JP2005344535A - Secondary air supply device for internal combustion engine - Google Patents

Secondary air supply device for internal combustion engine Download PDF

Info

Publication number
JP2005344535A
JP2005344535A JP2004162801A JP2004162801A JP2005344535A JP 2005344535 A JP2005344535 A JP 2005344535A JP 2004162801 A JP2004162801 A JP 2004162801A JP 2004162801 A JP2004162801 A JP 2004162801A JP 2005344535 A JP2005344535 A JP 2005344535A
Authority
JP
Japan
Prior art keywords
secondary air
internal combustion
combustion engine
increase
exhaust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004162801A
Other languages
Japanese (ja)
Inventor
Masao Harashima
正夫 原嶋
Tomoaki Horii
智昭 堀井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2004162801A priority Critical patent/JP2005344535A/en
Publication of JP2005344535A publication Critical patent/JP2005344535A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Electrical Control Of Ignition Timing (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To efficiently perform exhaust emission control and catalyst activation by secondary air supply without requiring a heating means. <P>SOLUTION: In a V-type internal combustion engine provided with an exhaust system having independent banks and having a catalytic converter installed in an exhaust duct after merge of the exhaust system, secondary air is supplied to the exhaust system of one bank and fuel increase is performed for all cylinder at a time of secondary air supply. Consequently, after-burn of HC occurs in the independent exhaust system in which secondary air is supplied, and after-burn of HC occurs in a part where exhaust systems of each bank merge to promote purification of HC and activation of the catalytic converter. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、排気系に対する2次空気の供給によって、機関の始動後に触媒装置の早期活性を図る内燃機関の2次空気供給装置に関する。   The present invention relates to a secondary air supply device for an internal combustion engine that aims at early activation of a catalyst device after starting the engine by supplying secondary air to an exhaust system.

特許文献1には、排気管に導入する2次空気を加熱手段で加熱して昇温させることで、排気中の有害成分と効率良く反応させ、排気を効率良く浄化させるようにした2次空気供給装置の開示がある。
特開平05−312034号公報
In Patent Document 1, secondary air introduced into an exhaust pipe is heated by a heating means to raise the temperature, thereby reacting with harmful components in the exhaust efficiently and purifying the exhaust efficiently. There is a disclosure of a supply device.
JP 05-312034 A

しかし、上記従来技術のように、加熱手段を用いる構成では、加熱手段を設けることによりシステムコストが増大し、また、加熱手段の機能異常により排気浄化性能が変化するため、加熱手段の診断機能を追加する必要が生じ、制御系が複雑になるなどの問題があった。
本発明は上記問題点に鑑みなされたものであり、加熱手段を必要とすることなく、2次空気供給によって効率良く排気浄化及び触媒活性を図ることができる内燃機関の2次空気供給装置を提供することを目的とする。
However, in the configuration using the heating means as in the above prior art, the system cost increases by providing the heating means, and the exhaust gas purification performance changes due to the abnormal function of the heating means. There was a problem that the control system became complicated because it was necessary to add.
The present invention has been made in view of the above problems, and provides a secondary air supply device for an internal combustion engine capable of efficiently purifying exhaust gas and catalytic activity by supplying secondary air without requiring a heating means. The purpose is to do.

そのため請求項1記載の発明では、内燃機関直下の排気系が複数独立して設けられ、これら複数の排気系の集合部よりも下流に触媒装置を設置した内燃機関において、前記複数の排気系の一部に2次空気を供給すると共に、前記2次空気を供給するときに、2次空気が供給される排気系に対応する気筒、及び、2次空気が供給されない排気系に対応する気筒に対して、燃料供給量の増量補正を行なう構成とした。   Therefore, according to the first aspect of the present invention, in an internal combustion engine in which a plurality of exhaust systems directly below the internal combustion engine are provided independently, and a catalyst device is installed downstream of a collection portion of the plurality of exhaust systems, the plurality of exhaust systems A cylinder corresponding to an exhaust system to which secondary air is supplied and a cylinder corresponding to an exhaust system to which secondary air is not supplied when supplying the secondary air to a part of the secondary air. In contrast, the fuel supply amount is increased and corrected.

かかる構成によると、2次空気の供給が行なわれる排気系に対応する気筒における燃料増量によって、2次空気の供給が行なわれる排気系でHCの後燃え(酸化)が発生すると共に、2次空気の供給が行なわれない排気系に対応する気筒における燃料増量によって、排気系の集合部で更にHCの後燃えが発生する。
従って、内燃機関から触媒装置までの距離が長い場合であっても、排気温度を高く保つことができ、触媒装置の早期活性によるHC低減と、HCの後燃えによるHCの低減との双方の効果を、加熱手段を用いることなく得られる。
According to such a configuration, HC afterburning (oxidation) occurs in the exhaust system in which the secondary air is supplied due to the increase in fuel in the cylinder corresponding to the exhaust system in which the secondary air is supplied. Due to the increase in fuel in the cylinder corresponding to the exhaust system to which no fuel is supplied, the afterburning of HC further occurs at the collecting part of the exhaust system.
Therefore, even when the distance from the internal combustion engine to the catalyst device is long, the exhaust temperature can be kept high, and both effects of reducing HC due to early activation of the catalyst device and reducing HC due to afterburning of HC are achieved. Can be obtained without using heating means.

