JP2005347654A - Forming method of copper surface protection film and processing method of copper surface where protection film is formed - Google Patents

Forming method of copper surface protection film and processing method of copper surface where protection film is formed Download PDF

Info

Publication number
JP2005347654A
JP2005347654A JP2004167891A JP2004167891A JP2005347654A JP 2005347654 A JP2005347654 A JP 2005347654A JP 2004167891 A JP2004167891 A JP 2004167891A JP 2004167891 A JP2004167891 A JP 2004167891A JP 2005347654 A JP2005347654 A JP 2005347654A
Authority
JP
Japan
Prior art keywords
copper surface
materials
copper
nitride
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004167891A
Other languages
Japanese (ja)
Other versions
JP4765055B2 (en
Inventor
Akira Izumi
亮 和泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu Institute of Technology NUC
Original Assignee
Kyushu Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu Institute of Technology NUC filed Critical Kyushu Institute of Technology NUC
Priority to JP2004167891A priority Critical patent/JP4765055B2/en
Priority to PCT/JP2005/010223 priority patent/WO2005122230A1/en
Priority to US11/569,144 priority patent/US7825026B2/en
Publication of JP2005347654A publication Critical patent/JP2005347654A/en
Application granted granted Critical
Publication of JP4765055B2 publication Critical patent/JP4765055B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a forming method of a copper surface protection film which can easily be removed and a processing method of a copper surface for removing the protection film from the copper surface where the protection film is formed. <P>SOLUTION: A gas inflow port is installed in a reaction chamber lower part, a copper substrate at an upper part and a tungsten catalyst object heated to 1,600°C in a middle part. Ammonia gas introduced from the gas inflow port is decomposed by the tungsten catalyst object. A recomposed chemical species reacts on a copper substrate surface and a Cu<SB>3</SB>N thin film is formed on the copper substrate surface. The Cu<SB>3</SB>N film has an operation of an anti-oxidation film of copper. When the Cu<SB>3</SB>N film is heated to not less than 300°C, it is thermally decomposed and removed, and the pure copper surface is obtained. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、銅表面の保護膜の形成方法、及び保護膜が形成された銅表面の処理方法に関する。 The present invention relates to a method for forming a protective film on a copper surface and a method for treating a copper surface on which a protective film is formed.

銅表面は容易に酸化されやすく、プロセス途上で空気中に長時間放置したり、酸化性雰囲気に触れると酸化されて、その後のプロセス中に酸洗などの中間処理をしなければならない。従来は、銅表面の酸化を防止するため、プロセスの最初に銅表面の洗浄後、清浄雰囲気中で連続的にプロセスを行い、銅表面の酸化を阻止してきた。しかし、プロセス途上でプロセスを中断し、長時間放置せねばならない場合や、プロセス途上で酸化性雰囲気に曝される場合には、プロセス途中で再度銅表面の再洗浄を行う必要のあることもしばしばあった。 The copper surface is easily oxidized and left to stand in the air for a long time during the process, or when exposed to an oxidizing atmosphere, it must be oxidized, and an intermediate treatment such as pickling must be performed during the subsequent process. Conventionally, in order to prevent oxidation of the copper surface, after the copper surface is washed at the beginning of the process, the process is continuously performed in a clean atmosphere to prevent oxidation of the copper surface. However, when it is necessary to interrupt the process during the process and leave it for a long time, or when exposed to an oxidizing atmosphere during the process, it is often necessary to re-clean the copper surface again during the process. there were.

