JP2005342659A - Method and system for processing exhaust gas exhausted from coating facility - Google Patents

Method and system for processing exhaust gas exhausted from coating facility Download PDF

Info

Publication number
JP2005342659A
JP2005342659A JP2004167387A JP2004167387A JP2005342659A JP 2005342659 A JP2005342659 A JP 2005342659A JP 2004167387 A JP2004167387 A JP 2004167387A JP 2004167387 A JP2004167387 A JP 2004167387A JP 2005342659 A JP2005342659 A JP 2005342659A
Authority
JP
Japan
Prior art keywords
exhaust gas
electron beam
volatile organic
ozone
discharged
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004167387A
Other languages
Japanese (ja)
Other versions
JP4739694B2 (en
Inventor
Tomihisa Yamakawa
富久 山川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Original Assignee
Fuji Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Heavy Industries Ltd filed Critical Fuji Heavy Industries Ltd
Priority to JP2004167387A priority Critical patent/JP4739694B2/en
Publication of JP2005342659A publication Critical patent/JP2005342659A/en
Application granted granted Critical
Publication of JP4739694B2 publication Critical patent/JP4739694B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and system for processing exhaust gas capable of suppressing the generation of CO<SB>2</SB>, and capable of efficiently processing a volatile organic compound contained in an exhaust gas exhausted from a coating facility with the reduction of a consumption energy. <P>SOLUTION: The exhaust gas processing system is equipped with a concentrator 20 for generating concentrated exhaust gas containing a concentrated volatile organic compound from the exhaust gas exhausted from the coating facility 10, an electron beam exhaust gas processor 30 destructively treating the volatile organic compound by irradiating the concentrated exhaust gas exhausted from this concentrator 20 with electron beams, and an ozone thermal decomposition apparatus 40 for decomposing ozone contained in the exhaust gas processed by the electron beam exhaust gas processor 30. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、塗装設備より排出される排出ガスの処理方法及び排出ガスの処理装置に関する。   The present invention relates to a method for treating exhaust gas discharged from a painting facility and a processing apparatus for exhaust gas.

自動車車体及び部品等に塗装を施す塗装設備、特に塗装焼付炉から排出される排出ガスには揮発性有機化合物が含まれている。高濃度の揮発性有機化合物は生体にも種々の作用を及ぼす。また、揮発性有機化合物は低濃度でも臭気を有することから、排出ガスに含まれる揮発性有機化合物の処理が要求される。   Volatile organic compounds are contained in the exhaust gas discharged from a painting facility for painting automobile bodies and parts, particularly from a paint baking furnace. High concentrations of volatile organic compounds have various effects on living organisms. Further, since the volatile organic compound has an odor even at a low concentration, the treatment of the volatile organic compound contained in the exhaust gas is required.

この排出ガスに含まれる揮発性有機化合物の処理は、例えば、揮発性有機化合物を含む塗装焼付炉からの排出ガスをボイラ或いは燃焼炉に送風し、可燃成分を燃焼させてHO、CO、H等の無害無臭の化合物に変化させる燃焼処理法によって処理される。この燃焼処理法には、約800℃の高温で約1秒間加熱処理する直接燃焼法や、白金等の触媒を用いて約400℃の低温で加熱処理する触媒燃焼法が広く使用されている。 The treatment of the volatile organic compound contained in the exhaust gas is performed, for example, by blowing the exhaust gas from the paint baking furnace containing the volatile organic compound to a boiler or a combustion furnace, and combusting the combustible components to produce H 2 O, CO 2. , H 2 and other non-toxic and odorless compounds. As this combustion treatment method, a direct combustion method in which heat treatment is performed at a high temperature of about 800 ° C. for about 1 second and a catalytic combustion method in which heat treatment is performed at a low temperature of about 400 ° C. using a catalyst such as platinum are widely used.

一方、COの発生が少なくしかも常温で排出ガスを処理する電子ビームを用いた処理法がある。この電子ビームを用いた排出ガス処理としては、SOxやNOxを含む排出ガスを反応器に導き、NHを添加すると共に電子ビーム照射する排出ガス処理装置が知られている(例えば、特許文献1、特許文献2参照)。 On the other hand, there is a processing method using an electron beam that generates less CO 2 and processes exhaust gas at room temperature. As this exhaust gas treatment using an electron beam, an exhaust gas treatment apparatus is known in which exhaust gas containing SOx and NOx is guided to a reactor, NH 3 is added, and electron beam irradiation is performed (for example, Patent Document 1). , See Patent Document 2).

特開2000−176237号公報JP 2000-176237 A 特開2000−834号公報JP 2000-834 A

しかし、上記燃焼処理法によると、可燃成分を燃焼させるために多くの熱エネルギを要すると共に、大量のCOが発生して環境への影響が懸念される。また、発生する熱によって処理設備周辺の作業環境を悪化させる要因となり、空調によって適切な作業環境を維持するために空調設備及び維持コストが必要になる。更に、燃焼処理するための処理設備には広範囲の敷設スペースを必要とし、工場等のレイアウトが制約される。 However, according to the above-described combustion treatment method, a large amount of heat energy is required to burn the combustible component, and a large amount of CO 2 is generated, which may cause an environmental impact. In addition, the generated heat causes a deterioration of the work environment around the processing equipment, and air conditioning equipment and maintenance costs are required to maintain an appropriate work environment by air conditioning. Furthermore, the processing facility for performing the combustion treatment requires a wide laying space, and the layout of a factory or the like is restricted.

ここで、本発明者等は、鋭意研究及び実験の結果、COの発生が少なくしかも常温で排出ガスを処理する電子ビームの照射によるSOxやNOxを含む排出ガス処理に着目し、電子ビーム法により塗装排気ガスに含まれる揮発性有機化合物を処理することで、消費エネルギ及びCOの発生が抑制できることを見出した。 Here, as a result of diligent research and experiments, the present inventors have focused on exhaust gas treatment including SOx and NOx by irradiation of an electron beam that treats exhaust gas at room temperature with little generation of CO 2. It was found that energy consumption and generation of CO 2 can be suppressed by treating volatile organic compounds contained in the paint exhaust gas.

従って、かかる点に鑑みなされた本発明の目的は、COの発生が抑制でき、かつ消費エネルギの低減が得られ効率的に塗装設備から排出される排出ガスに含まれる揮発性有機化合物の処理が可能な塗装設備より排出される排出ガスの処理方法及び排出ガスの処理装置を提供することにある。 Accordingly, an object of the present invention made in view of the above point is to treat volatile organic compounds contained in exhaust gas that can suppress generation of CO 2 , reduce energy consumption, and is efficiently discharged from a painting facility. An object of the present invention is to provide an exhaust gas treatment method and an exhaust gas treatment apparatus that are discharged from a painting facility that can perform the above-described processing.

上記目的を達成する請求項1に記載の塗装設備から排出される排出ガスの処理方法の発明は、塗装設備から排出される揮発性有機化合物を含む排出ガスの処理方法において、塗装設備から排出される上記排出ガスより高濃度の揮発性有機化合物を含む濃縮排気ガスを生成する排出ガス濃縮工程と、上記濃縮排気ガスに電子ビームを照射して揮発性有機化合物を破壊処理する電子ビーム照射処理工程と、該電子ビーム照射処理工程で処理された排出ガスに含まれるオゾンを分解するオゾン分解工程と備えたことを特徴とする。   The invention of a method for treating exhaust gas discharged from a painting facility according to claim 1 that achieves the above object is a method for treating an exhaust gas containing a volatile organic compound discharged from a painting facility. An exhaust gas concentration step for generating a concentrated exhaust gas containing a volatile organic compound having a higher concentration than the exhaust gas, and an electron beam irradiation treatment step for destroying the volatile organic compound by irradiating the concentrated exhaust gas with an electron beam And an ozone decomposition step for decomposing ozone contained in the exhaust gas processed in the electron beam irradiation treatment step.

