JP2005340536A - Variable capacitor - Google Patents

Variable capacitor Download PDF

Info

Publication number
JP2005340536A
JP2005340536A JP2004158440A JP2004158440A JP2005340536A JP 2005340536 A JP2005340536 A JP 2005340536A JP 2004158440 A JP2004158440 A JP 2004158440A JP 2004158440 A JP2004158440 A JP 2004158440A JP 2005340536 A JP2005340536 A JP 2005340536A
Authority
JP
Japan
Prior art keywords
upper electrode
lower electrode
variable capacitor
support member
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004158440A
Other languages
Japanese (ja)
Inventor
Tokuichi Yamaji
徳一 山地
Tetsuya Kishino
哲也 岸野
Toru Fukano
徹 深野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2004158440A priority Critical patent/JP2005340536A/en
Publication of JP2005340536A publication Critical patent/JP2005340536A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Micromachines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a variable capacitor whose variance is less against a designed capacitance value and can realize a stable capacitance value even if vibrations or noises or the like are given from the outside. <P>SOLUTION: A lower electrode 2 having a wide area is formed on a substrate 1, and an upper electrode 4 having a wide area is arranged opposite to the lower electrode 2, while an insulative support member 3 is arranged between the upper and lower electrodes 4 and 2 to divide the upper electrode 4 into a plurality of movable areas, and to displace them to the side of the lower electrode 2. In such the variable capacitor, the upper electrode 4 is divided into a plurality of movable areas and they are supported by the support member 3, so that the upper electrode 4 can be stably displaced to the side of the lower electrode 2 in the respective movable areas. Therefore, the variable capacitor has less variance against a designed capacitance value, and can realize a stable capacitance value even if vibrations or noises or the like are given from the outside. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、可変容量コンデンサに関するものであり、特に静電駆動式の可変容量コンデンサに関するものである。   The present invention relates to a variable capacitor, and more particularly to an electrostatic drive type variable capacitor.

近年、各種電気機器、通信システム、携帯通信端末等の分野において、コンデンサとして容量値を変化させることができる可変容量コンデンサが広く用いられている。コンデンサの容量は、二つの電極(例えば上部電極と下部電極)の間の誘電体材料の誘電率,二つの電極が対向する部分の面積,二つの電極の間の距離に応じた容量値となる。したがって、可変容量コンデンサの容量値を変化させる方法としては、二つの電極の間にある誘電体材料の誘電率を変化させる方法や、例えば容量値を形成する箇所の面積または二つの電極の距離などの、可変容量コンデンサを構成する部材自体の形状を変化させる方法が知られている。   In recent years, variable capacitors capable of changing the capacitance value have been widely used as capacitors in various electric devices, communication systems, portable communication terminals, and the like. The capacitance of the capacitor is a capacitance value according to the dielectric constant of the dielectric material between the two electrodes (for example, the upper electrode and the lower electrode), the area of the portion where the two electrodes face each other, and the distance between the two electrodes . Therefore, as a method of changing the capacitance value of the variable capacitor, a method of changing the dielectric constant of the dielectric material between the two electrodes, for example, the area of the location where the capacitance value is formed or the distance between the two electrodes, etc. There is known a method of changing the shape of a member constituting a variable capacitor.

可変容量コンデンサを構成する部材自体の形状を変化させる方法として、二つの電極に電圧を印加することにより発生する静電引力を用いて二つの電極の距離を変化させる方法がある。以下、この方法により容量値を変化させる可変容量コンデンサを、静電駆動式の可変容量コンデンサという。図8(a),(b)に、それぞれ一般的な静電駆動式の可変容量コンデンサの断面図を示す(例えば、特許文献1を参照。)図8において、101は基板,102は下部電極,104は上部電極である。基板101上に下部電極102が形成されており、基板101上の下部電極102が形成されていない部位から上部電極104が、図8(a)は片持ち梁(カンチレバー)の形状に、(b)は両持ち梁(メンブレン)の形状になるよう形成されている。ここで、上部電極104は、下部電極102と対向する部位において、両者が平行となり、上部電極104が可動となるように形成されている。このような可変容量コンデンサは、上部電極104と下部電極102との間に電圧を印加することにより上部電極104と下部電極102との間に発生する静電引力で上部電極104が下部電極102側に引き寄せられ、その結果、上部電極104と下部電極102と間の距離が変化して容量が変化する。
特開2000−208944号公報
As a method of changing the shape of the member constituting the variable capacitor, there is a method of changing the distance between the two electrodes using electrostatic attraction generated by applying a voltage to the two electrodes. Hereinafter, a variable capacitor whose capacitance value is changed by this method is referred to as an electrostatic drive type variable capacitor. FIGS. 8A and 8B are sectional views of general electrostatic drive type variable capacitors (see, for example, Patent Document 1). In FIG. 8, 101 is a substrate, and 102 is a lower electrode. 104 are upper electrodes. The lower electrode 102 is formed on the substrate 101, and the upper electrode 104 from the portion where the lower electrode 102 is not formed on the substrate 101 is formed into a cantilever shape in FIG. ) Is formed in the shape of a doubly supported beam (membrane). Here, the upper electrode 104 is formed so that both of them are parallel to each other at a portion facing the lower electrode 102, and the upper electrode 104 is movable. In such a variable capacitor, the upper electrode 104 is connected to the lower electrode 102 side by electrostatic attraction generated between the upper electrode 104 and the lower electrode 102 by applying a voltage between the upper electrode 104 and the lower electrode 102. As a result, the distance between the upper electrode 104 and the lower electrode 102 changes and the capacitance changes.
JP 2000-208944 JP

しかしながら、図8に示す可変容量コンデンサでは、広面積の上部電極104を用いる場合には、下部電極102と対向する部位において可動となるような薄い上部電極104を広面積にわたり均一な厚みに形成することは困難であるため、上部電極104の厚みが不均一となることから上部電極104が上方向あるいは下方向に歪んだ形状となり、下部電極102と平行な形状とする事は難しかった。このため、上部電極104と下部電極102との間の距離に可変容量コンデンサ内でばらつきがあり、可変容量コンデンサの容量値が所望の容量値に対してばらつくという問題点があった。   However, in the variable capacitor shown in FIG. 8, when the upper electrode 104 having a large area is used, the thin upper electrode 104 that is movable in a portion facing the lower electrode 102 is formed to have a uniform thickness over a large area. Therefore, since the thickness of the upper electrode 104 is not uniform, the upper electrode 104 is distorted upward or downward, and it is difficult to make the shape parallel to the lower electrode 102. Therefore, there is a problem that the distance between the upper electrode 104 and the lower electrode 102 varies within the variable capacitor, and the capacitance value of the variable capacitor varies with respect to a desired capacitance value.

また、広面積の上部電極104を下部電極102側に変位させると、上部電極104の変位が上部電極104の面内においてばらつくため同じ電圧を印加しても異なる容量値となり、精度よく所望の容量値を得ることができないという問題点があった。   Also, if the upper electrode 104 having a large area is displaced toward the lower electrode 102, the displacement of the upper electrode 104 varies in the plane of the upper electrode 104, so that even if the same voltage is applied, different capacitance values are obtained, and the desired capacitance is accurately obtained. There was a problem that the value could not be obtained.

さらに、外部からの振動や電気的ノイズにより上部電極104が振動してしまい、可変容量コンデンサの容量値が安定しないという問題点があった。   Furthermore, there is a problem that the upper electrode 104 vibrates due to external vibration or electrical noise, and the capacitance value of the variable capacitor is not stable.