かかる問題点を解決するための工夫も提案されている。例えば、特開2002-110679号は、銅を主導電層とする埋め込み配線を有する半導体集積回路装置の製造方法に関するものであるが、ここで採用される工程の一つであるアンモニアプラズマ処理工程において、銅の表面に薄い窒化層が形成され、そのために酸化層の形成を抑制できることが示唆されている。その他にもプラズマを用いる手法が幾つか提案されている。しかしながら、プラズマを用いる手法の場合は、いわゆるプラズマダメージが発生する可能性を否定できないという問題がある。
特開2002-110679号公報 特開2003-347241号公報 特開2001-176878号公報 特開2004-127503号公報 特開平11-26465号公報
A device for solving such a problem has also been proposed. For example, Japanese Patent Laid-Open No. 2002-110679 relates to a method of manufacturing a semiconductor integrated circuit device having a buried wiring whose main conductive layer is copper, but in an ammonia plasma processing step that is one of the steps adopted here. It has been suggested that a thin nitride layer is formed on the surface of copper, which can suppress the formation of an oxide layer. Several other methods using plasma have been proposed. However, in the case of a method using plasma, there is a problem that the possibility of so-called plasma damage cannot be denied.
JP 2002-110679 A Japanese Patent Laid-Open No. 2003-347241 Japanese Patent Laid-Open No. 2001-176878 JP 2004-127503 A Japanese Patent Laid-Open No. 11-26465

本発明は、上記の問題点や制約に鑑みなされたものであり、本発明が解決しようとする課題は、プラズマを用いることなく、銅の表面に除去が容易な保護膜を形成する方法、及び保護膜が形成された銅表面から、次の工程処理のために、保護膜を除去するための銅表面の処理方法を提供することにある。 The present invention has been made in view of the above problems and limitations, and the problem to be solved by the present invention is a method of forming a protective film that can be easily removed on the surface of copper without using plasma, and An object of the present invention is to provide a method for treating a copper surface for removing the protective film from the copper surface on which the protective film is formed for the next process.

本発明は、上記目的を達成するために、請求項1に記載のように、窒素を含有する化合物の気体を加熱された触媒体に接触させ、接触分解反応により生じた化学種を銅表面と反応させ、銅表面に銅窒化物膜を形成することを特徴とする銅表面保護膜の形成方法を構成する。また、本発明の他の態様は、請求項4に記載のように、窒素を含有する化合物の気体を加熱された触媒体に接触させ、接触分解反応により生じた化学種を銅表面と反応させ、銅表面に銅窒化物膜を形成し、形成された該銅窒化物膜を加熱により除去することを特徴とする銅表面の処理方法を構成する。 In order to achieve the above object, according to the present invention, as described in claim 1, a nitrogen-containing compound gas is brought into contact with a heated catalyst body, and chemical species generated by catalytic cracking reaction are defined as a copper surface. A method for forming a copper surface protective film is provided, characterized by reacting to form a copper nitride film on the copper surface. According to another aspect of the present invention, as described in claim 4, a compound gas containing nitrogen is brought into contact with a heated catalyst body, and a chemical species generated by a catalytic decomposition reaction is reacted with a copper surface. And forming a copper nitride film on the copper surface, and removing the formed copper nitride film by heating.

また、本発明は、請求項2と5に記載したように、窒素を含有する化合物が、好ましくは、アンモニアであることを特徴とする方法を構成する。 Further, the present invention constitutes a method characterized in that, as described in claims 2 and 5, the nitrogen-containing compound is preferably ammonia.

また、本発明は、請求項3と6に記載したように、触媒体が、好ましくは、タングステン、タンタル、モリブデン、バナジウム、レニウム、白金、トリウム、ジルコニウム、イットリウム、ハフニウム、パラジウム、イリジウム、ルテニウム、鉄、ニッケル、クロム、アルミニウム、シリコン、炭素のいずれか1つの材料、これら材料の単体の酸化物、これら材料の単体の窒化物、これら材料(炭素を除く)の単体の炭化物、これらの材料から選択された2種類以上からなる混晶または化合物の酸化物、これらの材料から選択された2種類以上からなる混晶または化合物の窒化物、又は、これらの材料(炭素を除く)から選択された2種類以上からなる混晶または化合物の炭化物の何れか1つであることを特徴とする方法を構成する。 Further, according to the present invention, as described in claims 3 and 6, the catalyst body is preferably tungsten, tantalum, molybdenum, vanadium, rhenium, platinum, thorium, zirconium, yttrium, hafnium, palladium, iridium, ruthenium, From any one material of iron, nickel, chromium, aluminum, silicon, and carbon, simple oxides of these materials, simple nitrides of these materials, simple carbides of these materials (excluding carbon), from these materials Selected from two or more selected mixed crystals or compound oxides, selected from these two or more mixed crystal or compound nitrides, or selected from these materials (excluding carbon) The method comprises any one of a mixed crystal composed of two or more kinds or a carbide of a compound.

