが莫大な工数を費やしている。工数削減を計る為には複数個を接続するワンチップ化が必要となる。ワンチップ化の例として、複数個の発電素子を直列に接続・集積化し、ワンチップ化したアモルファスシリコン薄膜の太陽電池を現在多数使用されているが、欠点は照射光が可視光の範囲でしか感度を有せず、赤外線領域では発電出来ない。現在、赤外線領域での高電圧光電池を必要とする場合は、シリコン結晶系から成る単位発電素子単体を複数個直列に接続して高電圧光電池を形成している。これは赤外線域での素子の集積化が困難であった為である。  Photovoltaic cells have a minimum generation voltage determined by the materials used. In order to extract a voltage exceeding the minimum unit voltage, a plurality of unit power generation elements must be connected in series. In order to connect a plurality of units, a plurality of unit power generation elements are arranged and connected to each other by electric wires (for example, bonding), but enormous man-hours are spent. In order to reduce the number of man-hours, it is necessary to make a single chip that connects multiple devices. As an example of one-chip implementation, a large number of amorphous silicon thin-film solar cells that are connected and integrated in series to form a single chip are currently used, but the drawback is that the irradiation light is only in the visible light range. It has no sensitivity and cannot generate electricity in the infrared region. At present, when a high voltage photovoltaic cell in the infrared region is required, a plurality of unit power generation elements made of silicon crystal are connected in series to form a high voltage photovoltaic cell. This is because it is difficult to integrate elements in the infrared region.

発明が解決しようとする課題Problems to be solved by the invention

光通信分野で、目に見えない赤外線の波長域で大きな光エネルギーを伝送する事が必要な場合、その赤外線エネルギーを有効に受光し発電する高電圧光電池が必要になる。しかし、赤外線域で感度を有し、組込みを簡単にした集積化ワンチップ高電圧光電池は存在しない。課題は、赤外線域に感度を有するワンチップ高電圧光電池を実現する事である。  In the optical communication field, when it is necessary to transmit large light energy in the invisible infrared wavelength region, a high voltage photovoltaic cell that effectively receives the infrared energy and generates power is required. However, there is no integrated one-chip high-voltage photovoltaic cell that has sensitivity in the infrared region and is easy to incorporate. The problem is to realize a one-chip high-voltage photovoltaic cell having sensitivity in the infrared region.

課題を解決するための手段Means for solving the problem

本件は、従来の困難性を解決するために、次の3つの特徴を有している。
1)使用材料は赤外線に感度を有するシリコン微粒子結晶(含む,多結晶)を使用する。
2)素子を直列接続し易い様にガラス基板上にシリコン微粒子結晶を層状に堆積・焼結し、厚膜状の多結晶層を形成して、さらに赤外線域にも感度を有する厚膜状の層を形成する事か可能となる。
3)赤外線をシリコン微粒子多結晶厚膜層の深くまで侵入させ、有効吸収するようにPIN構造の焼結層で構成される。
This case has the following three features in order to solve the conventional difficulties.
1) The material used is silicon fine particle crystal (including polycrystal) having sensitivity to infrared rays.
2) Silicon fine particle crystals are deposited and sintered in layers on a glass substrate so that the elements can be easily connected in series, forming a thick polycrystalline layer, and a thick film with sensitivity in the infrared region. It is possible to form a layer.
3) It is composed of a sintered layer having a PIN structure so that infrared rays can penetrate deep into the polycrystalline silicon thick film layer and be effectively absorbed.