本発明は、以上のような従来の技術における問題点を解決すべく案出されたものであり、その目的は、静電駆動式の可変容量コンデンサにおいて、所望の容量値に対してばらつきが少なく、外部からの振動や電気的ノイズ等のある場合でも安定した容量値を実現できる可変容量コンデンサを提供することにある。   The present invention has been devised to solve the above-described problems in the prior art, and an object of the present invention is to reduce variation with respect to a desired capacitance value in an electrostatic drive type variable capacitor. Another object of the present invention is to provide a variable capacitor capable of realizing a stable capacitance value even in the presence of external vibration or electrical noise.

本発明の可変容量コンデンサは、基板上に広面積の下部電極が形成され、この下部電極に対向させて広面積の上部電極が配置されているとともに、前記下部電極と前記上部電極との間に、前記上部電極を複数の可動領域に分けてそれぞれを前記下部電極側に変位させるための絶縁性の支持部材が配置されていることを特徴とするものである。   In the variable capacitor according to the present invention, a lower electrode having a large area is formed on a substrate, an upper electrode having a large area is disposed so as to face the lower electrode, and between the lower electrode and the upper electrode. An insulating support member is arranged for dividing the upper electrode into a plurality of movable regions and displacing each of the upper electrode toward the lower electrode.

また、本発明の可変容量コンデンサは、上記構成において、前記上部電極の前記可動領域に孔が開いていることを特徴とするものである。   The variable capacitor of the present invention is characterized in that, in the above configuration, a hole is opened in the movable region of the upper electrode.

また、本発明の可変容量コンデンサは、上記構成において、前記可動領域の前記下部電極と前記上部電極との間に誘電体が配置されていることを特徴とするものである。   The variable capacitor according to the present invention is characterized in that, in the above configuration, a dielectric is disposed between the lower electrode and the upper electrode of the movable region.

本発明の可変容量コンデンサによれば、基板上に広面積の下部電極が形成され、この下部電極に対向させて広面積の上部電極が配置されているとともに、下部電極と上部電極との間に、上部電極を複数の可動領域に分けてそれぞれを下部電極側に変位させるための絶縁性の支持部材が配置されていることから、支持部材により電圧を印加しない状態での上部電極と下部電極との距離を一定に保つため、広面積の上部電極と広面積の下部電極とを全面にわたって平行に配置することができ、設計した容量値に対するばらつきを抑制することができる。また、上部電極を複数の可動領域に分けて、それぞれの可動領域を支持部材で支えていることから、各可動領域において上部電極を下部電極側にそれぞれ安定して変位させることができるため、広面積の上部電極を用いた場合においても、精度よく変位させて所望の容量値を得ることができる可変容量コンデンサとなる。さらに、上部電極を複数の可動領域に分けて、それぞれの可動領域を支持部材で支えていることから、外部の振動や電気的ノイズ等により広面積の上部電極が大きく振動するのに比べて、可動領域毎に上部電極が振動することを効果的に抑制することができるため、外部の振動や電気的ノイズ等に左右されない安定した容量値が得られる可変容量コンデンサとなる。   According to the variable capacitor of the present invention, the lower electrode having a large area is formed on the substrate, the upper electrode having the large area is disposed so as to face the lower electrode, and the lower electrode is interposed between the lower electrode and the upper electrode. Since the insulating support member for displacing the upper electrode into a plurality of movable regions and displacing each of the upper electrode to the lower electrode side is disposed, the upper electrode and the lower electrode in a state where no voltage is applied by the support member, Therefore, the upper electrode having a large area and the lower electrode having a large area can be arranged in parallel over the entire surface, and variations in the designed capacitance value can be suppressed. In addition, since the upper electrode is divided into a plurality of movable regions and each movable region is supported by a support member, the upper electrode can be stably displaced toward the lower electrode in each movable region. Even when the upper electrode of the area is used, a variable capacitor can be obtained that can be accurately displaced to obtain a desired capacitance value. Furthermore, since the upper electrode is divided into a plurality of movable regions and each movable region is supported by a support member, the upper electrode of a large area vibrates greatly due to external vibration or electrical noise. Since it is possible to effectively suppress the vibration of the upper electrode for each movable region, a variable capacitance capacitor can be obtained that can obtain a stable capacitance value that is not affected by external vibration, electrical noise, or the like.

また、本発明の可変容量コンデンサによれば、上部電極の可動領域に孔が開いているときには、その孔が通風孔として機能するので上部電極を動かすための空気抵抗が小さくなり、より高速な動作をすることができる可変容量コンデンサとなる。   Further, according to the variable capacitor of the present invention, when the hole is opened in the movable region of the upper electrode, the hole functions as a ventilation hole, so the air resistance for moving the upper electrode is reduced, and the operation is faster. It becomes a variable capacitor that can be used.

また、本発明の可変容量コンデンサによれば、可動領域の下部電極と上部電極との間に誘電体が配置されているときには、その誘電体は大気に比べ誘電率が高いため、より容量の大きい可変容量コンデンサとすることができる。   Further, according to the variable capacitor of the present invention, when a dielectric is disposed between the lower electrode and the upper electrode of the movable region, the dielectric has a higher dielectric constant than the atmosphere, and therefore has a larger capacitance. It can be a variable capacitor.

以下、本発明の可変容量コンデンサについて、図面を参照しつつ詳細に説明する。   Hereinafter, the variable capacitor of the present invention will be described in detail with reference to the drawings.

図1は本発明の可変容量コンデンサの実施の形態の一例を示す断面図である。   FIG. 1 is a cross-sectional view showing an example of an embodiment of a variable capacitor according to the present invention.

図1において、1は基板,2は下部電極,3は上部電極4を複数の可動領域に分けてそれぞれ下部電極2の側に変位させるための支持部材,4は上部電極である。   In FIG. 1, 1 is a substrate, 2 is a lower electrode, 3 is a support member for dividing the upper electrode 4 into a plurality of movable regions and displacing them to the lower electrode 2 side, and 4 is an upper electrode.

基板1は、その上に形成または配置される下部電極2,支持部材3および上部電極4を支持できる強度を有する絶縁性の材料からなる平板であれば特に限定されず、例えばシリコン,ガラス,石英,アルミナその他のセラミックス,樹脂等が用いられる。   The substrate 1 is not particularly limited as long as it is a flat plate made of an insulating material having a strength capable of supporting the lower electrode 2, the support member 3 and the upper electrode 4 formed or arranged on the substrate 1. For example, silicon, glass, quartz , Alumina and other ceramics, resins, etc. are used.

このような基板1上に広面積の下部電極2を形成する。下部電極2は、導電性のある材料であれば特に限定されず、例えば銅(Cu),金(Au),クロム(Cr),チタン(Ti),白金(Pt),アルミニウム(Al),銀(Ag),ニッケル(Ni)等の金属材料を用いて、スパッタリング法,蒸着法,CVD法,メッキ法,印刷法等の成膜方法により、単一の膜を成膜して形成してもよいし、異なる成分から成る複数の膜を積層して形成してもよい。   A lower electrode 2 having a large area is formed on such a substrate 1. The lower electrode 2 is not particularly limited as long as it is a conductive material. For example, copper (Cu), gold (Au), chromium (Cr), titanium (Ti), platinum (Pt), aluminum (Al), silver Even if a single film is formed using a metal material such as (Ag) or nickel (Ni) by a film formation method such as sputtering, vapor deposition, CVD, plating, or printing. Alternatively, a plurality of films made of different components may be stacked.