上記目的を達成する請求項2に記載の塗装設備から排出される排出ガスの処理装置の発明は、塗装設備から排出される揮発性有機化合物を含む排出ガスの処理装置において、塗装設備から排出される上記排出ガスより高濃度の揮発性有機化合物を含む濃縮排気ガスを生成する濃縮機と、該濃縮機から排出される濃縮排気ガスに電子ビームを照射して揮発性有機化合物を破壊処理する電子ビーム排出ガス処理機と、該電子ビーム排出ガス処理機で処理された排出ガスに含まれるオゾンを分解するオゾン分解装置と備えたことを特徴とする。   The invention of a processing apparatus for exhaust gas discharged from a painting facility according to claim 2 that achieves the above object is a processing apparatus for exhaust gas containing a volatile organic compound discharged from the coating facility, and is exhausted from the coating facility. A concentrator that produces a concentrated exhaust gas containing a volatile organic compound having a higher concentration than the exhaust gas, and an electron that destroys the volatile organic compound by irradiating the concentrated exhaust gas discharged from the concentrator with an electron beam. A beam exhaust gas processing device and an ozone decomposition device for decomposing ozone contained in the exhaust gas processed by the electron beam exhaust gas processing device are provided.

請求項3に記載の発明は、請求項2の塗装設備から排出される排出ガスの処理装置において、上記オゾン分解装置は、加熱手段により上記排出ガスに含まれるオゾンを熱分解するオゾン熱分解装置であることを特徴とする。   According to a third aspect of the present invention, there is provided an apparatus for treating exhaust gas discharged from a painting facility according to the second aspect, wherein the ozonolysis apparatus thermally decomposes ozone contained in the exhaust gas by a heating means. It is characterized by being.

請求項4に記載の発明は、上記請求項2または3の塗装設備から排出される排出ガスの処理装置において、上記濃縮機は、塗装設備から排出される排出ガスの風量に対して5:1〜10:1の風量の濃縮排気ガスを生成することを特徴とする。   According to a fourth aspect of the present invention, there is provided a processing apparatus for exhaust gas discharged from the painting facility according to the second or third aspect, wherein the concentrator is 5: 1 with respect to the air volume of the exhaust gas discharged from the coating facility. Concentrated exhaust gas having an air volume of -10: 1 is generated.

請求項5に記載の発明は、請求項2〜4のいずれかの塗装設備から排出される排出ガスの処理装置において、上記濃縮機は、回転する吸着ロータを通過する上記塗装設備からの排出ガスに含まれる揮発性有機化合物を吸着ロータに吸着すると共に、上記吸着ロータを通過する脱着用空気が上記吸着ロータに吸着された揮発性有機化合物を脱着させて上記濃縮排気ガスを生成する回転式濃縮機であって、上記吸着ロータを通過した塗装設備からの処理済みの排気ガスと上記オゾン分解装置から排出される処理済みの排出ガスとを混合して放出することを特徴とする。   According to a fifth aspect of the present invention, there is provided a processing apparatus for exhaust gas discharged from the coating equipment according to any one of the second to fourth aspects, wherein the concentrator exhausts gas from the coating equipment passing through a rotating adsorption rotor. Rotating concentration in which the volatile organic compound contained in the adsorbing rotor is adsorbed by the adsorption rotor, and the desorption air passing through the adsorption rotor desorbs the volatile organic compound adsorbed by the adsorption rotor to generate the concentrated exhaust gas. The machine is characterized in that the treated exhaust gas from the painting facility that has passed through the adsorption rotor and the treated exhaust gas discharged from the ozone decomposition apparatus are mixed and discharged.

請求項1に記載の発明によると、排気ガス濃縮工程で塗装設備から排出される排出ガスより高濃度の揮発性有機化合物を含む濃縮排気ガスを生成し、この濃縮排気ガスに電子ビームを照射して揮発性有機化合物を破壊処理すると共に、電子ビーム照射処理工程で処理された排出ガスに含まれるオゾンを分解することによって、排出ガスに含まれる揮発性有機化合物が処理でき、従来の塗装排出ガスの燃焼処理法に比べ、消費熱エネルギ及びCOの発生が大幅に削減できる。更に、塗装設備から排出される排出ガスに含まれる揮発性有機加工物を排気ガス濃縮工程で濃縮することによって、電子ビーム照射処理工程において電子ビームを照射により処理される排出ガスの処理量が削減されて、設備コスト及びランニングコストの抑制が期待できる。 According to the first aspect of the present invention, a concentrated exhaust gas containing a volatile organic compound having a higher concentration than the exhaust gas discharged from the painting equipment in the exhaust gas concentration step is generated, and the concentrated exhaust gas is irradiated with an electron beam. By destroying volatile organic compounds and decomposing ozone contained in the exhaust gas treated in the electron beam irradiation treatment process, the volatile organic compounds contained in the exhaust gas can be treated. Compared with the combustion processing method, the consumption heat energy and the generation of CO 2 can be greatly reduced. Furthermore, by concentrating the volatile organic workpieces contained in the exhaust gas discharged from the painting equipment in the exhaust gas concentration process, the amount of exhaust gas processed by electron beam irradiation in the electron beam irradiation process is reduced. Therefore, it can be expected to reduce the equipment cost and running cost.

請求項2に記載の発明によると、塗装設備から排出される排出ガスを濃縮機によって濃縮した後、電子ビーム排出ガス処理機による電子ビームの照射により揮発性有機化合物を破壊処理し、かつオゾン熱分解装置によってオゾン分解することから、従来の塗装排出ガスの燃焼処理法に比べ、消費熱エネルギ及びCOの発生を大幅に削減できる。 According to the second aspect of the present invention, the exhaust gas discharged from the painting facility is concentrated by the concentrator, and then the volatile organic compound is destroyed by the electron beam irradiation by the electron beam exhaust gas processor, and the ozone heat Since ozone decomposition is performed by the decomposition apparatus, compared with the conventional combustion treatment method of paint exhaust gas, the consumption heat energy and the generation of CO 2 can be greatly reduced.

更に、塗装設備から排出される排出ガスに含まれる揮発性有機化合物を濃縮機によって濃縮することによって、電子ビーム排出ガス処理機による電子ビームを照射して破壊処理する排出ガスの処理量が削減され、電子ビーム排出ガス処理機の要求処理能力が抑制されて電子ビーム排出ガス処理機の小型及び簡素化が得られ、設備コスト及びランニングコストの抑制が期待できる。   Furthermore, by concentrating the volatile organic compounds contained in the exhaust gas discharged from the painting equipment with a concentrator, the amount of exhaust gas that is destroyed by irradiating the electron beam with the electron beam exhaust gas processor is reduced. The required processing capacity of the electron beam exhaust gas processing machine is suppressed, so that the electron beam exhaust gas processing machine can be reduced in size and simplified, and the equipment cost and running cost can be suppressed.

請求項3の発明によると、加熱手段により排出ガスに含まれるオゾンを熱分解するオゾン熱分解装置を用いることによって、加熱手段の出力を制御することでオゾン熱分解温度が適切に維持できると共に、オゾン熱分解装置によって発生した廃熱を塗装設備等の加熱に利用できる。   According to the invention of claim 3, by using an ozone pyrolysis device that thermally decomposes ozone contained in the exhaust gas by the heating means, the ozone pyrolysis temperature can be appropriately maintained by controlling the output of the heating means, Waste heat generated by the ozone pyrolyzer can be used to heat painting equipment.

請求項4の発明によると、濃縮機によって塗装設備から排出される排出ガスの風量に対して5:1〜10:1の風量の濃縮排気ガスを生成することによって、濃縮機及び電子ビーム排出ガス処理機による処理効率が確保できる。   According to the invention of claim 4, the concentrated exhaust gas and the electron beam exhaust gas are generated by generating the concentrated exhaust gas having an air volume of 5: 1 to 10: 1 with respect to the air volume of the exhaust gas discharged from the painting facility by the concentrator. The processing efficiency by the processor can be secured.

請求項5の発明は、濃縮機の具体的例を示すと共に、吸着ロータを通過した塗装設備からの処理済み排気ガスとオゾン分解装置から排出される処理済みの排出ガスを混合させることによってオゾン分解装置から排出される処理済みの排出ガスを希釈することができる。   The invention of claim 5 shows a specific example of the concentrator and ozonolysis by mixing the treated exhaust gas from the painting facility that has passed through the adsorption rotor and the treated exhaust gas discharged from the ozone decomposing apparatus. The treated exhaust gas discharged from the apparatus can be diluted.