図1)に本件の素子断面図を示す。1ガラス基板を母体として、その上に一方の電極となる2透明導電膜が形成されていて、その上に赤外線センサー部と成る5Si微粒子焼結層が堆積・焼結されて単位センサー領域を形作っている。Si微粒子はシラン(SiH4)ガスを分解・結晶化して作成された微粒子で各微粒子は単結晶からなっている。シランガスにフォスフィン(PH3)を少量混入すればN型Si微粒子の堆積層が出来る。これを指定の温度で焼結(微粒子は低温焼結が可能)して8N型Si微粒子層(単結晶微粒子焼結層は多結晶層)となる。次に、シランガスのみで7I型Sia粒子層をその上にジボラン(B2H6)6P型Si微粒子層を積層し、5Si微粒子焼結層を形成する。次にこのP型層面に電極として4Al電極を形成することで単位光電池が完成する。この単位光電地をガラス基板に多数配列し、Al電極パターンで直列接続することで多段接続の高電圧光電池が達成できる。感光部に赤外線感度の高いSi多結晶焼結層から成る厚膜は赤外線を有効に吸収する厚さに設定する。多結晶層から成る膜厚はSi単結晶よりは界面反射が多く吸収し易いので、膜厚は一般のSi単結晶基板厚よりは大幅に薄くて済む。尚、この累子の入射面は1ガラス基板側で、9入射光は2透明導電膜を通過して5Si微粒子焼結層に入る。焼結で成長した多結晶層は入射光を吸収し、電子・正孔を生成する。両者は各々N層、P層に蓄積され電池となる。  FIG. 1) shows a cross-sectional view of the element in this case. 1 A glass substrate is used as a base, 2 transparent conductive films to be one electrode are formed on it, and a 5Si fine particle sintered layer to be an infrared sensor is deposited and sintered thereon to form a unit sensor area. ing. Si fine particles are fine particles prepared by decomposing and crystallizing silane (SiH4) gas, and each fine particle is made of a single crystal. If a small amount of phosphine (PH3) is mixed in the silane gas, a deposited layer of N-type Si fine particles can be formed. This is sintered at a specified temperature (fine particles can be sintered at a low temperature) to form an 8N type Si fine particle layer (a single crystal fine particle sintered layer is a polycrystalline layer). Next, a 7I type Sia particle layer is formed only with silane gas, and a diborane (B2H6) 6P type Si fine particle layer is laminated thereon to form a 5Si fine particle sintered layer. Next, a unit photovoltaic cell is completed by forming a 4Al electrode as an electrode on the P-type layer surface. A multi-stage high voltage photovoltaic cell can be achieved by arranging a large number of unit photoelectric grounds on a glass substrate and connecting them in series with an Al electrode pattern. A thick film made of a Si polycrystalline sintered layer having high infrared sensitivity in the photosensitive portion is set to a thickness that effectively absorbs infrared rays. Since the film thickness of the polycrystalline layer has more interface reflection than the Si single crystal and absorbs easily, the film thickness can be much smaller than the thickness of a general Si single crystal substrate. The incident surface of this proton is on the glass substrate side, and 9 incident light passes through the 2 transparent conductive film and enters the 5Si fine particle sintered layer. The polycrystalline layer grown by sintering absorbs incident light and generates electrons and holes. Both are stored in the N layer and the P layer, respectively, to form a battery.

発明の効果The invention's effect

1)赤外線に感度を有し、大きなエネルギーを発生させる種々の電圧を取り出せるワンチップ光電池は存在しなかったが本発明はこれを実現可能にした。
2)使用電圧を種々選べるワンチップ高電圧光電池は、電子部品(例えば、CPU、各種LSI等)の用途の拡大、組込み工程の大幅削減。
3)小型化に因る設置スペースの縮小化、周辺部品(レンズ等)の小型化等々、トータルコストの低減に大きく寄与する。
1) Although there was no one-chip photovoltaic cell that has sensitivity to infrared rays and can extract various voltages that generate large energy, the present invention has made this possible.
2) One-chip high-voltage photovoltaic cells with various working voltages can be used to expand the use of electronic components (eg, CPUs, various LSIs, etc.) and greatly reduce the assembly process.
3) Significantly contributes to the reduction of total cost, such as reduction of installation space due to downsizing and downsizing of peripheral parts (lenses, etc.).

素子断面図Element cross section 単位感光部拡大断面図Unit photosensitive section enlarged sectional view 等価回路Equivalent circuit

符号の説明Explanation of symbols

1 ガラス基板
2 透明導電膜
3 酸化膜
4 Al導電膜
5 Si微粒子焼結膜
6 P型Si微粒子層
7 I型Si微粒子層
8 N型Si微粒子層
9 入射光
10 ダイオード
DESCRIPTION OF SYMBOLS 1 Glass substrate 2 Transparent conductive film 3 Oxide film 4 Al conductive film 5 Si fine particle sintered film 6 P type Si fine particle layer 7 I type Si fine particle layer 8 N type Si fine particle layer 9 Incident light 10 Diode

Claims (2)

