JP2005340663A - Capacitor - Google Patents

Capacitor Download PDF

Info

Publication number
JP2005340663A
JP2005340663A JP2004160099A JP2004160099A JP2005340663A JP 2005340663 A JP2005340663 A JP 2005340663A JP 2004160099 A JP2004160099 A JP 2004160099A JP 2004160099 A JP2004160099 A JP 2004160099A JP 2005340663 A JP2005340663 A JP 2005340663A
Authority
JP
Japan
Prior art keywords
capacitor
main surface
electrode
multilayer body
dummy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004160099A
Other languages
Japanese (ja)
Inventor
Tadakatsu Asano
忠克 浅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2004160099A priority Critical patent/JP2005340663A/en
Publication of JP2005340663A publication Critical patent/JP2005340663A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Ceramic Capacitors (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a capacitor for reinforcing the adhesion strength of an external electrode by increasing an area for connecting a dummy electrode to the external electrode. <P>SOLUTION: In the capacitor, an internal electrode layer 2 is interposed between adjacent dielectric layers inside a laminate 1 in which a plurality of dielectric layers are laminated, an arc-shaped chamfering section is formed at the corner section between the side and main surface of the laminate 1, and the external electrode 3 connected to one end of the internal electrode layer 2 is deposited from the side to the main surface of the laminate 1. In the capacitor, the dummy electrode 5 for annularly exposing the outer-periphery section 6 is interposed at the chamfering section of the laminate 1, or from the chamfering section to the main surface between the dielectric layers positioned near the main surface of the laminate 1, and the external electrode 3 is connected to the entire exposed section of the dummy electrode 5. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、多連型積層セラミックコンデンサ等の高密度集積回路に用いられるコンデンサに関するものである。   The present invention relates to a capacitor used in a high-density integrated circuit such as a multi-layer monolithic ceramic capacitor.

従来より、高密度集積回路には多連型積層セラミックコンデンサ等のコンデンサが用いられている。   Conventionally, capacitors such as multi-layer monolithic ceramic capacitors have been used in high-density integrated circuits.

かかるコンデンサは、例えば、複数個の誘電体層を積層してなる積層体の内部で、隣接する誘電体層間に内部電極層を介在させるとともに、前記積層体の側面と主面との間の角部に断面円弧状の面取り部を形成し、前記積層体の側面から主面にかけて、前記内部電極層の一端に接続される外部電極を被着させた構造のものが知られている(例えば、特許文献1参照)。   Such a capacitor has, for example, an internal electrode layer interposed between adjacent dielectric layers in a multilayer body formed by laminating a plurality of dielectric layers, and an angle between a side surface and a main surface of the multilayer body. A chamfered portion having a circular arc cross section is formed in the portion, and an external electrode connected to one end of the internal electrode layer is attached from the side surface to the main surface of the laminate (for example, known) Patent Document 1).

尚、上述した従来のコンデンサは、積層体の主面近傍に位置する誘電体層間に、前記外部電極に接続されるダミー電極を介在させ、金属同士の結合を増やすことにより、積層体と外部電極との接着強度を強めるようにしている。   In the conventional capacitor described above, a dummy electrode connected to the external electrode is interposed between the dielectric layers located in the vicinity of the main surface of the multilayer body, and the coupling between the multilayer body and the external electrode is increased by increasing the bond between the metals. It is trying to strengthen the adhesive strength.

また、コンデンサの外部電極を形成する方法としては、積層体の表面に導出された内部電極層の一端及びダミー電極の一端を起点として無電解メッキ膜を析出させ、無電解メッキ膜を積層体の側面に連続的に形成する方法が知られている(例えば、特許文献2参照)。
特開平9−129476号公報 特開2004−40085号公報
In addition, as a method of forming the external electrode of the capacitor, an electroless plating film is deposited starting from one end of the internal electrode layer and one end of the dummy electrode led to the surface of the multilayer body, and the electroless plating film is formed on the multilayer body. A method of continuously forming the side surface is known (see, for example, Patent Document 2).
JP-A-9-129476 Japanese Patent Laid-Open No. 2004-40085

しかしながら従来のコンデンサは、積層体の主面には内部電極層が導出していないので、積層体の主面における外部電極の接着強度が側面における接着強度に比して弱いものであった。   However, in the conventional capacitor, since the internal electrode layer is not led out to the main surface of the multilayer body, the adhesive strength of the external electrode on the main surface of the multilayer body is weaker than the adhesive strength on the side surface.

また、特に外部電極が無電解メッキ膜を含む場合、誘電体層と外部電極との結合を強くすることが困難であるため、積層体の主面における外部電極の接着強度は、外部電極と内部電極層との接続がないことから非常に弱くなり、回路基板上に半田等を介して搭載した場合の接着強度が不足することになる。   In particular, when the external electrode includes an electroless plating film, it is difficult to strengthen the bond between the dielectric layer and the external electrode. Therefore, the adhesion strength of the external electrode on the main surface of the laminate is Since there is no connection with the electrode layer, it becomes very weak, and the adhesive strength when mounted on the circuit board via solder or the like is insufficient.

本発明は、上述の問題点に鑑みて案出されたものであり、その目的は、ダミー電極と外部電極とを接続する面積を増やし外部電極の接着強度を強くしたコンデンサを提供することにある。   The present invention has been devised in view of the above-described problems, and an object thereof is to provide a capacitor in which the area for connecting the dummy electrode and the external electrode is increased and the adhesive strength of the external electrode is increased. .

本発明のコンデンサは、複数個の誘電体層を積層してなる積層体の内部で、隣接する誘電体層間に内部電極層を介在させるとともに、前記積層体の側面と主面との間の角部に曲面状の面取り部を形成し、前記積層体の側面から主面にかけて、前記内部電極層の一端に接続される外部電極を被着させたコンデンサにおいて、前記積層体の主面近傍に位置する誘電体層間に、前記積層体の面取り部、もしくは面取り部から主面にかけて外周部を環状に露出させたダミー電極を介在させるとともに、該ダミー電極の露出部全体にわたって前記外部電極を接続したことを特徴とするものである。   In the capacitor of the present invention, an internal electrode layer is interposed between adjacent dielectric layers inside a laminate formed by laminating a plurality of dielectric layers, and an angle between the side surface of the laminate and the main surface is set. In a capacitor in which a curved chamfered portion is formed in a part and an external electrode connected to one end of the internal electrode layer is attached from the side surface to the main surface of the multilayer body, the capacitor is positioned near the main surface of the multilayer body. A dummy electrode having an outer peripheral portion exposed annularly from the chamfered portion or the chamfered portion to the main surface of the laminate, and the external electrode connected to the entire exposed portion of the dummy electrode. It is characterized by.

また本発明のコンデンサは、前記外部電極が、前記積層体の表面に導出された内部電極層の一端及び前記ダミー電極の外周部を起点として析出された無電解メッキ膜を含んで形成されており、該無電解メッキ膜が前記積層体の側面から主面にかけて連続的に形成されていることを特徴とするものである。   In the capacitor of the present invention, the external electrode includes an electroless plating film deposited from one end of the internal electrode layer led to the surface of the laminate and the outer periphery of the dummy electrode. The electroless plating film is formed continuously from the side surface to the main surface of the laminate.

更に本発明のコンデンサは、前記積層体の主面近傍において前記誘電体層と前記ダミー電極とが交互に積層されており、これらダミー電極の外周部が前記積層体の表面に年輪状をなすように露出されていることを特徴とするものである。   Furthermore, in the capacitor of the present invention, the dielectric layers and the dummy electrodes are alternately laminated in the vicinity of the main surface of the multilayer body, and the outer peripheral portion of the dummy electrodes forms an annual ring shape on the surface of the multilayer body. It is exposed to.

また更に本発明のコンデンサは、前記積層体の積層方向に係るダミー電極の厚みTと、前記積層体の面取り部に露出されるダミー電極の露出幅Wとが“W>T”の関係式を満たすように設定されていることを特徴とするものである。 Furthermore, in the capacitor of the present invention, the thickness T 1 of the dummy electrode in the stacking direction of the stacked body and the exposed width W 1 of the dummy electrode exposed at the chamfered portion of the stacked body are “W 1 > T 1 ”. It is set to satisfy the relational expression of

更にまた本発明のコンデンサは、前記ダミー電極の露出幅Wと、前記積層体の側面に導出される内部電極層の導出幅Wとが“W>W”の関係式を満たすように設定されていることを特徴とするものである。 Furthermore, in the capacitor of the present invention, the exposed width W 1 of the dummy electrode and the derived width W 2 of the internal electrode layer derived on the side surface of the multilayer body satisfy the relational expression “W 1 > W 2 ”. It is characterized by being set to.

また更に本発明のコンデンサは、前記積層体の主面近傍において前記誘電体層と前記ダミー電極とが交互に積層されており、前記積層体の縦断面において前記積層体の表面に導出された隣接するダミー電極の端部間の最短距離Dと前記積層体の同一側面に導出された隣接する内部電極層の端部間の最短距離Dとが“D<D”の関係式を満たすように設定されていることを特徴とするものである。 Furthermore, in the capacitor according to the present invention, the dielectric layers and the dummy electrodes are alternately stacked in the vicinity of the main surface of the multilayer body, and adjacent to the surface of the multilayer body in the longitudinal section of the multilayer body. the relationship between the shortest distance D 2 between the ends of the internal electrode layers adjacent derived the shortest distance D 1 of the between the ends of the dummy electrodes on the same side of the stack "D 1 <D 2" It is set so that it may satisfy | fill.

本発明のコンデンサによれば、積層体の主面近傍に位置する誘電体層間に、積層体の面取り部、もしくは面取り部から主面にかけて外周部を環状に露出させたダミー電極を介在させるとともに、ダミー電極の露出部全体にわたって外部電極を接続したことから、環状に露出したダミー電極がダミー電極と外部電極とを接続する面積を増やすので、外部電極の接着強度を強くすることができる。   According to the capacitor of the present invention, between the dielectric layers located in the vicinity of the main surface of the multilayer body, a chamfered portion of the multilayer body, or a dummy electrode having an outer peripheral portion exposed annularly from the chamfered portion to the main surface, Since the external electrode is connected over the entire exposed portion of the dummy electrode, the annularly exposed dummy electrode increases the area for connecting the dummy electrode and the external electrode, so that the adhesive strength of the external electrode can be increased.

また本発明のコンデンサによれば、外部電極が、積層体の表面に導出された内部電極層の一端及びダミー電極の外周部を起点として析出された無電解メッキ膜を含んで形成されており、無電解メッキ膜が積層体の側面から主面にかけて連続的に形成されていることから、外部電極を精度良く形成できるとともに、外部電極が被着される部分の金属同士の結合が増え、外部電極の接着強度を強くすることができる。   Further, according to the capacitor of the present invention, the external electrode is formed including an electroless plating film deposited from one end of the internal electrode layer led to the surface of the laminate and the outer periphery of the dummy electrode, Since the electroless plating film is continuously formed from the side surface to the main surface of the laminate, the external electrode can be formed with high precision, and the bonding between the metals on the portion where the external electrode is attached increases, and the external electrode The adhesive strength of the can be increased.

更に本発明のコンデンサによれば、積層体の主面近傍において誘電体層とダミー電極とが交互に積層されており、これらダミー電極の外周部が前記積層体の表面に年輪状をなすように露出されていることから、ダミー電極の外周部と外部電極とが接続する面積が効率的に増えるので、外部電極の接着強度をより強くすることができる。   Furthermore, according to the capacitor of the present invention, the dielectric layers and the dummy electrodes are alternately laminated in the vicinity of the main surface of the multilayer body so that the outer peripheral portion of the dummy electrodes forms an annual ring shape on the surface of the multilayer body. Since it is exposed, the area where the outer peripheral portion of the dummy electrode is connected to the external electrode is efficiently increased, so that the adhesive strength of the external electrode can be further increased.

また更に本発明のコンデンサによれば、積層体の積層方向に係るダミー電極の厚みTと、積層体の面取り部に露出されるダミー電極の露出幅Wとが“W>T”の関係式を満たすように設定されていることから、ダミー電極と外部電極とを接続する面積が増えるので、外部電極の接着強度を高くすることができる。 Furthermore, according to the capacitor of the present invention, the thickness T 1 of the dummy electrode in the stacking direction of the stacked body and the exposed width W 1 of the dummy electrode exposed at the chamfered portion of the stacked body are “W 1 > T 1 ”. Since the area for connecting the dummy electrode and the external electrode is increased, the adhesive strength of the external electrode can be increased.

更にまた本発明のコンデンサは、ダミー電極の露出幅Wと、積層体の側面に導出される内部電極層の導出幅Wとが“W>W”の関係式を満たすように設定されていることから、積層体の主面近傍でダミー電極と外部電極とを接続する面積が増えるので、回路基板上に半田等を介して搭載した場合の接着強度を高くすることになる。 Furthermore, the capacitor of the present invention is set so that the exposed width W 1 of the dummy electrode and the derived width W 2 of the internal electrode layer derived on the side surface of the multilayer body satisfy the relational expression “W 1 > W 2 ”. As a result, the area where the dummy electrode and the external electrode are connected increases in the vicinity of the main surface of the laminate, so that the adhesive strength when mounted on the circuit board via solder or the like is increased.

また更に本発明のコンデンサは、積層体の主面近傍において誘電体層とダミー電極とが交互に積層されており、積層体の縦断面において積層体の表面に導出された隣接するダミー電極の端部間の最短距離Dと積層体の同一側面に導出された隣接する内部電極層の端部間の最短距離Dとが“D<D”の関係式を満たすように設定されていることから、積層体の主面近傍でダミー電極と外部電極とを接続する面積が増えるので、回路基板上に半田等を介して搭載した場合の接着強度を高くすることになる。 Furthermore, in the capacitor of the present invention, dielectric layers and dummy electrodes are alternately laminated in the vicinity of the main surface of the multilayer body, and the end of the adjacent dummy electrode led to the surface of the multilayer body in the longitudinal section of the multilayer body. the shortest distance D 2 between the ends of the internal electrode layers "D 1 <D 2" is set so as to satisfy the relational expression of an adjacent derived on the same side of the minimum distance D 1 and the laminate between parts As a result, the area for connecting the dummy electrode and the external electrode increases in the vicinity of the main surface of the laminate, so that the adhesive strength when mounted on the circuit board via solder or the like is increased.

以下、本発明を添付図面に基づいて詳細に説明する。   Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

は本発明の一実施形態にかかるコンデンサを上方からみた平面図であり、図2はその断面図である。同図に示すコンデンサは、複数個の誘電体層を積層してなる積層体1の内部に内部電極層2が介在され、積層体1の側面から主面にかけては外部電極3が被着された構造を有している。   These are the top views which looked at the capacitor | condenser concerning one Embodiment of this invention from upper direction, FIG. 2 is the sectional drawing. In the capacitor shown in the figure, an internal electrode layer 2 is interposed in a laminated body 1 formed by laminating a plurality of dielectric layers, and an external electrode 3 is deposited from the side surface to the main surface of the laminated body 1. It has a structure.

積層体1を構成する誘電体層は、材質としては例えば、BaTiO、CaTiO、SrTiO等を主成分とする高誘電率の誘電体材料が用いられ、その厚みは例えば1層あたり1μm〜3μmに設定される。また積層体1における誘電体層の積層数は、例えば20層〜2000層に設定される。 The dielectric layer constituting the multilayer body 1 is made of, for example, a dielectric material having a high dielectric constant mainly composed of BaTiO 3 , CaTiO 3 , SrTiO 3, etc., and has a thickness of, for example, 1 μm to 1 layer. Set to 3 μm. Further, the number of laminated dielectric layers in the laminated body 1 is set to 20 to 2000 layers, for example.

また積層体1の側面と主面との間の角部には、カケ等の不具合が発生しないように、断面円弧状の面取り部が形成される。面取り部の円弧の半径は例えば30〜80μmに設定される。   In addition, a chamfered portion having an arcuate cross section is formed at a corner portion between the side surface and the main surface of the laminate 1 so as not to cause defects such as chipping. The radius of the arc of the chamfered portion is set to 30 to 80 μm, for example.

内部電極層2は、積層体1の内部で隣接する誘電体層間に介在され、材質としては例えば、Ni、Cu、Cu−Ni、Ag−Pd等の金属を主成分とする導体材料が用いられ、その厚みは例えば0.5μm〜2μmに設定される。誘電体層を介して対向する一対の内部電極層2は、対向する領域で静電容量が形成され、その一端はそれぞれ積層体1の異なる側面に導出される。尚、本実施形態のコンデンサにおいて、誘電体層を介して対向する一対の内部電極層2はそれぞれ対向する側面に導出される。   The internal electrode layer 2 is interposed between adjacent dielectric layers inside the multilayer body 1, and as the material, for example, a conductive material mainly composed of a metal such as Ni, Cu, Cu—Ni, Ag—Pd is used. The thickness is set to 0.5 μm to 2 μm, for example. The pair of internal electrode layers 2 facing each other through the dielectric layer has a capacitance formed in the facing region, and one end thereof is led out to a different side surface of the laminate 1. In the capacitor of this embodiment, the pair of internal electrode layers 2 facing each other through the dielectric layer are led out to the facing side surfaces.

積層体1の側面から主面にかけて被着される外部電極3は、材質としては例えば、導電率が低く半田に浸食されにくいCu等の導体材料が用いられ、その厚みは例えば5〜10μm設定される。また外部電極3は、側面に導出した内部電極層2の一端に接続され、積層体1の内部で形成される静電容量と電気的に接続される。尚、本実施形態のコンデンサにおいて、外部電極3の表面には、回路基板に半田で搭載される場合に半田が塗れやすくするために、半田、Sn等のロウ材層4(図1では図示せず)が被覆形成される。ロウ材層4は、例えば、4〜5μmの厚みに設定される。   The external electrode 3 deposited from the side surface to the main surface of the multilayer body 1 is made of, for example, a conductor material such as Cu having low conductivity and not easily eroded by solder, and the thickness thereof is set to 5 to 10 μm, for example. The The external electrode 3 is connected to one end of the internal electrode layer 2 led out to the side surface, and is electrically connected to a capacitance formed inside the stacked body 1. In the capacitor according to the present embodiment, the surface of the external electrode 3 has a solder material layer 4 such as solder or Sn (not shown in FIG. ) Is formed. The brazing material layer 4 is set to a thickness of 4 to 5 μm, for example.

図3に本実施形態のコンデンサから外部電極3を除いた平面図を示す。積層体1の主面近傍に位置する誘電体層間には、静電容量の形成に対する関与が少ないダミー電極5が複数個形成され、積層体1の面取り部、もしくは面取り部から主面にかけて外周部6を環状に露出させたダミー電極5が介在され、ダミー電極5の露出部全体にわたって外部電極3が接続される。環状に露出したダミー電極5の外周部6がダミー電極5と外部電極3とを接続する面積を増やすので、回路基板上に半田等を介して搭載した場合の外部電極3の接着強度を強くすることができる。   FIG. 3 is a plan view in which the external electrode 3 is removed from the capacitor of this embodiment. A plurality of dummy electrodes 5 that are less involved in the formation of capacitance are formed between the dielectric layers located in the vicinity of the main surface of the multilayer body 1, and the chamfered portion of the multilayer body 1, or the outer peripheral portion from the chamfered portion to the main surface A dummy electrode 5 having an annularly exposed 6 is interposed, and the external electrode 3 is connected over the entire exposed portion of the dummy electrode 5. The outer peripheral portion 6 of the dummy electrode 5 exposed in an annular shape increases the area for connecting the dummy electrode 5 and the external electrode 3, so that the adhesion strength of the external electrode 3 when mounted on the circuit board via solder or the like is increased. be able to.

また本実施形態のコンデンサにおいては、図3に示されるように、積層体1の主面近傍において誘電体層とダミー電極5とが交互に積層されており、これらダミー電極5の外周部6が積層体1の表面に年輪状をなすように露出される。ダミー電極5の外周部6と外部電極3とが接続する面積が効率的に増えるので、外部電極3の接着強度をより強くすることができる。   In the capacitor of this embodiment, as shown in FIG. 3, dielectric layers and dummy electrodes 5 are alternately stacked in the vicinity of the main surface of the multilayer body 1, and the outer peripheral portion 6 of these dummy electrodes 5 is The surface of the laminate 1 is exposed so as to form an annual ring. Since the area where the outer peripheral portion 6 of the dummy electrode 5 and the external electrode 3 are connected efficiently increases, the adhesive strength of the external electrode 3 can be further increased.

図4に図2の部分拡大図を示す。図4に示すように、積層体1の積層方向に係るダミー電極5の厚みTと、積層体1の面取り部に露出されるダミー電極3の露出幅Wとが“W>T”の関係式を満たすように設定される。本実施形態のコンデンサにおいては、例えば、積層体1の積層方向に係るダミー電極5の厚みTが1.2μmのとき、積層体1の面取り部に露出されるダミー電極3の露出幅Wは、1.5〜3μmになるようにした。これにより、ダミー電極5と外部電極3とを接続する面積が増えるので、外部電極3の接着強度をより高くすることができる。更に本実施形態のコンデンサにおいては、露出部Wが積層体1の主面側に近づくにつれて広くなるようにした。 FIG. 4 shows a partially enlarged view of FIG. As shown in FIG. 4, the thickness T 1 of the dummy electrode 5 in the stacking direction of the stacked body 1 and the exposed width W 1 of the dummy electrode 3 exposed at the chamfered portion of the stacked body 1 are “W 1 > T 1. "Is set to satisfy the relational expression". " In the capacitor of the present embodiment, for example, when the thickness T 1 of the dummy electrode 5 according to the laminating direction of the multilayer body 1 is 1.2 [mu] m, the exposed width W 1 of the dummy electrode 3 which is exposed to the chamfered portion of the laminated body 1 Was set to 1.5 to 3 μm. Thereby, since the area which connects the dummy electrode 5 and the external electrode 3 increases, the adhesive strength of the external electrode 3 can be made higher. Furthermore, in the capacitor of the present embodiment, the exposed portion W 1 is made wider as it approaches the main surface side of the multilayer body 1.

一方、ダミー電極5の露出幅Wと、積層体1の側面に導出される内部電極層2の導出幅Wとは、“W>W”の関係式を満たすように設定される。本実施形態のコンデンサにおいては、例えば、積層体1の側面に導出される内部電極層2の導出幅Wは、上記内部電極層2の厚みと略同一の1.2μmに設定し、このとき、ダミー電極3の露出幅Wは、1.5〜3μmになるようにした。このことによっても、積層体1の主面近傍でダミー電極5と外部電極3とを接続する面積が増えるので、接着強度をより強くすることになる。 On the other hand, the exposed width W 1 of the dummy electrode 5 and the derived width W 2 of the internal electrode layer 2 derived on the side surface of the multilayer body 1 are set so as to satisfy the relational expression “W 1 > W 2 ”. . In the capacitor of the present embodiment, for example, the derived width W 2 of the internal electrode layer 2 derived on the side surface of the multilayer body 1 is set to 1.2 μm, which is substantially the same as the thickness of the internal electrode layer 2. exposed width W 1 of the dummy electrode 3 was set to 1.5~3Myuemu. This also increases the area where the dummy electrode 5 and the external electrode 3 are connected in the vicinity of the main surface of the laminate 1, thereby further increasing the adhesive strength.

更に、積層体1の主面近傍において誘電体層とダミー電極5とが交互に積層されており、積層体1の縦断面において積層体1の表面に導出された隣接するダミー電極5の端部間の最短距離Dと積層体1の同一側面に導出された隣接する内部電極層2の端部間の最短距離Dとが“D<D”の関係式を満たすように設定される。このことによっても、積層体1の主面近傍でダミー電極5と外部電極3とを接続する面積が増えるので、回路基板上に半田等を介して搭載した場合の接着強度を強めることになる。本実施形態のコンデンサにおいては、ダミー電極5の端部間には誘電体層が1層分介在しているのに対して内部電極層2の端部間には誘電体層が2層分介在されるようにした。 Furthermore, dielectric layers and dummy electrodes 5 are alternately stacked in the vicinity of the main surface of the stacked body 1, and end portions of adjacent dummy electrodes 5 led out to the surface of the stacked body 1 in the longitudinal section of the stacked body 1. the shortest distance D 2 between the ends of the internal electrode layer 2 adjacent to the shortest distance derived D 1 and on the same side of the stack 1 between are set to satisfy the relationship of "D 1 <D 2" The This also increases the area where the dummy electrode 5 and the external electrode 3 are connected in the vicinity of the main surface of the laminate 1, so that the adhesive strength when mounted on the circuit board via solder or the like is increased. In the capacitor according to the present embodiment, one dielectric layer is interposed between the end portions of the dummy electrode 5, whereas two dielectric layers are interposed between the end portions of the internal electrode layer 2. It was made to be.

本実施形態のコンデンサは、以下の製造方法により製作される。   The capacitor of this embodiment is manufactured by the following manufacturing method.

先ず、BaTiO、CaTiO、SrTiO等を主成分とする誘電体材料の粉末に適当な有機溶剤、ガラスフリット、有機バインダ等を添加・混合して泥漿状のセラミックスラリを作製し、得られたセラミックスラリを従来周知のドクターブレード法等によって所定形状、所定厚みの誘電体層となるセラミックグリーンシートを形成し、得られたセラミックグリーンシートの主面に、Ni、Cu、Cu−Ni、Ag−Pd等の金属材料の粉末に適当な有機溶剤、有機バインダ等を添加・混合して得た導体ペーストを従来周知のスクリーン印刷等によって所定パターンに塗布し、容量形成電極となる導体パターン及びダミー導体となる導体パターンを形成する。なお、上記導体パターンは、所定パターンのメッキ等の電鋳法を用いて形成した膜を被着・転写させておくことにより形成するようにしても良い。 First, a slurry-like ceramic slurry is prepared by adding and mixing a suitable organic solvent, glass frit, organic binder, etc. to a dielectric material powder mainly composed of BaTiO 3 , CaTiO 3 , SrTiO 3, etc. A ceramic green sheet having a predetermined shape and a predetermined thickness is formed from the ceramic slurry using a conventionally known doctor blade method, and Ni, Cu, Cu-Ni, Ag are formed on the main surface of the obtained ceramic green sheet. -Conductor paste obtained by adding and mixing a suitable organic solvent, organic binder, etc. to a powder of a metal material such as Pd in a predetermined pattern by screen printing or the like known in the past, and a conductor pattern and dummy serving as a capacitance forming electrode A conductor pattern to be a conductor is formed. The conductor pattern may be formed by depositing and transferring a film formed using an electroforming method such as plating of a predetermined pattern.

次に、導体パターンが形成されたセラミックグリーンシートを所定の枚数だけ支持台上に積層し、積層された導体パターン及びセラミックグリーンシートを加圧加熱することにより、大型積層体を形成し、大型積層体を所定の寸法で切断することにより、未焼成積層ブロックを形成する。   Next, a predetermined number of ceramic green sheets on which conductor patterns are formed are laminated on a support base, and a large laminate is formed by pressurizing and heating the laminated conductor patterns and ceramic green sheets. A green laminate block is formed by cutting the body into predetermined dimensions.

そして、得られた未焼成積層体を例えば1100℃〜1400℃の温度で焼成し、更に、得られた積層ブロックをバレル研磨等により側面と主面との角部に面取り部を形成し、得られた積層体1の表面に露出した内部電極層2及びダミー電極5の一端を起点として、Cuの無電解メッキ膜を積層体1の側面から主面にかけて連続的に形成されるまで析出させることにより、外部電極3が被着・形成される。   And the obtained unbaked laminated body is baked at a temperature of, for example, 1100 ° C. to 1400 ° C., and the obtained laminated block is further chamfered at the corners of the side surface and the main surface by barrel polishing, etc. Starting from one end of the internal electrode layer 2 and the dummy electrode 5 exposed on the surface of the laminated body 1, a Cu electroless plating film is deposited until it is continuously formed from the side surface to the main surface of the laminated body 1. Thus, the external electrode 3 is deposited and formed.

本実施形態のコンデンサにおいては、ダミー電極5が積層体1の側面と主面との角部に介在されており、上記バレル研磨を行った際に、積層体1の面取り部、もしくは面取り部から主面にかけてダミー電極5が露出される。その上、誘電体層がBaTiO等からなるためにNi等からなるダミー電極5よりも削られやすいので、ダミー電極3の外周部6が積層体1の面取り部、もしくは面取り部から主面にかけて露出される。これにより、外部電極3を形成する無電解メッキ膜がダミー電極5の外周部6を起点にして析出されるので、外部電極を精度良く形成できるとともに、外部電極3が被着される部分の金属同士の結合が増え、外部電極3の接着強度を強くすることができる。外周部6は、主面側に近いものほど上記バレル研磨によって削られる量が多く径が小さくなるので、複数個の外周部6が重なって露出する場合には、図3に示すような年輪状をなすように露出されるようになる。 In the capacitor of this embodiment, the dummy electrode 5 is interposed at the corner between the side surface and the main surface of the multilayer body 1, and when the barrel polishing is performed, the dummy electrode 5 is removed from the chamfered portion or the chamfered portion of the multilayer body 1. The dummy electrode 5 is exposed over the main surface. In addition, since the dielectric layer is made of BaTiO 3 or the like, it is easier to scrape than the dummy electrode 5 made of Ni or the like, so that the outer peripheral portion 6 of the dummy electrode 3 extends from the chamfered portion or the chamfered portion to the main surface of the laminate 1. Exposed. As a result, the electroless plating film for forming the external electrode 3 is deposited starting from the outer peripheral portion 6 of the dummy electrode 5, so that the external electrode can be formed with high accuracy and the metal on the portion where the external electrode 3 is deposited. Bonding between the two increases, and the adhesive strength of the external electrode 3 can be increased. As the outer peripheral portion 6 is closer to the main surface side, the amount of scraping by the barrel polishing is larger and the diameter is smaller. Therefore, when a plurality of outer peripheral portions 6 are overlapped and exposed, an annual ring shape as shown in FIG. It will be exposed to form.

また、主面近傍のダミー電極5の厚みにより、積層方向においてダミー電極5が形成された領域の内部電極層2は、積層体の中央部に向かって断面が屈曲した形状となっている。このことが更に、バレル研磨を行った際にダミー電極5の主面側を露出させやすくしている。   Further, depending on the thickness of the dummy electrode 5 in the vicinity of the main surface, the internal electrode layer 2 in the region where the dummy electrode 5 is formed in the stacking direction has a shape whose cross section is bent toward the center of the stack. This further facilitates exposing the main surface side of the dummy electrode 5 when barrel polishing is performed.

尚、本発明は上述した実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において種々の変更、改良等が可能である。   In addition, this invention is not limited to embodiment mentioned above, A various change, improvement, etc. are possible in the range which does not deviate from the summary of this invention.

例えば、本実施形態のコンデンサにおいては、図1の平面図では外部電極3が同一側面に2個形成され、一つの積層体内に2個のコンデンサ素子を有した多連型セラミックコンデンサが示されているが、外部電極3は同一側面に2個形成するに限らず、3個以上形成してもよい。   For example, in the capacitor of this embodiment, the plan view of FIG. 1 shows a multiple-type ceramic capacitor in which two external electrodes 3 are formed on the same side surface and two capacitor elements are provided in one laminated body. However, the number of external electrodes 3 is not limited to two on the same side, but may be three or more.

また、本実施形態においては、外部電極3の表面に直接、半田等のロウ材層を被膜・形成したが、半田の浸食をより抑えるために外部電極3とロウ材層との間にNi等の中間層を形成しても良い。尚、中間層の厚みは、例えば2〜3μmに設定される。   In the present embodiment, a brazing material layer such as solder is formed directly on the surface of the external electrode 3, but Ni or the like is interposed between the external electrode 3 and the brazing material layer in order to further suppress solder erosion. The intermediate layer may be formed. Note that the thickness of the intermediate layer is set to, for example, 2 to 3 μm.

本発明のコンデンサの一実施形態を示す平面図である。It is a top view which shows one Embodiment of the capacitor | condenser of this invention. 本発明のコンデンサの一実施形態を示す断面図である。It is sectional drawing which shows one Embodiment of the capacitor | condenser of this invention. 本発明のコンデンサの一実施形態から外部電極を除いた平面図である。It is a top view which removed the external electrode from one Embodiment of the capacitor | condenser of this invention. 図2の部分拡大図である。FIG. 3 is a partially enlarged view of FIG. 2.

符号の説明Explanation of symbols

1・・・積層体
2・・・内部電極層
3・・・外部電極
4・・・ロウ材層
5・・・ダミー電極
6・・・外周部
DESCRIPTION OF SYMBOLS 1 ... Laminated body 2 ... Internal electrode layer 3 ... External electrode 4 ... Brazing material layer 5 ... Dummy electrode 6 ... Outer peripheral part

Claims (6)

複数個の誘電体層を積層してなる積層体の内部で、隣接する誘電体層間に内部電極層を介在させるとともに、前記積層体の側面と主面との間の角部に曲面状の面取り部を形成し、前記積層体の側面から主面にかけて、前記内部電極層の一端に接続される外部電極を被着させたコンデンサにおいて、
前記積層体の主面近傍に位置する誘電体層間に、前記積層体の面取り部、もしくは面取り部から主面にかけて外周部を環状に露出させたダミー電極を介在させるとともに、該ダミー電極の露出部全体にわたって前記外部電極を接続したことを特徴とするコンデンサ。
An internal electrode layer is interposed between adjacent dielectric layers in a multilayer body formed by laminating a plurality of dielectric layers, and a curved chamfer is formed at a corner between the side surface and the main surface of the multilayer body. Forming a portion, from the side surface of the laminate to the main surface, in a capacitor to which an external electrode connected to one end of the internal electrode layer is deposited,
Between the dielectric layers located in the vicinity of the main surface of the multilayer body, a chamfered portion of the multilayer body, or a dummy electrode having an outer peripheral portion annularly exposed from the chamfered portion to the main surface, and an exposed portion of the dummy electrode A capacitor characterized in that the external electrodes are connected throughout.
前記外部電極が、前記積層体の表面に導出された内部電極層の一端及び前記ダミー電極の外周部を起点として析出された無電解メッキ膜を含んで形成されており、該無電解メッキ膜が前記積層体の側面から主面にかけて連続的に形成されていることを特徴とする請求項1に記載のコンデンサ。 The external electrode is formed including an electroless plating film deposited from one end of the internal electrode layer led to the surface of the laminate and the outer periphery of the dummy electrode, and the electroless plating film The capacitor according to claim 1, wherein the capacitor is continuously formed from a side surface to a main surface of the laminate. 前記積層体の主面近傍において前記誘電体層と前記ダミー電極とが交互に積層されており、これらダミー電極の外周部が前記積層体の表面に年輪状をなすように露出されていることを特徴とする請求項1または請求項2に記載のコンデンサ。 The dielectric layers and the dummy electrodes are alternately stacked in the vicinity of the main surface of the multilayer body, and the outer peripheral portions of the dummy electrodes are exposed so as to form an annual ring on the surface of the multilayer body. The capacitor according to claim 1 or 2, wherein the capacitor is characterized in that: 前記積層体の積層方向に係るダミー電極の厚みTと、前記積層体の面取り部に露出されるダミー電極の露出幅Wとが“W>T”の関係式を満たすように設定されていることを特徴とする請求項1乃至請求項3のいずれかに記載のコンデンサ。 The thickness T 1 of the dummy electrode in the stacking direction of the stacked body and the exposed width W 1 of the dummy electrode exposed at the chamfered portion of the stacked body are set so as to satisfy the relational expression “W 1 > T 1 ”. The capacitor according to claim 1, wherein the capacitor is provided. 前記ダミー電極の露出幅Wと、前記積層体の側面に導出される内部電極層の導出幅Wとが“W>W”の関係式を満たすように設定されていることを特徴とする請求項1乃至請求項4のいずれかに記載のコンデンサ。 Wherein the exposed width W 1 of the dummy electrodes, and deriving the width W 2 of the inner electrode layers which are led out to the side surface of the laminated body is set so as to satisfy the relationship of "W 1> W 2" The capacitor according to any one of claims 1 to 4. 前記積層体の主面近傍において前記誘電体層と前記ダミー電極とが交互に積層されており、前記積層体の縦断面において前記積層体の表面に導出された隣接するダミー電極の外周部間の最短距離Dと前記積層体の同一側面に導出された隣接する内部電極層の端部間の最短距離Dとが“D<D”の関係式を満たすように設定されていることを特徴とすることを特徴とする請求項1乃至請求項5のいずれかに記載のコンデンサ。 The dielectric layers and the dummy electrodes are alternately stacked in the vicinity of the main surface of the multilayer body, and between the outer peripheral portions of adjacent dummy electrodes led to the surface of the multilayer body in the longitudinal section of the multilayer body. it is set so as to satisfy the relational expression and the shortest distance D 2 between the ends of the internal electrode layers adjacent derived on the same side of the shortest distance D 1 and the laminate is "D 1 <D 2" The capacitor according to claim 1, wherein the capacitor is characterized in that
JP2004160099A 2004-05-28 2004-05-28 Capacitor Pending JP2005340663A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004160099A JP2005340663A (en) 2004-05-28 2004-05-28 Capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004160099A JP2005340663A (en) 2004-05-28 2004-05-28 Capacitor

Publications (1)

Publication Number Publication Date
JP2005340663A true JP2005340663A (en) 2005-12-08

Family

ID=35493852

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004160099A Pending JP2005340663A (en) 2004-05-28 2004-05-28 Capacitor

Country Status (1)

Country Link
JP (1) JP2005340663A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006332601A (en) * 2005-04-27 2006-12-07 Kyocera Corp Multilayer electronic component
US7190566B2 (en) * 2005-08-01 2007-03-13 Tdk Corporation Laminated electronic component
KR100826071B1 (en) * 2005-08-01 2008-04-29 티디케이가부시기가이샤 Laminated electronic component
JP2010258223A (en) * 2009-04-24 2010-11-11 Murata Mfg Co Ltd Multilayer ceramic electronic component
US7863662B2 (en) * 2005-12-22 2011-01-04 Ngk Spark Plug Co., Ltd. Capacitor to be incorporated in wiring substrate, method for manufacturing the capacitor, and wiring substrate
US8125765B2 (en) 2009-04-22 2012-02-28 Murata Manufacturing Co., Ltd. Laminated ceramic electronic component
US8254081B2 (en) 2008-11-26 2012-08-28 Murata Manufacturing Co., Ltd. Laminated ceramic electronic component and manufacturing method thereof
KR101331985B1 (en) 2011-06-15 2013-11-25 가부시키가이샤 무라타 세이사쿠쇼 Laminated ceramic electronic component
US8649155B2 (en) 2010-07-21 2014-02-11 Murata Manufacturing Co., Ltd. Electronic component including reinforcing electrodes
KR101407250B1 (en) * 2011-06-16 2014-06-13 가부시키가이샤 무라타 세이사쿠쇼 Monolithic ceramic electronic component
KR20150050355A (en) * 2013-10-30 2015-05-08 가부시키가이샤 무라타 세이사쿠쇼 Method for manufacturing monolithic ceramic electronic component and monolithic ceramic electronic component
CN111223667A (en) * 2018-11-27 2020-06-02 太阳诱电株式会社 Laminated ceramic electronic component and mounting substrate

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006332601A (en) * 2005-04-27 2006-12-07 Kyocera Corp Multilayer electronic component
US7190566B2 (en) * 2005-08-01 2007-03-13 Tdk Corporation Laminated electronic component
KR100826071B1 (en) * 2005-08-01 2008-04-29 티디케이가부시기가이샤 Laminated electronic component
US8350306B2 (en) 2005-12-22 2013-01-08 Ngk Spark Plug Co., Ltd. Capacitor to be incorporated in wiring substrate, method for manufacturing the capacitor, and wiring substrate
US8697534B2 (en) 2005-12-22 2014-04-15 Ngk Spark Plug Co., Ltd. Capacitor to be incorporated in wiring substrate, method for manufacturing the capacitor, and wiring substrate
US7863662B2 (en) * 2005-12-22 2011-01-04 Ngk Spark Plug Co., Ltd. Capacitor to be incorporated in wiring substrate, method for manufacturing the capacitor, and wiring substrate
TWI423282B (en) * 2005-12-22 2014-01-11 Ngk Spark Plug Co Capacitor to be incorporated in wiring substarate, method for manufacturing the capacitor, and wiring substrate
US8304321B2 (en) 2005-12-22 2012-11-06 Ngk Spark Plug Co., Ltd. Capacitor to be incorporated in wiring substrate, method for manufacturing the capacitor, and wiring substrate
US8254081B2 (en) 2008-11-26 2012-08-28 Murata Manufacturing Co., Ltd. Laminated ceramic electronic component and manufacturing method thereof
US8125765B2 (en) 2009-04-22 2012-02-28 Murata Manufacturing Co., Ltd. Laminated ceramic electronic component
JP2010258223A (en) * 2009-04-24 2010-11-11 Murata Mfg Co Ltd Multilayer ceramic electronic component
US8547682B2 (en) 2009-04-24 2013-10-01 Murata Manufacturing Co., Ltd. Multilayer ceramic electronic component including directly plated external electrodes
US8649155B2 (en) 2010-07-21 2014-02-11 Murata Manufacturing Co., Ltd. Electronic component including reinforcing electrodes
KR101331985B1 (en) 2011-06-15 2013-11-25 가부시키가이샤 무라타 세이사쿠쇼 Laminated ceramic electronic component
KR101407250B1 (en) * 2011-06-16 2014-06-13 가부시키가이샤 무라타 세이사쿠쇼 Monolithic ceramic electronic component
KR20150050355A (en) * 2013-10-30 2015-05-08 가부시키가이샤 무라타 세이사쿠쇼 Method for manufacturing monolithic ceramic electronic component and monolithic ceramic electronic component
KR101669502B1 (en) 2013-10-30 2016-10-26 가부시키가이샤 무라타 세이사쿠쇼 Method for manufacturing monolithic ceramic electronic component and monolithic ceramic electronic component
US9966189B2 (en) 2013-10-30 2018-05-08 Murata Manufacturing Co., Ltd. Monolithic ceramic electronic component
CN111223667A (en) * 2018-11-27 2020-06-02 太阳诱电株式会社 Laminated ceramic electronic component and mounting substrate

Similar Documents

Publication Publication Date Title
US11257619B2 (en) Multilayer ceramic capacitor and method of manufacturing the same
KR101331985B1 (en) Laminated ceramic electronic component
JP7131658B2 (en) electronic components
JP7092053B2 (en) Multilayer ceramic capacitors
JP5777179B2 (en) Multilayer ceramic electronic component for built-in substrate and printed circuit board with built-in multilayer ceramic electronic component
JP5589982B2 (en) Multilayer ceramic electronic components
JP2008091400A (en) Laminated ceramic capacitor and its manufacturing method
JP2017098524A (en) Multilayer ceramic electronic component and manufacturing method thereof
JP2010258070A (en) Multilayer ceramic electronic component
CN113140405B (en) Multilayer ceramic capacitor
US10510488B2 (en) Multilayer ceramic capacitor
JP2005340663A (en) Capacitor
JP7103573B2 (en) Capacitors and their manufacturing methods
US11476046B2 (en) Multilayer ceramic capacitor
JP2020064945A (en) Multilayer ceramic electronic component
CN112750621A (en) Laminated ceramic electronic component and method for manufacturing laminated ceramic electronic component
JP2017022257A (en) Composite electronic component and resistance element
WO2018042846A1 (en) Electronic device and multilayer ceramic substrate
JP2021166219A (en) Multilayer ceramic capacitor and semiconductor device
JP2017022255A (en) Composite electronic component and resistance element
JP2005340664A (en) Capacitor
JP4463045B2 (en) Ceramic electronic components and capacitors
JP2017022256A (en) Composite electronic component and resistance element
JP4099756B2 (en) Laminated board
CN115223791B (en) Ceramic electronic component and substrate device