本発明の実施により、窒素化合物の接触分解反応による生じる化学種を銅表面と反応させ、銅の表面に除去容易な銅窒化保護膜を形成させることができる。その後、保護膜が形成された銅表面を加熱することによって、保護膜が容易に加熱分解除去され、清浄な銅表面を得ることができるので、再洗浄を必要としない銅表面処理方法が提供される。また、本発明によれば、銅以外の基板上の材料の特性、例えば、誘電体の誘電率を変化させることなく、銅表面に保護膜を形成することが可能となる。 By carrying out the present invention, a chemical species generated by the catalytic decomposition reaction of a nitrogen compound can be reacted with the copper surface to form a copper nitride protective film that can be easily removed on the copper surface. Thereafter, by heating the copper surface on which the protective film is formed, the protective film can be easily thermally decomposed and removed, and a clean copper surface can be obtained. The In addition, according to the present invention, it is possible to form a protective film on the copper surface without changing the characteristics of the material on the substrate other than copper, for example, the dielectric constant of the dielectric.

本発明は、窒素を含有する化合物の気体を加熱された触媒体に接触させ、接触分解反応により生じた化学種を銅表面と反応させ、銅表面に銅窒化物膜を形成すること、及び、形成された該銅窒化物膜を加熱により除去することを特徴とするものである。本発明において、銅の意味は、銅または銅を一部に含む物質を意味する。銅を含む限り、純銅の場合と同様な効果が得られる。 The present invention comprises contacting a gas of a nitrogen-containing compound with a heated catalyst body, reacting a chemical species generated by a catalytic decomposition reaction with a copper surface, and forming a copper nitride film on the copper surface; and The formed copper nitride film is removed by heating. In the present invention, the meaning of copper means copper or a substance partially containing copper. As long as copper is included, the same effect as in the case of pure copper can be obtained.

本発明において、窒素を含有する化合物としては、アンモニアガスの他に、例えば、窒素ガス、ヒドラジン、アンモニアと不活性ガスの混合物を用いることも可能である。特にアンモニアが好ましく用いられる。 In the present invention, as the nitrogen-containing compound, in addition to ammonia gas, for example, nitrogen gas, hydrazine, and a mixture of ammonia and an inert gas can be used. In particular, ammonia is preferably used.

また、本発明の触媒体としては、好ましいのは、タングステン、レニウム、タンタル、モリブデン、バナジウム、白金、トリウム、ジルコニウム、イットリウム、ハフニウム、パラジウム、イリジウム、ルテニウム、鉄、ニッケル、クロム、アルミニウム、シリコン、炭素のいずれか1つの材料、これら材料の単体の酸化物、これら材料の単体の窒化物、これら材料(炭素を除く)の単体の炭化物である。あるいは、これらの材料から選択された2種類以上からなる混晶または化合物の酸化物、これらの材料から選択された2種類以上からなる混晶または化合物の窒化物、又は、これらの材料(炭素を除く)から選択された2種類以上からなる混晶または化合物の炭化物の何れか1つであっても良い。 The catalyst body of the present invention is preferably tungsten, rhenium, tantalum, molybdenum, vanadium, platinum, thorium, zirconium, yttrium, hafnium, palladium, iridium, ruthenium, iron, nickel, chromium, aluminum, silicon, Any one material of carbon, a simple oxide of these materials, a simple nitride of these materials, and a simple carbide of these materials (except carbon). Alternatively, a mixed crystal or compound oxide composed of two or more types selected from these materials, a mixed crystal or compound nitride composed of two or more types selected from these materials, or these materials (carbon Any one of a mixed crystal consisting of two or more types selected from the above or a carbide of a compound may be used.

