JP2005345350A - Optical fiber current sensor, and calibration device therefor - Google Patents

Optical fiber current sensor, and calibration device therefor Download PDF

Info

Publication number
JP2005345350A
JP2005345350A JP2004167091A JP2004167091A JP2005345350A JP 2005345350 A JP2005345350 A JP 2005345350A JP 2004167091 A JP2004167091 A JP 2004167091A JP 2004167091 A JP2004167091 A JP 2004167091A JP 2005345350 A JP2005345350 A JP 2005345350A
Authority
JP
Japan
Prior art keywords
current
optical fiber
phase modulation
ratio
current sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004167091A
Other languages
Japanese (ja)
Inventor
Hideo Negishi
英雄 根岸
Hitoshi Hayashiya
均 林屋
Masato Ando
政人 安藤
Takeshi Endo
猛 遠藤
Tatsuya Kumagai
達也 熊谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Hitachi Ltd
East Japan Railway Co
Original Assignee
Hitachi Cable Ltd
Hitachi Ltd
East Japan Railway Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd, Hitachi Ltd, East Japan Railway Co filed Critical Hitachi Cable Ltd
Priority to JP2004167091A priority Critical patent/JP2005345350A/en
Publication of JP2005345350A publication Critical patent/JP2005345350A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical fiber current sensor of a wide dynamic range excellent in linearity, and capable of reducing an unstable factor, and a calibration device of small size capable of calibrating accurately the optical fiber current sensor. <P>SOLUTION: This optical fiber current sensor using a Faraday effect is provided with a phase modulation means (phase modulator 101) for phase-modulating both propagation lights with a prescribed angular frequency, a ratio measuring means (CPU 201) for measuring a ratio between phase-modulated components of different degrees included in an interference light of the both propagation lights, and a current value processing means (CPU 201) for finding a value of a current of an object, based on the ratio between the phase-modulated components. The dynamic range is widened, the linearity is excellent, and the unstable factor is reduced, because of using the ratio between the phase-modulated components. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、ファラデー効果を利用した光ファイバ電流センサに係り、広ダイナミックレンジで直線性が良く不安定要因の少ない光ファイバ電流センサ及び小型で正確に光ファイバ電流センサを校正できる校正装置に関する。   The present invention relates to an optical fiber current sensor using the Faraday effect, and more particularly to an optical fiber current sensor having a wide dynamic range, good linearity and less instability, and a small-sized calibration apparatus that can accurately calibrate an optical fiber current sensor.

光ファイバ電流センサは、光ファイバループを用いてサニャック干渉系を構成し、この光ファイバループを正逆周回方向に伝搬する円偏光に対し、電流に伴う磁界によりそれぞれファラデー効果を作用させ、両伝搬光に生じた位相差を光の干渉を利用して検出し、この位相差から電流を求めるものである。   The fiber optic current sensor uses a fiber optic loop to form a Sagnac interference system, and circularly polarized light propagating through the fiber optic loop in the forward / reverse circulatory direction causes the Faraday effect to act on each of the waves due to the current. The phase difference generated in the light is detected using the interference of light, and the current is obtained from this phase difference.

この光ファイバ電流センサの原理や細部は、非特許文献1,2に詳しく述べられているので、これらをもって本発明の背景技術の開示に代える。なお、光ファイバ電流センサにはループ型と反射型とがあるが、ループ型の構成は非特許文献1の図2(Fig.2)に記載されたとおりであり、反射型の構成は非特許文献2の図7に記載されたとおりである。   Since the principle and details of this optical fiber current sensor are described in detail in Non-Patent Documents 1 and 2, these are replaced with the disclosure of the background art of the present invention. The optical fiber current sensor includes a loop type and a reflection type. The configuration of the loop type is as described in FIG. 2 (FIG. 2) of Non-Patent Document 1, and the configuration of the reflection type is non-patent. This is as described in FIG.

光ファイバ電流センサにおいて、電流と光の位相差との関係を校正(較正ともいう)するには、1本の電力ケーブルに値が既知の電流を供給し、この電流の値と光ファイバ電流センサで測定される電流の値とが一致するかどうかを調べるという方法が一般的である。1本の電力ケーブルの代わりに光ファイバループの外側から内側へ巻き込んだ複数ターンの電気コイルを用い、電気コイルに流した電流×ターン数の電流を光ファイバループで測定するという方法により、電流容量の少ない小型の校正装置で大電流の校正電流を得ることもできる。   In an optical fiber current sensor, in order to calibrate the relationship between the current and the phase difference between light (also referred to as calibration), a current having a known value is supplied to one power cable, and the value of this current and the optical fiber current sensor In general, a method of checking whether or not the current value measured in (1) matches. Using a multi-turn electric coil wound from the outside to the inside of the optical fiber loop instead of one power cable, the current capacity is measured by measuring the current flowing through the electric coil by the number of turns using the optical fiber loop. A large calibration current can be obtained with a small calibration device with a small amount of current.

すなわち、図6に示した校正装置は、光ファイバループ401の外側から内側へ巻き込んだ電気コイル601と、この電気コイルに所望の電流を印加する電流源602と、光ファイバ電流センサの信号処理ユニット402に対して電流源602で印加している正しい電流値を知らせるパソコン603とからなる。   That is, the calibration device shown in FIG. 6 includes an electric coil 601 wound from the outside to the inside of the optical fiber loop 401, a current source 602 that applies a desired current to the electric coil, and a signal processing unit of the optical fiber current sensor. And a personal computer 603 for informing a correct current value applied by the current source 602 to 402.

「サニャック干渉型光電流変成器(CT)によるプラズマ電流計測」、一ノ瀬ら、プラズマ・核融合学会誌、第76巻第6号、593−600頁、2000年6月“Plasma current measurement by Sagnac interferometric photocurrent transformer (CT)”, Ichinose et al., Journal of Plasma and Fusion Research, Vol. 76, No. 6, 593-600, June 2000 「直流電気鉄道用光ファイバ電流センサの開発」、林屋ら、Proceedings of 32nd Meeting on Lightwave Sensing Technology、141−146頁、December,2003“Development of optical fiber current sensor for DC electric railway”, Hayashiya et al., Proceedings of 32nd Meeting on Lightwave Sensing Technology, pp. 141-146, December, 2003