請求項2記載の発明では、内燃機関の吸入空気量と2次空気の供給量との総和に見合う総燃料量になるように、燃料供給量の増量補正を行なう構成とした。
かかる構成によると、2次空気量分だけ空気が増える分に対応する増量を、複数の独立した排気系に分けて施すことで、シリンダ燃焼混合気の空燃比はリッチに補正され、2次空気が供給される排気系でのHCの後燃えと、排気系の合流部でのHCの後燃えを発生させることができる。
According to the second aspect of the present invention, the fuel supply amount increase correction is performed so that the total fuel amount matches the sum of the intake air amount and the secondary air supply amount of the internal combustion engine.
According to such a configuration, the air fuel ratio of the cylinder combustion mixture is corrected to be rich by dividing the plurality of independent exhaust systems into an increase corresponding to the amount of air that increases by the amount of secondary air. It is possible to generate afterburning of HC in the exhaust system to which HC is supplied and afterburning of HC at the junction of the exhaust system.

請求項3記載の発明では、内燃機関が複数のバンクを有して構成され、前記複数のバンク毎に独立した排気系を有する構成とした。
かかる構成によると、V型機関や水平対向機関などの複数のバンクを有する内燃機関において、一部のバンクの排気系に対して2次空気を供給する一方、全バンクの気筒に対して燃料増量を行う。
According to a third aspect of the present invention, the internal combustion engine has a plurality of banks, and has an independent exhaust system for each of the plurality of banks.
According to this configuration, in an internal combustion engine having a plurality of banks such as a V-type engine and a horizontally opposed engine, the secondary air is supplied to the exhaust system of some banks, while the fuel increase is made to the cylinders of all banks. I do.

従って、V型機関や水平対向機関などの複数のバンクを有する内燃機関において、触媒装置の早期活性によるHC低減と、HCの後燃えによるHCの低減との双方の効果を、加熱手段を用いることなく得られる。
請求項4記載の発明では、2次空気の供給に伴う燃料供給量の増量を、他の条件に応じた燃料供給量の増量分に応じて変更する構成とした。
Therefore, in an internal combustion engine having a plurality of banks such as a V-type engine and a horizontally opposed engine, the heating means is used for both the effects of reducing the HC due to the early activation of the catalytic device and reducing the HC due to the afterburning of the HC. It is obtained without.
The invention according to claim 4 is configured such that the increase in the fuel supply amount accompanying the supply of the secondary air is changed according to the increase in the fuel supply amount according to other conditions.

かかる構成によると、2次空気の供給に対応するための増量を行なうときに、他の条件に応じた増量要求があると、最終的な増量レベルを他の条件に応じた増量分に応じて変更することで、2次空気の供給状態に適切な増量を図る。
請求項5記載の発明では、2次空気の供給に対応する増量補正要求値と、他の条件に応じた増量補正要求値との大きい方を、前記2次空気を供給するときの増量目標とする構成とした。
According to this configuration, when an increase is made in response to the supply of secondary air, if there is an increase request according to other conditions, the final increase level is set according to the increase according to the other conditions. By changing, the amount of increase appropriate to the supply state of secondary air is aimed at.
In the invention according to claim 5, the larger one of the increase correction request value corresponding to the supply of the secondary air and the increase correction request value according to other conditions is set as the increase target when the secondary air is supplied. It was set as the structure to do.

かかる構成によると、例えば機関始動後の運転安定性を確保するための増量補正が行なわれる場合に、この機関安定性を確保するための増量要求と、2次空気の供給に対応するための増量要求との大きい方を選択するので、過剰補正となることを回避しつつ、必要な増量を確保できる。
尚、機関始動後、2次空気の供給に対応する増量補正要求値が選択されるようになった時点を、2次空気の供給開始タイミングとすることができる。
According to such a configuration, for example, when an increase correction is performed to ensure the operational stability after the engine is started, the increase request for ensuring the engine stability and the increase for responding to the supply of secondary air are performed. Since the larger one with the demand is selected, the necessary increase can be secured while avoiding the excessive correction.
It should be noted that the time when the increase correction request value corresponding to the supply of the secondary air is selected after the engine is started can be set as the supply start timing of the secondary air.

請求項6記載の発明では、前記2次空気の供給中に、点火時期をリタード補正する構成とした。
かかる構成によると、2次空気の供給中に、点火時期をリタードすることで、機関からは排出される排気の温度を高くし、以って、触媒装置の昇温をより促進する。
According to a sixth aspect of the invention, the ignition timing is retarded while the secondary air is being supplied.
According to such a configuration, the ignition timing is retarded during the supply of the secondary air, so that the temperature of the exhaust gas discharged from the engine is increased, thereby further increasing the temperature of the catalyst device.

以下に本発明の実施の形態を説明する。
図1は、実施形態における内燃機関のシステム構成図である。
図1において、内燃機関1は、車両の駆動源として用いられるエンジンであって、左右バンクからなるV型機関である。
前記右バンク1A,左バンク1Bの各気筒からの排気は、それぞれに独立して設けられる排気マニホールド2A,2Bによって導出される。
Embodiments of the present invention will be described below.
FIG. 1 is a system configuration diagram of an internal combustion engine in the embodiment.
In FIG. 1, an internal combustion engine 1 is an engine used as a drive source for a vehicle, and is a V-type engine including left and right banks.
Exhaust gas from the cylinders of the right bank 1A and the left bank 1B is led out by exhaust manifolds 2A and 2B provided independently of each other.

各排気マニホールド2A,2Bそれぞれの集合部には排気ダクト3A,3Bが接続され、前記排気ダクト3A,3Bの下流側端部が集合して集合ダクト4に接続される。
上記排気マニホールド2A及び排気ダクト3Aからなる排気系と、排気マニホールド2B及び排気ダクト3Bからなる排気系とが、内燃機関1直下に設けられる複数の独立した排気系に相当する。
Exhaust ducts 3A and 3B are connected to the collective portions of the exhaust manifolds 2A and 2B, and downstream ends of the exhaust ducts 3A and 3B are collected and connected to the collective duct 4.
The exhaust system composed of the exhaust manifold 2A and the exhaust duct 3A and the exhaust system composed of the exhaust manifold 2B and the exhaust duct 3B correspond to a plurality of independent exhaust systems provided immediately below the internal combustion engine 1.

前記集合ダクト4には、触媒装置としての三元触媒を備えた触媒コンバータ5が介装されている。
一方、前記内燃機関1には、エアクリーナ6を通過した空気が吸気管7を介して各バンクの気筒それぞれに分配供給され、機関1の吸入空気量は、スロットルバルブ8で調整される。
The collective duct 4 is provided with a catalytic converter 5 having a three-way catalyst as a catalytic device.
On the other hand, the air that has passed through the air cleaner 6 is distributed and supplied to the cylinders of each bank through the intake pipe 7 to the internal combustion engine 1, and the intake air amount of the engine 1 is adjusted by the throttle valve 8.

また、各気筒それぞれに燃料噴射弁9が設けられており、各気筒の吸気ポート或いはシリンダ内に燃料を供給する。
ここで、前記燃料噴射弁9から各気筒に噴射される燃料と、各気筒に分配される空気とによって燃焼室内に混合気が生成され、前記混合気は点火プラグ10による火花点火によって着火燃焼し、ピストンを押し下げる仕事を行う。
Each cylinder is provided with a fuel injection valve 9 for supplying fuel to the intake port or cylinder of each cylinder.
Here, an air-fuel mixture is generated in the combustion chamber by the fuel injected from the fuel injection valve 9 to each cylinder and the air distributed to each cylinder, and the air-fuel mixture is ignited and burned by spark ignition by the spark plug 10. , Work to push down the piston.

そして、各気筒におけるピストンを押し下げる仕事がクランク軸の回転に変換されて、該クランク軸の回転を外部に取り出して車両の駆動に用いる。
また、左バンク1B側の排気マニホールド2B内に2次空気を供給する2次空気供給装置が設けられている。
前記2次空気供給装置は、エアポンプ11、2次空気吸込管12、2次空気供給管13、2空気制御弁14から構成される。
The work of pushing down the piston in each cylinder is converted into the rotation of the crankshaft, and the rotation of the crankshaft is taken out and used for driving the vehicle.
Further, a secondary air supply device for supplying secondary air into the exhaust manifold 2B on the left bank 1B side is provided.
The secondary air supply device includes an air pump 11, a secondary air suction pipe 12, a secondary air supply pipe 13, and a 2 air control valve 14.

前記エアポンプ11は、モータ(又は機関)によって駆動されるポンプ部によって、2次空気を強制的に排気系に送り込む装置である。
前記2次空気吸込管12は、前記エアポンプ11の吸込口と、エアクリーナ6とスロットルバルブ8との間の吸気管7とを連通させる配管である。
前記2次空気供給管13は、前記エアポンプ11の吐出口と排気マニホールド2Bの各ブランチ部とを連通させる配管である。
The air pump 11 is a device that forcibly feeds secondary air into the exhaust system by a pump unit driven by a motor (or engine).
The secondary air suction pipe 12 is a pipe that communicates the suction port of the air pump 11 with the intake pipe 7 between the air cleaner 6 and the throttle valve 8.
The secondary air supply pipe 13 is a pipe that communicates the discharge port of the air pump 11 and each branch portion of the exhaust manifold 2B.

前記2次空気制御弁14は、前記2次空気供給管13の途中に介装され、前記2次空気供給管13を開閉する電磁弁であり、2次空気の供給を行なわないときに閉制御されて、エアポンプ11側への排気の逆流を防止する。
エンジンコントロールユニット(ECU)20は、マイクロコンピュータを含んで構成され、各種センサからの検出信号を入力して、内燃機関1の運転条件を検出し、該検出結果に応じて燃料噴射制御信号,点火信号を出力すると共に、前記エアポンプ11及び2空気制御弁14を制御して、2次空気の供給を制御する。
The secondary air control valve 14 is interposed in the middle of the secondary air supply pipe 13 and is an electromagnetic valve that opens and closes the secondary air supply pipe 13 and is closed when the secondary air is not supplied. Thus, the backflow of the exhaust gas to the air pump 11 side is prevented.
The engine control unit (ECU) 20 includes a microcomputer, receives detection signals from various sensors, detects operating conditions of the internal combustion engine 1, and determines a fuel injection control signal and ignition according to the detection results. While outputting a signal, the air pump 11 and the 2 air control valve 14 are controlled to control the supply of secondary air.

前記各種センサとしては、2次空気吸込管12の接続部位よりも下流側でスロットルバルブ8よりも上流側の吸気管7に設けられ、機関1の吸入空気量を検出するエアフローメータ21、クランク角位置を検出するクランク角センサ22、機関1の冷却水温度を検出する水温センサ23、前記触媒コンバータ5の直前で排気中の酸素濃度に基づいて排気空燃比を検出する空燃比センサ24が設けられている。   As the various sensors, an air flow meter 21 that detects an intake air amount of the engine 1 and a crank angle provided in the intake pipe 7 downstream of the connecting portion of the secondary air suction pipe 12 and upstream of the throttle valve 8. A crank angle sensor 22 for detecting the position, a water temperature sensor 23 for detecting the coolant temperature of the engine 1, and an air-fuel ratio sensor 24 for detecting the exhaust air-fuel ratio based on the oxygen concentration in the exhaust gas just before the catalytic converter 5 are provided. ing.

前記エンジンコントロールユニット20は、エアフローメータ21で検出される吸入空気量と、クランク角センサ22からの信号に基づいて算出される機関回転速度とから基本燃料噴射量Tpを演算する。
また、始動時の水温に応じて設定され始動後徐々に減算される始動後増量係数Kasを少なくとも含む各種補正係数CO、空燃比センサ24で検出される空燃比を目標空燃比に一致させるべく演算される空燃比フィードバック補正係数LMD、更に、バッテリ電圧による補正分Tsを求める。
The engine control unit 20 calculates a basic fuel injection amount Tp from the intake air amount detected by the air flow meter 21 and the engine rotational speed calculated based on the signal from the crank angle sensor 22.
Further, various correction coefficients CO including at least a post-start-up increase coefficient Kas that is set according to the water temperature at the time of start-up and gradually subtracted after the start-up are calculated so that the air-fuel ratio detected by the air-fuel ratio sensor 24 matches the target air-fuel ratio. The air-fuel ratio feedback correction coefficient LMD to be performed and the correction amount Ts based on the battery voltage are obtained.

そして、前記基本燃料噴射量Tp,各種補正値CO,空燃比フィードバック補正係数LMDに基づいて最終的な燃料噴射量Tiを演算し、該燃料噴射量Tiに基づいて燃料噴射弁9の開弁時間を制御する。
Ti=Tp×CO×LMD+Ts
ここで、図3のタイムチャートを参照しつつ、図2のフローチャートに従って、2次空気の供給制御を説明する。
Then, a final fuel injection amount Ti is calculated based on the basic fuel injection amount Tp, various correction values CO, and air-fuel ratio feedback correction coefficient LMD, and the valve opening time of the fuel injection valve 9 is calculated based on the fuel injection amount Ti. To control.
Ti = Tp × CO × LMD + Ts
Here, referring to the time chart of FIG. 3, the secondary air supply control will be described according to the flowchart of FIG.

ステップS1でエンジンが始動されると、ステップS2では、2次空気の供給開始条件が成立しているか否かを判別する。
前記供給開始条件としては、始動時水温が所定温度以下であること、始動後増量係数Kasが予め定めた2次空気供給時の増量補正要求と同レベルにまで低下したことを判別する。
When the engine is started in step S1, it is determined in step S2 whether a secondary air supply start condition is satisfied.
As the supply start condition, it is determined that the water temperature at the start is equal to or lower than a predetermined temperature, and that the post-start-up increase coefficient Kas is lowered to the same level as a predetermined increase correction request at the time of supplying secondary air.

前記供給開始条件が成立しない場合には、ステップS3へ進んで、エアポンプ11をOFFに保持し、2次空気の供給は行なわない。
一方、始動時水温が所定温度以下で、始動後増量係数Kasが2次空気供給時の増量補正要求と同レベルにまで低下すると、ステップS4以降へ進んで、2次空気の供給を行なう。
If the supply start condition is not satisfied, the process proceeds to step S3, the air pump 11 is kept OFF, and the secondary air is not supplied.
On the other hand, when the water temperature at the start is equal to or lower than the predetermined temperature and the post-startup increase coefficient Kas is reduced to the same level as the increase correction request at the time of supplying the secondary air, the process proceeds to step S4 and subsequent steps to supply the secondary air.

ステップS4では、エアポンプ11の駆動を開始し、2次空気制御弁14を開制御する。
ステップS5では、前記始動後増量係数Kasを、2次空気供給時の増量補正要求レベルにクランプし、全気筒の燃料噴射量を、2次空気供給時の増量補正要求に対応して増量補正する。
In step S4, the driving of the air pump 11 is started and the secondary air control valve 14 is controlled to open.
In step S5, the post-startup increase coefficient Kas is clamped to the increase correction request level at the time of secondary air supply, and the fuel injection amounts of all cylinders are increased and corrected in response to the increase correction request at the time of secondary air supply. .

即ち、前記クランプ後の始動後増量係数Kasは、始動後増量要求ではなく、2次空気供給時の増量補正要求に対応する値として用いられる。
但し、始動後増量係数Kasによる補正レベルを0にリセットして、代わりに、2次空気供給時の増量補正要求を満たす補正係数を立ち上げる構成としても良い。
また、始動後増量係数Kasが2次空気供給時の増量補正要求から減少するに従って、2次空気供給時の増量補正係数を増大させる構成とし、始動後増量係数Kasと2次空気供給時の増量補正係数との双方から燃量増量を図る構成としても良い。
That is, the post-start-up increase coefficient Kas after clamping is used as a value corresponding to an increase correction request at the time of secondary air supply, not a post-start-up increase request.
However, the correction level based on the increase coefficient Kas after starting may be reset to 0, and a correction coefficient that satisfies the increase correction request at the time of secondary air supply may be started instead.
Further, as the post-startup increase coefficient Kas decreases from the increase correction request at the time of secondary air supply, the increase correction coefficient at the time of secondary air supply is increased so that the post-startup increase coefficient Kas and the increase at the time of secondary air supply are increased. It is good also as a structure which aims at fuel amount increase from both of a correction coefficient.

上記構成によると、始動から2次空気供給の終了までの間、始動後増量の要求と2次空気供給時用の増量要求との大きい方を選択して、燃料噴射量の増量補正を行なわせることになる(図3参照)。
従って、2次空気以外の他の条件による増量要求と、2次空気の供給に対応するための増量要求とが重なって、過剰な増量補正がなされることが回避されることになり、過剰補正を回避しつつの早期に2次空気の供給及び2次空気の供給に対応する増量を開始させることができ、触媒コンバータ5の活性タイミングを早めることができる。
According to the above configuration, during the period from the start to the end of the secondary air supply, the larger one of the request for the increase after starting and the increase request for supplying the secondary air is selected, and the increase correction of the fuel injection amount is performed. (See FIG. 3).
Accordingly, it is avoided that the increase request due to the condition other than the secondary air overlaps with the increase request for responding to the supply of the secondary air, and the excessive increase correction is avoided. As a result, the supply of the secondary air and the increase corresponding to the supply of the secondary air can be started at an early stage, while the activation timing of the catalytic converter 5 can be advanced.