また、反応に際して、銅(後述の基板6)の温度は、銅表面に保護膜を被着させる場合には200℃以下、銅表面の保護膜を除去する場合には、300℃以上が望ましい。アンモニアガス等の窒素を含有する化合物の気体の流量は、銅や触媒体を冷却させない任意の量を選択することが可能である。触媒体の温度は、例えば、タングステン触媒体の場合は、1000℃から2200℃の温度範囲が適当である。 In the reaction, the temperature of copper (substrate 6 described later) is preferably 200 ° C. or lower when a protective film is deposited on the copper surface, and 300 ° C. or higher when the protective film on the copper surface is removed. The flow rate of the nitrogen-containing compound gas such as ammonia gas can be selected from any amount that does not cool copper or the catalyst body. For example, in the case of a tungsten catalyst body, the temperature range of 1000 ° C. to 2200 ° C. is appropriate for the temperature of the catalyst body.

本発明の実施の態様について図を用いて説明する。本発明の銅表面保護膜の形成方法に用いる反応装置としては、例えば、特許文献2に記載の処理装置を用いることができる。図1は、本発明に用いた保護膜形成装置の断面の概略図である。反応室1の下面のガス流入口2からは、アンモニアガス3を反応室1内に送り込む。反応室1外の直上部にはヒータ4を設置し、ヒータ直下の反応室内に基板ホルダー5があり、基板6は基板ホルダー5に被着面を下に向けて設置されている。基板6とガス流入口2の中間に、タングステン線からなる触媒体7を設置し、該触媒体7を高温に加熱して流入したガスを分解する。分解生成物には発生期の水素、窒素等の活性種があり、これが銅表面汚染物を還元除去したり、また清浄な銅表面と反応し、銅窒化物を形成する。シャッター8は、上記分解反応が安定化するまで、基板への被着を防止するためのものである。排気口9は、反応残余ガスを排出するためのものである。 Embodiment modes of the present invention will be described with reference to the drawings. As a reaction apparatus used in the method for forming a copper surface protective film of the present invention, for example, a processing apparatus described in Patent Document 2 can be used. FIG. 1 is a schematic cross-sectional view of a protective film forming apparatus used in the present invention. Ammonia gas 3 is fed into the reaction chamber 1 from the gas inlet 2 on the lower surface of the reaction chamber 1. A heater 4 is installed immediately above the reaction chamber 1, a substrate holder 5 is provided in the reaction chamber directly below the heater, and the substrate 6 is installed on the substrate holder 5 with the adherend surface facing down. A catalyst body 7 made of tungsten wire is installed between the substrate 6 and the gas inlet 2, and the inflowing gas is decomposed by heating the catalyst body 7 to a high temperature. The decomposition products include active species such as nascent hydrogen and nitrogen, which reduce and remove copper surface contaminants or react with clean copper surfaces to form copper nitrides. The shutter 8 is for preventing the deposition on the substrate until the decomposition reaction is stabilized. The exhaust port 9 is for exhausting reaction residual gas.