以下、本発明による塗装設備から排出される排出ガスの処理方法及び排気ガスの処理装置の実施の形態を図1乃至図8を参照して説明する。   DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of a method for treating exhaust gas discharged from a painting facility and an apparatus for treating exhaust gas according to the present invention will be described below with reference to FIGS.

図1は、塗装排出ガス処理装置1及び処理方法の概要を示す全体説明図であり、図2及び図3は濃縮機の説明図、図4はオゾン分解装置の説明図である。   FIG. 1 is an overall explanatory view showing an outline of a paint exhaust gas processing apparatus 1 and a processing method, FIGS. 2 and 3 are explanatory views of a concentrator, and FIG. 4 is an explanatory view of an ozone decomposition apparatus.

自動車車体及び部品に塗装を施す塗装設備10から排出される揮発性有機化合物を含む排出ガス、即ち塗装排気ガスは、揮発性有機化合物を濃縮する排出ガス濃縮工程I、この排出ガス濃縮工程Iで生成された濃縮排出ガスに電子ビームを照射して揮発性有機化合物を破壊処理する電子ビーム照射処理工程II、電子ビーム照射処理工程IIにおいて電子ビームで照射されて揮発性有機化合物が破壊処理された排出ガスに含まれるオゾンを分解するオゾン分解工程IIIによって処理される。塗装排出ガス処理装置1は排出ガス濃縮工程I、電子ビーム照射処理工程II、オゾン分解工程IIIの各工程をそれぞれ実行する濃縮機20、電子ビーム排出ガス処理機30、オゾン熱分解装置40を備えている。   Exhaust gas containing volatile organic compounds discharged from the painting facility 10 for coating automobile bodies and parts, that is, coating exhaust gas, is an exhaust gas concentration process I for concentrating volatile organic compounds, and this exhaust gas concentration process I The generated concentrated exhaust gas is irradiated with an electron beam to destroy the volatile organic compound, and the electron beam irradiation processing step II and the electron beam irradiation processing step II are irradiated with the electron beam to destroy the volatile organic compound. It is processed by an ozonolysis step III for decomposing ozone contained in the exhaust gas. The paint exhaust gas treatment apparatus 1 includes a concentrator 20, an electron beam exhaust gas treatment device 30, and an ozone pyrolysis device 40 that respectively perform an exhaust gas concentration process I, an electron beam irradiation treatment process II, and an ozone decomposition process III. ing.

塗装設備10は、塗装が施された自動車車体及び部品等の塗料を乾燥させる間接燃焼式焼付乾燥炉11を有し、炉内循環空気を熱風循環バーナ12によって加熱し、循環ファン13によって循環して焼付乾燥炉11の炉内雰囲気を一定に維持している。   The painting facility 10 has an indirect combustion type baking and drying furnace 11 that dries paints such as automobile bodies and parts that have been painted, heats the circulating air in the furnace by a hot air circulation burner 12, and circulates it by a circulation fan 13. Thus, the furnace atmosphere of the baking and drying furnace 11 is kept constant.

塗装設備10の上部からダクトL1を介して順に前処理フィルタ15、クーラ16、濃縮機20、ブロア29が連接され、かつ濃縮機20からダクトL2を介して電子ビーム排出ガス処理機30、オゾン熱分解装置40、ブロア69が接続されている。ブロア69によって送出された処理済みの排出ガスは、排出ガス希釈装置70によってブロア29から送出された処理済みの排出ガスと混合して希釈されて放出される。   The pretreatment filter 15, the cooler 16, the concentrator 20, and the blower 29 are connected in order from the upper part of the painting facility 10 through the duct L1, and the electron beam exhaust gas processing device 30 and the ozone heat are connected from the concentrator 20 through the duct L2. A disassembling device 40 and a blower 69 are connected. The processed exhaust gas sent out by the blower 69 is mixed with the processed exhaust gas sent out from the blower 29 by the exhaust gas diluting device 70, diluted, and released.

塗装設備10内の揮発性有機化合物を含む排気ガスは、ダクトL1を介してブロア29によって引き出され、前処理フィルタ15によって排出ガスに含まれたミスト状或いは粘液状の塗料や溶剤等の浮遊物が除去される。この前処理フィルタ15は例えばスチール製の網等によって構成され、圧力損失が少なくかつ効率的にミスト状或いは粘液状の塗料や溶剤等の浮遊物を効率的に除去し、浮遊物が後述する濃縮機20の吸着ロータ22に付着して目詰まりする等の不具合発生を防止する。   The exhaust gas containing the volatile organic compound in the painting facility 10 is drawn out by the blower 29 through the duct L1, and suspended matter such as a mist or viscous liquid paint or solvent contained in the exhaust gas by the pretreatment filter 15. Is removed. The pretreatment filter 15 is made of, for example, a steel net, and has low pressure loss and efficiently removes suspended matters such as mist-like or viscous liquid paints and solvents. The occurrence of problems such as clogging by adhering to the suction rotor 22 of the machine 20 is prevented.

前処理フィルタ15によってミスト状或いは粘液状の浮遊物が除去された排出ガスは、クーラ16によって40℃程度に冷却されて排出ガス濃縮工程Iを実行する濃縮機20に供給される。   The exhaust gas from which the mist-like or viscous liquid suspended matter is removed by the pretreatment filter 15 is cooled to about 40 ° C. by the cooler 16 and supplied to the concentrator 20 that executes the exhaust gas concentration step I.

濃縮機20は回転式濃縮機であって、図2及び図3に図2のA−A線断面図を示すように、駆動モータ21等の回転駆動手段によって低速、例えば約3.5rphで回転駆動される円板状乃至円柱状で吸着ロータ22を有している。吸着ロータ22は、例えば活性炭素繊維からなるハニカム構造を渦巻状に巻かれて円板状乃至円柱状に形成されて、クーラ16によって冷却された排気ガスがブロア29によって吸引されて通過する。一方、フィルタを備えた空気取り入口26及び電気ヒータ等の加熱器27が設けられ、ブロア69によってダクトL2を介して吸引されて空気取り入口26からを導入された脱着用の空気が吸着ロータ22を通過した後、加熱器27によって例えば200℃程度に加熱され、再び吸着ロータ22を通過してブロア69の吸引によって電子ビーム排出ガス処理機30に送出される。   The concentrator 20 is a rotary concentrator, and is rotated at a low speed, for example, about 3.5 rph by a rotary drive means such as a drive motor 21 as shown in the cross-sectional view along line AA in FIG. 2 and FIG. The suction rotor 22 has a disk shape or a cylindrical shape to be driven. The adsorption rotor 22 is formed in a disk shape or a cylindrical shape by spirally winding a honeycomb structure made of, for example, activated carbon fibers, and the exhaust gas cooled by the cooler 16 is sucked by the blower 29 and passes therethrough. On the other hand, an air intake 26 provided with a filter and a heater 27 such as an electric heater are provided, and the desorption air sucked through the duct L2 by the blower 69 and introduced from the air intake 26 is absorbed by the adsorption rotor 22. Then, the heater 27 is heated to, for example, about 200 ° C., passes through the adsorption rotor 22 again, and is sent to the electron beam exhaust gas processor 30 by suction of the blower 69.

ブロア29によって吸引されて吸着ロータ22を通過する塗装設備10側からの排出ガスの単位時間当たりの風量αに対し、ブロア69の吸引によって吸着ロータ22を通過する脱着用空気の風量βが例えば5:1〜10:1、即ち1/5〜1/10に設定されている。   For example, the air volume β of the desorption air passing through the suction rotor 22 by suction of the blower 69 is 5 with respect to the air volume α per unit time of the exhaust gas sucked by the blower 29 and passing through the suction rotor 22. : 1 to 10: 1, that is, 1/5 to 1/10.

吸着ロータ22において、ブロア29によって吸引されて塗装設備10側からの排出ガスが通過する領域が吸着ゾーン23、ブロア69によって空気取り入口26から導入された脱着用空気が通過する領域が準備ゾーン24、加熱器27によって加熱された脱着用空気が通過する領域が脱着ゾーン25となる。   In the adsorption rotor 22, an area in which the exhaust gas sucked by the blower 29 passes through the coating equipment 10 side passes through the adsorption zone 23, and an area through which the desorption air introduced from the air intake 26 through the blower 69 passes is the preparation zone 24. The region through which the desorption air heated by the heater 27 passes becomes the desorption zone 25.

