JP2005343419A - Front wheel rotation control device for four-wheel drive vehicle - Google Patents

Front wheel rotation control device for four-wheel drive vehicle Download PDF

Info

Publication number
JP2005343419A
JP2005343419A JP2004168540A JP2004168540A JP2005343419A JP 2005343419 A JP2005343419 A JP 2005343419A JP 2004168540 A JP2004168540 A JP 2004168540A JP 2004168540 A JP2004168540 A JP 2004168540A JP 2005343419 A JP2005343419 A JP 2005343419A
Authority
JP
Japan
Prior art keywords
front wheel
speed
wheel
transmission torque
turning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004168540A
Other languages
Japanese (ja)
Inventor
Yuichi Miura
雄一 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Shibaura Machinery Corp
Original Assignee
IHI Shibaura Machinery Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Shibaura Machinery Corp filed Critical IHI Shibaura Machinery Corp
Priority to JP2004168540A priority Critical patent/JP2005343419A/en
Publication of JP2005343419A publication Critical patent/JP2005343419A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a front wheel rotation control device for a four-wheel drive vehicle capable of controlling a rotation speed to be in accordance with a theoretical speed ratio with the usage of a clutch having a simple structure and capable of transmitting torque whenever it is rotated in working. <P>SOLUTION: Power from an engine 2 is transmitted to a rear wheel 15 and a front wheel 14 steerable through the front wheel rotation control device 29, the front wheel rotation control device 29 is constituted by a first jointing device 51 and a second jointing device 52 in such a manner of capable of being selectively jointed, the first jointing device 51 can directly connect an input means from a rear wheel driving part and an output shaft 55 transmitting the power to the front wheel 14, the second jointing device 52 can vary the transmission torque between the input means and the output shaft 55, a rotational frequency detection means is arranged on the rear wheel driving part and a front wheel driving part respectively, a steering angle detection means is arranged on a steering mechanism, a transmission torque varying means is arranged on the second jointing device and is connected to a control part 64, the transmission torque varying means is controlled so that the speed change ratio of the front wheel and the rear wheel at the time of rotation is the speed change ratio in accordance with a steering angle, and the transmission torque varying means is constituted by an electromagnetic valve 63 and a hydraulic cylinder. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、4輪駆動車の前輪回転制御装置の技術に関し、特に、トラクタ等が作業時に設定角度以上旋回する場合に、前輪を旋回角度に比例して増速させる技術に関する。   The present invention relates to a technique for a front wheel rotation control device for a four-wheel drive vehicle, and more particularly to a technique for increasing the speed of a front wheel in proportion to the turning angle when a tractor or the like turns more than a set angle during work.

従来からトラクタ等の4輪駆動車において旋回を行う場合、高速走行時では前車輪が引きずられないように、前車輪の駆動を切って後ろ二輪の駆動により旋回を行うようにし、作業時等の低速走行時では、圃場面を荒らさないように、前車輪の平均周速を後車輪に対して約二倍程度に増速して旋回行うようにするようにしたものがある。
従来、4輪駆動車の操向時には、図5で示すように、内輪差によって前後車輪の旋回半径R1・R2・R3・R4が相違し、そのため、実際の前車輪の走行速度と後車輪の走行速度との比(実際速度比)を、両者がスリップすることなく旋回走行した場合の走行速度比(理論速度比)に一致させなければ、前車輪にスリップが発生し、旋回半径が大きくなったり、タイヤの摩耗を促進したり、農用トラクタの場合は上記スリップによって圃場の地面を荒らしたりする問題があった。
Conventionally, when turning in a four-wheel drive vehicle such as a tractor, the front wheel is turned off and the vehicle is turned by driving the rear two wheels so that the front wheel is not dragged at high speeds. When traveling at a low speed, there is a vehicle that turns while increasing the average peripheral speed of the front wheels to about twice that of the rear wheels so as not to roughen the farm scene.
Conventionally, when steering a four-wheel drive vehicle, as shown in FIG. 5, the turning radii R1, R2, R3, R4 of the front and rear wheels are different depending on the inner wheel difference. If the ratio of the running speed (actual speed ratio) does not match the running speed ratio (theoretical speed ratio) when both of them are turning without slipping, the front wheel slips and the turning radius increases. In the case of an agricultural tractor, there is a problem that the ground of the field is roughened by the slip.

そこで、図6に示すように、原動機71と連結したトランスミッション72と前車軸73と連結した前輪デフ74との間に二段階に変速可能の増速機構75を介設して、前車輪76の操舵角度が大きくなると、増速機構75を高速側に変速することにより上記スリップを防止するようにしている。(例えば、特許文献1参照)。
ところが、理論速度比は、前車輪の操舵角度が大きくなるに従って無段階的に大きくなるものであるにもかかわらず、上記の増速機構では、図7で示すように、実際速度比が段階的に変速されるので、前記スリップ防止が不完全であるという欠点があった。
そこで、前輪の周速が上記論理速度比に一致するように、トランスミッションと前輪デフの間に無段変速機を配置した技術(例えば、特許文献2参照)や電磁パウダー式のクラッチを配置した技術(例えば、特許文献3参照)が公知となっている。
特開平6−107011号公報 実開平5−7526号公報 特開2001−315542号公報
Therefore, as shown in FIG. 6, a speed increasing mechanism 75 capable of shifting in two stages is interposed between a transmission 72 connected to the prime mover 71 and a front wheel differential 74 connected to the front axle 73, so that the front wheel 76 When the steering angle increases, the speed increasing mechanism 75 is shifted to the high speed side to prevent the slip. (For example, refer to Patent Document 1).
However, although the theoretical speed ratio increases steplessly as the steering angle of the front wheel increases, the actual speed ratio is stepwise as shown in FIG. Therefore, the slip prevention is incomplete.
Therefore, a technique in which a continuously variable transmission is disposed between the transmission and the front wheel differential so that the peripheral speed of the front wheels matches the above-described logical speed ratio (for example, see Patent Document 2), or a technique in which an electromagnetic powder clutch is disposed. (See, for example, Patent Document 3).
Japanese Patent Laid-Open No. 6-107011 Japanese Utility Model Publication No. 5-7526 JP 2001-315542 A

しかし、特許文献2の技術では、旋回を行うと、操舵角度から理論速度比を演算して、この理論速度比に基づいた制御信号を無段変速機に出力して、その速度比となるように制御するが、前記無段変速装置はHSTやCVT等を用いて変速する構成となるので、ミッションケース内の限られたスペース内に組み込むことは難しく、ミッションケース外部に配置するとしても、他の部品と干渉することがあり、配置位置が限られてしまう。更に、部品点数が増加し、コストアップが避けられない。また、特許文献3の技術においては、デフ装置が必要となり、コストアップとなっていた。そして、前輪にトルクを伝達して駆動して旋回する場合には、理論速度比に近づけることができるが、旋回半径の小さい急旋回時や下り坂での旋回時には、前輪の回転力がエンジンより伝達して駆動する回転力より上回り理論速度比よりも速くなってしまうのである。
そこで、本発明は簡単な構成のトルク伝達可能なクラッチを利用して、作業時におけるいかなる旋回時においても理論速度比に合わせた旋回速度となるようにしようとするものである。
However, in the technique of Patent Document 2, when a turn is performed, a theoretical speed ratio is calculated from the steering angle, and a control signal based on the theoretical speed ratio is output to the continuously variable transmission so that the speed ratio is obtained. However, since the continuously variable transmission is configured to shift using HST, CVT, etc., it is difficult to incorporate in a limited space inside the mission case, and even if it is arranged outside the mission case, May interfere with other parts, and the arrangement position is limited. Furthermore, the number of parts increases, and an increase in cost is inevitable. Moreover, in the technique of Patent Document 3, a differential device is required, which increases the cost. When turning by driving the torque by transmitting torque to the front wheels, it can be close to the theoretical speed ratio, but when turning sharply with a small turning radius or turning downhill, the rotational force of the front wheels is greater than that of the engine. It exceeds the rotational force transmitted and driven, and is faster than the theoretical speed ratio.
In view of the above, the present invention uses a clutch capable of transmitting torque with a simple structure so as to achieve a turning speed that matches the theoretical speed ratio at any turning time during work.

本発明の解決しようとする課題は以上の如くであり、次にこの課題を解決するための手段を説明する。   The problem to be solved by the present invention is as described above. Next, means for solving the problem will be described.

即ち、請求項1においては、エンジンからの動力を変速後に後輪、及び、前輪回転制御装置を介して操向自在な前輪に伝え、該前輪回転制御装置を第一連結装置と第二連結装置より構成し、該第一連結装置は後輪駆動部から前記前輪への動力を等速で伝達可能とし、第二連結装置は後輪駆動部から増速して動力を伝達可能とし、該第一連結装置及び第二連結装置にはそれぞれ伝達トルク変更手段を配置して制御部と接続するとともに、前記後輪駆動部と前輪駆動部にはそれぞれ回転数検知手段を、ステアリング機構には操舵角検知手段をそれぞれ配置して制御部と接続し、旋回時における前輪と後輪の変速比を旋回角に応じた変速比となるように前記伝達トルク変更手段を制御したものである。   That is, according to the first aspect, the power from the engine is transmitted to the rear wheels and the front wheels which can be steered via the front wheel rotation control device after shifting, and the front wheel rotation control device is transmitted to the first connection device and the second connection device. The first connecting device can transmit power from the rear wheel drive unit to the front wheel at a constant speed, and the second connecting device can transmit power by increasing speed from the rear wheel drive unit, Each of the one coupling device and the second coupling device is provided with a transmission torque changing means and connected to the control unit. The rear wheel driving unit and the front wheel driving unit each have a rotational speed detection unit, and the steering mechanism has a steering angle. Each of the detecting means is arranged and connected to the control unit, and the transmission torque changing means is controlled so that the gear ratio between the front wheels and the rear wheels at the time of turning becomes a gear ratio corresponding to the turning angle.

請求項2においては、前記制御部は、旋回時において、エンジンの動力で前輪を駆動している場合には、前輪と後輪の変速比を旋回角に応じた変速比となるように、第二連結装置の伝達トルク変更手段を制御するものである。   According to a second aspect of the present invention, when the front wheel is driven by engine power during turning, the control unit sets the speed ratio between the front wheel and the rear wheel to a speed ratio corresponding to the turning angle. The transmission torque changing means of the two-coupled device is controlled.

請求項3においては、前記制御部は、旋回時において、前輪の回転力がエンジンから前輪を回転させる回転力よりも上回る場合には、前輪と後輪の変速比を旋回角に応じた変速比となるように第一連結装置の伝達トルク変更手段を制御するものである。   According to a third aspect of the present invention, the control unit, when turning, if the rotational force of the front wheels exceeds the rotational force that rotates the front wheels from the engine, the speed ratio of the front wheels and the rear wheels according to the turning angle. The transmission torque changing means of the first coupling device is controlled so that

本発明の効果として、以下に示すような効果を奏する。
請求項1の如く構成することにより、旋回時には前輪が適正旋回速度に制御されることになり、前輪がスリップすることを防止できる。したがって、スリップに起因する旋回半径が大きくなったり、タイヤの摩耗を促進したり、農用トラクタの場合にはスリップによって圃場面が荒らされることがなく、スリップに起因する各種弊害を防止することができる。
As effects of the present invention, the following effects can be obtained.
By configuring as in claim 1, the front wheels are controlled to an appropriate turning speed during turning, and the front wheels can be prevented from slipping. Therefore, the turning radius caused by slip increases, tire wear is promoted, and in the case of an agricultural tractor, the field scene is not damaged by slip, and various adverse effects caused by slip can be prevented. .

請求項2の如く制御することにより、エンジンからの動力により前輪を駆動しているときには、第二連結装置の伝達トルク変更手段により、前輪と後輪の速度が等速から前輪が後輪に対して2倍程度の設定速度までの間で確実に動力を伝達して、旋回角度に応じた変速ができるようになり、タイヤの磨耗やスリップ等を防止することができるようになるのである。   By controlling as in claim 2, when the front wheels are driven by the power from the engine, the transmission torque changing means of the second coupling device causes the front and rear wheels to move at a constant speed and the front wheels to the rear wheels. Thus, the power can be reliably transmitted up to about twice the set speed, and the speed can be changed according to the turning angle, so that the tires can be prevented from wearing or slipping.

請求項3の如く制御することにより、旋回半径の小さい急旋回時や下り坂での旋回時において、前輪の回転数が理論速度比よりも速くなろうとするが、第一連結装置の伝達トルク変更手段を作動することにより、エンジンブレーキの如く作用して、略理論速度比に近い速度で旋回することができるようになり、タイヤの磨耗やスリップ等を防止することができるようになるのである。   By controlling as in claim 3, when the vehicle turns suddenly with a small turning radius or when turning on a downhill, the rotational speed of the front wheels tends to be faster than the theoretical speed ratio. By actuating the means, it acts like an engine brake and can turn at a speed substantially close to the theoretical speed ratio, and tire wear and slip can be prevented.

次に、発明の実施の形態を説明する。
本発明の解決すべき課題及び手段は以上の如くであり、次に添付の図面に示した本発明の一実施例を説明する。図1は本発明の前輪回転制御装置を装備したトラクタの側面図、図2は駆動伝達経路を示すスケルトン図、図3は本発明の前輪回転制御装置の制御ブロック図、図4は制御フローチャート図である。
Next, embodiments of the invention will be described.
The problems and means to be solved by the present invention are as described above. Next, an embodiment of the present invention shown in the accompanying drawings will be described. 1 is a side view of a tractor equipped with a front wheel rotation control device of the present invention, FIG. 2 is a skeleton diagram showing a drive transmission path, FIG. 3 is a control block diagram of the front wheel rotation control device of the present invention, and FIG. It is.

まず、本発明に係る前輪回転制御装置を具備した一実施例であるトラクタの概略構成について説明する。
図1において、エンジンフレーム1上にエンジン2が配置され、該エンジン2をボンネット3にて覆い、該ボンネット3の後部のダッシュボード4上に操向手段となるハンドル5を突出している。該ハンドル5の後方に座席シート6を配設し、該座席シート6の側部に主変速レバー7が配置され、該座席シート6やハンドル5等が配設されている部分を操縦部9としている。
First, a schematic configuration of a tractor which is an embodiment provided with a front wheel rotation control device according to the present invention will be described.
In FIG. 1, an engine 2 is arranged on an engine frame 1, the engine 2 is covered with a bonnet 3, and a handle 5 serving as a steering means protrudes on a dashboard 4 at the rear of the bonnet 3. A seat 6 is disposed behind the handle 5, a main transmission lever 7 is disposed on the side of the seat 6, and a portion where the seat 6, the handle 5, and the like are disposed serves as a control unit 9. Yes.

また、前記エンジン2の後部にはクラッチハウジング10が連結されて、該クラッチハウジング10はメインクラッチ11を収納して、その後部に伝動ケース12を介してミッションケース13が連設され、該ミッションケース13の両側にリアアクスルケースを介して後輪15を支承している。また、該ミッションケース13の後部には、各種作業機を装着するための三点リンク式の作業機装着装置16が設けられ、該ミッションケース13の後面よりPTO軸が突出されて、作業機を駆動可能としている。
また、ミッションケース13の前下部に前輪動力取出ケース17が設けられ、該前輪動力取出ケース17より前方に伝動軸19を介してフロントアクスルケース20に動力を伝え、該フロントアクスルケース20に支持した前輪14を駆動可能する構成としている。
A clutch housing 10 is connected to the rear portion of the engine 2, and the clutch housing 10 houses a main clutch 11, and a transmission case 13 is connected to the rear portion via a transmission case 12. A rear wheel 15 is supported on both sides of the vehicle 13 via a rear axle case. Further, a three-point link type work machine mounting device 16 for mounting various work machines is provided at the rear part of the mission case 13, and the PTO shaft projects from the rear surface of the mission case 13 to It can be driven.
A front wheel power take-out case 17 is provided at the front lower part of the transmission case 13, and power is transmitted to the front axle case 20 through the transmission shaft 19 in front of the front wheel power take-out case 17 and supported by the front axle case 20. The front wheel 14 can be driven.

次に、トラクタの駆動伝達系について、図2を用いて説明する。
前記エンジン2の出力軸の後部にメインクラッチ11を介して前後進切換機構22が設けられ、該前後進切換機構22の後方に主変速機構23が設けられ、その後部に副変速機構24が設けられ、更にその後部にクリープ変速機構25が設けられ、変速後の走行用の動力がドライブ軸30に伝達される。一方、前記エンジン2の出力軸の動力はパイプ軸31内の伝動軸32にも伝えられ、該伝動軸32の後端よりPTO変速機構26を介してミッションケース13の後端に設けたPTO軸27に動力を伝達可能としている。
Next, the drive transmission system of the tractor will be described with reference to FIG.
A forward / reverse switching mechanism 22 is provided at the rear of the output shaft of the engine 2 via the main clutch 11, a main transmission mechanism 23 is provided behind the forward / reverse switching mechanism 22, and a sub-transmission mechanism 24 is provided at the rear thereof. Further, a creep transmission mechanism 25 is provided at the rear portion thereof, and driving power after the transmission is transmitted to the drive shaft 30. On the other hand, the power of the output shaft of the engine 2 is also transmitted to the transmission shaft 32 in the pipe shaft 31, and the PTO shaft provided at the rear end of the transmission case 13 through the PTO transmission mechanism 26 from the rear end of the transmission shaft 32. 27 can transmit power.

そして、前記変速後の動力が伝えられるドライブ軸30の後端に設けたドライブピニオン33が後輪デフ装置34に設けたリングギヤに動力が伝えられ、該後輪デフ装置34から左右のデフヨーク軸35L・35R、最終減速機構36・36を介して後輪15・15が駆動される構成としている。
また、前記ドライブ軸30上に前輪駆動歯車40と前輪増速歯車41が固設され、該前輪駆動歯車40または前輪増速歯車41より本発明の前輪回転制御装置29を介して出力軸55より前記伝動軸19に伝え、該電動軸19前端よりフロントアクスルケース20内のフロントデフ装置43に動力が伝達され、該フロントデフ装置43より両側のデフヨーク軸44L・44Rを介して最終減速機構45・45を介して前輪14・14を駆動するようにしている。
A drive pinion 33 provided at the rear end of the drive shaft 30 to which the power after the shift is transmitted is transmitted to a ring gear provided in the rear wheel differential device 34, and the left and right differential yoke shafts 35L are transmitted from the rear wheel differential device 34. The rear wheels 15 and 15 are driven via the 35R and final speed reduction mechanisms 36 and 36.
Further, a front wheel drive gear 40 and a front wheel speed increasing gear 41 are fixed on the drive shaft 30, and the front wheel driving gear 40 or the front wheel speed increasing gear 41 is connected to the output shaft 55 via the front wheel rotation control device 29 of the present invention. The power is transmitted to the transmission shaft 19 and power is transmitted from the front end of the electric shaft 19 to the front differential device 43 in the front axle case 20, and the final reduction mechanism 45 · is transmitted from the front differential device 43 via differential yoke shafts 44L and 44R on both sides. The front wheels 14 and 14 are driven via 45.

次に、本発明の前輪回転制御装置29について説明する。
図3に示すように、前輪回転制御装置29は前側の第一連結装置51と後側の第二連結装置52と、回転数を検知する手段と、連結装置を駆動する手段、つまり、伝達トルク変更手段と制御部64等から構成されている。該第一連結装置51及び第二連結装置52は多板式の油圧クラッチより構成されている。第一連結装置51はクラッチケース56に設けた摩擦板と入力手段となる第一入力歯車57のボス部の外周に設けた摩擦板を交互に配置し、クラッチケース56内に設けた油圧シリンダに圧油を送油してピストンを摺動させて摩擦板を圧接させることで第一入力歯車57からクラッチケース56を介して出力軸55に後輪と同速で駆動できるようにしている。
Next, the front wheel rotation control device 29 of the present invention will be described.
As shown in FIG. 3, the front wheel rotation control device 29 includes a front first connecting device 51, a rear second connecting device 52, a means for detecting the rotational speed, a means for driving the connecting device, that is, a transmission torque. It comprises a changing means, a control unit 64 and the like. The first connecting device 51 and the second connecting device 52 are composed of a multi-plate hydraulic clutch. In the first coupling device 51, a friction plate provided in the clutch case 56 and a friction plate provided on the outer periphery of the boss portion of the first input gear 57 serving as input means are alternately arranged, and a hydraulic cylinder provided in the clutch case 56 is arranged. Pressure oil is fed and the piston is slid to bring the friction plate into pressure contact, so that the output shaft 55 can be driven from the first input gear 57 through the clutch case 56 at the same speed as the rear wheel.

また、第二連結装置52も第一連結装置51と略同じ構成としており、クラッチケース56に設けた摩擦板と入力手段となる第二入力歯車58のボス部の外周に設けた摩擦板を交互に配置し、クラッチケース56内に設けた油圧シリンダに圧油を送油してピストンを摺動させて摩擦板を圧接させることで、伝達トルクを変更して、第二入力歯車58からクラッチケース56を介して出力軸55に後輪よりも増速させて駆動できるようにしている。なお、第二連結装置52を完全に接続した状態、つまり、出力軸55と第二入力歯車58が一体的に回転する状態では前輪の周速は後輪の周速の約2倍となるように、前輪増速歯車41と第二入力歯車58の歯数が設定されている。   The second coupling device 52 has substantially the same configuration as the first coupling device 51, and the friction plate provided on the clutch case 56 and the friction plate provided on the outer periphery of the boss portion of the second input gear 58 serving as input means are alternately arranged. The transmission torque is changed by sending pressure oil to a hydraulic cylinder provided in the clutch case 56 and sliding the piston to press the friction plate, thereby changing the transmission torque from the second input gear 58 to the clutch case. The output shaft 55 can be driven at a speed higher than that of the rear wheels via 56. In the state where the second coupling device 52 is completely connected, that is, in the state where the output shaft 55 and the second input gear 58 rotate integrally, the peripheral speed of the front wheel is approximately twice the peripheral speed of the rear wheel. Further, the number of teeth of the front wheel speed increasing gear 41 and the second input gear 58 is set.

そして、本発明では、前輪14と後輪15の周速が等速となる速度比から、前輪14の周速が後輪15の周速の略2倍となる速度比において、エンジン2からの動力が後輪駆動部となるドライブ軸30から前輪駆動部となる出力軸55に回転力が伝えられているときには、第二連結装置52の伝達トルクが変更される。また、前輪14の回転力でエンジン2を回転するような場合には、第一連結装置51の伝達トルクが変更されて、エンジンブレーキがかかるようにして、前輪14の回転数を減じるようにする。
なお、本実施例では伝達トルク変更手段として油圧クラッチを用い、該油圧クラッチに電磁比例弁等を介して送油する油圧を調節して、または、電磁バルブをPWM制御により油圧を調節してピストンの押圧力を変更して伝達トルクを変更する構成としているが、油圧クラッチの代わりに電磁クラッチやパウダークラッチ等を用いることも可能であり、後輪部の入力手段から前輪駆動部の出力軸55に動力を伝達する手段として、伝達トルクを変更できるものであればよい。
In the present invention, from the speed ratio at which the peripheral speed of the front wheel 14 and the rear wheel 15 is constant, the speed ratio at which the peripheral speed of the front wheel 14 is approximately twice the peripheral speed of the rear wheel 15 is When the rotational force is transmitted from the drive shaft 30 serving as the rear wheel drive unit to the output shaft 55 serving as the front wheel drive unit, the transmission torque of the second coupling device 52 is changed. When the engine 2 is rotated by the rotational force of the front wheels 14, the transmission torque of the first coupling device 51 is changed so that the engine brake is applied so that the rotational speed of the front wheels 14 is reduced. .
In this embodiment, a hydraulic clutch is used as the transmission torque changing means, and the hydraulic pressure supplied to the hydraulic clutch via an electromagnetic proportional valve is adjusted, or the electromagnetic valve is adjusted by PWM control to adjust the hydraulic pressure. However, it is also possible to use an electromagnetic clutch, a powder clutch or the like instead of the hydraulic clutch, and from the input means of the rear wheel part to the output shaft 55 of the front wheel drive part. Any means can be used as long as it can change the transmission torque.

前記第一入力歯車57は前記前輪駆動歯車40と常時噛合され、第二入力歯車58は前輪増速歯車41と常時噛合されている。前記クラッチケース56は出力軸55上に固設され、該出力軸55の前端はユニバーサルジョイントを介して前記伝動軸19と連結されている。また、後輪15の回転数(速度)を検知する手段としてドライブ軸30近傍にその回転を検知するセンサー60が配置され、前輪14の回転数(速度)を検知する手段として出力軸55近傍にその回転を検知するセンサー61が配置されている。該センサー60・61は制御部64と接続されて、速度比を演算するようにしている。但し、センサー60はデフヨーク軸35L・35Rや最終減速機構36等に配置することも可能であり、センサー61はデフヨーク軸44L・44Rや最終減速機構45等に配置することも可能である。   The first input gear 57 is always meshed with the front wheel drive gear 40, and the second input gear 58 is always meshed with the front wheel speed increasing gear 41. The clutch case 56 is fixed on an output shaft 55, and the front end of the output shaft 55 is connected to the transmission shaft 19 via a universal joint. A sensor 60 for detecting the rotation (speed) of the rear wheel 15 is disposed in the vicinity of the drive shaft 30 as a means for detecting the rotation speed (speed) of the rear wheel 15, and as a means for detecting the rotation speed (speed) of the front wheel 14 in the vicinity of the output shaft 55. A sensor 61 for detecting the rotation is disposed. The sensors 60 and 61 are connected to the control unit 64 to calculate the speed ratio. However, the sensor 60 can be disposed on the differential yoke shafts 35L and 35R, the final reduction mechanism 36, and the like, and the sensor 61 can be disposed on the differential yoke shafts 44L and 44R, the final reduction mechanism 45, and the like.

また、制御部64には駆動回路65を介して前記第一連結装置51の油圧シリンダを作動させる伝達トルク変更手段となる電磁バルブ62のソレノイド62aと、第二連結装置52の油圧シリンダを作動させる伝達トルク変更手段となる電磁バルブ63のソレノイド63aと接続され、該制御部64には更に切換スイッチ59が接続され、2輪駆動と4輪駆動と前輪変速とを切り換えられるようにし、該切換スイッチ59は操縦部9近傍に配置される。また、該制御部64にはハンドル5の操舵角を検知する手段としての角度センサー69と接続され、該角度センサー69は前記ハンドル5のハンドル軸部に配設されている。但し、この操舵角検知手段は前輪14の操舵角を検知できるものであればよく、前輪14の回動軸部や前輪14とハンドル5の間のステアリング機構に配置することもできる。   Further, the control unit 64 operates the solenoid 62a of the electromagnetic valve 62 serving as transmission torque changing means for operating the hydraulic cylinder of the first coupling device 51 and the hydraulic cylinder of the second coupling device 52 via the drive circuit 65. The switch 63 is connected to the solenoid 63a of the electromagnetic valve 63 serving as a transmission torque changing means, and a switch 59 is further connected to the control unit 64 so as to be able to switch between two-wheel drive, four-wheel drive, and front wheel shift. 59 is arranged in the vicinity of the control unit 9. The control unit 64 is connected to an angle sensor 69 as means for detecting the steering angle of the handle 5, and the angle sensor 69 is disposed on the handle shaft portion of the handle 5. However, this steering angle detection means may be any means that can detect the steering angle of the front wheel 14, and can also be disposed in a rotating shaft portion of the front wheel 14 or a steering mechanism between the front wheel 14 and the handle 5.

以上のような構成において、切換スイッチ59を2輪(後輪)駆動に切り換えると、第一連結装置51と第二連結装置52はそれぞれ連結されず、つまり、第一連結装置51及び第二連結装置52における電磁バルブ62・63のソレノイド62a・63aが作動されず、ドライブ軸30から出力軸55に動力が伝達されない後輪15のみの2輪駆動状態となっており、前輪14が回転自在となっている。   In the above configuration, when the changeover switch 59 is switched to the two-wheel (rear wheel) drive, the first connecting device 51 and the second connecting device 52 are not connected to each other, that is, the first connecting device 51 and the second connecting device 52 are connected. The solenoids 62a and 63a of the electromagnetic valves 62 and 63 in the device 52 are not actuated, and only the rear wheel 15 in which power is not transmitted from the drive shaft 30 to the output shaft 55 is in a two-wheel drive state, and the front wheel 14 is rotatable. It has become.

また、切換スイッチ59を4輪駆動に切り換えると、第一連結装置51が連結されて第一入力歯車57と出力軸55が同回転数(前輪14の周速と後輪15の周速が同じ)で駆動される。つまり、切換スイッチ59の4輪駆動への切り換えによって、駆動回路65を介してソレノイド62aが作動され、圧油がシリンダに送油されて摩擦板を圧接して、第一入力歯車57とクラッチケース56が一体的に回転して出力軸55に伝えられ、前輪14と後輪15が同周速度で駆動されるようになるのである。   Further, when the changeover switch 59 is switched to four-wheel drive, the first coupling device 51 is connected, and the first input gear 57 and the output shaft 55 have the same rotational speed (the circumferential speed of the front wheels 14 and the circumferential speed of the rear wheels 15 are the same). ). That is, when the changeover switch 59 is switched to the four-wheel drive, the solenoid 62a is operated via the drive circuit 65, the pressure oil is sent to the cylinder, and the friction plate is pressed against the first input gear 57 and the clutch case. 56 is integrally rotated and transmitted to the output shaft 55, and the front wheel 14 and the rear wheel 15 are driven at the same peripheral speed.

また、切換スイッチ59を前輪変速に切り換えると、ハンドル5の回動角に比例して前輪14の周速度が後輪15の周速度に対して理論速度比に増速される。つまり、直進状態では、第一連結装置51を作動させて前輪14と後輪15を同速で駆動するそして、例えば圃場端等において回行するために、ハンドル5を回動すると、その回動角が角度センサー69により検知され、その検出値が制御部64に入力され、該制御部64により回動角(操舵角)に応じて駆動回路65に信号を出力して、第一連結装置51及び第二連結装置52の伝達トルクを制御する。具体的には、前記電磁バルブ62・63をPWM制御する場合には、第一連結装置51と第二連結装置52の接続時間を調節して前輪14の回転数を制御する。また、電磁バルブ62・63を電磁比例弁で構成した場合には、油圧シリンダへの圧油を制御して前輪14の回転数を制御するのである。   When the changeover switch 59 is switched to the front wheel speed change, the peripheral speed of the front wheel 14 is increased to the theoretical speed ratio with respect to the peripheral speed of the rear wheel 15 in proportion to the turning angle of the handle 5. That is, in the straight traveling state, the first connecting device 51 is operated to drive the front wheels 14 and the rear wheels 15 at the same speed. For example, when the handle 5 is rotated to rotate at the end of the field, the rotation is performed. The angle is detected by the angle sensor 69, and the detected value is input to the control unit 64, and the control unit 64 outputs a signal to the drive circuit 65 in accordance with the rotation angle (steering angle). And the transmission torque of the second coupling device 52 is controlled. Specifically, when the electromagnetic valves 62 and 63 are subjected to PWM control, the connection time between the first coupling device 51 and the second coupling device 52 is adjusted to control the rotational speed of the front wheels 14. Further, when the electromagnetic valves 62 and 63 are constituted by electromagnetic proportional valves, the number of rotations of the front wheels 14 is controlled by controlling the pressure oil to the hydraulic cylinder.

次に、図4に示すフローチャートに従って前輪変速に切り替えた状態における制御部64による具体的な制御を説明する。なお、制御部64はCPUとROMとRAMとインターフェース等より構成される。
まず、切換スイッチ59が前輪変速に切り替えられると(S100)、後輪15の回転数(周速)を検知するために、エンジンから後輪15への動力伝達経路途中に配置されるドライブ軸30の回転数をセンサー60で検知し、その検知した値を読み込んでメモリに記憶させる。また、前輪14の回転数(周速)を検知するために、前輪14への動力伝達経路途中に配置する出力軸55の回転数をセンサー61で検知し、その検知した値を読み込んでメモリに記憶させる。また、操舵角度を検知するためにハンドル5の回動角度を角度センサー69で検知し、その検出値を読み込みメモリに記憶させる(S101)。センサー60で検知した後輪15の速度とセンサー61で検知した前輪14の速度から現状の速度比α1を演算する(S102)。このとき略直進状態においては増速する必要がないので、つまり、速度比α1がα3(不感帯となるα3=1+閾値)よりも小さい値のときは、前輪14と後輪15が同周速で駆動されるように、設定速度比α3と現実の速度比α1を比較し(S103)、α3以下のときは第一連結装置51の電磁バルブ62を作動させて、直結状態とする(104)。
現実の速度比がα3よりも大きい場合には、角度センサー69の検出値θ1から図7に示すマップから理論速度比α2を演算する(S105)。そして、現実の速度比α1と理論速度比α2との差β1を求める(106)。
Next, specific control by the control unit 64 in a state where the front wheel shift is switched according to the flowchart shown in FIG. 4 will be described. The control unit 64 includes a CPU, a ROM, a RAM, an interface, and the like.
First, when the changeover switch 59 is switched to the front wheel shift (S100), the drive shaft 30 disposed in the middle of the power transmission path from the engine to the rear wheel 15 in order to detect the rotational speed (circumferential speed) of the rear wheel 15. Is detected by the sensor 60, and the detected value is read and stored in the memory. Further, in order to detect the rotation speed (circumferential speed) of the front wheel 14, the rotation speed of the output shaft 55 arranged in the middle of the power transmission path to the front wheel 14 is detected by the sensor 61, and the detected value is read into the memory. Remember. Further, in order to detect the steering angle, the rotation angle of the handle 5 is detected by the angle sensor 69, and the detected value is read and stored in the memory (S101). The current speed ratio α1 is calculated from the speed of the rear wheel 15 detected by the sensor 60 and the speed of the front wheel 14 detected by the sensor 61 (S102). At this time, since it is not necessary to increase the speed in the substantially straight traveling state, that is, when the speed ratio α1 is smaller than α3 (α3 = 1 + threshold value as a dead zone), the front wheel 14 and the rear wheel 15 have the same peripheral speed. The set speed ratio α3 and the actual speed ratio α1 are compared so as to be driven (S103). When the ratio is less than α3, the electromagnetic valve 62 of the first coupling device 51 is operated to be in a directly connected state (104).
When the actual speed ratio is larger than α3, the theoretical speed ratio α2 is calculated from the detected value θ1 of the angle sensor 69 from the map shown in FIG. 7 (S105). Then, a difference β1 between the actual speed ratio α1 and the theoretical speed ratio α2 is obtained (106).

現実の速度比α1と理論速度比α2の差β1が許容範囲となる閾値β2よりも小さい場合(S107)は適正な前輪速度となっているので、その状態を維持する(S108)。
β1がβ2よりも小さい場合(S109)は現実の速度比α1が理論速度比α2よりも小さい、つまり、旋回するためにハンドルを切っている状態や旋回時に地面から抵抗を受けている状態等において、前輪14の周速が操舵角により決まる周速よりも遅くなっているときには増速する必要があり、第二連結装置52の伝達トルクを増加するように制御する。つまり、現実の速度比α1と理論速度比α2の差に応じたトルクを増加し、理論速度比α2となるように第二連結装置52を接続する(S110)。この伝達トルクを制御するために、電磁バルブ63は油圧シリンダに圧油を送油して油圧シリンダ内の圧力を増加してピストンが摩擦板を押圧して伝達トルクを増加させる。なお、このとき第一連結装置51が作動中であるならば伝達トルクは減少させる(図示せず)。
When the difference β1 between the actual speed ratio α1 and the theoretical speed ratio α2 is smaller than the threshold value β2 within the allowable range (S107), the front wheel speed is appropriate, and this state is maintained (S108).
When β1 is smaller than β2 (S109), the actual speed ratio α1 is smaller than the theoretical speed ratio α2, that is, in a state where the steering wheel is turned to turn, a resistance is received from the ground during turning, etc. When the peripheral speed of the front wheel 14 is slower than the peripheral speed determined by the steering angle, it is necessary to increase the speed, and the transmission torque of the second coupling device 52 is controlled to increase. That is, the torque according to the difference between the actual speed ratio α1 and the theoretical speed ratio α2 is increased, and the second coupling device 52 is connected so that the theoretical speed ratio α2 is obtained (S110). In order to control the transmission torque, the electromagnetic valve 63 supplies pressure oil to the hydraulic cylinder to increase the pressure in the hydraulic cylinder, and the piston presses the friction plate to increase the transmission torque. At this time, if the first coupling device 51 is operating, the transmission torque is decreased (not shown).

また、現実の速度比α1が理論速度比α2よりも大きい場合は、前輪14の速度が理論値よりも速くなっているので、前輪14の周速度を落とす必要があり、第一連結装置51の伝達トルクを増加するように制御する。つまり、旋回後に直進状態に戻すときや、旋回半径が小さい急旋回の時や下り坂で旋回している時等では、前輪14の周速が操舵角により決まる周速よりも速くなっているので減速させる必要がある。そこで、現実の速度比α1と理論速度比α2の差に応じた第一連結装置51のトルクを増加して、前輪14の回転力が第一連結装置51を介してエンジン2に伝えるようにして、エンジンブレーキがかかるようにして理論速度比α2となるように前輪14にブレーキ力をかけて減速する(S111)。この伝達トルクを制御するために、電磁バルブ62は油圧シリンダに圧油を送油して油圧シリンダ内の圧力を増加してピストンが摩擦板を押圧して伝達トルクを増加させる。なお、このとき第二連結装置52が作動中であるならば伝達トルクは減少させる(図示せず)。   Further, when the actual speed ratio α1 is larger than the theoretical speed ratio α2, the speed of the front wheels 14 is higher than the theoretical value, so it is necessary to reduce the peripheral speed of the front wheels 14. Control to increase transmission torque. In other words, when returning straight after turning, when turning sharply with a small turning radius, or when turning downhill, the peripheral speed of the front wheels 14 is faster than the peripheral speed determined by the steering angle. Need to slow down. Therefore, the torque of the first coupling device 51 is increased according to the difference between the actual speed ratio α1 and the theoretical speed ratio α2, so that the rotational force of the front wheels 14 is transmitted to the engine 2 via the first coupling device 51. Then, the front wheel 14 is decelerated by applying a braking force so that the theoretical speed ratio α2 is obtained by applying the engine brake (S111). In order to control the transmission torque, the electromagnetic valve 62 supplies pressure oil to the hydraulic cylinder to increase the pressure in the hydraulic cylinder, and the piston presses the friction plate to increase the transmission torque. At this time, if the second connecting device 52 is operating, the transmission torque is decreased (not shown).

このように制御することによって、直進時には前輪14と後輪15が同じ周速度で回転駆動するようになって、グリップ力もアップして安定した走行が可能となる。そして、旋回時に前輪が理論速度比の適正周速度に制御されることになり、前輪がスリップすることなく旋回できる。したがって、スリップや走行抵抗等に起因する旋回半径が大きくなったり、タイヤの摩耗を促進したりすることがない。特に、農用トラクタの場合にはスリップによって圃場面が荒らされることがなくきれいに仕上げることができるようになったのである。特に、旋回時にハンドル5を素早く回転しても、逆に直進状態とするために素早く戻しても、応答遅れがなくきめ細かく前輪の周速度が理論速度比に合った速度に制御される。従来では、前輪増速のクラッチを「切」とするだけであったので、直進状態に戻したときには、走行抵抗により前輪の周速が減速することとなり、応答遅れが生じていたのである。
また、伝達トルク変更手段は、電磁バルブ62・63を切り換えて油圧シリンダを作動させる構成であるため、従来から変速機構に用いられている油圧式クラッチを利用することができ、簡単な構成で、コンパクトにミッションケース内に配置することができ、部品の種類を統一できて、組立や制御や管理等がやり易くなる。
By controlling in this way, the front wheels 14 and the rear wheels 15 are rotationally driven at the same peripheral speed when going straight, and the gripping force is also increased and stable running is possible. Then, the front wheels are controlled to an appropriate peripheral speed of the theoretical speed ratio when turning, and the front wheels can turn without slipping. Therefore, the turning radius due to slip, running resistance, and the like does not increase and tire wear is not promoted. In particular, in the case of an agricultural tractor, the field scene is not damaged by slipping and can be finished finely. In particular, even if the handle 5 is rotated quickly during turning, or is quickly returned to make it go straight, the peripheral speed of the front wheels is controlled to a speed that matches the theoretical speed ratio without any delay in response. Conventionally, the front wheel acceleration clutch is merely “disengaged”, so when the vehicle is returned to the straight traveling state, the peripheral speed of the front wheels is decelerated due to running resistance, resulting in a response delay.
Further, since the transmission torque changing means is configured to operate the hydraulic cylinder by switching the electromagnetic valves 62 and 63, the hydraulic clutch conventionally used in the transmission mechanism can be used, and with a simple configuration, It can be arranged compactly in the mission case, the types of parts can be unified, and assembly, control, management, etc. can be easily performed.

本発明の前輪回転制御装置を装備したトラクタの側面図。The side view of the tractor equipped with the front-wheel rotation control apparatus of this invention. 駆動伝達経路を示すスケルトン図。The skeleton figure which shows a drive transmission path | route. 本発明の前輪回転制御装置の制御ブロック図。The control block diagram of the front-wheel rotation control apparatus of this invention. 制御フローチャート図。FIG. 旋回時における4輪の旋回半径を示す図。The figure which shows the turning radius of four wheels at the time of turning. 従来の旋回増速機構を示すスケルトン図。The skeleton figure which shows the conventional turning acceleration mechanism. 旋回中における操舵角度に対する前後車輪間の理論速度比を示す図。The figure which shows the theoretical speed ratio between the front and rear wheels with respect to the steering angle during turning.

符号の説明Explanation of symbols

2 エンジン
14 前輪
15 後輪
29 前輪回転制御装置
51 第一連結装置
52 第二連結装置
55 出力軸
60・61 センサー
63 電磁バルブ
64 制御部
69 角度センサー
2 Engine 14 Front wheel 15 Rear wheel 29 Front wheel rotation control device 51 First connection device 52 Second connection device 55 Output shaft 60/61 sensor 63 Electromagnetic valve 64 Control unit 69 Angle sensor

Claims (3)

エンジンからの動力を変速後に後輪、及び、前輪回転制御装置を介して操向自在な前輪に伝え、該前輪回転制御装置を第一連結装置と第二連結装置より構成し、該第一連結装置は後輪駆動部から前記前輪への動力を等速で伝達可能とし、第二連結装置は後輪駆動部から増速して動力を伝達可能とし、該第一連結装置及び第二連結装置にはそれぞれ伝達トルク変更手段を配置して制御部と接続するとともに、前記後輪駆動部と前輪駆動部にはそれぞれ回転数検知手段を、ステアリング機構には操舵角検知手段をそれぞれ配置して制御部と接続し、旋回時における前輪と後輪の変速比を旋回角に応じた変速比となるように前記伝達トルク変更手段を制御したことを特徴とする4輪駆動車の前輪回転制御装置。   The power from the engine is transmitted to the rear wheels and the front wheels that can be steered via the front wheel rotation control device after shifting, and the front wheel rotation control device is constituted by a first connection device and a second connection device, and the first connection The device can transmit power from the rear wheel drive unit to the front wheel at a constant speed, and the second coupling device can transmit power by increasing the speed from the rear wheel drive unit, and the first coupling device and the second coupling device The transmission torque changing means is arranged and connected to the control part respectively, and the rear wheel driving part and the front wheel driving part are respectively provided with the rotation speed detecting means, and the steering mechanism is provided with the steering angle detecting means. A front wheel rotation control device for a four-wheel drive vehicle, characterized in that the transmission torque changing means is controlled so that the transmission ratio between the front wheels and the rear wheels during turning is a gear ratio according to the turning angle. 前記制御部は、旋回時において、エンジンの動力で前輪を駆動している場合には、前輪と後輪の変速比を旋回角に応じた変速比となるように、第二連結装置の伝達トルク変更手段を制御することを特徴とする請求項1に記載の4輪駆動車の前輪回転制御装置。   When the front wheel is driven by engine power during turning, the control unit transmits the transmission torque of the second coupling device so that the speed ratio of the front wheel and the rear wheel becomes a speed ratio corresponding to the turning angle. The front wheel rotation control device for a four-wheel drive vehicle according to claim 1, wherein the changing means is controlled. 前記制御部は、旋回時において、前輪の回転力がエンジンから前輪を回転させる回転力よりも上回る場合には、前輪と後輪の変速比を旋回角に応じた変速比となるように第一連結装置の伝達トルク変更手段を制御することを特徴とする請求項1に記載の4輪駆動車の前輪回転制御装置。
When turning, when the turning force of the front wheels exceeds the turning force of rotating the front wheels from the engine, the control unit first sets the speed ratio of the front wheels and the rear wheels to a speed ratio corresponding to the turning angle. 2. The front wheel rotation control device for a four-wheel drive vehicle according to claim 1, wherein transmission torque changing means of the coupling device is controlled.
JP2004168540A 2004-06-07 2004-06-07 Front wheel rotation control device for four-wheel drive vehicle Pending JP2005343419A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004168540A JP2005343419A (en) 2004-06-07 2004-06-07 Front wheel rotation control device for four-wheel drive vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004168540A JP2005343419A (en) 2004-06-07 2004-06-07 Front wheel rotation control device for four-wheel drive vehicle

Publications (1)

Publication Number Publication Date
JP2005343419A true JP2005343419A (en) 2005-12-15

Family

ID=35496170

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004168540A Pending JP2005343419A (en) 2004-06-07 2004-06-07 Front wheel rotation control device for four-wheel drive vehicle

Country Status (1)

Country Link
JP (1) JP2005343419A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140297150A1 (en) * 2013-03-28 2014-10-02 Honda Motor Co., Ltd. Driving force distribution control apparatus for four-wheel drive vehicle and driving force distribution control method for four-wheel drive vehicle

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS641625A (en) * 1987-06-19 1989-01-06 Kubota Ltd Four-wheel-drive working vehicle
JPH01202527A (en) * 1988-02-04 1989-08-15 Kubota Ltd Front wheel accelerating device
JPH07156676A (en) * 1993-12-02 1995-06-20 Kubota Corp Drive control device for four-wheel driven work machine
JP2002144903A (en) * 2000-11-07 2002-05-22 Yanmar Agricult Equip Co Ltd Tractor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS641625A (en) * 1987-06-19 1989-01-06 Kubota Ltd Four-wheel-drive working vehicle
JPH01202527A (en) * 1988-02-04 1989-08-15 Kubota Ltd Front wheel accelerating device
JPH07156676A (en) * 1993-12-02 1995-06-20 Kubota Corp Drive control device for four-wheel driven work machine
JP2002144903A (en) * 2000-11-07 2002-05-22 Yanmar Agricult Equip Co Ltd Tractor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140297150A1 (en) * 2013-03-28 2014-10-02 Honda Motor Co., Ltd. Driving force distribution control apparatus for four-wheel drive vehicle and driving force distribution control method for four-wheel drive vehicle
US9315101B2 (en) * 2013-03-28 2016-04-19 Honda Motor Co., Ltd. Driving force distribution control apparatus for four-wheel drive vehicle and driving force distribution control method for four-wheel drive vehicle

Similar Documents

Publication Publication Date Title
JP6135634B2 (en) Vehicle transfer
JP6168023B2 (en) Vehicle clutch mechanism
JP2017081433A (en) Transfer for vehicle
JP2007269072A (en) Working vehicle
JP2007045177A (en) Front wheel acceleration controller
JP2017030646A (en) Transfer for vehicle
JP5833168B2 (en) Gearbox for work vehicle
JP5426731B2 (en) Transmission device for work vehicle
US6125961A (en) Four-wheel drive vehicle
JP2005343419A (en) Front wheel rotation control device for four-wheel drive vehicle
US20170050516A1 (en) Transfer for vehicle
JP7205449B2 (en) Sensor abnormality determination device for four-wheel drive vehicle
JP5592539B2 (en) Transmission device for work vehicle
JP5346456B2 (en) Transmission device for work vehicle
JP3583064B2 (en) Agricultural work equipment steering device
US11091030B2 (en) Disconnect mechanism for a tandem axle system
JP4769018B2 (en) Work vehicle
JP4257018B2 (en) Tractor front wheel transmission
JP4380542B2 (en) Driving force switching mechanism
JP3474157B2 (en) Farm work equipment steering device
JP3984700B2 (en) Four-wheel drive vehicle
JP2017043247A (en) Four-wheel-drive vehicular transfer control apparatus
JP4012789B2 (en) Tractor
JP3541169B2 (en) Agricultural work equipment steering device
JP2016210325A (en) Four-wheel-drive vehicular control apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070413

A977 Report on retrieval

Effective date: 20091119

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20091124

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20100108

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100406

A02 Decision of refusal

Effective date: 20100803

Free format text: JAPANESE INTERMEDIATE CODE: A02