このような反応装置を用いて、基板6として、ダマシン工程により銅配線を行ったシリコンLSIウエーハを、基板ホルダー5に設置した。基板ホルダー5の温度を60℃、タングステン線の触媒体7を1600℃に加熱し、反応室1の圧力を2.7×10−5Paに設定した。最初、ダマシン工程により銅配線したシリコンLSI基板6の汚染を除去するため、水素ガスを流量30sccmで10分間流入し、連続して銅表面の保護膜を形成するため、アンモニアガス50sccmを20分間流入し、シリコン基板6のアンモニアガス処理を行った。この処理により、汚染の除去と汚染の除去された銅表面に保護膜形成が逐次的に行われた。 Using such a reaction apparatus, a silicon LSI wafer on which copper wiring was performed by a damascene process was placed in the substrate holder 5 as the substrate 6. The substrate holder 5 was heated to 60 ° C., the tungsten wire catalyst 7 was heated to 1600 ° C., and the pressure in the reaction chamber 1 was set to 2.7 × 10 −5 Pa. First, in order to remove contamination of the silicon LSI substrate 6 with copper wiring by the damascene process, hydrogen gas is flowed in at a flow rate of 30 sccm for 10 minutes, and then a protective film on the copper surface is continuously formed to flow in ammonia gas at 50 sccm for 20 minutes. Then, the ammonia gas treatment of the silicon substrate 6 was performed. By this treatment, the removal of the contamination and the formation of the protective film on the copper surface from which the contamination was removed were sequentially performed.

図2に、アンモニア処理時間20分の場合の、X線光電子分光法(XPS)で得たスペクトルを示す。横軸は結合エネルギー、縦軸は光電子強度である。銅のピークより結合エネルギーが0.8V高いCu3Nのピークが見られる。このことより、アンモニア処理によりCu3Nが生成していることがわかる。 FIG. 2 shows a spectrum obtained by X-ray photoelectron spectroscopy (XPS) when the ammonia treatment time is 20 minutes. The horizontal axis is the binding energy, and the vertical axis is the photoelectron intensity. A Cu 3 N peak whose binding energy is 0.8 V higher than that of the copper peak is observed. This shows that Cu 3 N is generated by the ammonia treatment.

図3(a)は、アンモニア処理時間を変えた場合の、XPSスペクトルの変化を示す。図3(a)にはCu3NにおけるN(1s)のピークが現れている。図3(b)は、そのピークの高さとアンモニア処理時間との関係を示したものである。処理時間と共にCu3Nが増加していることがわかる。 FIG. 3 (a) shows the change in XPS spectrum when the ammonia treatment time is changed. In FIG. 3 (a), a peak of N (1s) in Cu 3 N appears. FIG. 3 (b) shows the relationship between the peak height and the ammonia treatment time. It can be seen that Cu 3 N increases with the treatment time.

次に、上記アンモニア処理をしたシリコンLSI基板を反応室から取り出した後、室温で30日間放置した。その間の銅表面保護膜の変化を、XPSにより測定した。その結果、表面の酸化物量は、通常の厚さの1/10以下であった。これより銅の保護膜が室温付近で安定であることがわかる。 Next, the ammonia-treated silicon LSI substrate was taken out of the reaction chamber and allowed to stand at room temperature for 30 days. The change of the copper surface protective film during that time was measured by XPS. As a result, the amount of oxide on the surface was 1/10 or less of the normal thickness. This shows that the copper protective film is stable around room temperature.

上記、放置後の銅保護膜被着シリコンLSI基板を,再度、前記反応装置内に入れて、真空中で熱処理を行った。350℃、150分処理すると、銅保護膜は完全に熱分解除去されることがXPSの測定結果からわかった。 The copper protective film-coated silicon LSI substrate after being left standing was again placed in the reactor and heat-treated in vacuum. It was found from the XPS measurement results that the copper protective film was completely pyrolyzed and removed when treated at 350 ° C for 150 minutes.

本発明の実施により、銅の表面に除去容易な銅窒化保護膜を形成させることができ、その後、保護膜が形成された銅表面を加熱することによって、保護膜を容易に除去することができる。しかも、本発明によれば、銅以外の基板上の材料の特性、例えば、誘電体の誘電率を変化させることなく、銅表面に保護膜を形成することが可能となる。従って、本発明は、例えば、シリコン集積回路の配線材料の製造工程で、非常に有用な技術となる可能性がある。 By implementing the present invention, a copper nitride protective film that can be easily removed can be formed on the surface of copper, and then the protective film can be easily removed by heating the copper surface on which the protective film is formed. . Moreover, according to the present invention, it is possible to form a protective film on the copper surface without changing the characteristics of the material on the substrate other than copper, for example, the dielectric constant of the dielectric. Therefore, for example, the present invention may be a very useful technique in the manufacturing process of the wiring material of a silicon integrated circuit.

本発明の方法を実施するための反応装置(一例)の断面の概略図である。It is the schematic of the cross section of the reactor (an example) for enforcing the method of this invention. 本発明において、アンモニアによる銅表面処理により、CuNが銅表面に生成したことを示すX線光電子スペクトル図である。In the present invention, the copper surface treatment with ammonia is an X-ray photoelectron spectra showing that the Cu 3 N was formed on the copper surface. 本発明において、銅表面窒化物生成量とアンモニアによる銅表面処理時間との関係を示す図である。In this invention, it is a figure which shows the relationship between the copper surface nitride production amount and the copper surface treatment time by ammonia.

符号の説明Explanation of symbols

1 反応室
2 ガス流入口
3 アンモニアガス
4 ヒータ
5 基板ホルダー
6 基板
7 触媒体
8 シャッター
9 排気口。
1 reaction chamber
2 Gas inlet
3 Ammonia gas
4 Heater
5 Board holder
6 Board
7 Catalytic body
8 Shutter
9 Exhaust vent.

Claims (6)