1ガラス基板上に2透明導電膜をコートし、この上に8N型(又は6P型)シリコン単結晶微粒子を堆積後、適温で燒結する8N型(又は6P型)多結晶層を形成。
その多結晶層の上に7i型(Intrinsic=真性)シリコン単結晶武粒子を堆積・焼結するi型シリコン多結晶層を形成。
さらに上記多結晶層の上に6P型(又は8N型)シリコン単結晶微粒子を堆積・燒結し6P型(又は8N型)シリコン多結晶層を形成する厚膜状PIN構造単体光電池。
2 transparent conductive films are coated on 1 glass substrate, 8N type (or 6P type) silicon single crystal fine particles are deposited on this, and then an 8N type (or 6P type) polycrystalline layer that is sintered at an appropriate temperature is formed.
An i-type silicon polycrystalline layer on which 7i-type (intrinsic = intrinsic) silicon single crystal armor particles are deposited and sintered is formed on the polycrystalline layer.
Further, a thick-film-type PIN structure single photovoltaic cell in which 6P type (or 8N type) silicon single crystal fine particles are deposited and sintered on the polycrystalline layer to form a 6P type (or 8N type) silicon polycrystalline layer.
請求項1の1ガラス基板を広げ、複数個の単体光電池を集積配置し電気的に直列接続することを特徴とするワンチップ高電圧光電池。  2. A one-chip high-voltage photovoltaic cell according to claim 1, wherein a glass substrate is expanded, a plurality of single photovoltaic cells are integrated and electrically connected in series.
JP2004194718A 2004-06-04 2004-06-04 One chip high-tension photoelectric cell continuously arranging many single crystal si particulates Pending JP2005347725A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004194718A JP2005347725A (en) 2004-06-04 2004-06-04 One chip high-tension photoelectric cell continuously arranging many single crystal si particulates

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004194718A JP2005347725A (en) 2004-06-04 2004-06-04 One chip high-tension photoelectric cell continuously arranging many single crystal si particulates

Publications (1)

Publication Number Publication Date
JP2005347725A true JP2005347725A (en) 2005-12-15

Family

ID=35499773

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004194718A Pending JP2005347725A (en) 2004-06-04 2004-06-04 One chip high-tension photoelectric cell continuously arranging many single crystal si particulates

Country Status (1)

Country Link
JP (1) JP2005347725A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9577050B2 (en) 2010-12-10 2017-02-21 Teijin Limited Semiconductor laminate, semiconductor device, and production method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9577050B2 (en) 2010-12-10 2017-02-21 Teijin Limited Semiconductor laminate, semiconductor device, and production method thereof

Similar Documents

Publication Publication Date Title
CN106159020B (en) Use the two-sided photovoltaic module of heterojunction solar battery
US6784361B2 (en) Amorphous silicon photovoltaic devices
US20110017263A1 (en) Method and device for fabricating a solar cell using an interface pattern for a packaged design
US20090084439A1 (en) TCO-based hybrid solar photovoltaic energy conversion apparatus
US20140209149A1 (en) Superstrate sub-cell voltage-matched multijunction solar cells
US20090120487A1 (en) Method and System for Assembling A Solar Cell Using a Plurality of Photovoltaic Regions
US20110186107A1 (en) System and module for solar module with integrated glass concentrator
TWI398007B (en) Lighting type solar module
KR20110000695A (en) Method for improving pv aesthetics and efficiency
US20080236661A1 (en) Solar cell
KR20080021428A (en) Thin-film type solar cell including by-pass diode and manufacturing method thereof
CN108701734B (en) Solar cell module
WO2014092677A1 (en) Monolithic tandem voltage-matched multijunction solar cells
WO2010016098A1 (en) Daylighting solar battery module
KR20080021652A (en) Method and system for integrated solar cell using a plurality of photovoltaic regions
WO2010142575A2 (en) Tandem solar cell integrated in a double insulating glass window for building integrated photovoltaic applications
US20050022860A1 (en) Thin-film photovoltaic module
JP2003197943A (en) Solar cell device and solar cell module
JP2003086823A (en) Thin film solar battery
JP2005217357A (en) Three-dimensional configuration solar cell and three-dimensional configuration solar cell module
JP2005347725A (en) One chip high-tension photoelectric cell continuously arranging many single crystal si particulates
Dutta et al. High-efficiency solar cells based on micro-nano scale structures
KR20080107181A (en) High efficiency solar cell
KR20120082542A (en) Thin film solar cell and manufacturing method thereof
CN110650227A (en) Shell mechanism and electronic equipment