また、始動後増量による補正要求の方が、2次空気供給時の増量補正要求よりも多いときには、始動後増量による補正要求に従って増量補正することで、始動直後の運転安定性を確保する始動後増量の目的を果たすことができる。
前記2次空気供給時の増量補正要求レベルは、内燃機関の吸入空気量と2次空気の供給量との総和に対して、理論空燃比相当の総燃料量を略得るような値に設定され、シリンダ燃焼混合気の空燃比は理論空燃比よるもリッチになり、該リッチ燃焼で排気系に排出されるHCが、2次空気の供給によるリーン雰囲気下で後燃えすることになる。
Further, when the correction request due to the increase after start is greater than the increase correction request during the secondary air supply, the increase correction is performed according to the correction request due to the increase after start to ensure the operational stability immediately after the start. The purpose of increasing the weight can be achieved.
The increase correction request level at the time of supplying the secondary air is set to a value that can substantially obtain the total fuel amount corresponding to the theoretical air-fuel ratio with respect to the sum of the intake air amount of the internal combustion engine and the supply amount of the secondary air. The air-fuel ratio of the cylinder combustion mixture becomes richer than the stoichiometric air-fuel ratio, and the HC discharged to the exhaust system by the rich combustion is burned after in a lean atmosphere due to the supply of secondary air.

また、2次空気の供給に伴う増量開始(始動後増量の0リセット)に同期して、目標空燃比を理論空燃比(空気過剰率λ=1)とする空燃比フィードバック制御を開始させる。
上記のようにして2次空気を供給すると共に、燃料の増量補正を施すと、2次空気が供給される左バンク1B側の排気系でHCの後燃えが発生し、排気温度の上昇が図られる。
一方、右バンク1A側の排気系には2次空気が供給されないため、右バンク1A側の排気系では殆どHCの後燃えが発生しないが、左バンク1B側の後燃えで残った酸素を含む比較的温度の高い排気と、右バンク1A側の多くのHCを含む排気が合流することで、合流部で再度HCの後燃えが発生する。
In addition, in synchronization with the start of the increase accompanying the supply of secondary air (0 reset of the increase after start-up), the air-fuel ratio feedback control for setting the target air-fuel ratio to the theoretical air-fuel ratio (excess air ratio λ = 1) is started.
When the secondary air is supplied and the fuel increase correction is performed as described above, afterburning of HC occurs in the exhaust system on the left bank 1B side to which the secondary air is supplied, and the exhaust temperature rises. It is done.
On the other hand, since secondary air is not supplied to the exhaust system on the right bank 1A side, there is almost no HC afterburning in the exhaust system on the right bank 1A side, but oxygen remaining from the afterburning on the left bank 1B side is included. When the exhaust gas having a relatively high temperature and the exhaust gas containing a lot of HC on the right bank 1A side merge, HC afterburning occurs again at the junction.

従って、触媒コンバータ5に後燃えによって昇温された排気が導入され、触媒活性が促進される一方、後燃えによって排気中のHCが無害成分に変換されることになり、2次空気を加熱する手段を備えることなく、触媒の早期活性と始動直後におけるHC排出量の低減を図れる。
左右バンクの排気マニホールドに対して2次空気を供給すると、それぞれでHCの後燃えが発生するが、この場合、触媒コンバータ5までの排気管長が長いと、その間に排気温度が低下して触媒コンバータ5の昇温を充分に促進させることができない。
Accordingly, the exhaust gas whose temperature is increased by the afterburning is introduced into the catalytic converter 5 and the catalytic activity is promoted. On the other hand, the HC in the exhaust gas is converted into a harmless component by the afterburning, and the secondary air is heated. Without providing any means, early activation of the catalyst and reduction of HC emissions immediately after startup can be achieved.
When secondary air is supplied to the exhaust manifolds of the left and right banks, afterburning of HC occurs. In this case, if the exhaust pipe length to the catalytic converter 5 is long, the exhaust temperature decreases during that time, and the catalytic converter 5 cannot be sufficiently promoted.

これに対して、排気の流れ方法に沿って2段階にHCの後燃えが発生する構成であれば、排気温度を高く保持して触媒コンバータ5に導入させることができ、触媒コンバータ5までの排気管長が長くても、触媒コンバータ5の昇温を充分に促進させることができる。
ところで、2次空気の供給量に対して増量が多すぎると、触媒コンバータ5の入口での排気空燃比がリッチとなり、逆に、2次空気の供給量に対して増量が少なすぎると、触媒コンバータ5の入口での排気空燃比がリーンとなる。
On the other hand, if the HC afterburning occurs in two stages along the exhaust flow method, the exhaust temperature can be kept high and introduced into the catalytic converter 5. Even if the pipe length is long, the temperature rise of the catalytic converter 5 can be sufficiently promoted.
By the way, if the increase is excessive with respect to the supply amount of the secondary air, the exhaust air-fuel ratio at the inlet of the catalytic converter 5 becomes rich. Conversely, if the increase is too small with respect to the supply amount of the secondary air, the catalyst The exhaust air-fuel ratio at the inlet of the converter 5 becomes lean.

しかし、触媒コンバータ5の入口での排気空燃比が空燃比センサ24で検出されて、燃料噴射量がフィードバック制御される結果、2次空気供給時の増量レベルは、触媒コンバータ5の入口での排気空燃比が理論空燃比になるように修正されることになる。
従って、予め設定される2次空気供給時の増量補正要求レベルに誤差があっても、2次空気の供給量や後燃えの状態に適合する増量レベルに補正され、触媒活性を安定的に促進でき、また、HCの排出量を安定的に抑制できる。
However, the exhaust air-fuel ratio at the inlet of the catalytic converter 5 is detected by the air-fuel ratio sensor 24, and the fuel injection amount is feedback controlled. As a result, the increase level during the supply of secondary air is the exhaust level at the inlet of the catalytic converter 5. The air-fuel ratio is corrected to the stoichiometric air-fuel ratio.
Therefore, even if there is an error in the preset increase correction request level when supplying secondary air, it is corrected to an increase level suitable for the supply amount of secondary air and the state of afterburning, and the catalyst activity is stably promoted. In addition, HC emissions can be stably suppressed.

ステップS6では、点火時期のリタード開始条件が成立しているか否かを判別する。
点火時期のリタード開始条件として、例えば、2次空気供給開始後から所定時間が経過していることを判別させ、機関1が2次空気の供給及び増量補正が行なわれる状態で安定的に運転されるようになってから、点火時期をリタードさせることが好ましい。
但し、2次空気の供給開始と同時に、点火時期をリタードさせても良い。
In step S6, it is determined whether or not the ignition timing retard start condition is satisfied.
As the ignition timing retard start condition, for example, it is determined that a predetermined time has elapsed since the start of the secondary air supply, and the engine 1 is stably operated in a state where the supply of the secondary air and the increase correction are performed. After that, it is preferable to retard the ignition timing.
However, the ignition timing may be retarded simultaneously with the start of the supply of secondary air.

点火時期のリタード開始条件が成立しているときには、ステップS7へ進んで、点火時期を通常値よりもリタードする。
前記点火時期のリタード量は、2次空気の供給に伴う増量によるリッチ混合気の燃焼状態で、安定限界内となる値に設定する。
即ち、燃料が増量されて燃焼混合気の空燃比がリッチ化する分だけ、リタード限界が拡大するので、その分、点火時期をリタードさせる。
When the ignition timing retard start condition is satisfied, the routine proceeds to step S7, where the ignition timing is retarded from the normal value.
The retard amount at the ignition timing is set to a value that is within the stability limit in the combustion state of the rich air-fuel mixture due to the increase accompanying the supply of secondary air.
That is, the retard limit is increased by the amount that the fuel is increased and the air-fuel ratio of the combustion mixture is enriched, so that the ignition timing is retarded accordingly.

点火時期をリタードさせることで、機関1から排出される排気温度を上昇させることができ、前記2次空気の供給及び燃料増量による効果と相まって、触媒コンバータ5の活性化をより促進させることができる。
ステップS8では、エアポンプ11による2次空気の供給開始から所定時間が経過したか否かを判別する。
By retarding the ignition timing, the exhaust temperature discharged from the engine 1 can be raised, and the activation of the catalytic converter 5 can be further promoted in combination with the effects of the supply of secondary air and the increase in fuel. .
In step S8, it is determined whether or not a predetermined time has elapsed since the supply of secondary air by the air pump 11 was started.

そして、2次空気の供給を前記所定時間だけ行なうと、ステップS9へ進み、エアポンプ11を停止させ、かつ、2次空気制御弁14を閉制御する。
次のステップS10では、始動後増量係数Kasのクランプを停止させ、始動後増量係数Kasによる増量レベルを0にリセットすることで、2次空気の供給に対応する全気筒の増量補正を停止させる。
When the secondary air is supplied for the predetermined time, the process proceeds to step S9, the air pump 11 is stopped, and the secondary air control valve 14 is closed.
In the next step S10, clamping of the post-startup increase coefficient Kas is stopped, and the increase level based on the post-startup increase coefficient Kas is reset to 0, thereby stopping the increase correction of all cylinders corresponding to the supply of secondary air.

ステップS11では、点火時期のリタードを停止させ、機関負荷・機関回転速度に応じた通常の点火時期に戻す。
尚、上記実施形態では、内燃機関をV型機関としたが、この他、W型エンジン,水平対向エンジンなどであっても良く、更に、直列エンジンにおいて、機関直下の排気系が複数独立して設けられる構成であっても良い。
In step S11, the ignition timing retard is stopped and returned to the normal ignition timing according to the engine load and the engine speed.
In the above embodiment, the internal combustion engine is a V-type engine. However, other than this, a W-type engine, a horizontally opposed engine, or the like may be used. The structure provided may be sufficient.

更に、排気系におけるHCの後燃え状態に応じて、2次空気が供給される排気系に対応する気筒への増量と、2次空気が供給されない排気系に対応する気筒への増量とを異ならせる構成とすることができる。
例えば、2次空気が供給される排気系における2次空気供給部よりも下流側での排気温度を検出する一方、排気系の集合部付近の排気温度を検出し、これらの温度からHCの後燃え状態を検出し、該検出結果に基づいて増量レベルを左右バンク間で増減させることができる。
Furthermore, the increase to the cylinder corresponding to the exhaust system to which the secondary air is supplied differs from the increase to the cylinder corresponding to the exhaust system to which the secondary air is not supplied according to the afterburning state of the HC in the exhaust system. It can be set as the structure to make.
For example, the exhaust temperature at the downstream side of the secondary air supply unit in the exhaust system to which the secondary air is supplied is detected, while the exhaust temperature in the vicinity of the collecting part of the exhaust system is detected, and the HC is detected from these temperatures. It is possible to detect the burning state and increase or decrease the increase level between the left and right banks based on the detection result.

更に、燃料供給量の増量分を例えば排気行程で噴射させ、より積極的にHCを排気系に供給する構成とすることができる。
ここで、上記実施形態から把握し得る請求項以外の技術思想について、以下にその効果と共に記載する。
(イ)請求項1〜6のいずれか1つに記載の内燃機関の2次空気供給装置において、
前記触媒装置の入口部における排気空燃比を検出する空燃比センサを備え、
少なくとも2次空気の供給が行なわれるときに、前記空燃比センサで検出される空燃比が理論空燃比になるように、燃料供給量をフィードバック制御することを特徴とする内燃機関の2次空気供給装置。
Furthermore, the fuel supply amount can be increased by, for example, injecting the fuel supply amount in the exhaust stroke and more actively supplying HC to the exhaust system.
Here, technical ideas other than the claims that can be grasped from the above embodiment will be described together with the effects thereof.
(A) In the secondary air supply device for an internal combustion engine according to any one of claims 1 to 6,
An air-fuel ratio sensor for detecting an exhaust air-fuel ratio at the inlet of the catalyst device;
A secondary air supply for an internal combustion engine, wherein the fuel supply amount is feedback-controlled so that the air-fuel ratio detected by the air-fuel ratio sensor becomes a stoichiometric air-fuel ratio when at least secondary air is supplied. apparatus.

かかる構成によると、触媒入口の空燃比を理論空燃比にフィードバック制御することで、2次空気の供給で後燃えするだけの燃料を過不足なく供給させることができ、増量過多によるHC排出量の増大、増量不足による触媒活性不良の発生を回避する。
(ロ)請求項5記載の内燃機関の2次空気供給装置において、
前記他の増量補正が、機関の始動後から徐々に小さく変更される始動後増量補正であり、該始動後増量補正における要求値が、前記2次空気を供給するときの増量補正要求値と同レベルにまで低下した時点で2次空気の供給を開始させることを特徴とする内燃機関の2次空気供給装置。
According to such a configuration, by performing feedback control of the air-fuel ratio at the catalyst inlet to the stoichiometric air-fuel ratio, it is possible to supply fuel that is sufficient for afterburning with the supply of secondary air without excess or deficiency. The occurrence of catalyst activity failure due to increase or insufficient increase is avoided.
(B) In the secondary air supply device for an internal combustion engine according to claim 5,
The other increase correction is a post-start-up increase correction that is gradually changed from the start of the engine, and the required value in the post-start-up increase correction is the same as the increase correction required value when the secondary air is supplied. A secondary air supply device for an internal combustion engine, wherein supply of secondary air is started when the level drops to a level.

かかる構成によると、始動後増量が徐々に減算されて、2次空気を供給するときの増量補正要求値に一致するまで小さくなると、その時点から2次空気の供給を開始し、その後は、前記2次空気の供給に対応する増量補正を行なう。
従って、始動後増量の要求を満たしつつ、早期に2次空気の供給を開始させることができ、かつ、2次空気の供給開始後に燃料供給量が過剰に増量されることが回避される。
(ハ)請求項6記載の内燃機関の2次空気供給装置において、
前記2次空気の供給開始から所定時間が経過してから、点火時期をリタード補正することを特徴とする内燃機関の2次空気供給装置。
According to such a configuration, when the increase after starting is gradually subtracted and becomes small until it matches the increase correction request value when supplying the secondary air, the supply of the secondary air is started from that point. An increase correction corresponding to the supply of secondary air is performed.
Therefore, it is possible to start the supply of secondary air at an early stage while satisfying the request for an increase after start-up, and it is possible to avoid an excessive increase in the fuel supply amount after the start of the supply of secondary air.
(C) The secondary air supply device for an internal combustion engine according to claim 6,
A secondary air supply device for an internal combustion engine, wherein the ignition timing is retarded after a predetermined time has elapsed from the start of supply of the secondary air.

かかる構成によると、2次吸気が供給されかつ燃料供給量が増量される状態での運転が安定してから、点火時期をリタードさせることができ、点火時期のリタードによって運転安定性が大きく低下することを回避できる。   According to this configuration, the ignition timing can be retarded after the operation in a state where the secondary intake air is supplied and the fuel supply amount is increased, and the operation stability is greatly reduced by the retard of the ignition timing. You can avoid that.

実施形態における内燃機関のシステム構成図。1 is a system configuration diagram of an internal combustion engine in an embodiment. 実施形態における2次空気供給制御を示すフローチャート。The flowchart which shows the secondary air supply control in embodiment. 実施形態における2次空気供給量,燃量増量,空燃比,排気温度,点火時期の変化特性を示すタイムチャート。The time chart which shows the change characteristic of the secondary air supply amount in the embodiment, the fuel amount increase, the air-fuel ratio, the exhaust temperature, and the ignition timing.

符号の説明Explanation of symbols

1…内燃機関、1A…右バンク、1B…左バンク、2A,2B…排気マニホールド、3A,3B…排気ダクト、4…集合ダクト、5…触媒コンバータ、6…エアクリーナ、7…吸気管、8…スロットルバルブ、9…燃料噴射弁、10…点火プラグ、11…エアポンプ、12…2次空気吸込管、13…2次空気供給管、14…2空気制御弁、20…エンジンコントロールユニット(ECU)、21…エアフローメータ、22…クランク角センサ、23…水温センサ、24…空燃比センサ   DESCRIPTION OF SYMBOLS 1 ... Internal combustion engine, 1A ... Right bank, 1B ... Left bank, 2A, 2B ... Exhaust manifold, 3A, 3B ... Exhaust duct, 4 ... Collecting duct, 5 ... Catalytic converter, 6 ... Air cleaner, 7 ... Intake pipe, 8 ... Throttle valve, 9 ... Fuel injection valve, 10 ... Spark plug, 11 ... Air pump, 12 ... Secondary air suction pipe, 13 ... Secondary air supply pipe, 14 ... Two air control valve, 20 ... Engine control unit (ECU), 21 ... Air flow meter, 22 ... Crank angle sensor, 23 ... Water temperature sensor, 24 ... Air-fuel ratio sensor

Claims (6)

内燃機関直下の排気系が複数独立して設けられ、該複数の排気系の集合部よりも下流に触媒装置を設置してなる内燃機関の2次空気供給装置であって、
前記複数の排気系の一部に2次空気を供給すると共に、2次空気を供給するときに、2次空気が供給される排気系に対応する気筒、及び、2次空気が供給されない排気系に対応する気筒に対して、燃料供給量の増量補正を行なうことを特徴とする内燃機関の2次空気供給装置。
A secondary air supply device for an internal combustion engine, wherein a plurality of exhaust systems directly below the internal combustion engine are provided independently, and a catalyst device is installed downstream of a collection portion of the plurality of exhaust systems,
A cylinder corresponding to an exhaust system to which secondary air is supplied when supplying secondary air to a part of the plurality of exhaust systems, and an exhaust system to which secondary air is not supplied A secondary air supply device for an internal combustion engine, wherein an increase correction of the fuel supply amount is performed for the cylinders corresponding to.
前記内燃機関の吸入空気量と2次空気の供給量との総和に見合う総燃料量になるように、燃料供給量の増量補正を行なうことを特徴とする請求項1記載の内燃機関の2次空気供給装置。   2. The secondary of the internal combustion engine according to claim 1, wherein an increase correction of the fuel supply amount is performed so that the total fuel amount matches the sum of the intake air amount and the secondary air supply amount of the internal combustion engine. Air supply device. 前記内燃機関が複数のバンクを有して構成され、前記複数のバンク毎に独立した排気系を有することを特徴とする請求項1又は2記載の内燃機関の2次空気供給装置。   The secondary air supply device for an internal combustion engine according to claim 1 or 2, wherein the internal combustion engine includes a plurality of banks and has an independent exhaust system for each of the plurality of banks. 2次空気の供給に伴う燃料供給量の増量を、他の条件に応じた燃料供給量の増量分に応じて変更することを特徴とする請求項1〜3のいずれか1つに記載の内燃機関の2次空気供給装置。   The internal combustion engine according to any one of claims 1 to 3, wherein the increase in the fuel supply amount accompanying the supply of the secondary air is changed according to the increase in the fuel supply amount according to other conditions. Engine secondary air supply device. 2次空気の供給に対応する増量補正要求値と、他の条件に応じた増量補正要求値との大きい方を、前記2次空気を供給するときの増量目標とすることを特徴とする請求項4記載の内燃機関の2次空気供給装置。   The larger one of the increase correction request value corresponding to the supply of secondary air and the increase correction request value according to other conditions is set as an increase target when supplying the secondary air. The secondary air supply device for an internal combustion engine according to claim 4. 前記2次空気の供給中に、点火時期をリタード補正することを特徴とする請求項1〜5のいずれか1つに記載の内燃機関の2次空気供給装置。   The secondary air supply device for an internal combustion engine according to any one of claims 1 to 5, wherein the ignition timing is retarded during the supply of the secondary air.
JP2004162801A 2004-06-01 2004-06-01 Secondary air supply device for internal combustion engine Pending JP2005344535A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004162801A JP2005344535A (en) 2004-06-01 2004-06-01 Secondary air supply device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004162801A JP2005344535A (en) 2004-06-01 2004-06-01 Secondary air supply device for internal combustion engine

Publications (1)

Publication Number Publication Date
JP2005344535A true JP2005344535A (en) 2005-12-15

Family

ID=35497164

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004162801A Pending JP2005344535A (en) 2004-06-01 2004-06-01 Secondary air supply device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP2005344535A (en)

Similar Documents

Publication Publication Date Title
JP2008223765A (en) Engine control method
JP5136722B2 (en) Control device for internal combustion engine
JP2009257236A (en) Detector for abnormal air-fuel ratio variation between cylinders of multiple cylinder internal combustion engine
JP2006316735A (en) Exhaust emission control device for internal combustion engine
JP4378829B2 (en) Control device for internal combustion engine
JP2006052684A (en) Control device of engine
JP4254021B2 (en) Catalyst early warm-up control device for in-cylinder internal combustion engine
JP2018135858A (en) Internal combustion engine abnormality diagnostic device
JPH11107827A (en) Catalyst temperature controller for internal combustion engine
JP2017115620A (en) Control device of internal combustion engine
US6675574B2 (en) Control unit for internal combustion engine
JP2008180184A (en) Control device for cylinder injection type spark ignition internal combustion engine
JP2000130221A (en) Fuel injection control device of internal combustion engine
JP2005344535A (en) Secondary air supply device for internal combustion engine
JP2009156153A (en) Fuel injection control system for internal combustion engine
JP2006029231A (en) Secondary air supply device for internal combustion engine
JP2017115615A (en) Internal combustion engine control device
JP4232373B2 (en) Engine exhaust purification system
JP2008014248A (en) Fuel injection control device for internal combustion engine
JP6642220B2 (en) Exhaust gas purification device
JP2004143982A (en) Engine speed control device
JP2011026999A (en) Catalyst warming-up control device
JP5883323B2 (en) Engine control device
JP2004076591A (en) Secondary air supply control device for internal combustion engine
JP2004116295A (en) Exhaust emission control device of internal combustion engine