窒素を含有する化合物の気体を加熱された触媒体に接触させ、接触分解反応により生じた化学種を銅表面と反応させ、銅表面に銅窒化物膜を形成することを特徴とする銅表面保護膜の形成方法。 A copper surface protection characterized by contacting a nitrogen-containing compound gas with a heated catalyst body and reacting the chemical species generated by the catalytic decomposition reaction with the copper surface to form a copper nitride film on the copper surface. Method for forming a film. 窒素を含有する化合物が、アンモニアであることを特徴とする請求項1記載の銅表面保護膜の形成方法。 2. The method for forming a copper surface protective film according to claim 1, wherein the nitrogen-containing compound is ammonia. 触媒体が、タングステン、タンタル、モリブデン、バナジウム、レニウム、白金、トリウム、ジルコニウム、イットリウム、ハフニウム、パラジウム、イリジウム、ルテニウム、鉄、ニッケル、クロム、アルミニウム、シリコン、炭素のいずれか1つの材料、これら材料の単体の酸化物、これら材料の単体の窒化物、これら材料(炭素を除く)の単体の炭化物、これらの材料から選択された2種類以上からなる混晶または化合物の酸化物、これらの材料から選択された2種類以上からなる混晶または化合物の窒化物、又は、これらの材料(炭素を除く)から選択された2種類以上からなる混晶または化合物の炭化物の
何れか1つであることを特徴とする請求項1又は2記載の銅表面保護膜の形成方法。
The catalyst body is any material of tungsten, tantalum, molybdenum, vanadium, rhenium, platinum, thorium, zirconium, yttrium, hafnium, palladium, iridium, ruthenium, iron, nickel, chromium, aluminum, silicon, carbon, these materials A simple oxide of these materials, a simple nitride of these materials, a simple carbide of these materials (excluding carbon), a mixed crystal or compound oxide consisting of two or more selected from these materials, from these materials It is any one of a mixed crystal or compound nitride consisting of two or more selected types, or a mixed crystal or compound carbide consisting of two or more types selected from these materials (excluding carbon). 3. The method for forming a copper surface protective film according to claim 1 or 2.
窒素を含有する化合物の気体を加熱された触媒体に接触させ、接触分解反応により生じた化学種を銅表面と反応させ、銅表面に銅窒化物膜を形成し、形成された該銅窒化物膜を加熱により除去することを特徴とする銅表面の処理方法。 A nitrogen-containing compound gas is brought into contact with a heated catalyst body, chemical species generated by the catalytic decomposition reaction are reacted with the copper surface, a copper nitride film is formed on the copper surface, and the formed copper nitride A method for treating a copper surface, wherein the film is removed by heating. 窒素を含有する化合物が、アンモニアであることを特徴とする請求項4記載の銅表面の処理方法。 The copper surface treatment method according to claim 4, wherein the nitrogen-containing compound is ammonia. 触媒体が、タングステン、タンタル、モリブデン、バナジウム、レニウム、白金、トリウム、ジルコニウム、イットリウム、ハフニウム、パラジウム、イリジウム、ルテニウム、鉄、ニッケル、クロム、アルミニウム、シリコン、炭素のいずれか1つの材料、これら材料の単体の酸化物、これら材料の単体の窒化物、これら材料(炭素を除く)の単体の炭化物、これらの材料から選択された2種類以上からなる混晶または化合物の酸化物、これらの材料から選択された2種類以上からなる混晶または化合物の窒化物、又は、これらの材料(炭素を除く)から選択された2種類以上からなる混晶または化合物の炭化物の何れか1つであることを特徴とする請求項4又は5記載の銅表面の処理方法。 Catalyst body is tungsten, tantalum, molybdenum, vanadium, rhenium, platinum, thorium, zirconium, yttrium, hafnium, palladium, iridium, ruthenium, iron, nickel, chromium, aluminum, silicon, carbon, any of these materials A single oxide of the above, a single nitride of these materials, a single carbide of these materials (excluding carbon), a mixed crystal or compound oxide composed of two or more selected from these materials, from these materials It is any one of a mixed crystal or compound nitride composed of two or more kinds selected, or a mixed crystal or compound carbide composed of two or more kinds selected from these materials (excluding carbon). The method for treating a copper surface according to claim 4 or 5, characterized in that:
JP2004167891A 2004-06-07 2004-06-07 Copper surface treatment method Expired - Fee Related JP4765055B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2004167891A JP4765055B2 (en) 2004-06-07 2004-06-07 Copper surface treatment method
PCT/JP2005/010223 WO2005122230A1 (en) 2004-06-07 2005-06-03 Method for processing copper surface, method for forming copper pattern wiring and semiconductor device manufactured using such method
US11/569,144 US7825026B2 (en) 2004-06-07 2005-06-03 Method for processing copper surface, method for forming copper pattern wiring and semiconductor device manufactured using such method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004167891A JP4765055B2 (en) 2004-06-07 2004-06-07 Copper surface treatment method

Publications (2)

Publication Number Publication Date
JP2005347654A true JP2005347654A (en) 2005-12-15
JP4765055B2 JP4765055B2 (en) 2011-09-07

Family

ID=35499711

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004167891A Expired - Fee Related JP4765055B2 (en) 2004-06-07 2004-06-07 Copper surface treatment method

Country Status (1)

Country Link
JP (1) JP4765055B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101949006A (en) * 2010-07-16 2011-01-19 常州大学 Method for preparing copper nitride film, copper nitride/copper and copper two-dimensional ordered array
US7884466B2 (en) 2006-04-25 2011-02-08 Oki Electric Industry Co., Ltd. Semiconductor device with double-sided electrode structure and its manufacturing method
KR101778852B1 (en) * 2015-07-31 2017-09-14 이수현 Surface treatment apparatus

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02301907A (en) * 1989-05-17 1990-12-14 Hitachi Ltd Metal circuit and its manufacture
JPH10308351A (en) * 1997-05-02 1998-11-17 Nec Corp Compound semiconductor device and manufacture thereof
JPH1112715A (en) * 1997-06-25 1999-01-19 Showa Denko Kk Method for nitriding metallic material
JPH11288936A (en) * 1998-04-01 1999-10-19 Ricoh Co Ltd Manufacture of semiconductor device
JP2001210658A (en) * 2000-01-26 2001-08-03 Nec Corp Method of manufacturing eifld effect transistor
WO2004040642A1 (en) * 2002-10-29 2004-05-13 Asm America, Inc. Oxygen bridge structures and methods

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02301907A (en) * 1989-05-17 1990-12-14 Hitachi Ltd Metal circuit and its manufacture
JPH10308351A (en) * 1997-05-02 1998-11-17 Nec Corp Compound semiconductor device and manufacture thereof
JPH1112715A (en) * 1997-06-25 1999-01-19 Showa Denko Kk Method for nitriding metallic material
JPH11288936A (en) * 1998-04-01 1999-10-19 Ricoh Co Ltd Manufacture of semiconductor device
JP2001210658A (en) * 2000-01-26 2001-08-03 Nec Corp Method of manufacturing eifld effect transistor
WO2004040642A1 (en) * 2002-10-29 2004-05-13 Asm America, Inc. Oxygen bridge structures and methods

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7884466B2 (en) 2006-04-25 2011-02-08 Oki Electric Industry Co., Ltd. Semiconductor device with double-sided electrode structure and its manufacturing method
CN101949006A (en) * 2010-07-16 2011-01-19 常州大学 Method for preparing copper nitride film, copper nitride/copper and copper two-dimensional ordered array
KR101778852B1 (en) * 2015-07-31 2017-09-14 이수현 Surface treatment apparatus

Also Published As

Publication number Publication date
JP4765055B2 (en) 2011-09-07

Similar Documents

Publication Publication Date Title
US11056385B2 (en) Selective formation of metallic films on metallic surfaces
US9991138B2 (en) Etching method and etching apparatus
US11791181B2 (en) Methods for the treatment of workpieces
EP2040287B1 (en) Method of improving oxide growth rate of selective oxidation processes
US20150380296A1 (en) Cleaning of carbon-based contaminants in metal interconnects for interconnect capping applications
CN112840063A (en) Method for depositing tungsten film or molybdenum film
JP2007165788A (en) Decarbonization treatment method of metallic film, deposition method, and method for manufacturing semiconductor device
JP2008131050A (en) Integrating method of metal containing film to semiconductor device
KR20150036086A (en) Method for high aspect ratio photoresist removal in pure reducing plasma
JP2004507071A (en) Growth of ultra-thin nitride on Si (100) by rapid thermal N2 treatment
JP4765055B2 (en) Copper surface treatment method
JP2002313787A (en) Method for cleaning quartz product in heat treatment system and heat treatment method
JP5599623B2 (en) Protection of conductors from oxidation in the deposition chamber
EP1142007A1 (en) System and method for surface passivation
JPWO2008111231A1 (en) Chemical vapor deposition apparatus, film forming method, and semiconductor device manufacturing method
US6808993B2 (en) Ultra-thin gate dielectrics
JP2003347241A (en) Carbon thin film removing method, surface modifying method, and treatment device therefor
JP5493140B2 (en) Nitriding method of substrate surface by hot wire method
JP6854844B2 (en) Etching method and etching equipment
CN110896023B (en) Method for manufacturing semiconductor device, substrate processing apparatus, and recording medium
CN100477117C (en) Stack structure for metal inlay, forming method and metal inlay method thereof
US20020185554A1 (en) Method for treating a gas dispensing device and device treated
JPH0897206A (en) Forming method of thermal oxidation film
JP2004221606A (en) Method of manufacturing semiconductor integrated circuit device
JP2005268576A (en) Film formation method of capacitance insulating film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070409

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110330

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110517

R150 Certificate of patent or registration of utility model

Ref document number: 4765055

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees