JP2005344202A - Method for nitriding metal mold and method for evaluating nitrided metal mold - Google Patents
Method for nitriding metal mold and method for evaluating nitrided metal mold Download PDFInfo
- Publication number
- JP2005344202A JP2005344202A JP2004168611A JP2004168611A JP2005344202A JP 2005344202 A JP2005344202 A JP 2005344202A JP 2004168611 A JP2004168611 A JP 2004168611A JP 2004168611 A JP2004168611 A JP 2004168611A JP 2005344202 A JP2005344202 A JP 2005344202A
- Authority
- JP
- Japan
- Prior art keywords
- nitriding
- mold
- difference
- metal mold
- plane
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Heat Treatment Of Articles (AREA)
- Analysing Materials By The Use Of Radiation (AREA)
- Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
Abstract
Description
本発明は、金型用合金工具鋼の窒化方法およびその評価方法に関するものである。 The present invention relates to a nitriding method of an alloy tool steel for a mold and an evaluation method thereof.
一般に金型用合金工具鋼を母材とする金型表面の高硬度化、圧縮残留応力および潤滑性の付与を目的として、この金型を窒化して使用される場合が多い。一方、窒化することによって、金型が大割れする危険性も高まるため、窒化を適切に施すことが必要であるが、しかし、現在のところ経験的に行われている場合が多いのが実状である。その金型の硬度化等による寿命延長を図るために、例えば特開平10−287965号公報(特許文献1)には、耐ヒートクラック性に優れる熱間加工用金型を提供することを目的として、窒化層の拡散層中のC量が、基地のC量と比較して80%以上100%未満であり、さらに基地の硬さより高い硬化層の深さが100μm以下からなる熱間加工用金型が提案されている。 In general, this mold is often nitrided and used for the purpose of increasing the hardness of the mold surface and imparting compressive residual stress and lubricity using a metal alloy tool steel for the mold as a base material. On the other hand, nitriding also increases the risk of large cracks in the mold, so it is necessary to perform nitriding appropriately, but at present it is often done empirically at present. is there. In order to extend the service life by increasing the hardness of the mold, for example, Japanese Patent Laid-Open No. 10-287965 (Patent Document 1) aims to provide a hot working mold having excellent heat crack resistance. In addition, the amount of C in the diffusion layer of the nitride layer is 80% or more and less than 100% compared with the amount of C in the base, and the depth of the hardened layer higher than the base hardness is 100 μm or less. A type has been proposed.
また、高い耐ヒートチェック性を確保することを目的に、例えば特開2000−334544号公報(特許文献2)には、母材硬さを30〜44HRC、窒化層の硬さを500〜900HV、窒化層の硬化深さを80μm以下とし、かつ化合物層を形成しないこと特徴としたものが開示されている。また、高い耐摩耗性を付与することを目的として、特開2001−73087号公報(特許文献3)には、窒化層の表面から25μm内部での硬さが1100HV以上であることを特徴としたものが開示されている。さらに、特開2001−316795号公報(特許文献4)には、X線を利用して、ガス浸硫窒化面における組成比が最適化できることが開示されている。 Moreover, for the purpose of ensuring high heat check resistance, for example, Japanese Patent Laid-Open No. 2000-334544 (Patent Document 2) includes a base material hardness of 30 to 44 HRC, a nitride layer hardness of 500 to 900 HV, It is disclosed that the nitrided layer has a hardening depth of 80 μm or less and does not form a compound layer. In addition, for the purpose of imparting high wear resistance, Japanese Patent Laid-Open No. 2001-73087 (Patent Document 3) is characterized in that the hardness within 25 μm from the surface of the nitride layer is 1100 HV or more. Are disclosed. Furthermore, Japanese Patent Laid-Open No. 2001-316795 (Patent Document 4) discloses that the composition ratio on the gas oxysulfurizing surface can be optimized using X-rays.
しかしながら、上述した特許文献1は、拡散層中のC量および硬化深さに最適値があることを開示したものであるが、窒化の目的の一つである圧縮残留応力が適切に付与されているかを判断する指標については一切触れられていない。また、特許文献2は、特許文献1と同様に、窒化した金型では表層の圧縮残留応力が重要な役割を果たすが、その判断指標については一切触れられていない。また、特許文献3には、ヒートチェックを含めた耐割れ性を測る指標については一切触れられていない。さらに、特許文献4には、本発明で対象とした母材基地をX線法を利用することによって最適化することについては一切触れられていない。
However,
一方、窒化は安価で、かつ簡便な表面硬化法であり、金型にも幅広く適用されているが、熱間金型では耐ヒートクラック性の改善、冷間金型では耐割れ性の向上が必須となっている。これまでに窒化層の組織制御、硬さ分布の最適化が提案されてきたが、型材の種類、用途、使用条件によって最適範囲が異なるのが現状であり、最適範囲を経験的に模索しているのが現状である。 On the other hand, nitriding is an inexpensive and simple surface hardening method, and is widely applied to molds. However, hot molds have improved heat crack resistance and cold molds have improved crack resistance. It is essential. So far, the microstructure control of the nitrided layer and the optimization of the hardness distribution have been proposed, but the optimal range varies depending on the type of mold material, application, and usage conditions. The current situation is.
上述したような問題を解消するために、発明者らは鋭意研究を重ねた結果、一般的なX線法を用い、窒化によって金型材の基地のX線回折角、半価幅が変化することを利用して、ガス窒化、イオン窒化、塩浴窒化などのいずれの手法においても最適な窒化を施すことができる窒化方法およびその評価方法を提供するものである。つまり、金型材の基地のX線回折角、半価幅が所定の値以上になるように窒化処理に用いるガスもしくは塩浴成分の種類、処理温度、処理時間を選定することにより、金型表面に圧縮残留応力を最適な範囲で生じさせることが可能である。この圧縮残留応力により金型表面でのヒートクラック、割れ発生が著しく抑制される。 In order to solve the above-mentioned problems, the inventors have conducted extensive research. As a result, the X-ray diffraction angle and the half-value width of the base of the mold material are changed by nitriding using a general X-ray method. The present invention provides a nitriding method and an evaluation method thereof that can perform optimum nitriding in any method such as gas nitriding, ion nitriding, and salt bath nitriding. In other words, by selecting the type of gas or salt bath components used in the nitriding process, the processing temperature, and the processing time so that the X-ray diffraction angle and the half width at the base of the mold material are equal to or greater than a predetermined value, the mold surface It is possible to generate a compressive residual stress in an optimum range. Due to this compressive residual stress, the occurrence of heat cracks and cracks on the mold surface is remarkably suppressed.
その発明の要旨とするところは、
(1)合金工具鋼に窒化を施した金型において、表面に窒化を施した箇所と窒化を施していない箇所のα相の(200)面、および/または(211)面からの回折角の差δ2θが0.3°以上、および/または半価幅の差δWが0.3°以上になるように、窒化処理に用いるガス比、または塩浴組成比、処理温度、処理時間を選定することを特徴とする金型の窒化方法。
The gist of the invention is that
(1) In a die obtained by nitriding alloy tool steel, the diffraction angle from the (200) plane and / or (211) plane of the α phase of the portion where the surface is nitrided and the portion where nitriding is not performed The gas ratio or salt bath composition ratio, processing temperature, and processing time are selected so that the difference δ2θ is 0.3 ° or more and / or the half-value width difference δW is 0.3 ° or more. A method for nitriding a mold.
(2)前記(1)記載の方法において、α相の(200)面、および/または(211)面からの回折角の差δ2θが0.6°以上、および/または半価幅の差δWが0.5°以上であることを特徴とする金型の窒化方法。
(3)前記(1)または(2)記載のα相の(200)面、および/または(211)面からの回折角の差δ2θ、および/または半価幅の差δWの値から金型の表面の劣化を評価し金型を交換することを特徴とする金型の評価方法にある。
(2) In the method described in the above (1), the diffraction angle difference δ2θ from the (200) plane and / or the (211) plane of the α phase is 0.6 ° or more and / or the half width difference δW. Is a mold nitriding method, characterized by being 0.5 ° or more.
(3) From the value of diffraction angle difference δ2θ and / or half-value width difference δW from (200) plane and / or (211) plane of α phase as described in (1) or (2) above, mold There is a mold evaluation method characterized in that the deterioration of the surface of the mold is evaluated and the mold is replaced.
以上述べたように、本発明により、金型表面への最適、かつ安定した窒化処理を施すことが可能となり、金型の長寿命を図ることができる優れた効果を奏するものである。 As described above, according to the present invention, it is possible to perform an optimum and stable nitriding treatment on the mold surface, and the excellent effect of prolonging the life of the mold can be achieved.
以下、本発明について図面に従って詳細に説明する。 本発明に係る金型用合金工具鋼としては、JIS−SKD11などの冷間工具鋼やJIS−SKD61などの熱間工具鋼、更にはこれらのJIS鋼種に各種元素を添加し改良を加えた工具鋼について用いることができる。この金型用合金工具鋼の金型使用前の初期状態をX線回折法を利用して、窒化処理が施されている金型表面と窒化処理が施されていない箇所のα相から得られる回折角と半価幅を測定した。図1は、X線回折によるα−Fe(フェライト)とγ−Fe(オーステナイト)のX線回折パターンの一例を示す図である。横軸に回折角(2θ度)、縦軸に強度をとったとき、この図に示すように、ピーク値がα(200)、γ(220)、α(211)、およびγ(311)の順に現れていることが判る。本発明では、この測定されたピーク値であるα(200)面、(211)面を用いた。 Hereinafter, the present invention will be described in detail with reference to the drawings. Alloy tool steels for molds according to the present invention include cold tool steels such as JIS-SKD11, hot tool steels such as JIS-SKD61, and tools obtained by adding various elements to these JIS steel types and improving them. It can be used for steel. Using the X-ray diffraction method, the initial state of the tool tool steel for molds before use of the mold is obtained from the surface of the mold that has been subjected to nitriding treatment and the α phase of the portion that has not been subjected to nitriding treatment. The diffraction angle and half width were measured. FIG. 1 is a diagram showing an example of X-ray diffraction patterns of α-Fe (ferrite) and γ-Fe (austenite) by X-ray diffraction. When the horizontal axis represents the diffraction angle (2θ degrees) and the vertical axis represents the intensity, as shown in this figure, the peak values are α (200), γ (220), α (211), and γ (311). It can be seen that they appear in order. In the present invention, the α (200) plane and (211) plane, which are the measured peak values, were used.
図2は、X線回折によるピーク値での回折角および半価幅を示す図である。ここで、回折角とは、材料にX線を当てると、材料特有の格子面でX線は回折し、図に示すように、X線回折パターンが得られる。このX線回折パターンによる最大ピーク高さが得られる角度を回折角という。また、このX線回折パターンによる最大ピーク高さの半分の位置でのピーク幅を半価幅(W)という。図3は、X線回折によるピーク値での回折角および半価幅の変化状態を示した図である。図3(a)は材料の内部状態によって、回折角がずれたりする状態を示している。また、図3(b)は材料の内部状態によって、半価幅が広がったりする状態を示している。 FIG. 2 is a diagram showing a diffraction angle and a half width at a peak value by X-ray diffraction. Here, the diffraction angle means that when X-rays are applied to the material, the X-rays are diffracted by a lattice plane specific to the material, and an X-ray diffraction pattern is obtained as shown in the figure. The angle at which the maximum peak height is obtained by this X-ray diffraction pattern is called the diffraction angle. Further, the peak width at the half of the maximum peak height according to the X-ray diffraction pattern is referred to as a half width (W). FIG. 3 is a diagram showing a change state of a diffraction angle and a half width at a peak value by X-ray diffraction. FIG. 3A shows a state where the diffraction angle is shifted depending on the internal state of the material. FIG. 3B shows a state in which the half width is expanded depending on the internal state of the material.
上記したように、材料の内部状態によって回折角がずれたり半価幅が広がったりする。そこで、初期状態では、金型表面のα相からの回折角は、窒化処理がされていない箇所よりも低角側に1°以上移行し、半価幅が0.8°以上広がっていることを確認した。また、金型を使用して、使用サイクル数の増加に伴い、窒化処理がされている金型表面と窒化処理がされていない箇所のα相から得られる回折角と半価幅の差は小さくなる。具体的には、金型表面のα相からの回折角が内部で得られる回折角よりも低角側に0.3°以上移行し、半価幅が0.3°以上広がるように、窒化処理に用いるガス比、塩浴組成比、処理温度、または処理時間を選定することにより、金型表面に適切な範囲の圧縮残留応力を付与するものである。 As described above, the diffraction angle is deviated or the half width is widened depending on the internal state of the material. Therefore, in the initial state, the diffraction angle from the α phase on the mold surface shifts by 1 ° or more to a lower angle side than the portion not subjected to nitriding treatment, and the half width is expanded by 0.8 ° or more. It was confirmed. In addition, as the number of use cycles increases, the difference between the diffraction angle and the half-value width obtained from the α phase of the nitridized mold surface and the non-nitrided part is small. Become. Specifically, the nitriding is performed so that the diffraction angle from the α phase on the mold surface shifts 0.3 ° or more to the lower angle side than the diffraction angle obtained internally, and the half width is expanded 0.3 ° or more. By selecting the gas ratio, salt bath composition ratio, treatment temperature, or treatment time used in the treatment, an appropriate range of compressive residual stress is imparted to the mold surface.
α相の(200)面、および/または(211)面から得られる回折角の差δ2θが0.3°未満では、圧縮残留応力(MPa)値が目的とする圧縮残留応力値より低く、かつ表面から30μm位置の硬さ(HV)の値が得られないために、ヒートクラック発生までのサイクル数が少なくなるために、0.3°以上とした。また、半価幅の差δWが0.3°未満では、回折角の差δ2θと同様に、圧縮残留応力(MPa)値が目的とする圧縮残留応力値より低くいために、ヒートクラック発生までのサイクル数が少なくなる。従って、0.3°以上とした。さらに好ましくは、回折角の差δ2θが0.6°以上、および/または半価幅δWの差が0.5°以上とする。 When the difference in diffraction angle δ2θ obtained from the (200) plane of the α phase and / or the (211) plane is less than 0.3 °, the compressive residual stress (MPa) value is lower than the target compressive residual stress value, and Since the value of hardness (HV) at a position of 30 μm from the surface cannot be obtained, the number of cycles until the occurrence of heat cracks is reduced, so the angle is set to 0.3 ° or more. When the half width difference δW is less than 0.3 °, the compression residual stress (MPa) value is lower than the target compression residual stress value as in the case of the diffraction angle difference δ2θ. The number of cycles is reduced. Accordingly, the angle is set to 0.3 ° or more. More preferably, the diffraction angle difference δ2θ is 0.6 ° or more and / or the half-value width δW is 0.5 ° or more.
上述したように、α相の(200)面、および/または(211)面から得られる回折角の差δ2θおよび/または半価幅δWの差が、それぞれ0.3°になるように、窒化処理に用いるガス比、塩浴組成比、処理温度、または処理時間を選定するものであるが、その具体的な方法としては、例えば、ガス窒化処理に用いるガスは、アンモニアガスを含有する窒化雰囲気ガスを用い、そのアンモニアガス含有量は20〜60%とする。塩浴組成比としては、シアン酸塩の含有量を30〜60%とする。また、処理温度としては、450〜600℃の範囲で行ない、処理時間としては、5〜30時間、二次窒化としては、窒化雰囲気ガスを200〜450℃の範囲で選択する所定の温度で、処理時間としては、0.5〜5時間の範囲で行う。 As described above, nitriding is performed so that the difference in diffraction angle δ2θ and / or the half width δW obtained from the (200) plane and / or (211) plane of the α phase is 0.3 °, respectively. The gas ratio, salt bath composition ratio, treatment temperature, or treatment time used for the treatment is selected. As a specific method thereof, for example, the gas used for the gas nitriding treatment is a nitriding atmosphere containing ammonia gas. Gas is used, and the ammonia gas content is 20 to 60%. As the salt bath composition ratio, the content of cyanate is 30 to 60%. Further, the processing temperature is 450 to 600 ° C., the processing time is 5 to 30 hours, and the secondary nitriding is a predetermined temperature for selecting a nitriding atmosphere gas in the range of 200 to 450 ° C. The treatment time is 0.5 to 5 hours.
一方、これらを利用して金型の劣化を評価し、金型交換に必要な有無の判断評価に利用することができる。例えば、使用中に測定したα相の(200)面、および/または(211)面から得られる回折角の差δ2θおよび/または半価幅δWの差が、それぞれ使用前または使用初期に測定した金型の回折角の差δ2θおよび/または半価幅δWの差に対して1/2〜1/3になったときに金型を交換すると言うものである。 On the other hand, the deterioration of the mold can be evaluated using these, and it can be used for the judgment evaluation of whether or not it is necessary for the mold replacement. For example, the diffraction angle difference δ2θ and / or the half-value width δW obtained from the (200) plane and / or (211) plane of the α phase measured during use was measured before or at the beginning of use, respectively. The mold is exchanged when the diffraction angle difference δ2θ and / or the half-value width δW of the mold becomes 1/2 to 3.
(実施例1)
以下、本発明について実施例によって具体的に説明する。
金型鋼(SKD61相当)の素材を1t真空誘導溶解炉にて溶製し、得られた鋼塊をφ100mmに鍛造した後、焼鈍を行ない供試材とした。供試材は1030℃から焼入れ後、550〜650℃の各温度で焼もどし処理を繰り返し2回行った。窒化はプラズマ窒化により、500〜600℃の処理温度で、1〜10h保持した。ヒートチェック試験は、φ60×60mmの試験片を用い、600℃に加熱後、20℃の水で室温まで急速冷却することにより、熱サイクルを繰り返し与えた。200サイクル毎にヒートクラック発生の有無を確認した。その結果を表1に示す。
(Example 1)
Hereinafter, the present invention will be specifically described with reference to examples.
A mold steel (equivalent to SKD61) was melted in a 1-t vacuum induction melting furnace, and the obtained steel ingot was forged to φ100 mm and then annealed to obtain a test material. The specimen was quenched from 1030 ° C. and then tempered twice at various temperatures of 550 to 650 ° C. Nitriding was performed by plasma nitriding at a processing temperature of 500 to 600 ° C. for 1 to 10 hours. In the heat check test, a test piece having a diameter of 60 × 60 mm was used. After heating to 600 ° C., rapid cooling to room temperature with 20 ° C. water was performed repeatedly. The presence or absence of heat cracks was confirmed every 200 cycles. The results are shown in Table 1.
表1に示すように、No.1〜4は本発明例であり、No.5〜7は比較例である。比較例No.5は回折角の差δ2θの値が0.2と小さいために、圧縮残留応力が低く、かつ表面から30μm位置の硬さは低く、ヒートクラック発生までのサイクル数が少ない。比較例No.6は半価幅の差δWの値が0.2と小さいために、圧縮残留応力が低く、かつヒートクラック発生までのサイクル数が少ない。比較例No.7は回折角の差δ2θの値が0.1と低く、かつ、半価幅の差δWの値が0.2と小さいために、圧縮残留応力が低く、かつ表面から30μm位置の硬さは低く、ヒートクラック発生までのサイクル数が少ないことが分かる。これに対し、本発明例No.1〜4はいずれの性能も優れていることが分かる。 As shown in Table 1, no. 1-4 are examples of the present invention. 5-7 are comparative examples. Comparative Example No. No. 5 has a small diffraction angle difference δ2θ of 0.2, so that the compressive residual stress is low, the hardness at the 30 μm position from the surface is low, and the number of cycles until the occurrence of heat cracks is small. Comparative Example No. No. 6 has a small half-value width difference δW as small as 0.2, so that the compressive residual stress is low and the number of cycles until the occurrence of heat cracks is small. Comparative Example No. 7 has a diffraction angle difference δ2θ as low as 0.1 and a half-value width difference δW as small as 0.2, so that the compressive residual stress is low and the hardness at 30 μm position from the surface is It is low and it turns out that the number of cycles until heat crack generation is small. On the other hand, the present invention example No. It turns out that 1-4 is excellent also in any performance.
(実施例2)
次に、金型鋼(SKD11相当)の素材を1t真空誘導溶解炉にて溶製し、得られた鋼塊をφ100mmに鍛造した後、焼鈍を行ない供試材とした。供試材は1030℃から焼入れ後、450〜550℃の各温度で焼もどし処理を繰り返し2回行った。窒化はプラズマ窒化により、400〜520℃の処理温度で、1〜10h保持した。疲労試験は、平行部φ6×10mmの回転曲げ試験片を用い、106 回で割れが生じない応力で評価した。その結果を表2に示す。
(Example 2)
Next, a mold steel (equivalent to SKD11) was melted in a 1-t vacuum induction melting furnace, and the obtained steel ingot was forged to φ100 mm and then annealed to obtain a test material. The specimen was quenched from 1030 ° C. and then tempered repeatedly at each temperature of 450 to 550 ° C. twice. Nitriding was performed by plasma nitriding at a processing temperature of 400 to 520 ° C. for 1 to 10 hours. In the fatigue test, a rotating bending test piece having a parallel part φ6 × 10 mm was used, and the evaluation was performed with a stress that does not cause cracking 10 6 times. The results are shown in Table 2.
表2に示すように、No.8〜11は本発明例であり、No.12〜14は比較例である。比較例No.12は回折角の差δ2θの値が0.2と小さいために、圧縮残留応力が低く、かつ106 回で割れが生じない応力値が小さい。比較例No.13は半価幅の差δWの値が0.2と小さいために、圧縮残留応力が低く、かつ106 回で割れが生じない応力値が小さい。比較例No.14は回折角の差δ2θの値が0.1と低く、かつ、半価幅の差δWの値が0.2と小さいために、圧縮残留応力が低く、かつ106 回で割れが生じない応力値が小さい。これに対し、本発明例No.8〜11はいずれの性能も優れていることが分かる。 As shown in Table 2, no. Nos. 8 to 11 are examples of the present invention. 12 to 14 are comparative examples. Comparative Example No. No. 12 has a diffraction angle difference δ 2θ as small as 0.2, so the compressive residual stress is low and the stress value at which cracking does not occur after 10 6 times is small. Comparative Example No. No. 13 has a small half-value width difference δW of 0.2, so the compressive residual stress is low and the stress value at which cracking does not occur after 10 6 times is small. Comparative Example No. No. 14 has a diffraction angle difference δ2θ as low as 0.1 and a half-value width difference δW as small as 0.2, so that the compressive residual stress is low and cracking does not occur after 10 6 times. Stress value is small. On the other hand, the present invention example No. It can be seen that 8 to 11 are all excellent in performance.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004168611A JP4531448B2 (en) | 2004-06-07 | 2004-06-07 | Mold nitriding method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004168611A JP4531448B2 (en) | 2004-06-07 | 2004-06-07 | Mold nitriding method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005344202A true JP2005344202A (en) | 2005-12-15 |
JP4531448B2 JP4531448B2 (en) | 2010-08-25 |
Family
ID=35496846
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004168611A Expired - Fee Related JP4531448B2 (en) | 2004-06-07 | 2004-06-07 | Mold nitriding method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4531448B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014206415A (en) * | 2013-04-11 | 2014-10-30 | トヨタ自動車株式会社 | Product quality inspection method |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62251525A (en) * | 1986-04-23 | 1987-11-02 | Ntn Toyo Bearing Co Ltd | Outer ring of plunging type uniform motion joint |
JPH07300662A (en) * | 1994-04-28 | 1995-11-14 | Sumitomo Metal Ind Ltd | Carbo-nitriding treated steel excellent in peeling resistance of surface |
JPH11281595A (en) * | 1998-03-30 | 1999-10-15 | Jeol Ltd | Fully automatic pole point figure measuring apparatus |
JP2000304710A (en) * | 1999-04-16 | 2000-11-02 | Koyo Seiko Co Ltd | Method for measuring degree of fatigue due to rolling fatigue |
JP2002038251A (en) * | 2000-07-24 | 2002-02-06 | Dowa Mining Co Ltd | Method for manufacturing endless ring for metal belt of continuously variable transmission |
JP3396219B1 (en) * | 2002-06-20 | 2003-04-14 | 山梨県 | Method and apparatus for detecting fatigue degree of hot mold |
-
2004
- 2004-06-07 JP JP2004168611A patent/JP4531448B2/en not_active Expired - Fee Related
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62251525A (en) * | 1986-04-23 | 1987-11-02 | Ntn Toyo Bearing Co Ltd | Outer ring of plunging type uniform motion joint |
JPH07300662A (en) * | 1994-04-28 | 1995-11-14 | Sumitomo Metal Ind Ltd | Carbo-nitriding treated steel excellent in peeling resistance of surface |
JPH11281595A (en) * | 1998-03-30 | 1999-10-15 | Jeol Ltd | Fully automatic pole point figure measuring apparatus |
JP2000304710A (en) * | 1999-04-16 | 2000-11-02 | Koyo Seiko Co Ltd | Method for measuring degree of fatigue due to rolling fatigue |
JP2002038251A (en) * | 2000-07-24 | 2002-02-06 | Dowa Mining Co Ltd | Method for manufacturing endless ring for metal belt of continuously variable transmission |
JP3396219B1 (en) * | 2002-06-20 | 2003-04-14 | 山梨県 | Method and apparatus for detecting fatigue degree of hot mold |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014206415A (en) * | 2013-04-11 | 2014-10-30 | トヨタ自動車株式会社 | Product quality inspection method |
Also Published As
Publication number | Publication date |
---|---|
JP4531448B2 (en) | 2010-08-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5135562B2 (en) | Carburizing steel, carburized steel parts, and manufacturing method thereof | |
JP5135563B2 (en) | Carburizing steel, carburized steel parts, and manufacturing method thereof | |
JP6784960B2 (en) | Martensitic stainless steel member | |
WO2015083599A1 (en) | Steel wire for bolt, bolt, and production method therefor | |
JP5299140B2 (en) | MATERIAL OF SHOT PEENING PROJECTION MATERIAL AND METHOD FOR PRODUCING SHOT PEENING PROJECTION MATERIAL | |
JP5676146B2 (en) | Pressure ring and manufacturing method thereof | |
CN104152916A (en) | Thermal treatment and plasma nitrocarburizing surface treatment process method for special wear-resistant die steel with ultrahigh heat conductivity for hot stamping | |
JP5762843B2 (en) | Pressure ring and manufacturing method thereof | |
TWI679289B (en) | Repair-welding material for die | |
Birol | Response to thermal cycling of plasma nitrided hot work tool steel at elevated temperatures | |
JP4531448B2 (en) | Mold nitriding method | |
JP2019019396A (en) | Nitrided component and nitriding treatment method | |
KR101865530B1 (en) | Method for producing tool | |
JP2015117412A (en) | Nitriding treatment method, and nitrided article | |
JP6385195B2 (en) | Piercer plug for seamless pipe manufacturing | |
JP2001294974A (en) | Tool steel excellent in machinability and small in dimensional change cause by heat treatment and its producing method | |
JP2010058164A (en) | Method of manufacturing die-cast mold | |
JP6416735B2 (en) | Nitride component manufacturing method and nitride component | |
JP2009197254A (en) | SURFACE TREATMENT METHOD FOR DUAL MULTI-PHASE Ni BASED INTERMETALLIC COMPOUND ALLOY, AND SURFACE-TREATED DUAL MULTI-PHASE Ni BASED INTERMETALLIC COMPOUND ALLOY | |
JP2015137734A (en) | Piston ring and method for manufacturing the same | |
EP3797894B1 (en) | Method for manufacturing forged article | |
JP2006213990A (en) | Manufacturing method of hot working die | |
Kumar et al. | Impact of forging conditions on plasma nitrided hot-forging dies and punches | |
JP7540437B2 (en) | Steel for hot stamping dies, hot stamping dies and their manufacturing method | |
JP2005331477A (en) | Method for predicting lifetime of metal mold |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070320 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100128 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100209 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100226 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100608 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100609 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130618 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130618 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140618 Year of fee payment: 4 |
|
LAPS | Cancellation because of no payment of annual fees |