非特許文献1に開示された技術では、位相変調周波数ωmを持つ基本波S1の振幅を光ファイバ電流センサの出力、すなわち電流値を表す信号としている。しかし、基本波S1は2θ(θは電流により生じた位相差)の正弦波関数であるため、対象の電流が大きくなると対象の電流と出力電流値との関係が直線にならない。正弦波関数が直線性を呈する領域のみで測定を行うことにすると、測定できる電流の大きさが制約され光ファイバ電流センサのダイナミックレンジが狭くなる。また、位相変調周波数ωmを持つ基本波S1は、光源光の強度に比例する定数Aと位相変調の振幅φとを因数に持っている。光源や位相変調器の状態変動により定数Aや振幅φが変動すると基本波S1も変動するので、この光ファイバ電流センサの出力は不安定となる。   In the technique disclosed in Non-Patent Document 1, the amplitude of the fundamental wave S1 having the phase modulation frequency ωm is used as a signal representing the output of the optical fiber current sensor, that is, the current value. However, since the fundamental wave S1 is a sine wave function of 2θ (θ is a phase difference caused by current), the relationship between the target current and the output current value does not become a straight line when the target current increases. If the measurement is performed only in a region where the sine wave function exhibits linearity, the magnitude of the current that can be measured is restricted, and the dynamic range of the optical fiber current sensor is narrowed. The fundamental wave S1 having the phase modulation frequency ωm has a constant A proportional to the intensity of the light source light and a phase modulation amplitude φ as factors. When the constant A and the amplitude φ change due to the state change of the light source and the phase modulator, the fundamental wave S1 also changes, so the output of this optical fiber current sensor becomes unstable.

また、電流を電気コイル601に流すことにより小型の校正装置で大電流の校正電流を得る図6の校正装置では、光ファイバループ401の内側を通っている電気コイル部分による本来与えたい磁界h0の他に光ファイバループ401の外側を通っている電気コイル部分がもたらす磁界h5が存在し、その磁界h5が光ファイバループ401の伝搬光に影響するため、1本の電力ケーブルが光ファイバループの内側を通っている場合と環境が異なってしまい、正確な校正ができない。   Further, in the calibration device of FIG. 6 in which a large calibration current is obtained with a small calibration device by passing a current through the electrical coil 601, the magnetic field h0 originally intended to be given by the electrical coil portion passing inside the optical fiber loop 401 is obtained. In addition, there is a magnetic field h5 caused by an electric coil portion passing outside the optical fiber loop 401, and the magnetic field h5 affects the propagation light of the optical fiber loop 401. Therefore, one power cable is connected to the inside of the optical fiber loop. The environment is different from the case of passing through and accurate calibration cannot be performed.

そこで、本発明の目的は、上記課題を解決し、広ダイナミックレンジで直線性が良く不安定要因の少ない光ファイバ電流センサ及び小型で正確に光ファイバ電流センサを校正できる校正装置を提供することにある。   Accordingly, an object of the present invention is to provide an optical fiber current sensor that solves the above-described problems and has a wide dynamic range, good linearity and less instability, and a calibration device that can accurately calibrate the optical fiber current sensor in a small size. is there.

上記目的を達成するために本発明の光ファイバ電流センサは、測定対象の電流の周囲に周回させた光ファイバループの正逆周回方向にそれぞれ円偏光を伝搬させ、両伝搬光間に生じた位相差から前記対象の電流を測定する光ファイバ電流センサにおいて、両伝搬光に所定の角周波数で位相変調を加える位相変調手段と、両伝搬光の干渉光に含まれる異なる次数の位相変調成分間の比を測定する比測定手段と、この位相変調成分間比に基づいて対象の電流の値を求める電流値処理手段とを備えたものである。   In order to achieve the above object, the optical fiber current sensor according to the present invention propagates circularly polarized light in the forward and reverse direction of the optical fiber loop that is circulated around the current to be measured, and the position generated between the two propagation lights. In the optical fiber current sensor for measuring the current of interest from the phase difference, between the phase modulation means for applying phase modulation to the two propagation lights at a predetermined angular frequency and the phase modulation components of different orders included in the interference light of the two propagation lights Ratio measuring means for measuring the ratio and current value processing means for obtaining the value of the target current based on the ratio between the phase modulation components are provided.

前記比測定手段は、基本波周波数の位相変調成分と2倍周波数の位相変調成分との比を測定してもよい。   The ratio measuring unit may measure a ratio between a phase modulation component of a fundamental frequency and a phase modulation component of a double frequency.

前記電流値処理手段は、対象の電流から得られた位相変調成分間比を予め値が既知の電流に応じて得られた位相変調成分間比と該既知電流値との関係に当てはめて対象の電流の値を求めてもよい。   The current value processing means applies the ratio between the phase modulation components obtained from the current of interest to the relationship between the ratio between the phase modulation components obtained according to the current having a known value in advance and the known current value. You may obtain | require the value of an electric current.

前記電流値処理手段は、既知電流値と位相変調成分間比との関係を離散的な値でテーブルに記憶しておき、このテーブルを対象の電流から得られた位相変調成分間比で検索して対象の電流の値を求めてもよい。   The current value processing means stores the relationship between the known current value and the phase modulation component ratio in a table as discrete values, and searches this table with the phase modulation component ratio obtained from the target current. Then, the value of the target current may be obtained.

前記電流値処理手段は、対象の電流から得られた位相変調成分間比が前記テーブルに記憶されている位相変調成分間比の離散的な値からずれているときには、複数の位相変調成分間比の離散的な値に対応する複数の既知電流の離散的な値を用いて補間演算することにより、対象の電流の値を求めてもよい。   The current value processing means, when the phase modulation component ratio obtained from the target current deviates from the discrete value of the phase modulation component ratio stored in the table, a plurality of phase modulation component ratios The current value of the target may be obtained by performing an interpolation operation using the discrete values of a plurality of known currents corresponding to the discrete values.

また、本発明の校正装置は、請求項3〜5いずれか記載の光ファイバ電流センサに既知の電流を与える校正装置であって、前記2つの電気コイルに印加する電流を変化させる電流源と、印加した電流の値ごとに前記比測定手段から得られた位相変調成分間比を記憶する記憶手段と、この位相変調成分間比を前記電流値処理手段に転送する転送手段とを備えたものである。   A calibration device according to the present invention is a calibration device that applies a known current to the optical fiber current sensor according to any one of claims 3 to 5, and a current source that changes a current applied to the two electric coils, A storage means for storing the ratio between phase modulation components obtained from the ratio measurement means for each value of applied current, and a transfer means for transferring the ratio between phase modulation components to the current value processing means. is there.

前記光ファイバループに該光ファイバループの片外側から内側へ回り込む電気コイルと該光ファイバループの反対外側から内側へ回り込む電気コイルを掛け回し、それぞれの電気コイルに該光ファイバループの内側で互いに同じ方向となる電流を印加するようにしてもよい。   An electric coil that wraps around from the outside of the optical fiber loop to an inside of the optical fiber loop and an electrical coil that wraps around from the outside of the optical fiber loop to the inside are wound around the optical fiber loop. You may make it apply the electric current used as a direction.

本発明は次の如き優れた効果を発揮する。   The present invention exhibits the following excellent effects.

(1)広ダイナミックレンジで直線性が良く不安定要因の少ない光ファイバ電流センサが得られる。   (1) An optical fiber current sensor having a wide dynamic range, good linearity, and less instability can be obtained.

(2)小型で正確に光ファイバ電流センサを校正できる校正装置が得られる。   (2) A calibration apparatus that can accurately calibrate the optical fiber current sensor in a small size can be obtained.

以下、本発明の光ファイバ電流センサの一実施形態を添付図面に基づいて詳述する。   Hereinafter, an embodiment of an optical fiber current sensor of the present invention will be described in detail with reference to the accompanying drawings.

図1に示されるように、本発明に係る光ファイバ電流センサは、大きく分けて光学系100と信号処理回路200とからなる。光学系100は、ここでは信号処理回路200と直接関わりのある位相変調器101、受光器102、光源103のみ示してあり、光ファイバループ等は後に詳しく説明する。信号処理回路200は、本実施形態の場合、デジタル処理を行うので、CPU201及びメモリ202と周辺アナログ素子群とで構成されている。   As shown in FIG. 1, the optical fiber current sensor according to the present invention is roughly composed of an optical system 100 and a signal processing circuit 200. The optical system 100 shows only the phase modulator 101, the light receiver 102, and the light source 103 that are directly related to the signal processing circuit 200, and the optical fiber loop and the like will be described in detail later. In the present embodiment, the signal processing circuit 200 performs digital processing, and thus includes a CPU 201, a memory 202, and a peripheral analog element group.

光ファイバ電流センサは、光学系100の伝搬光に所定の角周波数で位相変調を加える位相変調手段と、光学系100から得られた干渉光に含まれる異なる次数の位相変調成分間の比を測定する比測定手段と、この位相変調成分間比に基づいて対象の電流の値を求める電流値処理手段とを備える。ここでは、比測定手段と電流値処理手段はCPU201で実現されている。比測定手段と電流値処理手段の詳細は後述の動作説明で明らかにする。   The optical fiber current sensor measures a ratio between phase modulation means for phase-modulating the propagation light of the optical system 100 at a predetermined angular frequency and phase modulation components of different orders included in the interference light obtained from the optical system 100. And a current value processing means for obtaining the value of the target current based on the ratio between the phase modulation components. Here, the ratio measuring means and the current value processing means are realized by the CPU 201. The details of the ratio measuring means and the current value processing means will be clarified in the description of the operation described later.

位相変調手段としての位相変調器101には、駆動用のアンプ203を介してD/A変換器204の出力端が接続されている。このD/A変換器204は、CPU201が指令した位相変調の振幅値をD/A変換するものである。   An output terminal of a D / A converter 204 is connected to a phase modulator 101 as a phase modulation means via a driving amplifier 203. The D / A converter 204 D / A converts the phase modulation amplitude value commanded by the CPU 201.

干渉光を受光する受光器102の出力端は、増幅用のアンプ205を介してロックインアンプ206に接続されている。ロックインアンプ206は、位相変調の基本波周波数及び2倍、4倍周波数等の複数の高次周波数についてそれぞれ位相変調成分S1,S2,S4…を抽出するものである。ロックインアンプ206の複数の出力端は、マルチプレクサ207を介してA/D変換器208に接続されている。マルチプレクサ207は、ロックインアンプ206の各端子に現れる各位相変調成分の中から1つを選択してA/D変換器208に供給するものである。その選択の指令はCPU201が行う。   An output terminal of the light receiver 102 that receives the interference light is connected to a lock-in amplifier 206 via an amplifier 205 for amplification. The lock-in amplifier 206 extracts the phase modulation components S1, S2, S4... For the fundamental wave frequency of phase modulation and a plurality of higher-order frequencies such as double and quadruple frequencies. A plurality of output terminals of the lock-in amplifier 206 are connected to the A / D converter 208 via the multiplexer 207. The multiplexer 207 selects one of the phase modulation components appearing at each terminal of the lock-in amplifier 206 and supplies it to the A / D converter 208. The CPU 201 issues the selection command.

アンプ205の出力端は供給電流制御回路209を介して光源103に接続されている。供給電流制御回路209は光源光の強度を一定に保つ働きをするものである。   The output end of the amplifier 205 is connected to the light source 103 via the supply current control circuit 209. The supply current control circuit 209 functions to keep the intensity of the light source light constant.

CPU201にはD/A変換器210が接続され、そのD/A変換器210の出力端には測定値出力用のアンプ211が接続され、光ファイバ電流センサの外部へ測定した電流値をアナログ出力できるようになっている。   A D / A converter 210 is connected to the CPU 201, and an amplifier 211 for measurement value output is connected to the output end of the D / A converter 210, and the current value measured outside the optical fiber current sensor is output as an analog signal. It can be done.

図2に示されるように、光学系100は、光源光を発生させる光源103と、干渉光を受光する受光器102と、光源光を後段のカプラ104に導くと共にそのカプラ104からの干渉光を受光器102に導く初段のカプラ105と、初段のカプラ105から後段のカプラ104へ導かれる光源光を直線偏光に変える偏光子106と、偏光子106を経た光源光を2つに分岐して出射すると共に2つの戻り光を合成(干渉)させて初段のカプラ105へ戻す後段のカプラ104と、このカプラ104の両出射端にそれぞれ接続された伝送用光ファイバ107,108と、一方の伝送用光ファイバ107に設けられた位相変調器101と、その伝送用光ファイバ107の途中に形成された遅延用のダミーファイバ109と、各伝送用光ファイバ107,108の端末に設けられたλ/4素子111,112と、これらλ/4素子111,112に両端が接続され測定対象の電流Iの周囲に周回させて設置される光ファイバループ(センシングファイバともいう)110とを有する。この光学系100は、回転方向が同じ円偏光を互いに逆周回方向に伝搬させ、ファラデー効果により両伝搬光に位相差が生じるようにしたものである。   As shown in FIG. 2, the optical system 100 includes a light source 103 that generates light source light, a light receiver 102 that receives interference light, and guides the light source light to a subsequent coupler 104 and transmits interference light from the coupler 104. A first-stage coupler 105 that leads to the light receiver 102, a polarizer 106 that changes the light source light guided from the first-stage coupler 105 to the subsequent-stage coupler 104 into linearly polarized light, and a light source light that has passed through the polarizer 106 is split into two to be emitted. At the same time, the two return lights are combined (interfered) and returned to the first-stage coupler 105, the subsequent-stage coupler 104, the transmission optical fibers 107 and 108 connected to both emission ends of the coupler 104, and one of the transmission optical fibers A phase modulator 101 provided in the optical fiber 107, a delay dummy fiber 109 formed in the middle of the transmission optical fiber 107, and each transmission optical fiber Λ / 4 elements 111 and 112 provided at the terminals of 07 and 108, and optical fiber loops (sensing) installed at both ends of the λ / 4 elements 111 and 112 and connected around the current I to be measured 110). This optical system 100 propagates circularly polarized light having the same rotation direction in directions opposite to each other so that a phase difference is generated between both propagation lights by the Faraday effect.

本実施形態の図2の光学系100は非特許文献1の図2の光学系と同等のものである。一方、非特許文献1の図2の信号処理回路がアナログ処理を行う回路であるのに対し本実施形態の図1の信号処理回路200は光源制御を除きデジタル処理を行うようになっている。   The optical system 100 of FIG. 2 of this embodiment is equivalent to the optical system of FIG. On the other hand, the signal processing circuit of FIG. 2 of Non-Patent Document 1 is a circuit that performs analog processing, whereas the signal processing circuit 200 of FIG. 1 of this embodiment performs digital processing except for light source control.

次に、本発明に係る光ファイバ電流センサの動作を図1、図2により説明する。   Next, the operation of the optical fiber current sensor according to the present invention will be described with reference to FIGS.

光源103から出射された光源光は、カプラ105を出た後、偏光子106により直線偏光に変えられ、カプラ104で分岐されて伝送用光ファイバ107,108を介して光ファイバループ110の両端に入射される。その際、両直線偏光は、λ/4素子111,112で同じ回転方向の円偏光に変換される。つまり、一方が右回り円偏光であれば他方も右回り円偏光に変換され、一方が左回り円偏光であれば他方も左回り円偏光に変換される。光ファイバループ110に入射された光は一方が測定対象の電流の周りを時計方向(CW)に周回し、他方が反時計方向(CCW)に周回して伝送用光ファイバ107,108に戻る。また、各光は、伝送用光ファイバ107を伝送される際に、位相変調器101により位相が変調されると共に、ダミーファイバ109により遅延される。   The light source light emitted from the light source 103 exits the coupler 105, is converted into linearly polarized light by the polarizer 106, is branched by the coupler 104, and is transmitted to both ends of the optical fiber loop 110 via the transmission optical fibers 107 and 108. Incident. At that time, both linearly polarized light is converted into circularly polarized light in the same rotational direction by the λ / 4 elements 111 and 112. That is, if one is clockwise circularly polarized light, the other is also converted to clockwise circularly polarized light, and if one is counterclockwise circularly polarized light, the other is also converted to counterclockwise circularly polarized light. One of the light incident on the optical fiber loop 110 circulates around the current to be measured in the clockwise direction (CW), and the other circulates in the counterclockwise direction (CCW) and returns to the transmission optical fibers 107 and 108. Further, when each light is transmitted through the transmission optical fiber 107, the phase is modulated by the phase modulator 101 and delayed by the dummy fiber 109.

光ファイバループ110の内側を通る測定対象の電流Iに伴う磁界により、CW,CCWの両光はそれぞれファラデー効果が作用して位相(速度)が変化する。カプラ104へ戻ってきたCW,CCWの両光はカプラ104で合成される際に互いに干渉して干渉光となる。その干渉光がカプラ105で分岐されて受光器102で受光される。この干渉光は、測定対象の電流Iに起因する位相差2θの情報を含んでいる。   Due to the magnetic field accompanying the current I to be measured passing through the inside of the optical fiber loop 110, the phase (velocity) of both CW and CCW light changes due to the Faraday effect. Both the CW and CCW lights returning to the coupler 104 interfere with each other when combined by the coupler 104 and become interference light. The interference light is branched by the coupler 105 and received by the light receiver 102. This interference light includes information on the phase difference 2θ caused by the current I to be measured.

CPU201は、適宜な時間間隔でマルチプレクサ207を切り替えつつ基本波周波数の位相変調成分S1、2倍周波数の位相変調成分S2、4倍周波数の位相変調成分S4をサンプリングする。このサンプリングされたデータをもとに、CPU201内の比測定手段は、基本波周波数の位相変調成分S1と2倍周波数の位相変調成分S2との比S1/S2を演算により測定する。なお、S1,S2,S4,S1/S2を非特許文献1に準じて示すと以下の通りである。   The CPU 201 samples the phase modulation component S1 of the fundamental frequency, the phase modulation component S2 of the double frequency, the phase modulation component S2 of the quadruple frequency, and the phase modulation component S4 of the quadruple frequency while switching the multiplexer 207 at appropriate time intervals. Based on the sampled data, the ratio measuring means in the CPU 201 measures the ratio S1 / S2 between the phase modulation component S1 at the fundamental frequency and the phase modulation component S2 at the double frequency by calculation. S1, S2, S4, S1 / S2 are as follows according to Non-Patent Document 1.

Figure 2005345350
Figure 2005345350

また、測定対象の電流Iと伝搬光の位相変化θとの関係を非特許文献1に準じて示すと以下の通りである。   Further, the relationship between the current I to be measured and the phase change θ of the propagating light is shown according to Non-Patent Document 1 as follows.

θ=nVeI (5)
ただし、n;光ファイバループの巻数
Ve;ベルデ定数
巻数nとベルデ定数Veが固定値であることから位相変化θと電流Iとは一対一の関係にあり、比S1/S2と位相変化θとも一対一の関係にあることから、比S1/S2と電流Iとの間にも一対一の関係が成り立つ。そこで、本実施の形態にあっては、光ファイバ電流センサは、あらかじめ行う校正により与えた既知電流値Iとそのとき測定された位相変調成分間比S1/S2との関係をメモリ202内のテーブル(図4(b)参照)に記憶しておき、CPU201内の電流値処理手段は、このテーブルを測定対象の電流から得られた位相変調成分間比S1/S2で検索し、この検索によりテーブルから引き当てられた電流値Iを測定対象の電流値とする。
θ = nVeI (5)
However, n: number of turns of the optical fiber loop Ve; Verde constant Since the number of turns n and the Verde constant Ve are fixed values, there is a one-to-one relationship between the phase change θ and the current I, and both the ratio S1 / S2 and the phase change θ Since there is a one-to-one relationship, a one-to-one relationship is also established between the ratio S1 / S2 and the current I. Therefore, in the present embodiment, the optical fiber current sensor is a table in the memory 202 that shows the relationship between the known current value I given by the calibration performed in advance and the phase modulation component ratio S1 / S2 measured at that time. (See FIG. 4B), the current value processing means in the CPU 201 searches this table with the phase modulation component ratio S1 / S2 obtained from the current to be measured, and the table is obtained by this search. The current value I assigned from is used as the current value to be measured.

メモリ202の容量は有限であるから、テーブルに記憶されている既知電流値及び位相変調成分間比は離散的な値(A/D変換器208及びCPU201が提供する分解能よりは大きな刻みの値)となっている。このため測定対象の電流から得られた位相変調成分間比S1/S2がテーブルに記憶されている位相変調成分間比S1/S2の離散的な値からずれていることがある。そのときには、複数の位相変調成分間比の離散的な値に対応する複数の既知電流の離散的な値を用いて補間演算することにより、測定対象の電流値を求めるとよい。補間演算には、直線補間、tan-1関数などを用いることができる。 Since the capacity of the memory 202 is finite, the known current value and the ratio between phase modulation components stored in the table are discrete values (values larger than the resolution provided by the A / D converter 208 and the CPU 201). It has become. Therefore, the phase modulation component ratio S1 / S2 obtained from the current to be measured may deviate from the discrete value of the phase modulation component ratio S1 / S2 stored in the table. At that time, the current value to be measured may be obtained by performing an interpolation operation using the discrete values of a plurality of known currents corresponding to the discrete values of the ratios between the plurality of phase modulation components. For the interpolation calculation, linear interpolation, tan −1 function, or the like can be used.

CPU201は、このようにして測定した電流値をD/A変換器210に送ってアナログ電圧に変換させる。これにより、測定値がアンプ211で増幅されて外部にアナログ出力される。   The CPU 201 sends the current value thus measured to the D / A converter 210 to convert it into an analog voltage. As a result, the measured value is amplified by the amplifier 211 and output to the outside in analog form.

本発明では、位相変調成分間比に基づいて対象の電流の値を求めるようにしたので、正弦波関数の持つ非直線性の影響がなくなり、対象の電流の大きさにかかわらず対象の電流と出力電流値との関係が直線となる。よって、広ダイナミックレンジで直線性の良い測定が可能となる。   In the present invention, since the value of the target current is obtained based on the ratio between the phase modulation components, the influence of the non-linearity of the sine wave function is eliminated, and the target current and the target current are not affected by the magnitude of the target current. The relationship with the output current value is a straight line. Therefore, it is possible to measure with a wide dynamic range and good linearity.

また、本発明では、位相変調成分間の比をとったことにより、不安定要因であった定数Aや振幅φが除去されるので、これら定数Aや振幅φが変動しても測定には影響がない(ただし、振幅φは、S4/S2が一定となるように位相変調器101の振幅を制御することで一定となる)。   Further, in the present invention, since the constant A and the amplitude φ, which are unstable factors, are removed by taking the ratio between the phase modulation components, even if the constant A and the amplitude φ change, the measurement is not affected. (However, the amplitude φ is constant by controlling the amplitude of the phase modulator 101 so that S4 / S2 is constant).

なお、本実施の形態ではテーブルを用い、位相変調成分間比S1/S2で検索して電流値Iを引き当てるようにしたが、電流値Iは数式を計算して求めてもよい。すなわち、4倍周波数の位相変調成分S4と2倍周波数の位相変調成分S2との比S4/S2=J4(2φ・sinωmα)/J2(2φ・sinωmα)が一定になるように位相変調器101の振幅を制御すれば、比S1/S2の式(4)におけるJ1(2φ・sinωmα)/J2(2φ・sinωmα)が定数Kとなり、位相変化θは、   In the present embodiment, a table is used to search for the phase modulation component ratio S1 / S2, and the current value I is assigned. However, the current value I may be obtained by calculating an equation. That is, the ratio S4 / S2 = J4 (2φ · sin ωmα) / J2 (2φ · sin ωmα) of the quadrature frequency phase modulation component S4 and the double frequency phase modulation component S2 is constant. If the amplitude is controlled, J1 (2φ · sinωmα) / J2 (2φ · sinωmα) in the equation (4) of the ratio S1 / S2 becomes a constant K, and the phase change θ is

Figure 2005345350
Figure 2005345350

となる。この式(6)で求めた位相変化θを式(5)に代入すれば測定対象の電流Iが求まる。なお、ロックインアンプでは各成分の振幅を直流電圧として出力するので、cosωt、cos2ωt、cos4ωtの項はなくなる。 It becomes. By substituting the phase change θ obtained by the equation (6) into the equation (5), the current I to be measured can be obtained. Since the lock-in amplifier outputs the amplitude of each component as a DC voltage, the terms cos ωt, cos 2ωt, and cos 4ωt are eliminated.

以下、本発明の校正装置の一実施形態を添付図面に基づいて詳述する。   Hereinafter, an embodiment of a calibration apparatus of the present invention will be described in detail with reference to the accompanying drawings.

図3に示されるように、本発明に係る校正装置は、既に説明した光ファイバ電流センサの光ファイバループ110にその光ファイバループ110の片外側から内側へ回り込む電気コイル301と光ファイバループ110の反対外側から内側へ回り込む電気コイル302を掛け回し、それぞれの電気コイル301,302に光ファイバループ110の内側で互いに同じ方向となる電流を印加するようにしたもので、これら2つの電気コイル301,302に印加する電流を変化させる電流源303と、印加した電流の値ごとに光ファイバ電流センサの比測定手段から得られた位相変調成分間比を記憶する記憶手段304と、この位相変調成分間比を前記電流値処理手段に転送する転送手段(記憶手段304であるパソコンに含まれる)とを備える。2つの電気コイル301,302は、図示のように光ファイバループ110の内側を通る一辺が互いに接するようにして8の字形状に配置される。2つの電気コイル301,302は、ターン数、巻きピッチ、線材径、線材長、巻き径などを互いに等しくしてある。   As shown in FIG. 3, the calibration device according to the present invention includes an electric coil 301 and an optical fiber loop 110 that wrap around the optical fiber loop 110 of the optical fiber current sensor described above from the outer side to the inner side. The electric coils 302 that wrap around from the opposite outer side to the inner side are hung so that currents in the same direction are applied to the respective electric coils 301 and 302 inside the optical fiber loop 110. Current source 303 for changing the current applied to 302, storage means 304 for storing the ratio between phase modulation components obtained from the ratio measuring means of the optical fiber current sensor for each value of the applied current, and between the phase modulation components Transfer means for transferring the ratio to the current value processing means (included in a personal computer as the storage means 304) . The two electric coils 301 and 302 are arranged in a figure 8 shape such that one side passing through the inside of the optical fiber loop 110 is in contact with each other as shown in the figure. The two electric coils 301 and 302 have the same number of turns, winding pitch, wire diameter, wire length, winding diameter and the like.