下部電極2上には、上部電極4との間に、上部電極4を複数の可動領域に区分するための支持部材3が配置されている。支持部材3は、絶縁性の材料であれば特に限定されず、例えば窒化ケイ素(Si),酸化ケイ素(SiO),樹脂等の材料を用いて、スパッタリング法,各種CVD法,印刷法,スピンコート法等の方法により成膜し、所望の形状に加工して形成すればよい。あるいはこれらの材料から成るシートを所望の形状に加工して下部電極2上に配置してもよい。 A support member 3 for dividing the upper electrode 4 into a plurality of movable regions is disposed on the lower electrode 2 between the upper electrode 4 and the upper electrode 4. The support member 3 is not particularly limited as long as it is an insulating material. For example, using a material such as silicon nitride (Si 3 N 4 ), silicon oxide (SiO 2 ), resin, etc., sputtering method, various CVD methods, printing The film may be formed by a method such as a method or a spin coating method and processed into a desired shape. Alternatively, a sheet made of these materials may be processed into a desired shape and disposed on the lower electrode 2.

次に、図2(a)〜(c)にそれぞれ支持部材3の形状および配置の例を示す透視状態の平面図を示す。ここで、図2(a)〜(c)において、支持部材3の形状および配置を分かりやすくするために、支持部材3を斜線を施して示している。   Next, FIGS. 2A to 2C are perspective views showing examples of the shape and arrangement of the support member 3, respectively. Here, in FIGS. 2A to 2C, the support member 3 is shown by hatching in order to facilitate understanding of the shape and arrangement of the support member 3.

上部電極4を複数の可動領域に分けるために、支部部材3の真上からみた形状を格子状(図2(a)の例)としたり、多数個の細長い長方形状の支持部材3を縦方向と横方向との二方向に間を開けて格子状の配置に並べたり(図2(b)の例)、多数個の円形状の支持部材3を規則的に並べたり(図2(c)の例)、これらの各形状・配置を組み合わせたりする。支持部材3の真上からみた形状は、格子状や、長方形状,多角形状,これらの角の鈍った形状,円形状,楕円形状等とすればよい。また、支持部材3を格子状とするときの格子の間隔や、複数の支持部材3を配置するときの隣り合う支持部材3の間隔は、狭すぎると上部電極4の変位が小さくなって容量変化率が小さくなり、広すぎると支持部材3により分けられた上部電極4の各可動領域を下部電極2側に安定して変位させることができなくなるため、両方を考慮して決定される。支持部材3の高さは、下部電極2と上部電極4とが接触せずに所望の容量値が得られ、かつ上部電極4を下部電極2側に変位させることができる静電引力を得られるように下部電極2および上部電極4間に印加する電圧の大きさに応じて決定される。また、高さ方向の断面形状は図1に示す長方形状のみに限定されず台形状や円形状等でもよい。   In order to divide the upper electrode 4 into a plurality of movable regions, the shape seen from directly above the support member 3 is a lattice shape (example in FIG. 2A), or a plurality of elongated rectangular support members 3 are arranged in the vertical direction. And arranged in a grid-like arrangement with a gap in two directions, ie, the horizontal direction (example in FIG. 2B), and a large number of circular support members 3 regularly arranged (FIG. 2C). Example), and combining these shapes and arrangements. The shape seen from directly above the support member 3 may be a lattice shape, a rectangular shape, a polygonal shape, a shape with dull corners, a circular shape, an elliptical shape, or the like. Further, if the interval between the lattices when the support member 3 is formed in a lattice shape or the interval between the adjacent support members 3 when arranging the plurality of support members 3 is too narrow, the displacement of the upper electrode 4 becomes small and the capacitance changes. If the rate is too small and too wide, each movable region of the upper electrode 4 divided by the support member 3 cannot be stably displaced toward the lower electrode 2 side. As for the height of the support member 3, a desired capacitance value can be obtained without the lower electrode 2 and the upper electrode 4 being in contact with each other, and an electrostatic attractive force capable of displacing the upper electrode 4 toward the lower electrode 2 can be obtained. Thus, it is determined according to the magnitude of the voltage applied between the lower electrode 2 and the upper electrode 4. Further, the cross-sectional shape in the height direction is not limited to the rectangular shape shown in FIG. 1, but may be a trapezoidal shape or a circular shape.

このように支持部材3により上部電極4を複数の可動領域に分けて支持することにより、電圧を印加しない状態での上部電極4と下部電極2との距離を一定に保ち、上部電極4と下部電極2とを平行に配置することができるため、設計した容量値に対するばらつきを抑制することができる。   Thus, by supporting the upper electrode 4 in a plurality of movable regions by the support member 3, the distance between the upper electrode 4 and the lower electrode 2 in a state where no voltage is applied is kept constant, and the upper electrode 4 and the lower electrode 2 are kept constant. Since the electrode 2 can be arranged in parallel, variation with respect to the designed capacitance value can be suppressed.

また、支持部材3により上部電極4を複数の可動領域に分けて支持することにより、各可動領域において上部電極4を下部電極2側へそれぞれ安定して変位させることができるため、広面積の下部電極2および広面積の上部電極4を用いた場合においても、精度よく所望の変化率で変化する容量値を得ることができる。また、広面積の下部電極2および広面積の上部電極4を用いることができるので、大容量の可変容量コンデンサを得ることができる。   Further, since the upper electrode 4 is divided into a plurality of movable regions and supported by the support member 3, the upper electrode 4 can be stably displaced toward the lower electrode 2 in each movable region. Even when the electrode 2 and the upper electrode 4 having a large area are used, it is possible to obtain a capacitance value that changes with a desired change rate with high accuracy. Further, since the lower electrode 2 having a large area and the upper electrode 4 having a large area can be used, a large-capacity variable capacitor can be obtained.

上部電極4は、支持部材3と接して、下部電極2と平行となるように配置される。上部電極4は、導電性のある材料であれば特に限定されず、例えばCu,Au,Cr,Ti,Pt,Al,Ag,Ni等の金属材料を用いて、スパッタリング法,蒸着法,各種CVD法,メッキ法,印刷法等の成膜方法により、単一膜を成膜して形成してもよいし、異なる成分から成る複数の膜を積層して形成してもよい。また、これら金属材料から成るシートを用いて支持部材3上に配置してもよい。   The upper electrode 4 is disposed in contact with the support member 3 and in parallel with the lower electrode 2. The upper electrode 4 is not particularly limited as long as it is a conductive material. For example, a metal material such as Cu, Au, Cr, Ti, Pt, Al, Ag, or Ni is used to form a sputtering method, a vapor deposition method, or various CVD methods. A single film may be formed by a film forming method such as a method, a plating method, or a printing method, or a plurality of films made of different components may be stacked. Moreover, you may arrange | position on the supporting member 3 using the sheet | seat which consists of these metal materials.

ここで、図3に示すように、上部電極4の可動領域に孔5を形成してもよい。図3(a)〜(c)はそれぞれ本発明の可変容量コンデンサの実施の形態の他の例を示す断面図であり、図3(d),(e)はそれぞれ透視状態の平面図である。ここで図3(d),(e)において、支持部材3の形状および配置を分かりやすくするために、支持部材3を斜線を施して示している。   Here, as shown in FIG. 3, a hole 5 may be formed in the movable region of the upper electrode 4. FIGS. 3A to 3C are cross-sectional views showing other examples of the embodiment of the variable capacitor according to the present invention, and FIGS. 3D and 3E are plan views in a see-through state, respectively. . Here, in FIGS. 3D and 3E, the support member 3 is shown by hatching in order to make the shape and arrangement of the support member 3 easy to understand.

孔5は上部電極4の各可動領域に1箇所以上形成することができ、例えば図3(a)に示すように各可動領域の中央部に形成したり、図3(b)に示すように各可動領域の中央部以外に形成したり、図3(c)に示すように可動領域によっては複数個形成するようにしてもよい。   One or more holes 5 can be formed in each movable region of the upper electrode 4. For example, the hole 5 can be formed in the center of each movable region as shown in FIG. 3A or as shown in FIG. Alternatively, a plurality of movable regions may be formed depending on the movable region as shown in FIG. 3C.

また孔5の真上からみた形状は任意の形状とすることができ、例えば図3(d)に示すような四角形状,図3(e)に示すような円形状等とすることができる。   Moreover, the shape seen from right above the hole 5 can be an arbitrary shape, for example, a square shape as shown in FIG. 3D, a circular shape as shown in FIG.

孔5は、上部電極4に電圧を印加しない状態において可動領域の上部電極4が下部電極2と平行に維持できる大きさとなるように、個々の可動領域の大きさに合わせて形成する。なお、孔5は全ての可動領域に設ける必要はなく、可変容量コンデンサの特性や仕様に応じて選択的に形成してもよい。   The hole 5 is formed in accordance with the size of each movable region so that the upper electrode 4 in the movable region can be maintained in parallel with the lower electrode 2 in a state where no voltage is applied to the upper electrode 4. The holes 5 do not have to be provided in all the movable regions, and may be selectively formed according to the characteristics and specifications of the variable capacitor.

このような孔5を上部電極4の可動領域に形成することにより、この孔5が通風孔として機能して上部電極4を高速で変位させる際の空気抵抗が小さくなるため、高速な動作が可能な可変容量コンデンサとすることができる。   By forming such a hole 5 in the movable region of the upper electrode 4, this hole 5 functions as a ventilation hole, and the air resistance when the upper electrode 4 is displaced at a high speed is reduced, so that high speed operation is possible. Variable capacitor.

また、図4に示すように、下部電極2と上部電極4との間に、この例では下部電極2の上に誘電体6を形成して配置してもよい。図4(a)〜(c)はそれぞれ本発明の可変容量コンデンサの実施の形態のさらに他の例を示す断面図である。   In addition, as shown in FIG. 4, a dielectric 6 may be formed between the lower electrode 2 and the upper electrode 4 and formed on the lower electrode 2 in this example. 4A to 4C are cross-sectional views showing still other examples of embodiments of the variable capacitor according to the present invention.

誘電体6には、窒化ケイ素,酸化ケイ素,樹脂,酸化タリウム(TaO),酸化亜鉛(ZnO),チタン酸バリウム(BaTiO),チタン酸ストロンチウム(SrTiO),チタン酸ストロンチウムバリウム((Ba,Sr)TiO)等を用いる。誘電体6は、図4(a)に示すように上部電極4の各可動領域と対向するように下部電極2上の支持部材3非形成部のみに形成してもよいし、図4(b)に示すように支持部材3の形成部を含む下部電極2の上に形成してもよいし、図4(c)に示すように、下部電極2上のほぼ全面に形成してもよい。ここで図4(b)および(c)のように、支持部材3の形成部にも誘電体6を形成する場合には、下部電極2上に誘電体6を形成し、誘電体6の上に支持部材3を形成すればよい。また、誘電体6と支持部材3とを同一材料,同一工程で形成してもよい。 The dielectric 6 includes silicon nitride, silicon oxide, resin, thallium oxide (TaO), zinc oxide (ZnO), barium titanate (BaTiO 3 ), strontium titanate (SrTiO 3 ), strontium barium titanate ((Ba, Sr) TiO 3 ) or the like is used. As shown in FIG. 4A, the dielectric 6 may be formed only in the portion where the support member 3 is not formed on the lower electrode 2 so as to face each movable region of the upper electrode 4, or as shown in FIG. ) May be formed on the lower electrode 2 including the forming portion of the support member 3 or may be formed on almost the entire surface of the lower electrode 2 as shown in FIG. Here, as shown in FIGS. 4B and 4C, when the dielectric 6 is formed also in the forming portion of the support member 3, the dielectric 6 is formed on the lower electrode 2, What is necessary is just to form the supporting member 3 in this. Further, the dielectric 6 and the support member 3 may be formed by the same material and in the same process.

誘電体6の厚みは、所望の容量値を得るために上部電極4の可動領域が下部電極2側に変位できるように、上部電極4と下部電極2との距離に合わせて設定する。   The thickness of the dielectric 6 is set according to the distance between the upper electrode 4 and the lower electrode 2 so that the movable region of the upper electrode 4 can be displaced toward the lower electrode 2 in order to obtain a desired capacitance value.

このような誘電体6を可動領域の下部電極2と上部電極4との間に配置することより、誘電体6は大気に比べ誘電率が高いため、より容量の大きい可変容量コンデンサとすることができる。   By disposing such a dielectric 6 between the lower electrode 2 and the upper electrode 4 in the movable region, the dielectric 6 has a higher dielectric constant than that of the atmosphere, so that a variable capacitance capacitor having a larger capacity can be obtained. it can.

以上のようにして作製した本発明の可変容量コンデンサの各例によれば、いずれも上部電極4と下部電極2との間に電圧を印加して、静電引力により上部電極4の各可動領域を下部電極2側に変位させることにより、安定して精度よく所望の容量値に変化させることができる。   According to each example of the variable capacitor of the present invention manufactured as described above, each movable region of the upper electrode 4 is applied with electrostatic attraction by applying a voltage between the upper electrode 4 and the lower electrode 2. Can be changed to the desired capacitance value stably and accurately.

次に、本発明の可変容量コンデンサの作製方法の例について図面を参照しつつ説明する。   Next, an example of a method for manufacturing a variable capacitor according to the present invention will be described with reference to the drawings.

図5(a)〜(e)はそれぞれ図1に示す本発明の可変容量コンデンサの作製方法の例の各工程を示す断面図である。   5 (a) to 5 (e) are cross-sectional views showing respective steps of the example of the method for manufacturing the variable capacitor of the present invention shown in FIG.

まず、図5(a)に示すように、基板1上に下部電極2を形成する材料を成膜し、通常のフォトリソグラフィプロセスおよびエッチングプロセスにより、所望のパターンに加工して下部電極2を形成する。   First, as shown in FIG. 5A, a material for forming the lower electrode 2 is formed on the substrate 1, and processed into a desired pattern by a normal photolithography process and etching process to form the lower electrode 2. To do.

次に、図5(b)に示すように、例えばPE−CVD(Plasma Enhanced Chemical Vapor Deposition)法によりシリコンからなる犠牲層7を下部電極2の上に、電圧を印加しない状態での上部電極4と下部電極2との距離と同じ厚みとなるように形成し、通常のフォトリソグラフィプロセスおよびエッチングプロセスにより、支持部材3を配置する部位の犠牲層7を除去して犠牲層7の非形成部を設ける。   Next, as shown in FIG. 5B, the sacrificial layer 7 made of silicon, for example, by PE-CVD (Plasma Enhanced Chemical Vapor Deposition) is applied on the lower electrode 2 and the upper electrode 4 in a state where no voltage is applied. The sacrificial layer 7 is formed so as to have the same thickness as the distance between the lower electrode 2 and the sacrificial layer 7 where the support member 3 is to be disposed is removed by a normal photolithography process and etching process. Provide.

次に、図5(c)に示すように、下部電極2上の犠牲層7の非形成部に支持部材3を形成する。例えば、PE−CVD法にて支持部材3を形成する材料を犠牲層7の非形成部を埋めるように成膜し、犠牲層7の上に形成された部位および犠牲層7の厚みを超えて形成された部位を通常のフォトリソグラフィプロセスおよびエッチングプロセスを用いて除去して、下部電極2上の犠牲層7の非形成部に支持部材3を形成すればよい。   Next, as shown in FIG. 5C, the support member 3 is formed on the portion where the sacrificial layer 7 is not formed on the lower electrode 2. For example, a material for forming the support member 3 is formed by PE-CVD so as to fill a portion where the sacrificial layer 7 is not formed, and exceeds the portion formed on the sacrificial layer 7 and the thickness of the sacrificial layer 7. The formed part may be removed using a normal photolithography process and an etching process, and the support member 3 may be formed in a portion where the sacrificial layer 7 is not formed on the lower electrode 2.

次に、図5(d)に示すように、犠牲層7および支持部材3を覆うように、上部電極4を形成する材料をスパッタリング法等により成膜し、通常のフォトリソグラフィプロセスおよびエッチングプロセスを用い、所望のパターンに加工して上部電極4を形成する。   Next, as shown in FIG. 5D, a material for forming the upper electrode 4 is formed by sputtering or the like so as to cover the sacrificial layer 7 and the support member 3, and a normal photolithography process and etching process are performed. The upper electrode 4 is formed by processing into a desired pattern.

従来の静電駆動式の可変容量コンデンサは、上部電極の厚みが不均一なため、静電引力による上部電極の下部電極側へ引き寄せられる力の働き方が上部電極の面内で不均一となり、動作が安定しないという問題点があった。しかしながら、上部電極4を犠牲層7および支持部材3上に成膜して形成することにより、広面積にわたり均一な厚みの上部電極4を得ることができる。このため、本発明の可変容量コンデンサの動作を安定したものとすることができる。   In conventional electrostatic drive type variable capacitors, the thickness of the upper electrode is non-uniform, so the way the force attracted to the lower electrode side of the upper electrode due to electrostatic attraction becomes non-uniform in the plane of the upper electrode, There was a problem that the operation was not stable. However, by forming the upper electrode 4 on the sacrificial layer 7 and the support member 3, the upper electrode 4 having a uniform thickness over a wide area can be obtained. For this reason, the operation of the variable capacitor of the present invention can be stabilized.

最後に、図5(e)に示すように、犠牲層7を選択的にエッチング除去して、本発明の可変容量コンデンサを得る。例えば、シリコンからなる犠牲層7を選択的にエッチング除去するにはXeFガスを用いてドライエッチングすればよい。 Finally, as shown in FIG. 5E, the sacrificial layer 7 is selectively removed by etching to obtain the variable capacitor of the present invention. For example, in order to selectively remove the sacrifice layer 7 made of silicon by etching, dry etching may be performed using XeF 2 gas.

なお、本発明の可変容量コンデンサは上述の実施の形態の例に限定されるものではなく、本発明の要旨を逸脱しない範囲で種々の変更・改良を加えることができる。   Note that the variable capacitor of the present invention is not limited to the above-described embodiment, and various modifications and improvements can be made without departing from the gist of the present invention.

次に、本発明の第1の実施例を、図5に示す各工程により作製した図1(a)および図2(a)に示す可変容量コンデンサにより説明する。   Next, a first embodiment of the present invention will be described with reference to a variable capacitor shown in FIGS. 1A and 2A manufactured by each step shown in FIG.

まず、図5(a)に示すように、ガラスからなる基板1上に、下部電極2を形成する材料としてCrおよびAuをスパッタリング法によりCr/Auの層構造(各層の厚み:0.01μm/0.1μm)にて形成した。ここで上記電極材料は下層/上層の順に表している(以下も同様である)。次に、通常のフォトリソグラフィプロセスにより、この層を所望のパターンに加工して下部電極2を形成した。   First, as shown in FIG. 5A, a Cr / Au layer structure (thickness of each layer: 0.01 μm / 0.1) is formed by sputtering Cr and Au as materials for forming the lower electrode 2 on a substrate 1 made of glass. μm). Here, the electrode materials are represented in the order of lower layer / upper layer (the same applies to the following). Next, this layer was processed into a desired pattern by a normal photolithography process to form the lower electrode 2.

次に、図5(b)に示すように、PE−CVD法によりシリコンからなる犠牲層7を3.0μmの厚みに成膜し、通常のエッチングプロセスにより支持部材3を配置する部位の犠牲層7を除去して犠牲層7の非形成部を設けた。   Next, as shown in FIG. 5B, a sacrificial layer 7 made of silicon is formed to a thickness of 3.0 μm by PE-CVD, and the sacrificial layer 7 at a position where the support member 3 is disposed by a normal etching process. The sacrificial layer 7 was not formed.

次に、図5(c)に示すように、PE−CVD法にてSiOを犠牲層7の非形成部を埋めるように、3.0μmの厚みに成膜し、犠牲層7の上に形成された部位および犠牲層7の厚みを超えて形成された部位を通常のフォトリソグラフィプロセスにより除去し、下部電極2上の犠牲層7の非形成部にSiOから成る支持部材3を形成した。 Next, as shown in FIG. 5C, SiO 2 is formed to a thickness of 3.0 μm by PE-CVD so as to fill the non-formation portion of the sacrificial layer 7 and formed on the sacrificial layer 7. The formed part and the part formed exceeding the thickness of the sacrificial layer 7 were removed by a normal photolithography process, and the support member 3 made of SiO 2 was formed on the non-formed part of the sacrificial layer 7 on the lower electrode 2.

次に、図5(d)に示すように、犠牲層7および支持部材3を覆うように、上部電極4の形成材料としてCrおよびAuをスパッタリング法によりCr/Auの層構造(各層の厚み:0.01μm/0.1μm)にて形成し、通常のフォトリソグラフィプロセスを用いて所望のパターンに加工して上部電極4を形成した。   Next, as shown in FIG. 5D, a Cr / Au layer structure (thickness of each layer: thickness) is formed by sputtering Cr and Au as materials for forming the upper electrode 4 so as to cover the sacrificial layer 7 and the support member 3. 0.01 μm / 0.1 μm) and processed into a desired pattern using a normal photolithography process to form the upper electrode 4.

次に、図5(e)に示すように、犠牲層7をXeF2ガスにより選択的にエッチング除去して可変容量コンデンサを得た。   Next, as shown in FIG. 5E, the sacrificial layer 7 was selectively removed by etching with XeF2 gas to obtain a variable capacitor.

この第1の実施例の可変容量コンデンサを複数個作製し、上部電極4および下部電極2に印加する電圧の値を変化させて容量値を測定した結果、各可変容量コンデンサの設計した容量値に対する測定結果のばらつきは約0.5%であった。   A plurality of variable capacitors according to the first embodiment were manufactured, and the capacitance values were measured by changing the values of the voltages applied to the upper electrode 4 and the lower electrode 2, and as a result, the capacitance values for the designed capacitance values of the respective variable capacitors were measured. The variation in measurement results was about 0.5%.

また、第1の実施例の可変容量コンデンサについて、第1の実施例の可変容量コンデンサの共振周波数と同じ周波数で振動する振動環境で容量値を測定したところ、振動していない場合の容量値と比べた振動環境における容量変化は約0.5%であった。   Further, when the capacitance value of the variable capacitor of the first embodiment was measured in a vibration environment that vibrates at the same frequency as the resonance frequency of the variable capacitor of the first embodiment, The capacity change in the vibration environment was about 0.5%.

さらに、第1の実施例の可変容量コンデンサを電源ラインおよび高周波信号線が配線されている実装基板に実装して、電源ラインおよび高周波信号線からの電気的ノイズのある環境で容量値を測定したところ、電気的ノイズがない場合の容量値に比べた電気的ノイズのある環境における容量変化は約0.1%であった。   Further, the variable capacitance capacitor of the first embodiment was mounted on a mounting board on which the power supply line and the high-frequency signal line were wired, and the capacitance value was measured in an environment with electrical noise from the power supply line and the high-frequency signal line. However, the change in capacitance in an environment with electrical noise compared with the capacitance value without electrical noise was about 0.1%.

次に本発明の第2の実施例について、図3(a),(d)に示す可変容量コンデンサにより説明する。図6(a)〜(f)はそれぞれ本発明の図3(a),(d)に示す可変容量コンデンサの作製方法の各工程を示す断面図である。   Next, a second embodiment of the present invention will be described with reference to variable capacitors shown in FIGS. 3 (a) and 3 (d). 6 (a) to 6 (f) are cross-sectional views showing respective steps of the variable capacitor manufacturing method shown in FIGS. 3 (a) and 3 (d) of the present invention.

第1の実施例と同様に、図6(a)〜(d)に示すように、基板1上に下部電極2,犠牲層7,支持部材3を形成し、犠牲層7および支持部材3を覆うように上部電極4を形成した。   As in the first embodiment, as shown in FIGS. 6A to 6D, the lower electrode 2, the sacrificial layer 7, and the support member 3 are formed on the substrate 1, and the sacrificial layer 7 and the support member 3 are formed. The upper electrode 4 was formed so as to cover it.

次に、図6(e)に示すように、通常のフォトリソグラフィにより上部電極4の各可動領域の中央において上部電極4の一部を除去して、孔5を形成した。   Next, as shown in FIG. 6E, a part of the upper electrode 4 was removed at the center of each movable region of the upper electrode 4 by ordinary photolithography to form a hole 5.

次に、第1の実施例と同様に、図6(f)に示すように犠牲層7を除去して可変容量コンデンサを得た。   Next, as in the first example, the sacrificial layer 7 was removed as shown in FIG. 6F to obtain a variable capacitor.

この第2の実施例の可変容量コンデンサを複数個作製し、上部電極4および下部電極2に印加する電圧の値を変化させて容量値を測定した結果、各可変容量コンデンサの設計した容量値に対する測定結果のばらつきは約0.5%であった。   A plurality of variable capacitors of the second embodiment were produced, and the capacitance values were measured by changing the values of the voltages applied to the upper electrode 4 and the lower electrode 2. As a result, the capacitance values of the respective variable capacitors were designed. The variation in measurement results was about 0.5%.

また、第2の実施例の可変容量コンデンサについて、第2の実施例の可変容量コンデンサの共振周波数と同じ周波数で振動する振動環境で容量値を測定したところ、振動していない場合の容量値と比べた振動環境における容量変化は約0.5%であった。   Further, when the capacitance value of the variable capacitor of the second embodiment was measured in a vibration environment that vibrates at the same frequency as the resonance frequency of the variable capacitor of the second embodiment, The capacity change in the vibration environment was about 0.5%.

さらに、第2の実施例の可変容量コンデンサを電源ラインおよび高周波信号線が配線されている実装基板に実装して、電源ラインおよび高周波信号線からの電気的ノイズのある環境で容量値を測定したところ、電気的ノイズがない場合の容量値に比べた電気的ノイズのある環境における容量変化は約0.1%であった。   Furthermore, the variable capacitance capacitor of the second embodiment was mounted on a mounting substrate on which the power supply line and the high-frequency signal line were wired, and the capacitance value was measured in an environment where there was an electrical noise from the power supply line and the high-frequency signal line. However, the change in capacitance in an environment with electrical noise compared with the capacitance value without electrical noise was about 0.1%.

さらに、第1の実施例に比べ、第2の実施例の可変容量コンデンサの応答速度が速くなっていた。   Further, the response speed of the variable capacitor of the second embodiment is faster than that of the first embodiment.

次に、本発明の第3の実施例について、図4(a)に示す可変容量コンデンサにより説明する。図7(a)〜(f)はそれぞれ本発明の図4に示す可変容量コンデンサの作製方法の各工程を示す断面図である。なお、支持部材3の真上からみた形状は図2(a)と同様の形状とした。   Next, a third embodiment of the present invention will be described with reference to a variable capacitor shown in FIG. 7A to 7F are cross-sectional views showing respective steps of the method for manufacturing the variable capacitor shown in FIG. 4 of the present invention. The shape seen from directly above the support member 3 was the same as that shown in FIG.

第1の実施例と同様に、図7(a)に示すように、基板1上に下部電極2を形成した。   Similar to the first embodiment, a lower electrode 2 was formed on a substrate 1 as shown in FIG.

次に、図7(b)に示すように、下部電極2の上にスパッタリング法により、ZnOからなる膜を2.0μmの厚みに成膜し、通常のフォトリソグラフィプロセスにより、成膜したZnO膜を所望のパターンに加工して、ZnOから成る誘電体6を形成した。   Next, as shown in FIG. 7B, a ZnO film having a thickness of 2.0 μm is formed on the lower electrode 2 by a sputtering method, and the formed ZnO film is formed by a normal photolithography process. A dielectric 6 made of ZnO was formed by processing into a desired pattern.

次に、第1の実施例と同様に、図6(c)〜(f)に示すように、誘電体6および下部電極2上に犠牲層7,支持部材3を形成し、犠牲層7および支持部材3を覆うように上部電極4を形成した後に、犠牲層7を除去して可変容量コンデンサを得た。   Next, as in the first embodiment, as shown in FIGS. 6C to 6F, a sacrificial layer 7 and a support member 3 are formed on the dielectric 6 and the lower electrode 2, and the sacrificial layer 7 and After the upper electrode 4 was formed so as to cover the support member 3, the sacrificial layer 7 was removed to obtain a variable capacitor.

この第3の実施例の可変容量コンデンサを複数個作製し、上部電極4および下部電極2に印加する電圧の値を変化させて容量値を測定した結果、各可変容量コンデンサの設計した容量値に対する測定結果のばらつきは約0.5%であった。   A plurality of variable capacitors of the third embodiment were produced, and the capacitance values were measured by changing the values of the voltages applied to the upper electrode 4 and the lower electrode 2. As a result, the capacitance values designed for each variable capacitor were measured. The variation in measurement results was about 0.5%.

また、第3の実施例の可変容量コンデンサについて、第3の実施例の可変容量コンデンサの共振周波数と同じ周波数で振動する振動環境で容量値を測定したところ、振動していない場合の容量値と比べた振動環境における容量変化は約0.5%であった。   Further, regarding the variable capacitor of the third example, when the capacitance value was measured in a vibration environment that vibrates at the same frequency as the resonance frequency of the variable capacitor of the third example, The capacity change in the vibration environment was about 0.5%.

さらに、第3の実施例の可変容量コンデンサを電源ラインおよび高周波信号線が配線されている実装基板に実装して、電源ラインおよび高周波信号線からの電気的ノイズのある環境で容量値を測定したところ、電気的ノイズがない場合の容量値に比べた電気的ノイズのある環境における容量変化は約0.1%であった。   Furthermore, the variable capacitance capacitor of the third embodiment was mounted on a mounting substrate on which the power supply line and the high-frequency signal line were wired, and the capacitance value was measured in an environment with electrical noise from the power supply line and the high-frequency signal line. However, the change in capacitance in an environment with electrical noise compared with the capacitance value without electrical noise was about 0.1%.

さらに、第1の実施例に比べ、第3の実施例の可変容量コンデンサは、容量の大きいものとなっていた。   Furthermore, the variable capacitance capacitor of the third embodiment has a larger capacity than that of the first embodiment.

次に、比較例として、第1の実施例と同様の材料、作製方法を用いて、基板1上に下部電極2を形成し、犠牲層7を下部電極2上の全面に形成し、下部電極2を囲う外枠状となるように基板1上に支持部材3を形成し、犠牲層7および支持部材3を覆うように上部電極4を形成した後、犠牲層7を除去して、下部電極2および上部電極4の対向部分に支持部材3のない可変容量コンデンサを作製した。   Next, as a comparative example, the lower electrode 2 is formed on the substrate 1 and the sacrificial layer 7 is formed on the entire surface of the lower electrode 2 by using the same material and manufacturing method as in the first embodiment. The support member 3 is formed on the substrate 1 so as to form an outer frame surrounding the substrate 2, the upper electrode 4 is formed so as to cover the sacrificial layer 7 and the support member 3, and then the sacrificial layer 7 is removed to form the lower electrode 2 and a variable capacitor without the support member 3 were prepared in the opposite part of the upper electrode 4.

ここで、上部電極4と下部電極2とが対向する面積および支持部材3の高さは実施例1〜3に示す可変容量コンデンサと一致するように設定した。   Here, the area where the upper electrode 4 and the lower electrode 2 face each other and the height of the support member 3 were set to coincide with those of the variable capacitors shown in Examples 1 to 3.

この比較例の可変容量コンデンサを複数個作製し、上部電極4および下部電極2に印加する電圧の値を変化させて容量値を測定した結果、各可変容量コンデンサの設計した容量値に対する測定結果のばらつきは約5%であった。   A plurality of variable capacitance capacitors of this comparative example were produced, and the capacitance values were measured by changing the values of the voltages applied to the upper electrode 4 and the lower electrode 2, and as a result of the measurement results for the designed capacitance values of each variable capacitor. The variation was about 5%.

また、比較例の可変容量コンデンサについて、比較例の可変容量コンデンサの共振周波数と同じ周波数で振動する振動環境で容量値を測定したところ、振動していない場合の容量値と比べた振動環境における容量変化は約20%であった。   Moreover, when the capacitance value of the variable capacitor of the comparative example was measured in a vibration environment that vibrates at the same frequency as the resonance frequency of the variable capacitor of the comparative example, the capacitance in the vibration environment compared to the capacitance value when not vibrating. The change was about 20%.

さらに、比較例の可変容量コンデンサを電源ラインおよび高周波信号線が配線されている実装基板に実装して、電源ラインおよび高周波信号線からの電気的ノイズのある環境で容量値を測定したところ、電気的ノイズがない場合の容量値に比べた電気的ノイズのある環境における容量変化は約5%であった。   Furthermore, when the variable capacitor of the comparative example was mounted on the mounting board on which the power line and the high-frequency signal line were wired, and the capacitance value was measured in an environment with electrical noise from the power line and the high-frequency signal line, The capacitance change in an environment with electrical noise was about 5% compared to the capacitance value in the absence of static noise.

以上の結果より、本発明の第1の実施例〜第3の実施例の可変容量コンデンサは比較例の可変容量コンデンサに比べ、設計した容量値に対するばらつきが抑制された可変容量コンデンサとなっていることが分かった。   From the above results, the variable capacitance capacitors according to the first to third embodiments of the present invention are variable capacitance capacitors in which variation with respect to the designed capacitance value is suppressed as compared with the variable capacitance capacitors of the comparative example. I understood that.

また、上部電極4を複数の可動領域に分けて、それぞれの可動領域を支持部材3で支持していることにより、各可動領域の上部電極4が安定して下部電極2側に変位するため、上部電極4および下部電極2に電圧を印加することにより、所望の容量値を精度よく変化させて得ることができた。   Moreover, since the upper electrode 4 is divided into a plurality of movable regions and each movable region is supported by the support member 3, the upper electrode 4 of each movable region is stably displaced to the lower electrode 2 side. By applying a voltage to the upper electrode 4 and the lower electrode 2, it was possible to obtain a desired capacitance value with high accuracy.

さらに、上部電極4を複数の可動領域に分けて、それぞれの可動領域を支持部材3で支持していることにより、外部の振動,電気的ノイズ等により可動領域の上部電極4が不要に振動することを抑制することができるため、外部の振動や電気的ノイズ等に左右されない安定した容量値が得られる可変容量コンデンサとなることが分かった。   Furthermore, the upper electrode 4 is divided into a plurality of movable regions, and each movable region is supported by the support member 3, so that the upper electrode 4 in the movable region is unnecessarily vibrated due to external vibration, electrical noise, or the like. Since this can be suppressed, it has been found that the variable capacitance capacitor can obtain a stable capacitance value that is not affected by external vibration, electrical noise, or the like.

また、本発明の第2の実施例の可変容量コンデンサによれば、上部電極4の可動領域に孔5が開いているため、第1の実施例の可変容量コンデンサに比べ高速な動作をすることができる可変容量コンデンサとなることが分かった。   Further, according to the variable capacitor of the second embodiment of the present invention, since the hole 5 is opened in the movable region of the upper electrode 4, it can operate at a higher speed than the variable capacitor of the first embodiment. It turns out that it becomes the variable capacitor which can be.

さらに、本発明の第3の実施例の可変容量コンデンサによれば、可動領域の下部電極2と上部電極4との間に誘電体6が配置されているため、第1の実施例の可変容量コンデンサに比べ、より大容量の可変容量コンデンサとなることが分かった。   Furthermore, according to the variable capacitor of the third embodiment of the present invention, since the dielectric 6 is disposed between the lower electrode 2 and the upper electrode 4 in the movable region, the variable capacitor of the first embodiment. It turns out that it becomes a larger capacity variable capacitor than the capacitor.

本発明の可変容量コンデンサの実施の形態の一例を示す断面図である。It is sectional drawing which shows an example of embodiment of the variable capacitor of this invention. (a)〜(c)はそれぞれ図1に示す可変容量コンデンサにおける支持部材の形状・配置の例を示す透視状態の平面図である。(A)-(c) is a top view of the see-through state which shows the example of the shape and arrangement | positioning of the supporting member in the variable capacitor shown in FIG. 1, respectively. (a)〜(c)はそれぞれ本発明の可変容量コンデンサの実施の形態の他の例を示す断面図であり、(d),(e)はそれぞれ透視状態の平面図である。(A)-(c) is sectional drawing which shows the other example of embodiment of the variable capacitor of this invention, respectively, (d), (e) is a top view of a see-through state, respectively. (a)〜(c)はそれぞれ本発明の可変容量コンデンサの実施の形態のさらに他の例を示す断面図である。(A)-(c) is sectional drawing which shows the further another example of embodiment of the variable capacitor of this invention, respectively. (a)〜(e)はそれぞれ本発明の可変容量コンデンサの作製方法の各工程を示す断面図である。(A)-(e) is sectional drawing which shows each process of the manufacturing method of the variable capacitor of this invention, respectively. (a)〜(f)はそれぞれ本発明の可変容量コンデンサの作製方法の各工程を示す断面図である。(A)-(f) is sectional drawing which shows each process of the manufacturing method of the variable capacitor of this invention, respectively. (a)〜(f)はそれぞれ本発明の可変容量コンデンサの作製方法の各工程を示す断面図である。(A)-(f) is sectional drawing which shows each process of the manufacturing method of the variable capacitor of this invention, respectively. (a),(b)はそれぞれ従来の可変容量コンデンサの例を示す断面図である。(A), (b) is sectional drawing which shows the example of the conventional variable capacitor, respectively.

符号の説明Explanation of symbols

1:基板
2:下部電極
3:支持部材
4:上部電極
5:孔
6:誘電体
7:犠牲層
1: Substrate 2: Lower electrode 3: Support member 4: Upper electrode 5: Hole 6: Dielectric 7: Sacrificial layer

Claims (3)

基板上に広面積の下部電極が形成され、該下部電極に対向させて広面積の上部電極が配置されているとともに、前記下部電極と前記上部電極との間に、前記上部電極を複数の可動領域に分けてそれぞれを前記下部電極側に変位させるための絶縁性の支持部材が配置されていることを特徴とする可変容量コンデンサ。 A lower electrode having a large area is formed on the substrate, an upper electrode having a large area is disposed to face the lower electrode, and the upper electrode is moved between the lower electrode and the upper electrode. An insulating support member is arranged to divide each region into the lower electrode side, and a variable capacitance capacitor. 前記上部電極の前記可動領域に孔が開いていることを特徴とする請求項1記載の可変容量コンデンサ。 The variable capacitor according to claim 1, wherein a hole is opened in the movable region of the upper electrode. 前記可動領域の前記下部電極と前記上部電極との間に誘電体が配置されていることを特徴とする請求項1記載の可変容量コンデンサ。 The variable capacitor according to claim 1, wherein a dielectric is disposed between the lower electrode and the upper electrode in the movable region.
JP2004158440A 2004-05-27 2004-05-27 Variable capacitor Pending JP2005340536A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004158440A JP2005340536A (en) 2004-05-27 2004-05-27 Variable capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004158440A JP2005340536A (en) 2004-05-27 2004-05-27 Variable capacitor

Publications (1)

Publication Number Publication Date
JP2005340536A true JP2005340536A (en) 2005-12-08

Family

ID=35493749

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004158440A Pending JP2005340536A (en) 2004-05-27 2004-05-27 Variable capacitor

Country Status (1)

Country Link
JP (1) JP2005340536A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007273932A (en) * 2006-03-06 2007-10-18 Fujitsu Ltd Variable capacitor and manufacturing method of variable capacitor
WO2010137447A1 (en) * 2009-05-29 2010-12-02 株式会社村田製作所 Variable capacity element
US8218285B2 (en) 2009-04-06 2012-07-10 Fujitsu Limited Variable capacitance element

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04250611A (en) * 1990-06-07 1992-09-07 General Electric Co <Ge> Piezoelectric-operating type variable capacitor
JPH0821967A (en) * 1993-07-27 1996-01-23 Texas Instr Inc <Ti> Microminiaturized monolithic variable electric device and apparatus including device thereof
JPH08213803A (en) * 1994-10-31 1996-08-20 Texas Instr Inc <Ti> Phase shifter containing switch for high-frequency signal
JP2003297671A (en) * 2002-03-22 2003-10-17 Agilent Technol Inc Micromachined parallel plate variable capacitor having plate suspension structure
JP2004006588A (en) * 2002-03-25 2004-01-08 Fujitsu Media Device Kk Variable capacitor and method of fabricating the same
JP2004503313A (en) * 2000-06-15 2004-02-05 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Capacitive micromachined ultrasonic transducer
JP2004074341A (en) * 2002-08-15 2004-03-11 Murata Mfg Co Ltd Semiconductor device
JP2004130509A (en) * 2002-09-24 2004-04-30 Eastman Kodak Co Continuously variable displaceable micro-electromechanical device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04250611A (en) * 1990-06-07 1992-09-07 General Electric Co <Ge> Piezoelectric-operating type variable capacitor
JPH0821967A (en) * 1993-07-27 1996-01-23 Texas Instr Inc <Ti> Microminiaturized monolithic variable electric device and apparatus including device thereof
JPH08213803A (en) * 1994-10-31 1996-08-20 Texas Instr Inc <Ti> Phase shifter containing switch for high-frequency signal
JP2004503313A (en) * 2000-06-15 2004-02-05 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Capacitive micromachined ultrasonic transducer
JP2003297671A (en) * 2002-03-22 2003-10-17 Agilent Technol Inc Micromachined parallel plate variable capacitor having plate suspension structure
JP2004006588A (en) * 2002-03-25 2004-01-08 Fujitsu Media Device Kk Variable capacitor and method of fabricating the same
JP2004074341A (en) * 2002-08-15 2004-03-11 Murata Mfg Co Ltd Semiconductor device
JP2004130509A (en) * 2002-09-24 2004-04-30 Eastman Kodak Co Continuously variable displaceable micro-electromechanical device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007273932A (en) * 2006-03-06 2007-10-18 Fujitsu Ltd Variable capacitor and manufacturing method of variable capacitor
US8218285B2 (en) 2009-04-06 2012-07-10 Fujitsu Limited Variable capacitance element
WO2010137447A1 (en) * 2009-05-29 2010-12-02 株式会社村田製作所 Variable capacity element

Similar Documents

Publication Publication Date Title
US7215061B2 (en) Micromechanical electrostatic resonator
TWI224878B (en) Piezoelectric actuator for tunable electronic components
KR101561662B1 (en) Piezoelectric micro speaker with curved lead-lines and method of manufacturing the same
JP2005260208A (en) Thin film piezoelectric actuator
US20070052324A1 (en) Surface acoustic wave device and method for fabricating the same
KR100542557B1 (en) Film resonator and Method making film resonator Filter having film resonator
CN110636421A (en) MEMS structure and manufacturing method thereof
CN108964628A (en) Bulk acoustic wave resonator
JP2007521612A (en) Microelectromechanical device and module, and manufacturing method thereof
US9767966B2 (en) Electric equipment having movable portion, and its manufacture
JP2006165380A (en) Variable capacitor
US20230013976A1 (en) Movable piezo element and method for producing a movable piezo element
US20230019457A1 (en) Piezoelectric element and method for producing a piezoelectric element
JP2005340536A (en) Variable capacitor
JP4576898B2 (en) Micromechanical electrostatic vibrator
US20110221536A1 (en) Mems device and oscillator
JP2011023468A (en) Varactor
JP2018058150A (en) Mems element and manufacturing method thereof
KR101703379B1 (en) Mems device having a membrane and method of manufacturing
EP2100176B1 (en) Substrates with slotted metals and related methods
JP2011243837A (en) High breakdown voltage wiring, wiring design device and method
JP5227566B2 (en) Actuator
US6600644B1 (en) Microelectronic tunable capacitor and method for fabrication
JP5812096B2 (en) MEMS switch
JP4359923B2 (en) Manufacturing method of electromechanical switch

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100819

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110311

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110809