JP2005341752A - Power converter - Google Patents

Power converter Download PDF

Info

Publication number
JP2005341752A
JP2005341752A JP2004159332A JP2004159332A JP2005341752A JP 2005341752 A JP2005341752 A JP 2005341752A JP 2004159332 A JP2004159332 A JP 2004159332A JP 2004159332 A JP2004159332 A JP 2004159332A JP 2005341752 A JP2005341752 A JP 2005341752A
Authority
JP
Japan
Prior art keywords
power converter
frequency
carrier signal
carrier
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004159332A
Other languages
Japanese (ja)
Inventor
Hiroshi Masunaga
博史 益永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Mitsubishi Electric Industrial Systems Corp
Original Assignee
Toshiba Mitsubishi Electric Industrial Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Mitsubishi Electric Industrial Systems Corp filed Critical Toshiba Mitsubishi Electric Industrial Systems Corp
Priority to JP2004159332A priority Critical patent/JP2005341752A/en
Publication of JP2005341752A publication Critical patent/JP2005341752A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Inverter Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To constitute a power converter that suppresses the sound level of a reactor to a prescribed level and that can obtain required output current, without enlarging a cooling device. <P>SOLUTION: In the power converter provided with a power converter main circuit that is connected from a power converter, which is structured with a plurality of switching elements connected to a power source, to a load via a filter and a control circuit, it is configured to be able to operate the converter, by increasing the frequency of a carrier signal outputted from a carrier signal generating circuit to a carrier frequency that keeps the temperature of the power converter to be within the range of temperature specified value, based on the ambient temperature of the installation position of the power converter and the output current. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明は、スイッチング素子により電力変換する電力変換装置に関するものである。   The present invention relates to a power conversion device that converts power with a switching element.

直流電圧を交流電圧に電力変換する電力変換装置の構成は、例えば特許文献1の図57に示されている。この構成は、直流電源にインバータ主回路が接続され、インバータ主回路において直流電圧が交流電圧に変換され、リアクトルとコンデンサで構成された交流フィルタを介して負荷に接続された電力変換主回路と、この電力変換主回路を制御する制御回路とで構成され、その制御回路は、インバータ主回路を駆動するドライブ回路に対して、交流正弦波基準発信回路と振幅指令発生回路との出力を乗算器で乗算して出力電圧指令Vosをつくり、この出力電圧指令Vosと出力電圧Voとの電圧偏差ΔVを加減算器により求め、この電圧偏差ΔVが零になるように電圧制御増幅器とPWM変調回路によりインバータ駆動信号を生成してドライブ回路に入力し、ドライブ回路からインバータ主回路が制御される構成となっている。   A configuration of a power converter that converts DC voltage into AC voltage is shown in FIG. 57 of Patent Document 1, for example. In this configuration, an inverter main circuit is connected to a DC power source, a DC voltage is converted into an AC voltage in the inverter main circuit, and a power conversion main circuit connected to a load via an AC filter composed of a reactor and a capacitor; The control circuit controls the power conversion main circuit. The control circuit uses a multiplier to output the AC sine wave reference transmission circuit and the amplitude command generation circuit to the drive circuit that drives the inverter main circuit. An output voltage command Vos is generated by multiplication, a voltage deviation ΔV between the output voltage command Vos and the output voltage Vo is obtained by an adder / subtractor, and an inverter is driven by a voltage control amplifier and a PWM modulation circuit so that the voltage deviation ΔV becomes zero. A signal is generated and input to the drive circuit, and the inverter main circuit is controlled from the drive circuit.

スイッチング素子を使用した電力変換器では、スイッチング素子のジャンクション温度が許容温度の範囲内となるように構成されている。スイッチング素子は、周囲温度にスイッチング回数、通電電流等の運転条件による温度上昇を加えた温度がスイッチング素子のジャンクション温度となり、このジャンクション温度が許容温度となるように定格値が設定され、電力変換装置のリアクトル等が所定の騒音レベルになるように構成されている。   The power converter using the switching element is configured such that the junction temperature of the switching element is within the allowable temperature range. The switching element has a rated value set so that the junction temperature of the switching element is the temperature obtained by adding the temperature rise due to the operating conditions such as the number of switching and energization current to the ambient temperature, and this junction temperature becomes the allowable temperature. The reactor or the like is configured to have a predetermined noise level.

スイッチング素子には、スイッチ動作によるスイッチング損失Psnと、通電電流による通電損失Pstが発生し、その和がスイッチング素子に発生する素子損失Pである。
即ち、P=Psn+Potとなる。
スイッチング損失Psnは、1回当たりのスイッチングエネルギPsとスイッチング回数nの積であり、通電損失Potは、ON電圧ドロップと通電電流Poと通電時間比率tの積である。
スイッチング損失Psnと搬送波信号fcの周波数との関係は、スイッチング素子のスイッチング回数が搬送波信号fcの周波数に比例するから図11に示すとおり、搬送波信号fcの周波数が高くなるにしたがって増大する。
出力電流Ioとスイッチング素子損失Pとの関係は図12に示すとおり、出力電流Ioの増加に伴ってスイッチング素子の損失Pが増加する。
リアクトルの騒音は、鉄心の磁気歪みに起因するものであり、出力電流Ioが一定の条件においては、図13に示すように、搬送波信号fcの周波数が高くなると騒音レベルSnが低くなる。
In the switching element, a switching loss Psn due to the switching operation and an energization loss Pst due to the energizing current are generated, and the sum thereof is an element loss P generated in the switching element.
That is, P = Psn + Pot.
The switching loss Psn is a product of the switching energy Ps per switching and the number of times of switching n, and the energization loss Pot is a product of the ON voltage drop, the energization current Po, and the energization time ratio t.
Since the switching frequency of the switching element is proportional to the frequency of the carrier signal fc, the relationship between the switching loss Psn and the frequency of the carrier signal fc increases as the frequency of the carrier signal fc increases as shown in FIG.
As shown in FIG. 12, the relationship between the output current Io and the switching element loss P increases as the output current Io increases.
The reactor noise is caused by the magnetic distortion of the iron core. Under the condition where the output current Io is constant, the noise level Sn decreases as the frequency of the carrier signal fc increases as shown in FIG.

また、搬送波信号fcの周波数を高くするほど出力電圧Voの波形歪み率は低くなるので、搬送波信号fcの周波数は、出力電圧Voの波形歪み率を考慮した値に決められている。   Further, since the waveform distortion rate of the output voltage Vo becomes lower as the frequency of the carrier wave signal fc is increased, the frequency of the carrier wave signal fc is determined to be a value considering the waveform distortion rate of the output voltage Vo.

上記のように、リアクトルの騒音を低く抑えるには、搬送波信号fcの周波数を高くする必要があるが、スイッチング素子のスイッチング損失Psnが増加して温度上昇が大きくなる。また、出力電流Ioの増加に伴って、スイッチング素子の損失Pも増加する。したがって、電力変換装置では、スイッチング素子のジャンクション温度が許容温度に納まり、騒音レベルも所定のレベルに抑えられ、出力電圧Voの波形歪み率も所定値以下になるように搬送波信号fcの周波数が決められている。   As described above, in order to keep the reactor noise low, it is necessary to increase the frequency of the carrier wave signal fc, but the switching loss Psn of the switching element increases and the temperature rise increases. As the output current Io increases, the switching element loss P also increases. Therefore, in the power converter, the frequency of the carrier wave signal fc is determined so that the junction temperature of the switching element falls within the allowable temperature, the noise level is suppressed to a predetermined level, and the waveform distortion rate of the output voltage Vo is also equal to or lower than the predetermined value. It has been.

特開平10−295083号公報Japanese Patent Laid-Open No. 10-295083

上記のように電力変換装置のリアクトルの騒音レベルを低く抑えるためには搬送波信号fcの周波数を高く設定することが必要であるが、搬送波信号fcの周波数を高く設定すると、スイッチング損失Psnが増加するので、冷却手段が大型になる問題点があった。
また、出力電圧Voの波形歪み率を仕様値に納めるためには、搬送波周波数fcを高く設定する必要があるが、半導体スイッチのジャンクション温度の制限があるので、出力電流値を低く抑えるか、または冷却をよくするために冷却手段を大型にしなければならない問題点があった。
As described above, it is necessary to set the frequency of the carrier signal fc high in order to keep the reactor noise level low, but if the frequency of the carrier signal fc is set high, the switching loss Psn increases. Therefore, there is a problem that the cooling means becomes large.
Further, in order to keep the waveform distortion rate of the output voltage Vo within the specification value, it is necessary to set the carrier frequency fc high. However, since the junction temperature of the semiconductor switch is limited, the output current value is kept low, or There was a problem that the cooling means had to be enlarged in order to improve the cooling.

この発明は、上記問題点を解決するためになされたものであり、電力変換装置の冷却装置を大型にすることなく、リアクトルの騒音レベルを所定のレベルに抑えられて、必要な出力電流が得られる電力変換装置、または冷却装置を大型にしないで出力電圧の波形歪み率も仕様値となる電力変換装置を構成することを目的とする。   The present invention has been made to solve the above-described problems, and the required noise can be obtained by suppressing the reactor noise level to a predetermined level without increasing the size of the cooling device for the power converter. It is an object of the present invention to constitute a power conversion device in which the waveform distortion rate of the output voltage becomes a specification value without increasing the size of the power conversion device or the cooling device.

この発明に係る電力変換装置は、直流電源に接続された複数のスイッチング素子で構成された電力変換器の変換出力をリアクトルおよびコンデンサで構成された交流フィルタを介して負荷に供給する電力変換主回路と、電力変換回路の出力電圧を検出する電圧検出手段と、電力変換器を制御する制御回路とからなり、電力変換器の配置位置における最高周囲温度を設定温度とし、電力変換器のジャンクション温度の許容値を温度規定値とし、制御回路は、搬送波信号を発生する搬送波信号発生回路と、制御信号を生成する制御信号生成回路とを備え、制御信号生成回路は出力電圧指令値と出力電圧との電圧偏差を求め、この電圧偏差が零となるように出力電圧指令値を演算し、出力電圧指令値と搬送波信号発生回路が発生した搬送波信号とにより制御信号を生成して駆動回路に入力し、駆動回路から上記電力変換器を制御する電力変換装置において、電力変換器の配置位置の周囲温度を検出する周囲温度検出手段と、電力変換器の出力電流を検出する出力電流検出手段と、搬送波信号周波数切換手段とを設け、搬送波信号周波数切換手段は、検出された周囲温度と電力変換器の出力電流に基づき、搬送波信号発生回路から出力する搬送波信号の周波数を、電力変換器の温度が温度規定値の範囲となる周波数に切り換える構成としたものである。   The power conversion device according to the present invention is a power conversion main circuit that supplies a conversion output of a power converter composed of a plurality of switching elements connected to a DC power supply to a load via an AC filter composed of a reactor and a capacitor. And a voltage detection means for detecting the output voltage of the power converter circuit, and a control circuit for controlling the power converter. The maximum ambient temperature at the position where the power converter is disposed is set as the set temperature, and the junction temperature of the power converter is The control circuit includes a carrier signal generation circuit that generates a carrier wave signal and a control signal generation circuit that generates a control signal. The control signal generation circuit generates an output voltage command value and an output voltage. The voltage deviation is obtained, the output voltage command value is calculated so that this voltage deviation becomes zero, and the output voltage command value and the carrier signal generated by the carrier signal generation circuit are calculated. In the power converter that controls the power converter from the drive circuit by generating a control signal from the drive circuit, the ambient temperature detection means for detecting the ambient temperature at the position where the power converter is disposed, and the power converter Output current detection means for detecting the output current and carrier wave signal frequency switching means are provided. The carrier wave signal frequency switching means is a carrier wave output from the carrier wave signal generation circuit based on the detected ambient temperature and the output current of the power converter. In this configuration, the frequency of the signal is switched to a frequency at which the temperature of the power converter falls within the temperature specified range.

この発明によれば、電力変換器の温度がスイッチング素子の許容温度の規定値の範囲となる周波数の搬送波信号により制御する構成としたものであり、電力変換器の冷却手段を大型化することなく、交流フィルタを構成するリアクトルの騒音が低く抑えられた電力変換装置が得られる。   According to the present invention, the temperature of the power converter is controlled by the carrier wave signal having a frequency that falls within the specified range of the allowable temperature of the switching element, and the cooling means of the power converter is not increased in size. Thus, a power conversion device in which the noise of the reactor constituting the AC filter is suppressed to a low level can be obtained.

実施の形態1.
図1は実施の形態1の電力変換装置の構成を示すブロック図である。この構成は直流電源1に接続された複数のスイッチング素子で構成された電力変換器2と、電力変換器2の出力電流Iaを検出する出力電流検出手段3と、リアクトル5aとコンデンサ5bで構成された交流フィルタ5と、出力電圧Voを検出する電圧検出手段6とで電力変換主回路を構成し、負荷7に接続している。
電力変換主回路を制御する制御回路10は、電圧指令Vosを発生する電圧指令発生回路11と、電圧指令Vosと電力変換主回路の出力電圧Voを比較して電圧偏差ΔVを演算する減算器12と、電圧偏差ΔVにより電圧制御指令Vasを発生する電圧指令発生回路13と、搬送波信号発生する搬送波信号発生回路14と、電圧制御指令Vasと搬送波信号fcとにより電力変換器2の制御信号PWM信号を生成する制御信号発生回路15と、電力変換器2を駆動する駆動回路16とで構成されている。
Embodiment 1 FIG.
FIG. 1 is a block diagram showing the configuration of the power conversion apparatus according to the first embodiment. This configuration includes a power converter 2 composed of a plurality of switching elements connected to the DC power source 1, an output current detection means 3 for detecting the output current Ia of the power converter 2, a reactor 5a and a capacitor 5b. The AC filter 5 and the voltage detection means 6 for detecting the output voltage Vo constitute a power conversion main circuit and connected to the load 7.
A control circuit 10 that controls the power conversion main circuit includes a voltage command generation circuit 11 that generates a voltage command Vos, and a subtractor 12 that compares the voltage command Vos and the output voltage Vo of the power conversion main circuit to calculate a voltage deviation ΔV. A voltage command generation circuit 13 for generating a voltage control command Vas based on the voltage deviation ΔV, a carrier signal generation circuit 14 for generating a carrier signal, and a control signal PWM signal for the power converter 2 based on the voltage control command Vas and the carrier signal fc. The control signal generation circuit 15 for generating the power converter 2 and the drive circuit 16 for driving the power converter 2.

搬送波信号発生回路14は、電圧制御型の搬送波発振器14aと搬送波信号発生器14bで構成され、搬送波発振器14aは、図2(a)に示すように、入力電圧に比例して発振周波数が高くなるように構成し、入力電圧に対応した周波数の搬送波を発生する構成であり、搬送波信号発生器14bは搬送波に基づき、例えば三角波状の搬送波信号fcを発生する。   The carrier wave signal generation circuit 14 includes a voltage control type carrier wave oscillator 14a and a carrier wave signal generator 14b, and the carrier wave oscillator 14a has an oscillation frequency that is proportional to the input voltage as shown in FIG. The carrier wave signal generator 14b generates, for example, a triangular carrier wave signal fc based on the carrier wave.

搬送波信号発生回路14は、電力変換器2の周囲温度Taを検出する周囲温度検出手段17と、電圧制御型の搬送波発振器14aの発振周波数を切り換える搬送波信号周波数切換回路18により制御される。搬送波信号周波数切換回路18は、電力変換器2の設置位置の最高周囲温度を設定温度Toとして記憶し、この設定温度Toの条件で、電力変換器2に許容できるジャンクション温度Tjを考慮した許容できる温度を温度規定値Tmとし、設定温度Toにおいて電力変換器2が温度規定値Tmとなる出力電流Iaを出力電流設定値Iosとして記憶し、検出した周囲温度Taと設定温度Toとの差および出力電流Iaと出力電流設定値Iosとの差より、電力変換器2の温度が温度規定値Tmの範囲となる搬送波信号fcの周波数を演算し、搬送波信号発生回路14の搬送波発振器14aに指令し、搬送波信号発生回路14から指令された周波数の搬送波信号fcを出力するように制御する。
基準発振器14aに入力する入力電圧Vfは、図2(b)に示すように、周囲温度TaをX軸、出力電流IaをY軸、搬送波発振器14aに印加する入力電圧VfをZ軸として3次元に表示し、検出した周囲温度Taおよび出力電流Iaから基準発信器14aに印加する発振器の入力電圧Vfを算出し、算出した発信器入力電圧Vfを搬送波発振器14aに印加することにより、所望の周波数の搬送波が出力される。
The carrier signal generation circuit 14 is controlled by an ambient temperature detection means 17 that detects the ambient temperature Ta of the power converter 2 and a carrier signal frequency switching circuit 18 that switches the oscillation frequency of the voltage-controlled carrier oscillator 14a. The carrier wave signal frequency switching circuit 18 stores the maximum ambient temperature at the installation position of the power converter 2 as the set temperature To, and can be allowed in consideration of the junction temperature Tj allowable to the power converter 2 under the condition of the set temperature To. The temperature is set to a specified temperature value Tm, and the output current Ia at which the power converter 2 becomes the specified temperature value Tm at the set temperature To is stored as the output current set value Ios. The difference between the detected ambient temperature Ta and the set temperature To and the output From the difference between the current Ia and the output current set value Ios, the frequency of the carrier signal fc in which the temperature of the power converter 2 falls within the temperature specified value Tm is calculated, and the carrier wave generator 14a of the carrier wave signal generation circuit 14 is commanded. Control is performed so as to output a carrier wave signal fc of a frequency commanded from the carrier wave signal generation circuit 14.
As shown in FIG. 2B, the input voltage Vf input to the reference oscillator 14a is three-dimensional with the ambient temperature Ta as the X axis, the output current Ia as the Y axis, and the input voltage Vf applied to the carrier wave oscillator 14a as the Z axis. The oscillator input voltage Vf to be applied to the reference oscillator 14a is calculated from the detected ambient temperature Ta and output current Ia, and the calculated oscillator input voltage Vf is applied to the carrier wave oscillator 14a to obtain a desired frequency. Are output.

電力変換装置は、電圧指令発生回路11の電圧指令Vosと電力変換主回路の出力電圧Voを減算器12により比較して電圧偏差ΔVを演算し、この電圧偏差ΔVに基づいて電圧制御指令発生回路13により電圧制御指令Vasを発生し、制御信号発生回路15で電圧制御指令Vasと搬送波信号発生回路14からの搬送波信号fcにより、電力変換器2を制御するPWM信号を生成して、駆動回路16に入力し、駆動回路16により、PWM信号に基づいて電力変換器2が制御される。   The power converter compares the voltage command Vos of the voltage command generation circuit 11 with the output voltage Vo of the power conversion main circuit by the subtractor 12 to calculate a voltage deviation ΔV, and based on this voltage deviation ΔV, the voltage control command generation circuit 13 generates a voltage control command Vas, and the control signal generation circuit 15 generates a PWM signal for controlling the power converter 2 based on the voltage control command Vas and the carrier signal fc from the carrier signal generation circuit 14. And the power converter 2 is controlled by the drive circuit 16 based on the PWM signal.

電力変換器2をこのように構成すると、周囲温度Taと出力電流Iaの状況に応じて、許容できる周波数に切り換えた搬送波信号fcで運転できるようになり、搬送波周波数を電力変換器2の許容温度の範囲で高く設定して運転することにより、電力変換器2の冷却手段を大型化することなく、リアクトル等の騒音レベルを抑えた電力変換装置となる。   If the power converter 2 is configured in this way, it can be operated with the carrier wave signal fc switched to an allowable frequency according to the situation of the ambient temperature Ta and the output current Ia, and the carrier frequency is set to the allowable temperature of the power converter 2. By operating at a high setting in this range, the power converter 2 can be a power converter that suppresses the noise level of the reactor and the like without increasing the size of the cooling means of the power converter 2.

実施の形態2.
図3は実施の形態2の電力変換装置の構成を示すブロック図である。この構成は実施の形態1の図1の構成の搬送波信号発生回路を発振周波数が一定の搬送波発振器とし、その発信周波数を分周して適正な周波数の搬送波信号fcを出力する構成としたものである。
この構成は、電力変換器主回路部分の直流電源1、電力変換器2、出力電流検出手段3、交流フィルタ5、電圧検出手段6、負荷7、制御回路10を構成する電圧指令発生回路11、減算器12、電圧制御指令発生回路13、制御信号発生回路15、駆動回路16および周囲温度検出手段17は図1と同一である。
図3における搬送波信号発生回路24は、発信周波数が一定の搬送波発振器24cと、搬送波信号発生器24bと、搬送波発振器24cと搬送波信号発生器24bとの間に配置された分周器24dとで構成し、搬送波発振器24cは制御に必要な最も高い周波数の搬送波を発振し、分周器24dは、搬送波発振器24cが発振した搬送波を分周率nで分周して所要周波数の搬送波を生成し、この分周した搬送波により搬送波信号発生器24bで例えば三角波の搬送波信号fcを生成し出力するように構成している。
Embodiment 2. FIG.
FIG. 3 is a block diagram illustrating a configuration of the power conversion device according to the second embodiment. In this configuration, the carrier wave signal generation circuit having the configuration shown in FIG. 1 of the first embodiment is a carrier wave oscillator having a constant oscillation frequency, and the oscillation frequency is divided to output a carrier wave signal fc having an appropriate frequency. is there.
This configuration includes a DC power source 1, a power converter 2, an output current detection unit 3, an AC filter 5, a voltage detection unit 6, a load 7, and a voltage command generation circuit 11 that constitutes a control circuit 10 in the power converter main circuit portion, The subtractor 12, the voltage control command generation circuit 13, the control signal generation circuit 15, the drive circuit 16, and the ambient temperature detection means 17 are the same as those in FIG.
3 includes a carrier wave oscillator 24c having a constant oscillation frequency, a carrier wave signal generator 24b, and a frequency divider 24d disposed between the carrier wave oscillator 24c and the carrier wave signal generator 24b. The carrier wave oscillator 24c oscillates the carrier wave having the highest frequency necessary for control, and the frequency divider 24d divides the carrier wave oscillated by the carrier wave oscillator 24c by the division ratio n to generate a carrier wave having the required frequency. For example, a triangular wave carrier signal fc is generated and output by the carrier signal generator 24b using the divided carrier wave.

搬送波信号発生回路24を制御する搬送波信号周波数切換手段28は、電力変換器2の配置位置での最高周囲温度を設定温度Toとして記憶し、この設定温度Toの条件で、電力変換器2に許容できるジャンクション温度Tjを考慮した許容できる温度を温度規定値Tmとし、設定温度Toにおいて電力変換器2が温度規定値Tmとなる出力電流Iaを出力電流設定値Iosとして記憶し、検出した周囲温度Taと設定温度Toとの関係、および検出した出力電流Iaと出力電流設定値Iosとの関係により、予め設定した例えば図4に示す分周率nより搬送波発振器24cが出力した搬送波を分周して適正な周波数の搬送波により搬送波信号発生器24bで搬送波信号fcを生成する。
選択する分周率nは、a<a<a<a の大きさ順に設定し、Ta<To、Ta>To および Ia<Ios、Ia>Ios の関係と選択する分周率nの関係は図4に示すとおりであり、出力電流Iaが大きく、周囲温度Taが高いと、搬送波信号fcの周波数は低くなるように設定され、出力電流Iaが小さく、周囲温度Taが低いと、搬送波信号fcの周波数は高くなるように設定される。
The carrier signal frequency switching means 28 for controlling the carrier signal generation circuit 24 stores the maximum ambient temperature at the position where the power converter 2 is disposed as the set temperature To and is allowed to the power converter 2 under the condition of the set temperature To. The allowable temperature considering the possible junction temperature Tj is set as the temperature specified value Tm, the output current Ia at which the power converter 2 becomes the temperature specified value Tm at the set temperature To is stored as the output current set value Ios, and the detected ambient temperature Ta And the set temperature To, and the relationship between the detected output current Ia and the output current set value Ios, the carrier wave output from the carrier oscillator 24c is divided by a predetermined division ratio n shown in FIG. A carrier signal fc is generated by the carrier signal generator 24b using a carrier having an appropriate frequency.
Division ratio n to be selected, a 1 <a 2 <a 3 <a 4 Nookisajun'nisetteishi,Ta<To,Ta> To and Ia <Ios, Ia> division ratio selecting a relationship Ios n The relationship is as shown in FIG. 4. When the output current Ia is large and the ambient temperature Ta is high, the frequency of the carrier signal fc is set to be low. When the output current Ia is small and the ambient temperature Ta is low, The frequency of the carrier wave signal fc is set to be high.

このように搬送波信号の周波数を周囲温度Ta、出力電流Iaの状況に応じて、電力変換器2が許容できる温度となる周波数に段階的に切り換えることにより、搬送波信号発生回路24の搬送波発振器24cが簡単な構成で、搬送波信号fcの周波数が電力変換器2の許容温度の範囲で段階的に高く設定され、電力変換器2の冷却手段を大型化することなく、リアクトル等の騒音レベルを抑えた電力変換装置となる。   In this way, the carrier wave signal 24c of the carrier wave signal generation circuit 24 is changed by stepwise switching the frequency of the carrier wave signal to a frequency at which the power converter 2 is allowed according to the ambient temperature Ta and the output current Ia. With a simple configuration, the frequency of the carrier wave signal fc is set stepwise higher within the allowable temperature range of the power converter 2, and the noise level of the reactor and the like is suppressed without increasing the size of the cooling means of the power converter 2. It becomes a power converter.

実施の形態3.
図5は実施の形態3の電力変換装置の構成を示すブロック図である。この実施の形態3は、出力電圧Voの波形歪み率が仕様値を満足しない場合に、搬送波信号fcの周波数を高くすることにより、仕様値を満足させる実施の形態である。
図5の構成は、電力変換器主回路部分の直流電源1、電力変換器2、交流フィルタ5、電圧検出手段6、負荷7、制御回路10を構成する電圧指令発生回路11、減算器12、電圧制御指令発生回路13、搬送波信号発生回路14、搬送波発振器14a、搬送波信号発生器14b、制御信号発生回路15、駆動回路16は実施の形態1の図1の構成と同一である。
この構成は、出力電圧の波形歪み率を検出する出力電圧波形歪み率検出手段37と搬送波発振器14aの搬送波周波数を切り換える搬送波信号周波数切換回路38を出力電圧検出手段6の出力回路に接続し、搬送波信号周波数切換回路38から搬送波信号発生回路14の搬送波発振器14aの発振周波数を制御する構成である。
搬送波信号周波数切換回路38は、波形歪み率の仕様値を記憶し、出力電圧波形歪み率検出手段37が検出した波形歪み率と記憶された波形歪み率の仕様値とを比較し、波形歪み率が仕様値を満足していない場合に、波形歪み率が仕様値となるように搬送波周波数を高くする制御信号を出力する。
また、波形歪み率が仕様値を満足している状態でも非常に小さい場合には、仕様値に近づけた波形歪み率となるように搬送波周波数を低くするように切り換えることができる。
Embodiment 3 FIG.
FIG. 5 is a block diagram showing the configuration of the power conversion apparatus according to the third embodiment. In the third embodiment, when the waveform distortion rate of the output voltage Vo does not satisfy the specification value, the specification value is satisfied by increasing the frequency of the carrier wave signal fc.
The configuration of FIG. 5 includes a DC power source 1, a power converter 2, an AC filter 5, a voltage detection means 6, a load 7, a voltage command generation circuit 11 that constitutes a control circuit 10, a subtractor 12, and a power converter main circuit portion. Voltage control command generation circuit 13, carrier wave signal generation circuit 14, carrier wave oscillator 14a, carrier wave signal generator 14b, control signal generation circuit 15 and drive circuit 16 are the same as those in FIG.
In this configuration, an output voltage waveform distortion rate detecting means 37 for detecting the waveform distortion rate of the output voltage and a carrier signal frequency switching circuit 38 for switching the carrier frequency of the carrier wave oscillator 14a are connected to the output circuit of the output voltage detecting means 6, The signal frequency switching circuit 38 controls the oscillation frequency of the carrier wave oscillator 14 a of the carrier wave signal generation circuit 14.
The carrier wave signal frequency switching circuit 38 stores the specification value of the waveform distortion rate, compares the waveform distortion rate detected by the output voltage waveform distortion rate detection means 37 with the specification value of the stored waveform distortion rate, and the waveform distortion rate. Is not satisfied with the specification value, a control signal for increasing the carrier frequency is output so that the waveform distortion rate becomes the specification value.
In addition, when the waveform distortion rate is very small even when the specification value is satisfied, the carrier frequency can be switched to be low so that the waveform distortion rate is close to the specification value.

このように、出力電圧の波形歪み率が、仕様値に近い値で満足する状態に搬送波周波数を低く設定できるので、電力変換器2の効率を向上させた運転ができる電力変換装置となる。   Thus, since the carrier frequency can be set low so that the waveform distortion rate of the output voltage is satisfied at a value close to the specification value, the power conversion device can be operated with improved efficiency of the power converter 2.

実施の形態4.
図6は実施の形態4の電力変換装置の構成を示すブロック図である。この実施の形態4は、実施の形態3の出力電圧Voの波形歪み率が仕様値を満足しない場合に、搬送波信号fcの周波数を高くすることにより、仕様値を満足させる構成の搬送波信号発生回路の構成を、周波数が一定の搬送波を発振する搬送波発振器とし、搬送波発振器が発生した搬送波の周波数を分周することで所定の周波数の搬送波信号を生成して、出力電圧の波形歪み率が仕様値を満足するように制御する構成である。
図6の構成は、電力変換器主回路部分の直流電源1、電力変換器2、交流フィルタ5、電圧検出手段6、負荷7、制御回路10を構成する電圧指令発生回路11、減算器12、電圧制御指令発生回路13、搬送波信号発生回路14、電圧制御発振器14a、制御信号発生回路15、駆動回路16、出力電圧波形歪み率検出手段37は実施の形態3の図5の構成と同一である。搬送波信号発生回路24は、基準発振器24c、搬送波信号発生器24b、分周器24dは実施の形態2と同一である。
Embodiment 4 FIG.
FIG. 6 is a block diagram showing a configuration of the power conversion device according to the fourth embodiment. In the fourth embodiment, when the waveform distortion rate of the output voltage Vo of the third embodiment does not satisfy the specification value, the carrier signal generation circuit configured to satisfy the specification value by increasing the frequency of the carrier signal fc. A carrier wave oscillator that oscillates a carrier wave with a constant frequency is generated, a carrier wave signal of a predetermined frequency is generated by dividing the frequency of the carrier wave generated by the carrier wave oscillator, and the waveform distortion rate of the output voltage is the specified value. It is the structure which controls to satisfy.
The configuration of FIG. 6 includes a DC power source 1, a power converter 2, an AC filter 5, a voltage detection means 6, a load 7, a voltage command generation circuit 11 that constitutes a control circuit 10, a subtractor 12, and a power converter main circuit portion. The voltage control command generation circuit 13, the carrier wave signal generation circuit 14, the voltage control oscillator 14a, the control signal generation circuit 15, the drive circuit 16, and the output voltage waveform distortion rate detection means 37 are the same as the configuration of FIG. . The carrier wave signal generation circuit 24 has the same reference oscillator 24c, carrier wave signal generator 24b, and frequency divider 24d as those in the second embodiment.

この構成は、出力電圧Voの波形歪み率を検出する出力電圧波形歪み率検出手段37と搬送波信号周波数切換手段48を出力電圧検出手段6の出力回路に接続し、搬送波信号周波数切換手段48には、波形歪み率の仕様値を記憶し、搬送波周波数を分周する分周率nを段階的に設定して記憶し、出力電圧波形歪み率検出手段37が検出した波形歪み率と波形歪み率の仕様値とを比較し、波形歪み率が仕様値を満足していない場合に、仕様値に近くなる分周率を選択し、搬送波信号発生回路24の分周器24dに入力して搬送波周波数を高くするように制御する。
また、波形歪み率が仕様値を満足している状態で非常に小さい場合には、仕様値に近づけた波形歪み率となる搬送波周波数になる分周率nを選択して分周器24cにより分周し、搬送波周波数を低くするように切り換えることができる。
In this configuration, output voltage waveform distortion rate detection means 37 for detecting the waveform distortion rate of output voltage Vo and carrier wave signal frequency switching means 48 are connected to the output circuit of output voltage detection means 6. The specification value of the waveform distortion rate is stored, the division rate n for dividing the carrier frequency is set and stored in stages, and the waveform distortion rate and the waveform distortion rate detected by the output voltage waveform distortion rate detection means 37 are stored. When the waveform distortion rate does not satisfy the specification value, the frequency division ratio close to the specification value is selected and input to the frequency divider 24d of the carrier wave signal generation circuit 24 to compare the specification value with the specification value. Control to raise.
If the waveform distortion rate is very small while satisfying the specification value, a frequency division rate n that becomes a carrier frequency that gives a waveform distortion rate close to the specification value is selected and divided by the frequency divider 24c. Can be switched to lower the carrier frequency.

このように、出力電圧の波形歪み率が、仕様値に近い値になるように搬送波周波数を低く設定できるので、電力変換器2の効率を向上させた運転ができる電力変換装置となる。   Thus, since the carrier frequency can be set low so that the waveform distortion rate of the output voltage is close to the specification value, the power conversion device can be operated with improved efficiency of the power converter 2.

実施の形態5.
図7は実施の形態5の電力変換装置の構成を示すブロック図である。実施の形態3および4において、出力電圧の波形歪み率を仕様値を満足させる構成を説明したが、この場合は波形歪み率が厳しく要求される場合には搬送波周波数が高くなるので、電力変換器の損失が大きくなり、過負荷耐量が少なくなる問題があり、電力変換器の出力電流が制限される。この場合は許容できる出力電流に対応して、保護装置の過負荷検出レベルを低くしておく必要がある。
実施の形態5は、電力変換器2の許容出力電流に対応して、別途設置されている電力変換装置の保護装置に対して、過負荷レベルを出力する構成としたものである。
図7の構成は、電力変換器主回路部分の直流電源1、電力変換器2、交流フィルタ5、電圧検出手段6、負荷7、制御回路10を構成する電圧指令発生回路11、減算器12、電圧制御指令発生回路13、搬送波信号発生回路14、搬送波発振器14a、搬送波信号発生器14b、制御信号発生回路15、駆動回路16は実施の形態3の図5の構成と同一である。
この図7の構成は、実施の形態3の構成に対して、電力変換器2の出力側に出力電流Iaを検出する電流検出手段3を設け、図8に示した搬送波周波数に対応する過負荷検出レベルを演算する演算回路を有し、搬送波信号発生回路14から搬送波信号fcの周波数と電流検出手段3が検出した出力電流Iaを入力し、搬送波信号fcの周波数により許容出力電流Iomを演算し、検出された出力電流Iaが許容出力電流Iomを越えた場合に過負荷レベル信号を別途設置されている電力変換装置の保護装置に出力する。
Embodiment 5 FIG.
FIG. 7 is a block diagram showing a configuration of the power conversion apparatus according to the fifth embodiment. In the third and fourth embodiments, the configuration that satisfies the specification value of the waveform distortion rate of the output voltage has been described. In this case, the carrier frequency increases when the waveform distortion factor is strictly required. There is a problem that the loss of the power converter becomes large and the overload resistance is reduced, and the output current of the power converter is limited. In this case, it is necessary to lower the overload detection level of the protection device corresponding to the allowable output current.
In the fifth embodiment, an overload level is output to a protection device for a power conversion device that is separately installed in response to the allowable output current of the power converter 2.
The configuration of FIG. 7 includes a DC power source 1, a power converter 2, an AC filter 5, a voltage detection means 6, a load 7, a voltage command generation circuit 11 that constitutes a control circuit 10, a subtractor 12, and a power converter main circuit portion. Voltage control command generation circuit 13, carrier wave signal generation circuit 14, carrier wave oscillator 14a, carrier wave signal generator 14b, control signal generation circuit 15, and drive circuit 16 are the same as those in FIG. 5 of the third embodiment.
7 is provided with current detection means 3 for detecting the output current Ia on the output side of the power converter 2 with respect to the configuration of the third embodiment, and an overload corresponding to the carrier frequency shown in FIG. An arithmetic circuit for calculating the detection level is provided, and the frequency of the carrier wave signal fc and the output current Ia detected by the current detection means 3 are input from the carrier wave signal generation circuit 14, and the allowable output current Iom is calculated based on the frequency of the carrier wave signal fc. When the detected output current Ia exceeds the allowable output current Iom, an overload level signal is output to the protection device of the power converter that is separately installed.

この構成では、搬送波信号fcの周波数と出力電流Iaとにより電力変換装置の過負荷を検出し、これを過負荷レベル信号を出力して保護する構成としたことにより、波形歪み率が仕様値を満足する状態で、安定した運転ができる電力変換装置となる。   In this configuration, the overload of the power conversion device is detected based on the frequency of the carrier wave signal fc and the output current Ia, and the overload level signal is output to protect the waveform distortion rate. A power conversion device capable of stable operation in a satisfied state.

実施の形態6.
図9は実施の形態6の電力変換装置の構成を示すブロック図である。この構成は複数の電力変換装置を並列運転する場合に、各装置の出力電流Iaを電流指令により一定となるように制御する電力変換装置である。
図9の構成は、直流電源1に接続された電力変換器2、電力変換器2の出力電流Iaを検出する出力電流検出手段3、リアクトル5aとコンデンサ5bで構成された交流フィルタ5とで電力変換主回路が構成され、負荷7に接続されている。
電力変換主回路を制御する制御回路20は、電流指令値Iosを発生する電流指令発生回路21と、電流指令値Iosと出力電流検出手段3が検出した出力電流Iaにより電流偏差ΔIを演算する減算器22と、電流偏差ΔIにより電流制御指令Iasを発生する電流指令発生回路23と、搬送波信号を発生する搬送波信号発生回路14と、電流制御指令Iasと搬送波信号fcとにより電力変換器2の制御信号PWMを生成する制御信号発生回路25と、電力変換器2を駆動する駆動回路16とで構成している。
Embodiment 6 FIG.
FIG. 9 is a block diagram showing a configuration of the power conversion apparatus according to the sixth embodiment. This configuration is a power conversion device that controls the output current Ia of each device to be constant according to a current command when a plurality of power conversion devices are operated in parallel.
The configuration of FIG. 9 includes power converter 2 connected to DC power source 1, output current detection means 3 for detecting output current Ia of power converter 2, and AC filter 5 configured with reactor 5a and capacitor 5b. A conversion main circuit is configured and connected to the load 7.
The control circuit 20 that controls the power conversion main circuit includes a current command generation circuit 21 that generates a current command value Ios, and a subtraction that calculates a current deviation ΔI based on the current command value Ios and the output current Ia detected by the output current detection means 3. Control of the power converter 2 by the current control command Ias and the carrier signal fc, the current command generation circuit 23 for generating the current control command Ias by the current deviation ΔI, the carrier signal generation circuit 14 for generating the carrier signal, and the carrier signal fc. The control signal generation circuit 25 generates the signal PWM and the drive circuit 16 drives the power converter 2.

搬送波信号発生回路14は、電圧制御型の搬送波発振器14aと搬送波信号発生器14bで構成され、搬送波発振器14aは、図2(a)に示すように、入力電圧に比例して発振周波数が高くなるように構成し、入力電圧に対応した周波数の搬送波fosを発生する構成であり、搬送波信号発生器14bは搬送波fosに基づき、例えば三角波状の搬送波信号fcを発生するように構成されている。   The carrier wave signal generation circuit 14 includes a voltage control type carrier wave oscillator 14a and a carrier wave signal generator 14b, and the carrier wave oscillator 14a has an oscillation frequency that increases in proportion to the input voltage, as shown in FIG. The carrier signal generator 14b is configured to generate, for example, a triangular wave carrier signal fc based on the carrier wave fos.

搬送波信号発生回路14は、電力変換器2の周囲温度Taを検出する周囲温度検出手段17と、電圧制御型の搬送波発振器14aの発振周波数を切り換える搬送波信号周波数切換回路58により制御される。
搬送波信号周波数切換回路58は、電力変換器2の設置位置の最高周囲温度を設定温度Toとして記憶し、この設定温度Toの条件で、電力変換器2の許容できるジャンクション温度Tjを考慮した温度を温度規定値Tmとして記憶し、検出された周囲温度Taと電流指令値Iosの条件において、電力変換器2が温度規定値Tmとなる搬送波周波数を演算し、搬送波信号発生回路14の搬送波発振器14aに対して指令し、搬送波信号発生回路14から指令された周波数の搬送波が出力するように制御する。搬送波発振器14aに対する指令は、実施の形態1において説明した方法の図2(b)に示した方法により、指令周波数に対応した入力電圧Vfを印加して搬送波を発生させる。
The carrier signal generation circuit 14 is controlled by the ambient temperature detection means 17 that detects the ambient temperature Ta of the power converter 2 and the carrier signal frequency switching circuit 58 that switches the oscillation frequency of the voltage-controlled carrier oscillator 14a.
The carrier signal frequency switching circuit 58 stores the maximum ambient temperature at the installation position of the power converter 2 as the set temperature To, and the temperature considering the allowable junction temperature Tj of the power converter 2 under the condition of the set temperature To. The power converter 2 calculates the carrier frequency at which the temperature prescribed value Tm is stored under the condition of the detected ambient temperature Ta and the current command value Ios, and stores it in the carrier oscillator 14a of the carrier signal generation circuit 14 as the temperature prescribed value Tm. In response to the command, a carrier wave having a frequency commanded from the carrier wave signal generation circuit 14 is output. The command to the carrier wave oscillator 14a is generated by applying the input voltage Vf corresponding to the command frequency by the method shown in FIG. 2B of the method described in the first embodiment.

電力変換装置は、電流指令発生回路21の電流指令Iosと電力変換器2の出力電流Iaを減算器12により比較して電流偏差ΔIを演算し、この電流偏差ΔIに基づいて電流制御指令発生回路23により電流制御指令Iasを発生し、制御信号発生回路25で電流制御指令Iasと搬送波信号発生回路14からの搬送波信号fcにより、電力変換器2を制御するPWM信号を生成して、駆動回路16に入力し、駆動回路16により、PWM信号に基づいて電力変換器2が制御される。   The power converter compares the current command Ios of the current command generation circuit 21 with the output current Ia of the power converter 2 by the subtractor 12 to calculate a current deviation ΔI, and based on the current deviation ΔI, the current control command generation circuit 23 generates a current control command Ias, and a control signal generation circuit 25 generates a PWM signal for controlling the power converter 2 based on the current control command Ias and the carrier signal fc from the carrier signal generation circuit 14. And the power converter 2 is controlled by the drive circuit 16 based on the PWM signal.

電力変換器2をこのように構成すると、周囲温度Taと電流指令値Iosに対して、電力変換器2の温度が温度規定値Tmの範囲となるように搬送波周波数fosを切り換えた搬送波信号fcで運転できる構成となる。   If the power converter 2 is configured in this way, the carrier signal fc is obtained by switching the carrier frequency fos so that the temperature of the power converter 2 falls within the temperature specified value Tm with respect to the ambient temperature Ta and the current command value Ios. It becomes the structure which can be drive | operated.

このように構成すると、複数の電力変換器が並列運転される状況において、各電力変換装置の出力電流は、電流指令値Iosにしたがって出力し、周囲温度Taと電流指令値Iosの条件で、電力変換器2は温度が温度規定値Tmの範囲で運転され、電力変換器2の冷却手段を大型化することなく、リアクトルの騒音レベルを抑えた運転が可能となる。   With this configuration, in a situation where a plurality of power converters are operated in parallel, the output current of each power converter is output according to the current command value Ios, and the power is output under the conditions of the ambient temperature Ta and the current command value Ios. The converter 2 is operated in a temperature range of the temperature regulation value Tm, and an operation in which the noise level of the reactor is suppressed without increasing the size of the cooling means of the power converter 2 is possible.

実施の形態7.
図10は実施の形態2の電力変換装置の構成を示すブロック図である。
実施の形態7は、実施の形態6の図9の構成の搬送波信号発生回路を発振周波数が一定の搬送波発振器とし、その発信周波数を分周して適正な周波数の搬送波信号fcを出力する構成としたものである。
この構成は、電力変換器主回路部分の直流電源1、電力変換器2、出力電流検出手段3、交流フィルタ5、負荷7、制御回路30を構成する電圧指令発生回路21、減算器22、電圧制御指令発生回路23、制御信号発生回路25、駆動回路16および周囲温度検出手段17は図9と同一である。
Embodiment 7 FIG.
FIG. 10 is a block diagram illustrating a configuration of the power conversion device according to the second embodiment.
In the seventh embodiment, the carrier wave signal generation circuit having the configuration shown in FIG. 9 of the sixth embodiment is a carrier wave oscillator having a constant oscillation frequency, and the oscillation frequency is divided to output a carrier wave signal fc having an appropriate frequency. It is what.
This configuration includes a DC power source 1, a power converter 2, an output current detection means 3, an AC filter 5, a load 7, a voltage command generation circuit 21 that constitutes a control circuit 30, a subtractor 22, a voltage The control command generation circuit 23, the control signal generation circuit 25, the drive circuit 16, and the ambient temperature detection means 17 are the same as those in FIG.

搬送波信号発生回路24は、実施の形態2の図3に示したものと同一であり、発信周波数が一定の搬送波発振器24cと、搬送波信号発生器24bと、搬送波発振器24cと搬送波信号発生器24bとの間に配置された分周器24dとで構成し、搬送波発振器24cは制御に必要な最も高い周波数の搬送波を発振し、分周器24dは、搬送波発振器24cが発振した搬送波を分周率nで分周して所要周波数の搬送波を生成し、この分周した搬送波により搬送波信号発生器24bで例えば三角波の搬送波信号fcを生成し出力ものである。   The carrier wave signal generation circuit 24 is the same as that shown in FIG. 3 of the second embodiment, and the carrier wave generator 24c, the carrier wave signal generator 24b, the carrier wave oscillator 24c, and the carrier wave signal generator 24b having a constant oscillation frequency. The carrier oscillator 24c oscillates the highest frequency carrier wave necessary for control, and the divider 24d divides the carrier wave oscillated by the carrier oscillator 24c into a frequency division ratio n. To generate a carrier wave having a required frequency, and a carrier wave signal generator 24b generates, for example, a triangular wave carrier signal fc using the divided carrier wave.

搬送波信号発生回路24を制御する搬送波信号周波数切換手段58は、電力変換器2の配置位置での最高周囲温度を設定温度Toとし、この設定温度Toの条件で、電力変換器2に許容できるジャンクション温度Tjを考慮した許容できる温度を温度規定値Tmとし、基準搬送波の分周は、予め任意の搬送波周波数に分周できるように段階的に複数の分周率を設定し、設定温度To、温度既定値Tmおよび搬送波信号を分周する分周率nを記憶し、設定温度Toと、電流指令値Iosの条件において、電力変換器2の温度が温度既定値Tmの範囲となる搬送波信号fcの周波数を演算し、演算された搬送波周波数になるように分周率を選択して搬送波発振器24cに指令し、指令された搬送波周波数で生成した搬送波信号で運転する。   The carrier signal frequency switching means 58 for controlling the carrier signal generation circuit 24 sets the maximum ambient temperature at the position where the power converter 2 is disposed as the set temperature To, and the junction allowable for the power converter 2 under the condition of the set temperature To. The allowable temperature in consideration of the temperature Tj is set as the temperature regulation value Tm, and the frequency division of the reference carrier is set in advance in a plurality of division ratios so that the frequency can be divided to an arbitrary carrier frequency in advance. A predetermined value Tm and a frequency division ratio n for dividing the carrier signal are stored, and the carrier signal fc in which the temperature of the power converter 2 falls within the range of the temperature predetermined value Tm under the conditions of the set temperature To and the current command value Ios. The frequency is calculated, the division ratio is selected so as to be the calculated carrier frequency, the carrier wave oscillator 24c is commanded, and the carrier wave signal generated at the commanded carrier frequency is operated.

このように構成すると、実施の形態6と同様に、複数の電力変換器が並列運転される状況において、各電力変換装置の出力電流は、電流指令値Iosにしたがって出力し、周囲温度Taと電流指令値Iosの条件で、搬送波周波数を高くして電力変換器2の温度が温度規定値Tmの範囲で運転され、電力変換器2の冷却手段を大型化することなく、リアクトルの騒音レベルを抑えた運転が可能となる。   With this configuration, as in the sixth embodiment, in a situation where a plurality of power converters are operated in parallel, the output current of each power converter is output according to the current command value Ios, and the ambient temperature Ta and current Under the condition of the command value Ios, the carrier frequency is increased and the temperature of the power converter 2 is operated in the range of the temperature specified value Tm, and the noise level of the reactor is suppressed without increasing the cooling means of the power converter 2. Operation is possible.

実施の形態1の電力変換装置の構成を示すブロック図である。1 is a block diagram illustrating a configuration of a power conversion device according to a first embodiment. 搬送波発振器の入力電圧と発信周波数の関係の説明図である。It is explanatory drawing of the relationship between the input voltage of a carrier wave oscillator, and an oscillation frequency. 実施の形態2の電力変換装置の構成を示すブロック図である。It is a block diagram which shows the structure of the power converter device of Embodiment 2. FIG. 基準搬送波の周波数を分周する分周率の設定例を示す表である。It is a table | surface which shows the example of a setting of the dividing rate which divides the frequency of a reference carrier wave. 実施の形態3の電力変換装置の構成を示すブロック図である。FIG. 6 is a block diagram illustrating a configuration of a power conversion device according to a third embodiment. 実施の形態4の電力変換装置の構成を示すブロック図である。FIG. 10 is a block diagram illustrating a configuration of a power conversion device according to a fourth embodiment. 実施の形態5の電力変換装置の構成を示すブロック図である。FIG. 10 is a block diagram illustrating a configuration of a power conversion device according to a fifth embodiment. 電力変換装置の過負荷検出演算回路の説明図である。It is explanatory drawing of the overload detection calculating circuit of a power converter device. 実施の形態6の電力変換装置の構成を示すブロック図である。FIG. 10 is a block diagram illustrating a configuration of a power conversion device according to a sixth embodiment. 実施の形態7の電力変換装置の構成を示すブロック図である。FIG. 10 is a block diagram illustrating a configuration of a power conversion device according to a seventh embodiment. 電力変換器の搬送波周波数とスイッチング損失の関係を示す図である。It is a figure which shows the relationship between the carrier frequency of a power converter, and switching loss. 電力変換器の出力電流と損失の関係を示す図である。It is a figure which shows the relationship between the output current of a power converter, and a loss. 搬送波周波数とリアクトルの騒音レベルの関係を示す図である。It is a figure which shows the relationship between a carrier wave frequency and the noise level of a reactor.

符号の説明Explanation of symbols

1 直流電源、2 電力変換器、3 出力電流検出手段、5 交流フィルタ、
6 出力電流検出手段、7 負荷、10 制御回路、11電圧指令発生回路、
12 減算器、13 電圧制御指令発生回路、14 搬送波信号発生回路、
15 制御信号生成回路、16 駆動回路、17 周囲温度検出手段、
18 搬送波信号周波数切換手段、24 搬送波信号発生回路、
28 搬送波信号周波数切換手段、37 波形歪み率検出手段、
38 搬送波信号周波数切換手段、35 過負荷レベル演算回路、
58 搬送波信号周波数切換手段、68 搬送波信号周波数切換手段。
1 DC power supply, 2 power converter, 3 output current detection means, 5 AC filter,
6 output current detection means, 7 load, 10 control circuit, 11 voltage command generation circuit,
12 subtractor, 13 voltage control command generation circuit, 14 carrier wave signal generation circuit,
15 control signal generation circuit, 16 drive circuit, 17 ambient temperature detection means,
18 carrier wave signal frequency switching means, 24 carrier wave signal generating circuit,
28 carrier wave signal frequency switching means, 37 waveform distortion rate detecting means,
38 carrier wave signal frequency switching means, 35 overload level calculation circuit,
58 carrier wave signal frequency switching means, 68 carrier wave signal frequency switching means.

Claims (7)

直流電源に接続された複数のスイッチング素子で構成された電力変換器の変換出力をリアクトルおよびコンデンサで構成された交流フィルタを介して負荷に供給する電力変換主回路と、該電力変換回路の出力電圧を検出する電圧検出手段と、上記電力変換器を制御する制御回路とからなり、上記電力変換器の配置位置における最高周囲温度を設定温度とし、上記電力変換器のジャンクション温度の許容値を温度規定値とし、上記制御回路は、搬送波信号を発生する搬送波信号発生回路と、制御信号を生成する制御信号生成回路とを備え、該制御信号生成回路は出力電圧指令値と上記出力電圧との電圧偏差を求め、この電圧偏差が零となるように出力電圧指令値を演算し、該出力電圧指令値と上記搬送波信号発生回路が発生した搬送波信号とにより制御信号を生成して駆動回路に入力し、駆動回路から上記電力変換器を制御する電力変換装置において、上記電力変換器の配置位置の周囲温度を検出する周囲温度検出手段と、上記電力変換器の出力電流を検出する出力電流検出手段と、搬送波信号周波数切換手段とを設け、該搬送波信号周波数切換手段は、上記検出された周囲温度と上記電力変換器の出力電流に基づき、上記搬送波信号発生回路から出力する搬送波信号の周波数を、上記電力変換器の温度が上記温度規定値の範囲となる周波数に切り換えることを特徴とする電力変換装置。 A power conversion main circuit that supplies a conversion output of a power converter composed of a plurality of switching elements connected to a DC power supply to a load via an AC filter composed of a reactor and a capacitor, and an output voltage of the power conversion circuit Voltage detecting means for detecting the power converter and a control circuit for controlling the power converter, the maximum ambient temperature at the position where the power converter is disposed is set as a set temperature, and the allowable value of the junction temperature of the power converter is a temperature regulation. The control circuit includes a carrier signal generation circuit that generates a carrier signal and a control signal generation circuit that generates a control signal, and the control signal generation circuit has a voltage deviation between an output voltage command value and the output voltage. The output voltage command value is calculated so that the voltage deviation becomes zero, and the output voltage command value and the carrier signal generated by the carrier signal generation circuit are calculated. In the power conversion device that generates the control signal and inputs it to the drive circuit and controls the power converter from the drive circuit, the ambient temperature detection means for detecting the ambient temperature at the position where the power converter is disposed, and the power conversion Output current detecting means for detecting the output current of the detector, and carrier wave signal frequency switching means, the carrier wave signal frequency switching means, based on the detected ambient temperature and the output current of the power converter, the carrier wave signal A power conversion device, wherein the frequency of a carrier wave signal output from a generation circuit is switched to a frequency at which the temperature of the power converter falls within the temperature specified value range. 上記搬送波信号発生回路は一定の周波数の搬送波を発振する搬送波発振器と分周器と搬送波信号発生器とで構成し、上記搬送波信号周波数切換手段に予め搬送波周波数を分周する分周率を段階的に設定して記憶し、上記搬送波信号周波数切換手段は、上記周囲温度検出手段が検出した周囲温度と、上記出力電流検出手段が検出した出力電流に基づき、上記電力変換器の温度が上記温度規定値の範囲となる上記分周率を選択することを特徴とする請求項1記載の電力変換装置。 The carrier signal generation circuit is composed of a carrier oscillator that oscillates a carrier wave of a constant frequency, a frequency divider, and a carrier signal generator, and the carrier signal frequency switching means has a stepwise frequency division ratio for dividing the carrier frequency in advance. The carrier signal frequency switching means is configured to store the temperature of the power converter based on the ambient temperature detected by the ambient temperature detection means and the output current detected by the output current detection means. 2. The power conversion device according to claim 1, wherein the frequency dividing ratio that falls within a range of values is selected. 直流電源に接続された複数のスイッチング素子で構成された電力変換器の変換出力をリアクトルおよびコンデンサで構成された交流フィルタを介して負荷に供給する電力変換主回路と、該電力変換回路の出力電圧を検出する電圧検出手段と、上記電力変換器を制御する制御回路とからなり、上記電力変換器の配置位置における最高周囲温度を設定温度とし、上記電力変換器のジャンクション温度の許容値を温度規定値とし、上記制御回路は、搬送波信号を発生する搬送波信号発生回路と、制御信号を生成する制御信号生成回路とを備え、該制御信号生成回路は、出力電圧指令値と上記の出力電圧との電圧偏差を求め、この電圧偏差が零となるように出力電圧指令値を演算し、該出力電圧指令値と上記搬送波信号発生回路が発生した搬送波信号とにより制御信号を生成して駆動回路に入力し、駆動回路から上記電力変換器を制御する電力変換装置において、上記出力電圧の波形歪み率を検出する波形歪み率検出手段と、予め波形歪み率の仕様値を設定した搬送波信号周波数切換手段を設け、上記検出された波形歪み率に基き、上記搬送波信号発生回路から出力する搬送波信号の周波数を、上記予め設定された波形歪み率の仕様値の範囲となる周波数に切り換えることを特徴とする電力変換装置。 A power conversion main circuit that supplies a conversion output of a power converter composed of a plurality of switching elements connected to a DC power source to a load via an AC filter composed of a reactor and a capacitor, and an output voltage of the power conversion circuit Voltage detecting means for detecting the power converter and a control circuit for controlling the power converter, the maximum ambient temperature at the position where the power converter is disposed is set as a set temperature, and the allowable value of the junction temperature of the power converter is a temperature regulation. The control circuit includes a carrier signal generation circuit that generates a carrier signal and a control signal generation circuit that generates a control signal. The control signal generation circuit generates an output voltage command value and the output voltage. A voltage deviation is obtained, an output voltage command value is calculated so that the voltage deviation becomes zero, and the output voltage command value and the carrier signal generated by the carrier signal generation circuit In the power conversion device that generates a control signal and inputs the control signal to the drive circuit and controls the power converter from the drive circuit, a waveform distortion rate detection unit that detects a waveform distortion rate of the output voltage, and a waveform distortion rate in advance A carrier signal frequency switching means for setting a specification value is provided, and based on the detected waveform distortion rate, the frequency of the carrier signal output from the carrier signal generation circuit is set within the range of the specification value of the preset waveform distortion rate. The power converter characterized by switching to the frequency which becomes. 上記搬送波信号発生回路は一定の周波数の搬送波を発振する搬送波発振器と分周器と搬送波信号発生器とで構成し、上記搬送波信号周波数切換手段に予め搬送波信号の周波数を分周する分周率を段階的に設定して記憶し、上記搬送波信号周波数切換手段は、上記検出した波形歪み率に基づき、上記電力変換器の温度が上記温度規定値の範囲となる上記分周率を選択することを特徴とする請求項3記載の電力変換装置。 The carrier signal generation circuit is composed of a carrier oscillator that oscillates a carrier wave of a constant frequency, a frequency divider, and a carrier signal generator, and the carrier signal frequency switching means has a frequency division ratio for dividing the frequency of the carrier signal in advance. The carrier signal frequency switching means is configured to select the frequency division ratio in which the temperature of the power converter falls within the range of the temperature specified value based on the detected waveform distortion rate. The power converter according to claim 3, wherein 上記電力変換器の出力電流を検出する出力電流検出手段と、搬送波周波数に対応する許容出力電流を演算する過負荷耐量演算回路と、演算された許容負荷電流を過負荷レベルとして、別途設置された電力変換装置の保護装置に対して出力する出力回路を備えた過負荷レベル演算回路を設けたことを特徴とする請求項3または請求項4記載の電力変換装置。 The output current detecting means for detecting the output current of the power converter, the overload tolerance calculation circuit for calculating the allowable output current corresponding to the carrier frequency, and the calculated allowable load current as an overload level are separately installed. 5. The power conversion device according to claim 3, further comprising an overload level calculation circuit including an output circuit that outputs to a protection device of the power conversion device. 直流電源に接続された複数のスイッチング素子で構成された電力変換器の変換出力をリアクトルおよびコンデンサで構成された交流フィルタを介して負荷に供給する電力変換主回路と、上記電力変換器を制御する制御回路とからなり、上記電力変換器の配置位置における最高周囲温度を設定温度とし、電力変換器のジャンクション温度の許容値を温度規定値とし、上記制御回路は、搬送波信号を発生する搬送波信号発生回路と、上記電力変換器の出力電流を検出する電流検出手段と、制御信号を生成する制御信号生成回路とを備え、該制御信号生成回路は、出力電流指令値と、上記出力電流との電流偏差を求め、この電流偏差が零となるように電流指令値を演算し、該電流指令値と上記搬送波信号発生回路が発生した搬送波信号とにより制御信号を生成して駆動回路に入力し、駆動回路から上記電力変換器を制御する電力変換装置において、上記電力変換器の配置位置の周囲温度を検出する周囲温度検出手段と、上記搬送波信号周波数を切り換える搬送波信号周波数切換手段とを設け、該搬送波信号周波数切換手段は、上記検出された周囲温度と上記出力電流指令値に基づき、上記搬送波信号発生回路から出力する搬送波信号の周波数を、上記電力変換器の温度が上記温度規定値の範囲となる周波数に切り換えることを特徴とする電力変換装置。 A power conversion main circuit that supplies a conversion output of a power converter composed of a plurality of switching elements connected to a DC power source to a load via an AC filter composed of a reactor and a capacitor, and controls the power converter A control circuit, wherein the maximum ambient temperature at the position where the power converter is disposed is a set temperature, the allowable value of the junction temperature of the power converter is a specified temperature value, and the control circuit generates a carrier signal. A circuit, current detection means for detecting an output current of the power converter, and a control signal generation circuit for generating a control signal, the control signal generation circuit comprising an output current command value and a current between the output current The deviation is obtained, the current command value is calculated so that the current deviation becomes zero, and control is performed by the current command value and the carrier signal generated by the carrier signal generation circuit. In the power conversion device that generates a signal and inputs it to the drive circuit and controls the power converter from the drive circuit, the ambient temperature detection means for detecting the ambient temperature at the arrangement position of the power converter, and the carrier signal frequency A carrier signal frequency switching means for switching, and the carrier signal frequency switching means converts the frequency of the carrier signal output from the carrier signal generation circuit based on the detected ambient temperature and the output current command value to the power conversion. A power conversion device, wherein the temperature of the vessel is switched to a frequency that falls within the range of the temperature specified value. 上記搬送波信号発生回路は、一定の周波数の搬送波を発振する搬送波発振器と分周器と搬送波信号発生器とで構成し、上記搬送波信号発生周波数切換手段に予め搬送波信号の周波数を分周する分周率を段階的に設定して記憶し、上記搬送波信号周波数切換手段は、上記周囲温度と、上記出力電流指令値に基づき、上記電力変換器の温度が上記温度規定値の範囲となる上記分周率を選択することを特徴とする請求項6記載の電力変換装置。
The carrier signal generation circuit comprises a carrier oscillator that oscillates a carrier wave having a constant frequency, a frequency divider, and a carrier signal generator, and the carrier signal generation frequency switching means divides the frequency of the carrier signal in advance. The carrier signal frequency switching means is configured to store the frequency in which the temperature of the power converter falls within the range of the temperature specified value based on the ambient temperature and the output current command value. The power converter according to claim 6, wherein a rate is selected.
JP2004159332A 2004-05-28 2004-05-28 Power converter Pending JP2005341752A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004159332A JP2005341752A (en) 2004-05-28 2004-05-28 Power converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004159332A JP2005341752A (en) 2004-05-28 2004-05-28 Power converter

Publications (1)

Publication Number Publication Date
JP2005341752A true JP2005341752A (en) 2005-12-08

Family

ID=35494691

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004159332A Pending JP2005341752A (en) 2004-05-28 2004-05-28 Power converter

Country Status (1)

Country Link
JP (1) JP2005341752A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010158087A (en) * 2008-12-26 2010-07-15 Toyota Motor Corp Power supply device, control method therefor, and vehicle
WO2015045565A1 (en) * 2013-09-30 2015-04-02 株式会社日立産機システム Power conversion device and control method
US9902286B2 (en) 2011-09-05 2018-02-27 Toyota Jidosha Kabushiki Kaisha Fuel cell system to control the frequency of a fuel cell converter and a battery converter
JP2023099680A (en) * 2020-06-12 2023-07-13 東芝三菱電機産業システム株式会社 Power conversion device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08205547A (en) * 1995-01-27 1996-08-09 Hitachi Ltd Output strain compensating method for power converter
JPH099637A (en) * 1995-06-15 1997-01-10 Fuji Electric Co Ltd Temperature protection circuit of power converting apparatus
JPH09182456A (en) * 1995-12-26 1997-07-11 Tokyo Electric Power Co Inc:The Dispersed power supply
JPH10164884A (en) * 1996-12-02 1998-06-19 Fuji Electric Co Ltd Inverter control apparatus
JPH1169830A (en) * 1997-08-11 1999-03-09 Sanyo Denki Co Ltd Inverter device
JPH11187670A (en) * 1997-12-22 1999-07-09 Mitsubishi Electric Corp Power conversion device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08205547A (en) * 1995-01-27 1996-08-09 Hitachi Ltd Output strain compensating method for power converter
JPH099637A (en) * 1995-06-15 1997-01-10 Fuji Electric Co Ltd Temperature protection circuit of power converting apparatus
JPH09182456A (en) * 1995-12-26 1997-07-11 Tokyo Electric Power Co Inc:The Dispersed power supply
JPH10164884A (en) * 1996-12-02 1998-06-19 Fuji Electric Co Ltd Inverter control apparatus
JPH1169830A (en) * 1997-08-11 1999-03-09 Sanyo Denki Co Ltd Inverter device
JPH11187670A (en) * 1997-12-22 1999-07-09 Mitsubishi Electric Corp Power conversion device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010158087A (en) * 2008-12-26 2010-07-15 Toyota Motor Corp Power supply device, control method therefor, and vehicle
US9902286B2 (en) 2011-09-05 2018-02-27 Toyota Jidosha Kabushiki Kaisha Fuel cell system to control the frequency of a fuel cell converter and a battery converter
WO2015045565A1 (en) * 2013-09-30 2015-04-02 株式会社日立産機システム Power conversion device and control method
JP2015070703A (en) * 2013-09-30 2015-04-13 株式会社日立産機システム Power conversion device and control method
CN105594113A (en) * 2013-09-30 2016-05-18 株式会社日立产机系统 Power conversion device and control method
JP2023099680A (en) * 2020-06-12 2023-07-13 東芝三菱電機産業システム株式会社 Power conversion device

Similar Documents

Publication Publication Date Title
US7450405B2 (en) DC/AC converter with dampened LCL filter distortions
EP1455437A2 (en) Power converter and power unit
US9048767B2 (en) Motor drive for permanent magnet synchronous motor
US7872441B2 (en) Systems and methods for operating Z-source inverter inductors in a continuous current mode
JP2004320984A (en) Inverter controller for driving motor and air conditioner
JP2017169393A (en) Controller of dc/dc converter and control method
JP2007082274A (en) Power converter
JP2013042611A (en) Semiconductor power conversion apparatus
US7542311B2 (en) Method for operating a converter circuit, and device for carrying out the method
WO2019049321A1 (en) Power conversion device
US11456690B2 (en) Pulse-controlled inverter with a variable speed-dependent switching frequency
JP2005341752A (en) Power converter
JP4788949B2 (en) Variable speed drive device for induction motor
JP4110467B2 (en) Control system for parallel-connected self-excited AC power supply
JP2020043716A (en) Multilevel power conversion device and cross current suppression control method of multilevel power conversion device
JP2017034737A (en) Power conversion device controller, control method, and control program, and power conversion system
JP4842179B2 (en) Power conversion apparatus and control method thereof
JP4775101B2 (en) AC-AC direct conversion device
Walz et al. Multi-step model predictive control for a high-speed medium-power PMSM
KR101478634B1 (en) Selective switching method for maximizing radiation of heat of power innerter, energy storage system and power conversion system using it
JP7202244B2 (en) power converter
JP2021069213A (en) Control method of power converter and control system of power converter
JP5428744B2 (en) Power converter control method
JP2008109790A (en) Power conversion apparatus
JP4470618B2 (en) Control device and method for power converter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100105

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100427