ここでは、光ファイバ電流センサは光ファイバループ110と信号処理ユニット250とに分割構成され、信号処理ユニット250には光ファイバループ110以外の図1、図2に示した部材が収容されている。   Here, the optical fiber current sensor is divided into an optical fiber loop 110 and a signal processing unit 250, and the signal processing unit 250 accommodates members shown in FIGS. 1 and 2 other than the optical fiber loop 110.

この校正装置では、各々の電気コイル301,302に互いに逆回りで大きさの同じ電流iを供給し、2つの電気コイル301,302が互いに接する一辺では電流iの向きが同じになるようにする。これにより、それぞれの電気コイル301,302の一辺に流れる電流により生じる磁界h1,h2は同じ向きになる。この一辺の周りに光ファイバループ110が周回されるので、光ファイバループ110中を伝搬する光にはそれぞれの磁界h1,h2が同じように作用する。よって、電流i×ターン数×2の電流によるファラデー効果が光ファイバループ110中を伝搬する光に生じることになる。   In this calibration device, currents i of the same magnitude are supplied in reverse directions to the electric coils 301 and 302 so that the directions of the currents i are the same on the sides where the two electric coils 301 and 302 are in contact with each other. . As a result, the magnetic fields h1 and h2 generated by the current flowing in one side of the electric coils 301 and 302 are in the same direction. Since the optical fiber loop 110 is circulated around the one side, the magnetic fields h1 and h2 similarly act on the light propagating through the optical fiber loop 110. Therefore, the Faraday effect due to the current i × the number of turns × 2 is generated in the light propagating through the optical fiber loop 110.

一方、各々の電気コイル301,302について光ファイバループ110の外側を通っている両辺に注目すると、電気コイル301,302に流れる電流iにより生じる強さの同じ磁界h3,h4は光ファイバループ110が存在する空間では互いに逆向きになる。このため、例えば、図示したP点では、磁界h3は光ファイバループ110を伝搬するCW光と同方向に向き、磁界h4はCW光と逆方向に向いており、P点に対向するQ点では、磁界h3はCW光と逆方向に向き、磁界h4はCW光と同方向に向いていることになる。従って、これらの磁界h3,h4がCW光に及ぼす影響は相殺される。CCW光についても同様である。   On the other hand, when attention is paid to both sides passing through the outside of the optical fiber loop 110 for each of the electric coils 301 and 302, the optical fiber loop 110 has the same magnetic fields h3 and h4 generated by the current i flowing through the electric coils 301 and 302. In the existing space, they are opposite to each other. Therefore, for example, at the illustrated point P, the magnetic field h3 is directed in the same direction as the CW light propagating through the optical fiber loop 110, the magnetic field h4 is directed in the opposite direction to the CW light, and at the Q point facing the point P. The magnetic field h3 is directed in the opposite direction to the CW light, and the magnetic field h4 is directed in the same direction as the CW light. Accordingly, the influence of these magnetic fields h3 and h4 on the CW light is canceled out. The same applies to CCW light.

このようにして本発明の校正装置では、互いに光ファイバループの反対外側から内側へ回り込む2つの電気コイルを用いたので、光ファイバループの外側を通っている電気コイル部分がもたらす磁界の影響を相殺でき、電気コイルを用いることによって小電流で大電流相当の校正電流を得るという利点を生かしつつ、1本の電力ケーブルが光ファイバループの内側を通っている場合と同等の正確な校正ができるようになる。   In this way, in the calibration device of the present invention, two electric coils that wrap around from the outer side to the inner side of the optical fiber loop are used, so the influence of the magnetic field caused by the electric coil portion that passes through the outer side of the optical fiber loop is canceled out. It is possible to perform an accurate calibration equivalent to a case where one power cable passes through the inside of an optical fiber loop while taking advantage of a calibration current equivalent to a large current with a small current by using an electric coil. become.

校正に際し、電流源303は、電流源303の2つの電気コイル301,302に印加する電流を適宜な刻みで離散的に変化させる。これに同期して記憶手段304は、校正に用いる電流(印加した電流i×ターン数)の値Iごとに光ファイバ電流センサの比測定手段から得られた位相変調成分間比S1/S2を記憶する。これにより、記憶手段304には、電流Iを検索ワード(あるいはアドレス)とし位相変調成分間比S1/S2を格納データとした図4(a)のようなテーブルが作成される。必要なダイナミックレンジ範囲についてテーブルが作成されたら、記憶手段304のテーブルを図1の光ファイバ電流センサのメモリ202に転写する。その際、メモリ202内には、位相変調成分間比S1/S2を検索ワード(あるいはアドレス)とし電流Iを読み出しデータとした図4(b)のようなテーブルが作成される。   At the time of calibration, the current source 303 discretely changes the current applied to the two electric coils 301 and 302 of the current source 303 at appropriate intervals. In synchronization with this, the storage unit 304 stores the phase modulation component ratio S1 / S2 obtained from the ratio measuring unit of the optical fiber current sensor for each value I of the current used for calibration (applied current i × number of turns). To do. As a result, a table as shown in FIG. 4A is created in the storage means 304 using the current I as a search word (or address) and the phase modulation component ratio S1 / S2 as stored data. When the table for the necessary dynamic range range is created, the table in the storage unit 304 is transferred to the memory 202 of the optical fiber current sensor in FIG. At that time, a table as shown in FIG. 4B is created in the memory 202 with the phase modulation component ratio S1 / S2 as a search word (or address) and the current I as read data.

この実施形態では、校正装置が光ファイバ電流センサに対してテーブルを提供するようにしたが、本発明の校正装置はテーブルを用いない光ファイバ電流センサの校正に使用しても、上記実施形態と同様に正確な校正ができるという効果を得られる。また、本発明の校正装置は、ロゴスキーコイルやホールCTを用いた電流センサの校正にも適用できる。また、本発明の校正装置は、鉛ガラスをセンシングファイバに用いて偏光方位の回転から電流を検出する光ファイバ電流センサの校正にも適用できる。   In this embodiment, the calibration device provides a table for the optical fiber current sensor. However, even if the calibration device of the present invention is used for calibration of an optical fiber current sensor that does not use a table, Similarly, it is possible to obtain an effect that accurate calibration can be performed. The calibration device of the present invention can also be applied to calibration of a current sensor using a Rogowski coil or Hall CT. The calibration device of the present invention can also be applied to calibration of an optical fiber current sensor that uses lead glass as a sensing fiber to detect current from rotation of the polarization direction.

次に、本発明の光ファイバ電流センサと背景技術の光ファイバ電流センサの比較を行う。図5は、本発明と背景技術について、位相差60degにおいて校正をした場合に、位相差を変えたときの電流値と誤差を示したものである。位相差60degは正弦関数において最も直線性のよい領域にあたる。それぞれの電流値は、位相差60degのときを基準=1とした相対出力で示してある。   Next, the optical fiber current sensor of the present invention is compared with the optical fiber current sensor of the background art. FIG. 5 shows current values and errors when the phase difference is changed when the calibration is performed at the phase difference of 60 deg for the present invention and the background art. The phase difference of 60 deg corresponds to the most linear region in the sine function. Each current value is shown as a relative output with reference = 1 when the phase difference is 60 deg.

図示のように、本発明のグラフでは位相差の変化に対して電流値が直線的に変化するのに対し、背景技術のグラフでは位相差の変化に対して電流値が曲線的に変化している。つまり背景技術には誤差が生じており、その誤差が位相差によって異なる。これに対し、本発明は位相差によらず誤差が生じない。   As shown in the figure, in the graph of the present invention, the current value changes linearly with respect to the change in phase difference, whereas in the background art graph, the current value changes in a curve with respect to the change in phase difference. Yes. That is, an error occurs in the background art, and the error varies depending on the phase difference. In contrast, the present invention does not cause an error regardless of the phase difference.

本発明の一実施形態を示す光ファイバ電流センサの構成図である。It is a block diagram of the optical fiber electric current sensor which shows one Embodiment of this invention. 図1の光ファイバ電流センサの光学系の構成図である。It is a block diagram of the optical system of the optical fiber current sensor of FIG. 本発明の一実施形態を示す校正装置の構成図である。It is a block diagram of the calibration apparatus which shows one Embodiment of this invention. (a)は図3の校正装置が作成するテーブルの図、(b)は 図1の光ファイバ電流センサに記憶されるテーブルの図である。(A) is a figure of the table which the calibration apparatus of FIG. 3 produces, (b) is a figure of the table memorize | stored in the optical fiber current sensor of FIG. 位相差と出力される電流値との関係図である。FIG. 6 is a relationship diagram between a phase difference and an output current value. 背景技術の校正装置の構成図である。It is a block diagram of the calibration apparatus of background art.

符号の説明Explanation of symbols

100 光学系
101 位相変調器
102 受光器
103 光源
200 信号処理回路
201 CPU
202 メモリ
206 ロックインアンプ
208 A/D変換器
301,302 電気コイル

DESCRIPTION OF SYMBOLS 100 Optical system 101 Phase modulator 102 Light receiver 103 Light source 200 Signal processing circuit 201 CPU
202 Memory 206 Lock-in amplifier 208 A / D converter 301, 302 Electric coil

Claims (7)

測定対象の電流の周囲に周回させた光ファイバループの正逆周回方向にそれぞれ円偏光を伝搬させ、両伝搬光間に生じた位相差から前記対象の電流を測定する光ファイバ電流センサにおいて、両伝搬光に所定の角周波数で位相変調を加える位相変調手段と、両伝搬光の干渉光に含まれる異なる次数の位相変調成分間の比を測定する比測定手段と、この位相変調成分間比に基づいて対象の電流の値を求める電流値処理手段とを備えたことを特徴とする光ファイバ電流センサ。   In an optical fiber current sensor that propagates circularly polarized light in the forward and reverse circulation directions of an optical fiber loop that circulates around the current to be measured, and measures the current from the phase difference generated between the two propagation lights. Phase modulation means for applying phase modulation to the propagating light at a predetermined angular frequency, ratio measuring means for measuring the ratio between the phase modulation components of different orders included in the interference light of both propagation lights, and the ratio between the phase modulation components An optical fiber current sensor comprising: current value processing means for obtaining a value of a target current based on the current value processing means. 前記比測定手段は、基本波周波数の位相変調成分と2倍周波数の位相変調成分との比を測定することを特徴とする請求項1記載の光ファイバ電流センサ。   2. The optical fiber current sensor according to claim 1, wherein the ratio measuring unit measures a ratio between a phase modulation component of a fundamental frequency and a phase modulation component of a double frequency. 前記電流値処理手段は、対象の電流から得られた位相変調成分間比を予め値が既知の電流に応じて得られた位相変調成分間比と該既知電流値との関係に当てはめて対象の電流の値を求めることを特徴とする請求項1又は2記載の光ファイバ電流センサ。   The current value processing means applies the ratio between the phase modulation components obtained from the current of interest to the relationship between the ratio between the phase modulation components obtained according to the current having a known value in advance and the known current value. 3. The optical fiber current sensor according to claim 1, wherein a current value is obtained. 前記電流値処理手段は、既知電流値と位相変調成分間比との関係を離散的な値でテーブルに記憶しておき、このテーブルを対象の電流から得られた位相変調成分間比で検索して対象の電流の値を求めることを特徴とする請求項3記載の光ファイバ電流センサ。   The current value processing means stores the relationship between the known current value and the phase modulation component ratio in a table as discrete values, and searches this table with the phase modulation component ratio obtained from the target current. 4. The optical fiber current sensor according to claim 3, wherein a current value of the target is obtained. 前記電流値処理手段は、対象の電流から得られた位相変調成分間比が前記テーブルに記憶されている位相変調成分間比の離散的な値からずれているときには、複数の位相変調成分間比の離散的な値に対応する複数の既知電流の離散的な値を用いて補間演算することにより、対象の電流の値を求めることを特徴とする請求項4記載の光ファイバ電流センサ。   The current value processing means, when the phase modulation component ratio obtained from the target current deviates from the discrete value of the phase modulation component ratio stored in the table, a plurality of phase modulation component ratios 5. The optical fiber current sensor according to claim 4, wherein the current value of the target is obtained by performing an interpolation operation using discrete values of a plurality of known currents corresponding to the discrete values. 請求項3〜5いずれか記載の光ファイバ電流センサに既知の電流を与える校正装置であって、前記2つの電気コイルに印加する電流を変化させる電流源と、印加した電流の値ごとに前記比測定手段から得られた位相変調成分間比を記憶する記憶手段と、この位相変調成分間比を前記電流値処理手段に転送する転送手段とを備えたことを特徴とする光ファイバ電流センサの校正装置。   A calibration device for providing a known current to the optical fiber current sensor according to any one of claims 3 to 5, wherein a current source that changes a current applied to the two electric coils and the ratio for each value of the applied current Calibration of an optical fiber current sensor, comprising storage means for storing the phase modulation component ratio obtained from the measurement means, and transfer means for transferring the phase modulation component ratio to the current value processing means. apparatus. 前記光ファイバループに該光ファイバループの片外側から内側へ回り込む電気コイルと該光ファイバループの反対外側から内側へ回り込む電気コイルを掛け回し、それぞれの電気コイルに該光ファイバループの内側で互いに同じ方向となる電流を印加するようにしたことを特徴とする請求項6記載の光ファイバ電流センサの校正装置。

An electrical coil that wraps around the optical fiber loop from the outside to the inside of the optical fiber loop and an electrical coil that wraps around from the outside to the inside opposite to the optical fiber loop are wound around, and the respective electrical coils are the same inside the optical fiber loop. 7. The optical fiber current sensor calibration apparatus according to claim 6, wherein a directional current is applied.

JP2004167091A 2004-06-04 2004-06-04 Optical fiber current sensor, and calibration device therefor Pending JP2005345350A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004167091A JP2005345350A (en) 2004-06-04 2004-06-04 Optical fiber current sensor, and calibration device therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004167091A JP2005345350A (en) 2004-06-04 2004-06-04 Optical fiber current sensor, and calibration device therefor

Publications (1)

Publication Number Publication Date
JP2005345350A true JP2005345350A (en) 2005-12-15

Family

ID=35497869

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004167091A Pending JP2005345350A (en) 2004-06-04 2004-06-04 Optical fiber current sensor, and calibration device therefor

Country Status (1)

Country Link
JP (1) JP2005345350A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2333498A1 (en) 2009-12-10 2011-06-15 Kabushiki Kaisha Toshiba Sagnac interferometer-type fiber-optic current sensor
WO2012037767A1 (en) * 2010-09-21 2012-03-29 中国电力科学研究院 Digital closed loop optical fiber current sensor
CN102778603A (en) * 2011-12-27 2012-11-14 湖北迅迪科技有限公司 Optical fiber current sensor signal intelligent system
CN103064052A (en) * 2012-12-31 2013-04-24 安徽省电力公司淮北供电公司 Optical mutual inductor calibration and operation monitoring method and system
CN111751610A (en) * 2020-07-06 2020-10-09 上海康阔光智能技术有限公司 Optical fiber current sensor for realizing non-reciprocal dynamic phase modulation and corresponding signal demodulation method
CN112904070A (en) * 2019-11-19 2021-06-04 许继集团有限公司 All-fiber current transformer, detection module thereof and light path state diagnosis method
CN115902755A (en) * 2023-02-23 2023-04-04 国网江西省电力有限公司电力科学研究院 Alarm parameter testing method for all-fiber current transformer

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2333498A1 (en) 2009-12-10 2011-06-15 Kabushiki Kaisha Toshiba Sagnac interferometer-type fiber-optic current sensor
WO2012037767A1 (en) * 2010-09-21 2012-03-29 中国电力科学研究院 Digital closed loop optical fiber current sensor
CN102778603A (en) * 2011-12-27 2012-11-14 湖北迅迪科技有限公司 Optical fiber current sensor signal intelligent system
CN103064052A (en) * 2012-12-31 2013-04-24 安徽省电力公司淮北供电公司 Optical mutual inductor calibration and operation monitoring method and system
CN103064052B (en) * 2012-12-31 2015-07-08 国家电网公司 Optical mutual inductor calibration and operation monitoring method and system
CN112904070A (en) * 2019-11-19 2021-06-04 许继集团有限公司 All-fiber current transformer, detection module thereof and light path state diagnosis method
CN112904070B (en) * 2019-11-19 2023-12-29 许继集团有限公司 All-fiber current transformer, detection module thereof and optical path state diagnosis method
CN111751610A (en) * 2020-07-06 2020-10-09 上海康阔光智能技术有限公司 Optical fiber current sensor for realizing non-reciprocal dynamic phase modulation and corresponding signal demodulation method
CN111751610B (en) * 2020-07-06 2023-04-14 浙江康阔光智能科技有限公司 Optical fiber current sensor for realizing non-reciprocal dynamic phase modulation and demodulation method
CN115902755A (en) * 2023-02-23 2023-04-04 国网江西省电力有限公司电力科学研究院 Alarm parameter testing method for all-fiber current transformer
CN115902755B (en) * 2023-02-23 2023-08-15 国网江西省电力有限公司电力科学研究院 Alarm parameter testing method for all-fiber current transformer

Similar Documents

Publication Publication Date Title
KR101408556B1 (en) Fiber optic current sensor
EP2510364B1 (en) Fiber-optic current sensing using a sensor with exchangeable sub-modules
US9581622B2 (en) Temperature compensated fiber-optic current sensor
WO2000036425A2 (en) Fiber optic current sensor having rotation immunity
EP2593749B1 (en) Occasional calibration phase-difference modulation for sagnac interferometer
US6429939B1 (en) DSP signal processing for open loop fiber optic sensors
CA2972935A1 (en) Optoelectric measuring device and method for measuring an electrical current
JP2005345350A (en) Optical fiber current sensor, and calibration device therefor
Kaul et al. Improving the accuracy of low-cost resolver-based encoders using harmonic analysis
Temkina et al. Fiber optic current meter for IIoT in power grid
EP3290931B1 (en) Interferometric voltage sensor with error compensation
US8301407B2 (en) Stabilized solid-state gyrolaser
EP3772656A1 (en) Fiber-optic sensor and system
JP3308897B2 (en) Current measuring method and photocurrent sensor
US20200200839A1 (en) Magnetometer with optical pumping of a sensitive element with linearly polarised light and multiple-pass in the sensitive element
KR100452301B1 (en) The Apparatus and Method for Simultaneous Measurement of Current and Voltage Using Optic Fiber
CN106646183B (en) SLD light source test system
JP2001153896A (en) Optical fiber type current transformer
KR102298348B1 (en) Direct current measuging method and apparatus
JP6405502B1 (en) Method and means for detecting phase shift amount of carrier component of angle detector, method for detecting rotation angle, angle detector
JP2000028369A (en) Optical fiber gyro and azimuth sensor
Skalský et al. Fibre optic gyroscope with single-mode fibre and loop-back phase shift compensation
Park et al. Current-induced phase demodulation using a PWM sampling for a fiber-optic CT
Gevorkyan et al. An instrument for the operational measurement of the current strength in the conductor of a high-voltage active transmission line
Nascimento Optical fiber sensors technology for supervision, control and protection of high power systems