ブロア29によって吸引され塗装設備10側から吸着ロータ22の吸着ゾーン23に導入された揮発性有機化合物を含む排出ガスは、吸着ロータ22を通過する間に揮発性有機化合物が吸着ロータ22に吸着抽出されて除去され、揮発性有機化合物が除去されて残存する揮発性有機化合物が極めて少ない処理済みの排出ガスがブロア29によってダクトL3を介して排気ガス希釈装置70に送出される。   The exhaust gas containing volatile organic compounds sucked by the blower 29 and introduced from the coating equipment 10 side into the adsorption zone 23 of the adsorption rotor 22 is adsorbed and extracted by the adsorption rotor 22 while passing through the adsorption rotor 22. Then, the treated exhaust gas from which the volatile organic compound is removed and the residual volatile organic compound is extremely small is sent out to the exhaust gas dilution device 70 through the duct L3 by the blower 29.

吸着ロータ22に吸着して回収された揮発性有機化合物は、脱着ゾーン25において、加熱器27によって加熱されて吸着ロータ22を通過する脱着用空気によって脱着されて塗装設備10から排出される排出ガスより高濃度の揮発性有機化合物を含む濃縮排気ガスが生成され、濃縮排気ガスが電子ビーム排気ガス処理機30に送出される。また、準備ゾーン24において空気取り入口26から導入された脱着用空気が吸着ロータ22を通過する際に、吸着ゾーン25において脱着されずに残存する揮発性有機化合物を脱着させて、加熱器27を介して脱着ゾーン25に送給される。   The volatile organic compound adsorbed and recovered by the adsorption rotor 22 is heated by the heater 27 in the desorption zone 25 and is desorbed by the desorption air passing through the adsorption rotor 22 and is discharged from the coating facility 10. A concentrated exhaust gas containing a higher concentration volatile organic compound is generated, and the concentrated exhaust gas is sent to the electron beam exhaust gas processor 30. Further, when the desorption air introduced from the air intake 26 in the preparation zone 24 passes through the adsorption rotor 22, volatile organic compounds remaining without being desorbed in the adsorption zone 25 are desorbed, and the heater 27 is To the desorption zone 25.

この濃縮機20において、塗装設備10側から吸着ゾーン25に供給されて通過する排出ガスの風量αに対し、脱着ゾーン25を通過して電子ビーム排出ガス処理機30に送出される濃縮排出ガスの風量βを5:1〜10:1の割合に設定することによって、塗装設備10側から濃縮機20の導入される揮発性有機物を含む排出ガスに対し、約5〜10倍に濃縮されて揮発性有機物を含む濃縮排出ガスが電子ビーム排出ガス処理機30に送出される。即ち、塗装設備10側から濃縮機20に導入される排出ガスの風量αに対し、電子ビーム排出ガス処理機30によって処理される濃縮排気ガスの風量βを5:1〜10:1、換言すると1/5〜1/10に減少することができる。   In the concentrator 20, the concentrated exhaust gas sent to the electron beam exhaust gas processing device 30 through the desorption zone 25 with respect to the air volume α of the exhaust gas supplied from the coating equipment 10 side to the adsorption zone 25 and passes therethrough. By setting the air flow β to a ratio of 5: 1 to 10: 1, the exhaust gas containing the volatile organic matter introduced from the coating equipment 10 side into the concentrator 20 is concentrated about 5 to 10 times and volatilized. The concentrated exhaust gas containing the organic substance is sent to the electron beam exhaust gas processor 30. That is, the air volume β of the concentrated exhaust gas processed by the electron beam exhaust gas processor 30 is 5: 1 to 10: 1 with respect to the air volume α of the exhaust gas introduced into the concentrator 20 from the coating equipment 10 side, in other words. It can be reduced to 1/5 to 1/10.

電子ビーム照射処理工程IIを実行する電子ビーム排出ガス処理機30は、濃縮機20からチャンバ31内に送給された濃縮排気ガスに電子ビームを照射して濃縮排出ガスに含まれる揮発性有機化合物を破壊処理するものである。   The electron beam exhaust gas processing device 30 that executes the electron beam irradiation processing step II irradiates the concentrated exhaust gas fed from the concentrator 20 into the chamber 31 with an electron beam and is contained in the concentrated exhaust gas. Is to destroy.

その電子ビーム排出ガス処理機30の入口及び出口にそれぞれ電子ビーム排出ガス処理機30に導入される濃縮排出ガスに含有する揮発性有機化合物の各成分濃度及び電子ビーム排出ガス処理機30によって処理された排出ガスに含まれる揮発性有機化合物の各成分濃度を連続的に測定する計測器35及び36が設けられている。計測器35によって測定された処理前の揮発性有機化合物の各成分濃度に応じて電子ビームの照射量を制御することによって効率的な揮発性有機化合物の破壊処理を行うように構成されている。また、計測器36によって電子ビーム排出処理機30から排出される処理済みの排出ガスに含まれる揮発性有機化合物の各成分濃度を常に監視する。これら計測器35及び35は連続的に揮発性有機化合物の各成分濃度を測定できるフーリエ変換赤外吸光分光光度計を用いることができる。   The respective concentrations of volatile organic compounds contained in the concentrated exhaust gas introduced into the electron beam exhaust gas processing unit 30 and the electron beam exhaust gas processing unit 30 are processed at the inlet and the outlet of the electron beam exhaust gas processing unit 30, respectively. Measuring instruments 35 and 36 are provided for continuously measuring the concentration of each component of the volatile organic compound contained in the exhaust gas. The volatile organic compound is efficiently destroyed by controlling the irradiation amount of the electron beam in accordance with the concentration of each component of the volatile organic compound before treatment measured by the measuring instrument 35. Moreover, each component density | concentration of the volatile organic compound contained in the processed exhaust gas discharged | emitted from the electron beam discharge processing machine 30 by the measuring device 36 is always monitored. As these measuring instruments 35 and 35, a Fourier transform infrared absorption spectrophotometer capable of continuously measuring the concentration of each component of the volatile organic compound can be used.

電子ビーム排出ガス処理機30で電子ビームの照射によって揮発性有機化合物を破壊処理する際に生成されたオゾンを含む排出ガスは、その排出ガスに含まれるオゾンを分解するオゾン分解工程IIIを実行するオゾン熱分解装置40に供給される。   The exhaust gas containing ozone generated when the volatile organic compound is destroyed by the electron beam irradiation in the electron beam exhaust gas processing machine 30 executes an ozone decomposition step III for decomposing ozone contained in the exhaust gas. It is supplied to the ozone pyrolysis device 40.

オゾン熱分解装置40は、図4に示すように排出ガスに対して優れた耐腐食性を有するステンレススチール材からなる上下方向に連続する筒状の筒部43と、この筒部43の上方及び下方の開口部をそれぞれ密閉する上面部44及び底面部45とによって形成された上下方向に長い中空状の容器42を有している。筒部43の側面下部の電子ビーム排出ガス処理機30からの排出ガスが導入される入口47を有する導管46が連通している。また、底面部45の下方に有底筒状の貯留タンク48が連続形成され、貯留タンク48の側面に処理済ガス出口49が連通している。   As shown in FIG. 4, the ozone pyrolysis apparatus 40 includes a cylindrical cylindrical portion 43 made of a stainless steel material having excellent corrosion resistance against exhaust gas and continuous in the vertical direction. It has a hollow container 42 that is long in the vertical direction and is formed by an upper surface portion 44 and a bottom surface portion 45 that seal the lower opening. A conduit 46 having an inlet 47 through which exhaust gas from the electron beam exhaust gas processor 30 at the lower side of the cylindrical portion 43 is introduced communicates. A bottomed cylindrical storage tank 48 is continuously formed below the bottom surface 45, and a treated gas outlet 49 communicates with the side surface of the storage tank 48.

容器42内の上部に側部52及び底部53によって形成された有底筒状の触媒充填部51が設けられている。この触媒充填部51によって容器42内の下方の熱交換部54と上方の加熱部55に区画すると共に、触媒充填部51の側部52と容器42の筒部43とによって熱交換部54と加熱部55とを連通する連通部56を形成している。熱交換部54内に入口47から導入された排気ガスを熱交換部54内に滞留する時間を確保するために水平方向に延在する複数のバッフルプレート57によって迷路状に区画されている。   A bottomed cylindrical catalyst filling portion 51 formed by a side portion 52 and a bottom portion 53 is provided at an upper portion in the container 42. The catalyst filling section 51 divides the heat exchange section 54 into the lower heat exchange section 54 and the upper heating section 55 in the container 42 and heats the heat exchange section 54 and the heat by the side section 52 of the catalyst filling section 51 and the cylinder section 43 of the container 42. A communication portion 56 that communicates with the portion 55 is formed. The exhaust gas introduced from the inlet 47 in the heat exchanging portion 54 is partitioned in a labyrinth by a plurality of baffle plates 57 extending in the horizontal direction in order to secure a time for the exhaust gas to stay in the heat exchanging portion 54.

触媒充填部51の底部53と底面部45の間には一端が触媒充填部51内に連通し他端が底面部45を介して貯留タンク48に連通する複数の連通管58が熱交換部54内に設けられている。この触媒充填部51の底部53と底面部45との間に掛け渡された複数の連通管58は、それぞれバッフルプレート57を貫通すると共に伝熱可能に結合されている。   A plurality of communication pipes 58 having one end communicating with the inside of the catalyst filling unit 51 and the other end communicating with the storage tank 48 via the bottom surface 45 are provided between the bottom 53 and the bottom surface 45 of the catalyst filling unit 51. Is provided inside. The plurality of communication pipes 58 spanned between the bottom part 53 and the bottom part 45 of the catalyst filling part 51 respectively penetrate the baffle plate 57 and are coupled so as to be able to transfer heat.

触媒充填部51の上方に形成され加熱部55内に、加熱手段となる赤外線ヒータ等の加熱用ヒータ61が設けられている。更に、触媒充填部51の温度を検知する温度検知手段として熱電対63が配設されている。熱電対63は上面部44を貫通して温度検知部となる先端63aが触媒充填部51内に設定されている。   A heating heater 61 such as an infrared heater serving as a heating unit is provided in the heating unit 55 formed above the catalyst filling unit 51. Further, a thermocouple 63 is disposed as a temperature detecting means for detecting the temperature of the catalyst filling unit 51. In the thermocouple 63, a tip 63 a that penetrates the upper surface portion 44 and serves as a temperature detection portion is set in the catalyst filling portion 51.

この熱電対63による温度検知に基いて図示しない制御手段によって加熱用ヒータ61の出力を制御して予め設定された温度に加熱部55を加熱すると共に触媒充填部51の温度を一定に保持する。即ち、熱電対63による温度検知に基づいて加熱用ヒータ61の出力を制御して加熱部55の温度を500℃程度の一定温度に加熱すると共に、触媒充填部51を500℃程度の一定温度に保持する。触媒充填部51内の下部範囲には触媒であるパラジウム65が充填されている。   Based on the temperature detection by the thermocouple 63, the output of the heater 61 is controlled by a control means (not shown) to heat the heating unit 55 to a preset temperature and keep the temperature of the catalyst filling unit 51 constant. That is, the output of the heater 61 is controlled based on temperature detection by the thermocouple 63 to heat the temperature of the heating unit 55 to a constant temperature of about 500 ° C., and the catalyst filling unit 51 is set to a constant temperature of about 500 ° C. Hold. The lower range in the catalyst filling unit 51 is filled with palladium 65 as a catalyst.

図4に矢印で示すように、電子ビーム排出ガス処理機30で揮発性有機化合物が破壊処理された処理済みの排出ガスが、入口47から導管46を介して容器42に形成された熱交換部54の下部に連続注入する。熱交換部54の下部に注入された排気ガスは、各バッフルプレート57に沿って誘導されて蛇行しつつ緩やかに熱交換部54内を上昇し、連通路56から加熱部55に供給される。加熱部55に供給された排出ガスは、加熱用ヒータ61によって例えば、500℃程度に加熱される。加熱された排出ガスは、加熱部55に連続形成されて触媒であるバナジウム65が充填された触媒充填部51内を通過し連通部58に送られる。このとき触媒充填部51を通過する排出ガスは、パラジウム65の存在下で加熱用ヒータ61によって500℃程度の一定温度に保持され、オゾンが酸素に熱分解されて処理済の排出ガスとなり、連通路58を経由して貯留タンク48に送られ、貯留タンク48で冷却してから処理済ガス出口49から排出される。   As shown by the arrows in FIG. 4, the heat exchange section in which the treated exhaust gas in which the volatile organic compound has been destroyed by the electron beam exhaust gas processor 30 is formed in the container 42 from the inlet 47 through the conduit 46. Inject continuously into the lower part of 54. The exhaust gas injected into the lower part of the heat exchanging part 54 is guided along each baffle plate 57 and gently rises in the heat exchanging part 54 while meandering, and is supplied to the heating part 55 from the communication path 56. The exhaust gas supplied to the heating unit 55 is heated to, for example, about 500 ° C. by the heater 61 for heating. The heated exhaust gas is continuously formed in the heating unit 55, passes through the catalyst filling unit 51 filled with vanadium 65 as a catalyst, and is sent to the communication unit 58. At this time, the exhaust gas passing through the catalyst filling unit 51 is maintained at a constant temperature of about 500 ° C. by the heater 61 in the presence of palladium 65, and ozone is thermally decomposed into oxygen to become a processed exhaust gas. It is sent to the storage tank 48 via the passage 58, cooled by the storage tank 48, and then discharged from the treated gas outlet 49.

ここで、500℃程度に加熱保持され、触媒充填部51を通過してオゾンが熱分解された高温の処理済の排出ガスは、熱交換部54に配設された連通管58内を流通する間に連通管58を加熱すると共に、連通管58と結合する各バッフルプレート57を加熱する。一方、入口47から熱交換部54の下部に連続注入された排出ガスは、十分な熱伝達面積が確保された各バッフルプレート57に沿って誘導されて緩やかに熱交換部54内を上昇しつつ連通管58及びバッフルプレート57によって加熱される。   Here, the high-temperature treated exhaust gas that has been heated and maintained at about 500 ° C. and has been subjected to thermal decomposition of ozone through the catalyst filling unit 51 circulates in the communication pipe 58 disposed in the heat exchange unit 54. The communication pipe 58 is heated in between, and each baffle plate 57 coupled to the communication pipe 58 is heated. On the other hand, the exhaust gas continuously injected from the inlet 47 to the lower part of the heat exchanging part 54 is guided along each baffle plate 57 in which a sufficient heat transfer area is secured, and gradually rises in the heat exchanging part 54. Heated by the communication pipe 58 and the baffle plate 57.

このようにして加熱部55を介して触媒充填部51に供給された排出ガスを、予め熱交換部54において加熱することによって、加熱用ヒータ61によって排出ガスを加熱するに要する電気エネルギの消費を抑制することができると共に、効率的な熱分解が行われる。更に、このオゾン熱分解装置40によって発生した廃熱は、回収されて間接燃焼式焼付乾燥炉11の加熱に利用される。   In this way, the exhaust gas supplied to the catalyst filling unit 51 via the heating unit 55 is heated in advance in the heat exchanging unit 54, so that the consumption of electrical energy required to heat the exhaust gas by the heater 61 is reduced. While being able to suppress, efficient thermal decomposition is performed. Further, the waste heat generated by the ozone pyrolysis apparatus 40 is recovered and used for heating the indirect combustion type baking / drying furnace 11.

オゾン熱分解装置40によってオゾンが熱分解された処理済みの排出ガスはブロア69によってダクトL4を介して排出ガス希釈装置70に送出され、排気ガス希釈工程IVにおいてブロア29によってダクトL3を介して送給される処理済みの排出ガスと混合して希釈されて、希釈された処理済みの排出ガスが塗装排出ガス処理装置1の外部に放出される。   The exhaust gas that has been subjected to the thermal decomposition of ozone by the ozone pyrolysis device 40 is sent to the exhaust gas dilution device 70 through the duct L4 by the blower 69, and is sent to the exhaust gas dilution device 70 through the duct L3 by the blower 29 in the exhaust gas dilution process IV. The processed exhaust gas to be supplied is diluted by being mixed with the processed exhaust gas, and the diluted processed exhaust gas is discharged to the outside of the paint exhaust gas processing apparatus 1.

このように構成された排気ガスの処理方法及び排出ガス処理装置1によると、濃縮機20によって塗装設備10から排出される排出ガスより高濃度の揮発性有機化合物を含む濃縮排気ガスを生成し、この濃縮排気ガスを電子ビーム排出ガス処理機30によって電子ビームの照射により揮発性有機化合物を破壊処理し、かつ電子ビームの照射によって生成されたオゾンを含む排出ガスをオゾン熱分解装置40によってそのオゾンを熱分解することから、従来の塗装排出ガスの燃焼処理法に比べ、消費熱エネルギ及びCOの発生を大幅に削減でき、かつ発生する熱も低減されて作業環境が向上すると共に、処理設備等の敷設スペースが抑制できて工場等のレイアウトの制約が回避できる。 According to the exhaust gas processing method and the exhaust gas processing apparatus 1 configured as described above, a concentrated exhaust gas containing a volatile organic compound having a higher concentration than the exhaust gas discharged from the coating facility 10 by the concentrator 20 is generated. This concentrated exhaust gas is subjected to destruction treatment of volatile organic compounds by electron beam irradiation by an electron beam exhaust gas processor 30, and exhaust gas containing ozone generated by electron beam irradiation is converted into ozone by an ozone pyrolysis device 40. Compared with the conventional paint exhaust gas combustion processing method, the heat consumption energy and the generation of CO 2 can be greatly reduced, and the generated heat is also reduced to improve the work environment and the processing equipment. Therefore, it is possible to suppress the laying space such as a factory and avoid the restrictions on the layout of the factory.

更に、塗装設備10から排出される排出ガスに含まれる揮発性有機化合物を濃縮機20によって濃縮することによって、電子ビーム排出ガス処理機30によって電子ビームを照射して破壊処理する排出ガスの処理量が削減され、電子ビームの照射量の削減が可能になり、電子ビーム排出ガス処理機30の要求処理能力が抑制されて電子ビーム排出ガス処理機30の小型及び簡素化が得られ、設備コスト及びランニングコストの抑制が期待できる。   Further, the volatile organic compound contained in the exhaust gas discharged from the painting facility 10 is concentrated by the concentrator 20 so that the electron beam exhaust gas processor 30 irradiates the electron beam and destroys it. The amount of irradiation of the electron beam can be reduced, the required processing capacity of the electron beam exhaust gas processing machine 30 is suppressed, and the electron beam exhaust gas processing machine 30 can be reduced in size and simplified. The running cost can be reduced.

塗装設備10から排出される揮発性有機化合物を含む排気ガスを濃縮機20に供給して、濃縮機20により揮発性有機化合物を吸着ロータ22に吸着して回収した回収率の実測結果を図5に示す。   The exhaust gas containing the volatile organic compound discharged from the painting facility 10 is supplied to the concentrator 20, and an actual measurement result of the recovery rate obtained by adsorbing the volatile organic compound to the adsorption rotor 22 by the concentrator 20 and collecting it is shown in FIG. Shown in

塗装設備10側のダクトL1からの排出ガスの風量αが10Nm/minで3.5rphで回転する吸着ロータ22の吸着ゾーン25に供給する一方、空気取り入口26から導入された脱着用空気の風量βが1Nm/minで準備ゾーン24を通過し、かつ加熱器27で180℃に加熱されて吸着ゾーン23を通過させた濃縮倍率が10のときの濃縮機20に導入される排出ガスの総炭化水素濃度及びダクトL3から排出される処理済みの排気ガスの総炭化水素濃度を測定した結果を示している。この結果より塗装設備10側から導入される処理前の排出ガスの総炭化水素の平均測定濃度が883.8ppmであるのに対し、吸着ロータ22を通過したダクトL3から回収された処理済みの排気ガスの平均測定濃度が65.4ppmであり、濃縮機20の吸着ロータ22による総炭化水素の回収率が92.6%であった。 The air volume α of the exhaust gas from the duct L1 on the painting equipment 10 side is supplied to the adsorption zone 25 of the adsorption rotor 22 rotating at 3.5 rph at 10 Nm 3 / min, while the desorption air introduced from the air intake 26 is supplied. Of exhaust gas introduced into the concentrator 20 when the air flow rate β is 1 Nm 3 / min, passes through the preparation zone 24, and is heated to 180 ° C. by the heater 27 and passes through the adsorption zone 23. The result of having measured the total hydrocarbon concentration and the total hydrocarbon concentration of the processed exhaust gas discharged | emitted from the duct L3 is shown. As a result, the average measured concentration of total hydrocarbons in the exhaust gas before treatment introduced from the coating equipment 10 side is 883.8 ppm, whereas the treated exhaust gas recovered from the duct L3 that has passed through the adsorption rotor 22 is treated. The average measured concentration of gas was 65.4 ppm, and the recovery rate of total hydrocarbons by the adsorption rotor 22 of the concentrator 20 was 92.6%.

また、塗装設備10側のダクトL1からの排出ガスの風量αが10Nm/minで3.5rphで回転する吸着ロータ22の吸着ゾーン25に供給する一方、空気取り入口26から導入された脱着用空気の風量βが1.43Nm/minで準備ゾーン24を通過し、かつ加熱器27で180℃に加熱されて吸着ゾーン23を通過させた濃縮倍率が7のときの濃縮機20に導入される排出ガスの総炭化水素濃度及びダクトL3から排出される処理済みの排気ガスの総炭化水素濃度を測定した結果を示している。この結果より塗装設備10側から導入される処理前の排出ガスの総炭化水素の平均測定濃度が878.4ppmであるのに対し、吸着ロータ22を通過したダクトL3から回収された処理済みの排気ガスの平均測定濃度が26.6ppmであり、濃縮機20の吸着ロータ22による総炭化水素の回収率が97.0%であった。 Further, the air volume α of the exhaust gas from the duct L1 on the coating equipment 10 side is supplied to the adsorption zone 25 of the adsorption rotor 22 rotating at 3.5 rph at 10 Nm 3 / min, while being removed from the air intake 26. The air flow rate β is 1.43 Nm 3 / min, which passes through the preparation zone 24, is heated to 180 ° C. by the heater 27 and is passed through the adsorption zone 23, and is introduced into the concentrator 20 when the concentration ratio is 7. The result of measuring the total hydrocarbon concentration of the exhaust gas and the total hydrocarbon concentration of the treated exhaust gas discharged from the duct L3 is shown. As a result, the average measured concentration of total hydrocarbons in the exhaust gas before treatment introduced from the coating equipment 10 side is 878.4 ppm, whereas the treated exhaust gas recovered from the duct L3 that has passed through the adsorption rotor 22 is treated. The average measured concentration of gas was 26.6 ppm, and the recovery rate of total hydrocarbons by the adsorption rotor 22 of the concentrator 20 was 97.0%.

この実測結果より、排出ガス濃縮工程Iにおいて濃縮機20によって塗装設備10側から供給される排出ガスに含まれる揮発性有機化合物が高回収効率で回収でき、濃縮倍率7〜10、換言すると濃縮機20によって塗装設備10から排出される排出ガスの風量αに対して7:1〜10:1、即ち1/7〜1/10の風量βの濃縮排気ガスを生成することによって十分に揮発性有機化合物が回収でき、濃縮機20による処理効率が確保できることが確認できる。   From the actual measurement results, the volatile organic compound contained in the exhaust gas supplied from the coating equipment 10 side by the concentrator 20 in the exhaust gas concentration step I can be recovered with high recovery efficiency, and the concentration factor is 7 to 10, in other words, the concentrator. By generating a concentrated exhaust gas having an air volume β of 7: 1 to 10: 1, that is, 1/7 to 1/10 of the air volume α of the exhaust gas discharged from the painting facility 10 by 20, sufficiently volatile organic It can be confirmed that the compound can be recovered and the processing efficiency by the concentrator 20 can be secured.

また、図6は電子ビーム排出ガス処理機30により排気ガスに電子ビームを照射したときの濃縮排気ガスが含有する総炭化水素の処理効率の変化を示すもので、電子ビーム排出ガス処理機30のチャンバ31に濃縮機20によって10倍に濃縮した濃縮排気ガスを1m/minの風量βで導入し、150kVで35mAの電子ビームを照射したときの平均処理効率が43%であり、濃縮することなく排気ガスを10m/minの風量で電子ビーム処理機30のチャンバ31に導入し、150kVで35mAの電子ビームを照射したときの平均処理効率が36%であることが確認できた。この結果、電子ビーム照射処理工程IIの前工程である排出ガス濃縮工程Iで濃縮することによってより電子ビームを照射による揮発性有機化合物の破壊処理効率が向上すること確認できる。 FIG. 6 shows a change in the processing efficiency of the total hydrocarbons contained in the concentrated exhaust gas when the electron beam is emitted to the exhaust gas by the electron beam exhaust gas processor 30. Concentrated exhaust gas 10-fold concentrated by the concentrator 20 is introduced into the chamber 31 at an air flow rate β of 1 m 3 / min, and the average processing efficiency when irradiated with a 35 mA electron beam at 150 kV is 43%. It was confirmed that the average processing efficiency was 36% when the exhaust gas was introduced into the chamber 31 of the electron beam processor 30 with an air volume of 10 m 3 / min and irradiated with a 35 mA electron beam at 150 kV. As a result, it can be confirmed that the destruction treatment efficiency of the volatile organic compound by the irradiation with the electron beam is improved by the concentration in the exhaust gas concentration step I which is the previous step of the electron beam irradiation treatment step II.

図7及び図8はオゾン熱分解装置40によるオゾン処理工程IIIの処理前における排出ガスのオゾン濃度と処理済みの排出ガスのオゾン濃度測定結果を示す。電子ビーム排出ガス処理機30によって処理された排出ガスのオゾン濃度と、風量1Nm/minでオゾン熱分解装置40に供給して触媒充填部51に触媒として250℃に加熱されたバナジウムに0.13秒接触させた処理済み排出ガスのオゾン濃度の変化を示し、オゾン熱分解装置40の入口における処理前の平均オゾン濃度が18.4ppmであり、オゾン熱分解装置40の出口における処理後の平均オゾン濃度が0.708ppmであって、オゾン分解率が96.1%であることが確認され、十分なオゾン分解処理が得られることが確認できた。 7 and 8 show the measurement results of the ozone concentration of the exhaust gas and the ozone concentration of the processed exhaust gas before the treatment of the ozone treatment step III by the ozone pyrolysis apparatus 40. FIG. The ozone concentration of the exhaust gas processed by the electron beam exhaust gas processing device 30 is supplied to the ozone pyrolysis apparatus 40 at an air volume of 1 Nm 3 / min, and the catalyst filling unit 51 is heated to 250 ° C. as a catalyst by 0.1%. It shows the change in ozone concentration of the treated exhaust gas contacted for 13 seconds, the average ozone concentration before treatment at the inlet of the ozone pyrolysis device 40 is 18.4 ppm, and the average after treatment at the outlet of the ozone pyrolysis device 40 It was confirmed that the ozone concentration was 0.708 ppm, the ozone decomposition rate was 96.1%, and sufficient ozone decomposition treatment was obtained.

本発明による塗装設備から排出される排出ガスの処理方法及び排出ガスの処理装置の実施の形態を説明する塗装排出ガス処理装置の全体説明図である。BRIEF DESCRIPTION OF THE DRAWINGS It is the whole explanatory drawing of the coating exhaust gas processing apparatus explaining embodiment of the processing method and exhaust gas processing apparatus of the exhaust gas discharged | emitted from the coating equipment by this invention. 濃縮機の説明図である。It is explanatory drawing of a concentrator. 濃縮機の概要を説明する図2のA−A線断面図である。It is the sectional view on the AA line of FIG. 2 explaining the outline | summary of a concentration machine. オゾン分解装置の説明図である。It is explanatory drawing of an ozonolysis apparatus. 濃縮機による揮発性有機化合物の回収率実測結果を示す図である。It is a figure which shows the collection | recovery rate measurement result of the volatile organic compound by a concentrator. 電子ビーム排出ガス処理機により排気ガスに電子ビームを照射したときの排気ガスに含有する総炭化水素の処理効率の変化を示す図である。It is a figure which shows the change of the process efficiency of the total hydrocarbon contained in exhaust gas when an electron beam is irradiated to an exhaust gas with an electron beam exhaust gas processing machine. オゾン熱分解装置によるオゾン分解処理前におけるオゾン濃度と処理済みの排出ガスのオゾン濃度測定結果を示す図である。It is a figure which shows the ozone concentration measurement before the ozone decomposition process by an ozone thermal decomposition apparatus, and the ozone concentration measurement of the processed exhaust gas. オゾン熱分解装置によるオゾン分解処理前におけるオゾン濃度と処理済みの排出ガスのオゾン濃度測定結果を示す図である。It is a figure which shows the ozone concentration measurement before the ozone decomposition process by an ozone thermal decomposition apparatus, and the ozone concentration measurement of the processed exhaust gas.

符号の説明Explanation of symbols

I 排出ガス濃縮工程
II 電子ビーム照射処理工程
III オゾン分解工程
IV 排出ガス希釈工程
1 塗装排出処理装置
10 塗装設備
11 焼付乾燥炉
20 濃縮機
22 吸着ロータ
30 電子ビーム排出ガス処理機
40 オゾン熱分解装置
70 排出ガス希釈装置
I Exhaust Gas Concentration Process II Electron Beam Irradiation Process III Ozone Decomposition Process IV Exhaust Gas Dilution Process 1 Coating Discharge Processing Device 10 Coating Equipment 11 Baking Drying Furnace 20 Concentrator 22 Adsorption Rotor 30 Electron Beam Exhaust Gas Processing Device 40 Ozone Thermal Decomposition Device 70 Exhaust gas dilution device

Claims (5)

塗装設備から排出される揮発性有機化合物を含む排出ガスの処理方法において、
塗装設備から排出される上記排出ガスより高濃度の揮発性有機化合物を含む濃縮排気ガスを生成する排出ガス濃縮工程と、
上記濃縮排気ガスに電子ビームを照射して揮発性有機化合物を破壊処理する電子ビーム照射処理工程と、
該電子ビーム照射処理工程で処理された排出ガスに含まれるオゾンを分解するオゾン分解工程と備えたことを特徴とする塗装設備から排出される排出ガスの処理方法。
In a method for treating exhaust gas containing volatile organic compounds discharged from a painting facility,
An exhaust gas concentration step for producing a concentrated exhaust gas containing a volatile organic compound having a higher concentration than the exhaust gas discharged from the painting facility;
An electron beam irradiation process for destroying volatile organic compounds by irradiating the concentrated exhaust gas with an electron beam;
A method for treating exhaust gas discharged from a painting facility, comprising: an ozone decomposition step for decomposing ozone contained in the exhaust gas treated in the electron beam irradiation treatment step.
塗装設備から排出される揮発性有機化合物を含む排出ガスの処理装置において、
塗装設備から排出される上記排出ガスより高濃度の揮発性有機化合物を含む濃縮排気ガスを生成する濃縮機と、
該濃縮機から排出される濃縮排気ガスに電子ビームを照射して揮発性有機化合物を破壊処理する電子ビーム排出ガス処理機と、
該電子ビーム排出ガス処理機で処理された排出ガスに含まれるオゾンを分解するオゾン分解装置と備えたことを特徴とする塗装設備から排出される排出ガスの処理装置。
In the processing equipment for exhaust gas containing volatile organic compounds discharged from painting equipment,
A concentrator that produces concentrated exhaust gas containing a higher concentration of volatile organic compounds than the exhaust gas discharged from the painting facility;
An electron beam exhaust gas treatment machine that destroys volatile organic compounds by irradiating the concentrated exhaust gas discharged from the concentrator with an electron beam;
An apparatus for treating exhaust gas discharged from a painting facility, comprising: an ozone decomposing apparatus for decomposing ozone contained in exhaust gas processed by the electron beam exhaust gas processing machine.
上記オゾン分解装置は、
加熱手段により上記排出ガスに含まれるオゾンを熱分解するオゾン熱分解装置であることを特徴とする請求項2に記載の塗装設備から排出される排出ガスの処理装置。
The ozonolysis apparatus
The apparatus for treating exhaust gas discharged from a painting facility according to claim 2, wherein the apparatus is an ozone pyrolysis device that thermally decomposes ozone contained in the exhaust gas by a heating means.
上記濃縮機は、塗装設備から排出される排出ガスの風量に対して5:1〜10:1の風量の濃縮排気ガスを生成することを特徴とする請求項2または3に記載の塗装設備から排出される排出ガスの処理装置。   The said concentrator produces | generates the concentrated exhaust gas of a 5: 1-10: 1 air volume with respect to the air volume of the exhaust gas discharged | emitted from a coating facility, The coating equipment of Claim 2 or 3 characterized by the above-mentioned. Processing equipment for exhaust gas discharged. 上記濃縮機は、
回転する吸着ロータを通過する上記塗装設備からの排出ガスに含まれる揮発性有機化合物を吸着ロータに吸着すると共に、上記吸着ロータを通過する脱着用空気が上記吸着ロータに吸着された揮発性有機化合物を脱着させて上記濃縮排気ガスを生成する回転式濃縮機であって、
上記吸着ロータを通過した塗装設備からの処理済みの排気ガスと上記オゾン分解装置から排出される処理済みの排出ガスとを混合して放出することを特徴とする請求項2〜4のいずれかに記載の塗装設備から排出される排出ガスの処理装置。
The concentrator is
The volatile organic compound contained in the exhaust gas from the coating equipment passing through the rotating adsorption rotor is adsorbed by the adsorption rotor, and the desorption air passing through the adsorption rotor is adsorbed by the adsorption rotor. Is a rotary concentrator that generates the concentrated exhaust gas by desorbing
The treated exhaust gas from the painting facility that has passed through the adsorption rotor and the treated exhaust gas discharged from the ozone decomposition apparatus are mixed and discharged. Equipment for treating exhaust gas discharged from the painting equipment described.
JP2004167387A 2004-06-04 2004-06-04 Method for treating exhaust gas discharged from painting equipment and treatment device for exhaust gas Expired - Fee Related JP4739694B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004167387A JP4739694B2 (en) 2004-06-04 2004-06-04 Method for treating exhaust gas discharged from painting equipment and treatment device for exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004167387A JP4739694B2 (en) 2004-06-04 2004-06-04 Method for treating exhaust gas discharged from painting equipment and treatment device for exhaust gas

Publications (2)

Publication Number Publication Date
JP2005342659A true JP2005342659A (en) 2005-12-15
JP4739694B2 JP4739694B2 (en) 2011-08-03

Family

ID=35495511

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004167387A Expired - Fee Related JP4739694B2 (en) 2004-06-04 2004-06-04 Method for treating exhaust gas discharged from painting equipment and treatment device for exhaust gas

Country Status (1)

Country Link
JP (1) JP4739694B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009119401A (en) * 2007-11-16 2009-06-04 Japan Atomic Energy Agency Cleaning method and cleaning apparatus for contaminated gas
CN106621702A (en) * 2017-03-23 2017-05-10 合肥工业大学 Organic exhaust gas concentration treatment device
CN108452653A (en) * 2018-05-08 2018-08-28 陕西青朗万城环保科技有限公司 A kind of concentration-type microwave electrodeless ultraviolet light oxygen catalytic waste gas processing equipment

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0780241A (en) * 1993-09-16 1995-03-28 Toyo Seikan Kaisha Ltd Treatment of exhaust gas produced from coating or ink drying or baking
JPH0952015A (en) * 1995-08-18 1997-02-25 Shinko Pantec Co Ltd Solvent treatment apparatus and method therefor
JP2001170447A (en) * 1999-12-14 2001-06-26 Japan Atom Energy Res Inst Waste gas treating method
JP2003205218A (en) * 2002-01-16 2003-07-22 Kawasaki Heavy Ind Ltd Method for deodorizing gas derived from supply/sewage water sludge by electron beam irradiation and supply/ sewage water sludge treating apparatus provided with deodorization apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0780241A (en) * 1993-09-16 1995-03-28 Toyo Seikan Kaisha Ltd Treatment of exhaust gas produced from coating or ink drying or baking
JPH0952015A (en) * 1995-08-18 1997-02-25 Shinko Pantec Co Ltd Solvent treatment apparatus and method therefor
JP2001170447A (en) * 1999-12-14 2001-06-26 Japan Atom Energy Res Inst Waste gas treating method
JP2003205218A (en) * 2002-01-16 2003-07-22 Kawasaki Heavy Ind Ltd Method for deodorizing gas derived from supply/sewage water sludge by electron beam irradiation and supply/ sewage water sludge treating apparatus provided with deodorization apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009119401A (en) * 2007-11-16 2009-06-04 Japan Atomic Energy Agency Cleaning method and cleaning apparatus for contaminated gas
CN106621702A (en) * 2017-03-23 2017-05-10 合肥工业大学 Organic exhaust gas concentration treatment device
CN106621702B (en) * 2017-03-23 2023-05-09 合肥工业大学 Organic waste gas concentration treatment device
CN108452653A (en) * 2018-05-08 2018-08-28 陕西青朗万城环保科技有限公司 A kind of concentration-type microwave electrodeless ultraviolet light oxygen catalytic waste gas processing equipment

Also Published As

Publication number Publication date
JP4739694B2 (en) 2011-08-03

Similar Documents

Publication Publication Date Title
JP5484681B2 (en) Aseptic environment maintenance device
KR101323108B1 (en) Honeycomb rotor type vocs removal system with horizontally polarized microwave radiation
KR100784409B1 (en) Concentrated Catalytic Oxidizing System of Volatile Organic Compounds, and Method Therefor
JP2001515786A (en) Photocatalytic treatment system and method for contaminated media
CN106622121A (en) Saturated activated carbon regeneration system with low energy consumption and method thereof
CN203507795U (en) Multiple waste gas purification device adopting biological oxidation and photocatalysts
JP2004351312A (en) Method and apparatus for regenerating activated carbon and air purifying system with the activated carbon incorporated
CN103920362A (en) Exhaust gas treatment device and method by virtue of online desorption and degradation
CA2512491A1 (en) Apparatus and method using an electrified filter bed for removal of pollutants from a flue gas stream
KR100690441B1 (en) Concentrated Catalytic Oxidizing System of Volatile Organic Compounds, and Concentrating Bank Therefor
CN108607532B (en) Activated carbon adsorption regenerator and exhaust gas treatment line provided with same
CN102580994B (en) Remediation equipment for non-volatile organic polluted soil
KR20020032743A (en) Regeneration Process and Facilities of Spent Activated Carbon by Indirect Heating
JP4739694B2 (en) Method for treating exhaust gas discharged from painting equipment and treatment device for exhaust gas
KR102022864B1 (en) System for treating volatile organic compounds, comprising an absorption tower, a stripping tower, and a regenerative combustion device
CN208599422U (en) A kind of composite exhaust gas cleaning equipment
CN104258728A (en) Device for flash treatment of volatile organic waste gases
KR100413041B1 (en) A carbonizing treating and exhausting appartus for waste matter
CN203303956U (en) Solid adsorbent regeneration device
CN209116353U (en) Organic material contaminated soil dystopy thermal desorption system
KR101645171B1 (en) NON-DEGRADABLE HAZARDOUS GAS PURIFICATION SYSTEM GENERATED IN THE SEMICONDUCTOR AND VOCs EMISSION PROCESS
CN202447366U (en) Equipment for repairing soil polluted by hardly volatile organics
KR20020083413A (en) VOC omitted
CN113144842A (en) Waste gas treatment system
CN209696615U (en) A kind of novel adsorption catalysis burning cleaning equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070329

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100316

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100512

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110419

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110428

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees