JP2005340285A - Pattern forming method to optical fiber side - Google Patents

Pattern forming method to optical fiber side Download PDF

Info

Publication number
JP2005340285A
JP2005340285A JP2004153586A JP2004153586A JP2005340285A JP 2005340285 A JP2005340285 A JP 2005340285A JP 2004153586 A JP2004153586 A JP 2004153586A JP 2004153586 A JP2004153586 A JP 2004153586A JP 2005340285 A JP2005340285 A JP 2005340285A
Authority
JP
Japan
Prior art keywords
optical fiber
resin
optical
pattern
optical fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004153586A
Other languages
Japanese (ja)
Other versions
JP4683859B2 (en
Inventor
Junichi Iwai
淳一 岩井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinko Electric Industries Co Ltd
Original Assignee
Shinko Electric Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinko Electric Industries Co Ltd filed Critical Shinko Electric Industries Co Ltd
Priority to JP2004153586A priority Critical patent/JP4683859B2/en
Publication of JP2005340285A publication Critical patent/JP2005340285A/en
Application granted granted Critical
Publication of JP4683859B2 publication Critical patent/JP4683859B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Optical Couplings Of Light Guides (AREA)
  • Semiconductor Lasers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a concrete and easy pattern forming method for forming a wiring pattern extended to the axial direction of an optical fiber at the outer peripheral face of the optical fiber. <P>SOLUTION: The method is composed of a process for arranging a plurality of optical fibers (1) so that sides of them are brought into contact with one another in a longitudinal direction, a process for applying a plating mask material and resin (3) to outer peripheral faces of the plurality of the optical fiber in such a state, a process for cutting resin at every fiber and separating them at every optical fiber after resin is cured, a process for forming the pattern of a conductive film on the optical fibers by electroless plating or the like, and a process for removing resin. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、光ファイバの側面に配線パターンを形成する方法に関する。この方法により形成した配線パターンは、面発光のレーザ素子やフォトダイオード等の発光用あるいは発光用の光素子と光ファイバとを組み合わせて構成した光素子モジュール装置等において、光素子と回路部品との間を光ファイバ自体を経由して電気的に接続する場合に好適に用いることができる。   The present invention relates to a method for forming a wiring pattern on a side surface of an optical fiber. The wiring pattern formed by this method is used in an optical element module device configured by combining a light emitting element such as a surface emitting laser element or a photodiode, or a light emitting optical element and an optical fiber, and the like. It can be suitably used when the space is electrically connected via the optical fiber itself.

従来、面発光のレーザ素子あるいはフォトダイオードのような発光用あるいは受光用の光素子を用いた光素子モジュールには、光素子の発光面あるいは受光面に端面を対向させるように光ファイバを配置し、光素子と光ファイバとの間で投受光するようにした製品がある(特許文献1参照)。     Conventionally, in an optical element module using a light emitting or receiving optical element such as a surface emitting laser element or a photodiode, an optical fiber is disposed so that the end face faces the light emitting surface or the light receiving surface of the optical element. There is a product that projects and receives light between an optical element and an optical fiber (see Patent Document 1).

特開平8−220383号公報JP-A-8-220383

上述した面発光のレーザ素子あるいはフォトダイオード等のような光素子と光ファイバとを組み合わせた従来の光素子モジュールでは、光素子と光ファイバとの間に光学レンズを配置せずに投受光させる配置とすることが可能であり、その場合には、光素子と光ファイバの端面をできるだけ接近させて配置するようにする。
しかしながら、従来の光素子モジュールでは、光素子と外部回路との電気的接続をワイヤボンディングによって行っているから、ボンディングワイヤと干渉しないように光ファイバを配置する必要があり、光素子の素子形成面と光ファイバの端面とは離間させて配置せざるを得ないという問題があった。
このため、光素子の光ファイバとの投受光の際にロスが生じたり、光素子と光ファイバとを離間させて配置するため、光素子の光軸に一致させるように光ファイバを位置合わせして配置することが難しいという問題があった。
このような問題を解決するために、本出願の出願人は、光素子と光ファイバとを直接的に接続することを可能とし、光素子と光ファイバとの位置合わせを容易にし、光学的な結合ロスを抑えることができ、基板に搭載してモジュール装置を構成することが容易に可能な光素子モジュールおよびその光素子モジュールを用いた光素子モジュール装置を提案している(特願2003−134489号)。
ここで提案されている光素子モジュールにおいては、光ファイバの外周面に、光ファイバの端面から光ファイバの軸線方向に向けて延びた配線パターンを利用して、光素子との電気的接続を行なっている。
そこで、本発明は、光ファイバの外周面に、光ファイバの軸線方向に向けて延びた配線パターンを形成するための、具体的で且つ簡易なパターン形成方法を提案することを課題とする。
In the conventional optical element module in which an optical element such as a surface emitting laser element or a photodiode described above is combined with an optical fiber, light is projected and received without arranging an optical lens between the optical element and the optical fiber. In this case, the optical element and the end face of the optical fiber are arranged as close as possible.
However, in the conventional optical element module, since the optical connection between the optical element and the external circuit is performed by wire bonding, it is necessary to arrange the optical fiber so as not to interfere with the bonding wire. And the end face of the optical fiber must be spaced apart from each other.
For this reason, loss occurs when light is projected and received with the optical fiber of the optical element, or the optical fiber is aligned with the optical axis of the optical element so that the optical element and the optical fiber are spaced apart. There was a problem that it was difficult to arrange.
In order to solve such a problem, the applicant of the present application makes it possible to directly connect the optical element and the optical fiber, facilitate the alignment of the optical element and the optical fiber, and optically An optical element module that can suppress coupling loss and can be easily mounted on a substrate to form a module device and an optical element module device using the optical element module have been proposed (Japanese Patent Application No. 2003-134489). issue).
In the optical element module proposed here, an electrical connection with the optical element is performed on the outer peripheral surface of the optical fiber by using a wiring pattern extending from the end face of the optical fiber in the axial direction of the optical fiber. ing.
Therefore, an object of the present invention is to propose a specific and simple pattern forming method for forming a wiring pattern extending in the axial direction of the optical fiber on the outer peripheral surface of the optical fiber.

上記の課題を達成するために、本発明によれば、複数の光ファイバをそれらの側面が互いに長手方向に接触するように配置する工程と、この状態で前記複数の光ファイバの外側面の全面にマスク材とての樹脂を塗布する工程と、該樹脂の硬化後、各光ファイバ毎に該樹脂を切断して各光ファイバ毎に分離する工程と、該光ファイバに無電解めっき等により、金属導電膜を形成する工程と、前記樹脂を除去する工程と、からなることを特徴とする光ファイバ側面へのパターン形成方法が提供される。
複数の光ファイバを、複数のV字形の溝に平面的に配置した後、マスク材としての樹脂を塗布するのが好適である。
隣接する2以上の光ファイバとの接触位置が任意の角度となるように、3つ以上の光ファイバを配置した後、マスク材を塗布することを特徴とする。
前記マスク材を除去した後、無電解めっきを施したパターン面を研磨することを特徴とする。
To achieve the above object, according to the present invention, a step of arranging a plurality of optical fibers such that their side surfaces are in contact with each other in the longitudinal direction, and in this state, the entire outer surface of the plurality of optical fibers. A step of applying a resin as a mask material, a step of curing the resin, cutting the resin for each optical fiber and separating the optical fiber, and electroless plating on the optical fiber, There is provided a method for forming a pattern on a side surface of an optical fiber, comprising a step of forming a metal conductive film and a step of removing the resin.
It is preferable to apply a resin as a mask material after arranging a plurality of optical fibers in a plurality of V-shaped grooves in a plane.
A mask material is applied after three or more optical fibers are arranged so that the contact position between two or more adjacent optical fibers becomes an arbitrary angle.
After removing the mask material, the pattern surface subjected to electroless plating is polished.

以下、添付図面を参照して本発明の実施の形態について詳細に説明する。
図1は本発明に係る光ファイバ側面へのパターン形成方法の前半の工程を示す。
図1(a)及び図1(b)はV溝基板に複数の光ファイバを配置した状態を断面図及び斜視図で示す。V溝基板2は光ファイバ1の直径に対応するピッチで平行な複数の、例えば6つの断面V字形の溝2aが連続的に形成されたものである。
このような2つのV溝基板2を、V字形の溝2aの位相を互いに合わせて、所定の間隔をおいて配置し、各V字形の溝2aに光ファイバ1を連続して配置する。V字形の溝2aのピッチPは光ファイバの直径dに対応しているので、V字形の溝2aに配置された6本の光ファイバ1は、隣接する光ファイバの側面同士が互いに長手軸方向に接触する。
図1(c)は光ファイバの周囲にマスク材としての樹脂3を塗布した状態を断面図で示す。6本の光ファイバ1は、2つのV溝基板2により並列して配置され且つ保持されている。この状態で、2つのV溝基板2間の領域にて、これらの6本の光ファイバ1の外周囲全体にめっきマスク材としての樹脂3を塗布する。
めっきマスク材としての樹脂は硬化性のあるもので、一例として、(株)ワールドメタル製のシールビール(商品名)#8008を好適に使用することができる。このめっきマスク材の成分は次のとおりである。
スチレン−ブタジエンブロック共重合体 20%
含水珪酸マグネシウム17% 17%
トルエン 58%
フェノール樹脂 5%
6本の光ファイバ1は、隣接する光ファイバの側面同士が互いに長手軸方向に接触しているので、接触部分には、樹脂は塗布されずに、光ファイバ同士がその側面で接触したままとなっている。即ち、中心のコアとその周囲のクラッドから成る光ファイバ1は隣接する光ファイバとの接触部分以外の光ファイバ1のクラッド外周部は樹脂3によりマスキングが施されることとなる。
図1(d)は、塗布されためっきマスク材が硬化した後、各光ファイバ1毎に樹脂3を切断する状態を断面図にて示す。これにより、6本の光ファイバ1は、光ファイバが相互に接触していた部分を除き、樹脂が付着したまま、各光ファイバごとに分離され、接触していた部分は光ファイバ1のクラッド外側面が露出することとなる。
図2は本発明に係る光ファイバ側面へのパターン形成方法の後半の工程を示す。
図2(a)は個々の光ファイバに分離された状態を斜視図で示す。各光ファイバ1は、光ファイバ同士が相互に接触していた側面部分1aを除き、硬化した樹脂3が付着したままの状態である。この状態で、光ファイバ1の側面に銅等の金属の無電解めっきを施す。これにより図2(b)に示すように、光ファイバ1の側面に軸方向の配線パターン5が形成される。
図2(c)は、めっきマスク材としての樹脂を除去した状態を斜視図で示す。めっきマスク材としての樹脂3は、一般の樹脂材を除去する公知の方法で除去することができる。これにより、光ファイバ1の側面に軸方向に線状に形成された配線パターン5の部分はそのまま残ることとなる。
図2(c)及び図2(d)は、光ファイバ1の側面に形成された配線パターン5を研磨する工程を斜視図及び断面図で示す。無電解めっきにより形成された配線パターン5は、その表面が均一ではないので、周知のポリシング装置(図示せず)を用いて研磨を行い、配線パターン5の表面を平滑化する。
図2で示した光ファイバは、図1において平行に配置した6本の光ファイバのうち、その両側に隣接する光ファイバが存在する、中間位置の光ファイバを示しており、図示のように、光ファイバの側面に180°の間隔をおいて軸方向に平行して延びた2つの配線パターン5が形成される。
図1における6本の光ファイバのうち、両端に位置する光ファイバについては、光ファイバの側面に1本の配線パターンが形成されることはいうまでもない。
図3は、1本の光ファイバに対して複数、例えば2本の配線パターンを形成する場合において、これらの複数の配線パターンを任意の角度隔てて配置されるように形成する場合を示す。
図3(a)に示すように、複数(例えば5本)の光ファイバ1を並列に配置するのではなく、光ファイバ同士が互いに側面の任意の位置で接触するように配置する。このように5本の光ファイバを配置するには、例えば、下側3本の光ファイバを保持する所定のV溝基板(図示せず)を準備する。
このV溝基板には、光ファイバの直径dより大きくその2倍より小さい所定の間隔だけ隔てたピッチPで3本の平行なV溝が予め形成されており、これらのV溝に3本の光ファイバを配置すると共に、他の2本の光ファイバをそれらの間に載せて、固定する。
そして、この状態で、前述の実施形態の場合と同様に、これらの5本の光ファイバの周囲全体にめっきマスク材としての樹脂を塗布する。塗布されためっきマスク材が硬化した後、前述の実施形態の場合と同様、各光ファイバ毎に樹脂を切断して、各光ファイバごとに分離し、光ファイバ1の側面に無電解めっきにより配線パターン5を形成した後、樹脂の除去、配線パターンの研磨を行う。
これにより、1本の光ファイバに対して複数の配線パターンを任意の位置に形成することができる。
図4は上述のように側面に配線パターンを形成した光ファイバを使用して、光素子10と基板30に搭載した回路部品38装置との間で電気的な接続を行う例を示す。同図で30が光素子モジュールを搭載した基板であり、光素子モジュールの光ファイバ20を基板30を貫通して設けた装着孔32に挿通し、装着孔32の縁部で、導電性接着剤あるいははんだ等の導電材36を用いて配線パターン34と光ファイバ20の側面に設けられた配線パターン22とを電気的に接続することによって組み立てられている。導電材36は配線パターン22と配線パターン34とを電気的に導通させる作用と、光ファイバ20を基板30に接着して光素子モジュールを基板30に支持する作用をなす。
配線パターン34には、光ファイバ20の外面に形成されている配線パターン22、22の配置に合わせて装着孔32の縁部に臨んで、配線パターン22と電気的に接続させる若干幅広に形成した接続電極が設けられている。接続電極と光ファイバ20の配線パターン22とを位置合わせし、導電材36を接続電極と配線パターン22との間に塗布するようにすることにより、光ファイバ20の配線パターン22と基板30の配線パターン34とを電気的に接続するとともに、光ファイバ20を基板30に装着して支持することができる。導電材36による接着力が十分でない場合には、電気的絶縁性を有する接着剤を装着孔32の周縁部に塗布して光ファイバ20を装着孔32により強固に固定するようにしてもよい。
38は基板30に搭載されている光素子10のドライバアンプ等の回路部品である。こうして、光素子10と回路部品38とが光ファイバ20の側面に形成した配線パターン22を経由して電気的に接続した状態で光素子モジュールを搭載することができる。
以上添付図面を参照して本発明の実施形態について説明したが、本発明は上記の実施形態に限定されるものではなく、本発明の精神ないし範囲内において種々の形態、変形、修正等が可能である。
Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
FIG. 1 shows the first half of the method for forming a pattern on the side surface of an optical fiber according to the present invention.
FIG. 1A and FIG. 1B show a state in which a plurality of optical fibers are arranged on a V-groove substrate in a sectional view and a perspective view. The V-groove substrate 2 is formed by continuously forming a plurality of, for example, six cross-sectionally V-shaped grooves 2 a at a pitch corresponding to the diameter of the optical fiber 1.
The two V-groove substrates 2 are arranged with a predetermined interval so that the phases of the V-shaped grooves 2a are aligned with each other, and the optical fiber 1 is continuously disposed in each V-shaped groove 2a. Since the pitch P of the V-shaped groove 2a corresponds to the diameter d of the optical fiber, the six optical fibers 1 arranged in the V-shaped groove 2a have the side surfaces of the adjacent optical fibers in the longitudinal axis direction. To touch.
FIG. 1C is a sectional view showing a state in which a resin 3 as a mask material is applied around the optical fiber. Six optical fibers 1 are arranged and held in parallel by two V-groove substrates 2. In this state, resin 3 as a plating mask material is applied to the entire outer periphery of these six optical fibers 1 in the region between the two V-groove substrates 2.
The resin as the plating mask material is curable, and as an example, sealed beer (trade name) # 8008 manufactured by World Metal Co., Ltd. can be suitably used. The components of this plating mask material are as follows.
Styrene-butadiene block copolymer 20%
Hydrous magnesium silicate 17% 17%
Toluene 58%
Phenolic resin 5%
In the six optical fibers 1, the side surfaces of the adjacent optical fibers are in contact with each other in the longitudinal axis direction. Therefore, the resin is not applied to the contact portion, and the optical fibers remain in contact with each other on the side surfaces. It has become. That is, the optical fiber 1 composed of the central core and the surrounding clad is masked by the resin 3 on the outer peripheral portion of the optical fiber 1 other than the contact portion between the adjacent optical fibers.
FIG. 1D is a sectional view showing a state in which the resin 3 is cut for each optical fiber 1 after the applied plating mask material is cured. As a result, the six optical fibers 1 are separated for each optical fiber with the resin adhering except for the portions where the optical fibers are in contact with each other. The side will be exposed.
FIG. 2 shows the latter half of the method for forming a pattern on the side surface of an optical fiber according to the present invention.
FIG. 2A is a perspective view showing a state where the optical fibers are separated into individual optical fibers. Each optical fiber 1 is in a state where the cured resin 3 remains attached except for the side surface portion 1a where the optical fibers are in contact with each other. In this state, electroless plating of a metal such as copper is performed on the side surface of the optical fiber 1. As a result, an axial wiring pattern 5 is formed on the side surface of the optical fiber 1 as shown in FIG.
FIG. 2C is a perspective view showing a state where the resin as the plating mask material is removed. The resin 3 as the plating mask material can be removed by a known method for removing a general resin material. Thereby, the portion of the wiring pattern 5 formed linearly in the axial direction on the side surface of the optical fiber 1 remains as it is.
2C and 2D show a process of polishing the wiring pattern 5 formed on the side surface of the optical fiber 1 in a perspective view and a cross-sectional view. Since the surface of the wiring pattern 5 formed by electroless plating is not uniform, polishing is performed using a known polishing apparatus (not shown) to smooth the surface of the wiring pattern 5.
The optical fiber shown in FIG. 2 shows an optical fiber at an intermediate position where there are adjacent optical fibers on both sides of the six optical fibers arranged in parallel in FIG. Two wiring patterns 5 extending in parallel in the axial direction are formed on the side surface of the optical fiber with an interval of 180 °.
Needless to say, one of the six optical fibers in FIG. 1 is formed on the side surface of the optical fiber located at both ends.
FIG. 3 shows a case where a plurality of, for example, two wiring patterns are formed for one optical fiber, and the plurality of wiring patterns are formed so as to be arranged at an arbitrary angle.
As shown in FIG. 3A, a plurality of (for example, five) optical fibers 1 are not arranged in parallel, but are arranged so that the optical fibers are in contact with each other at an arbitrary position on the side surface. In order to arrange the five optical fibers in this way, for example, a predetermined V-groove substrate (not shown) for holding the lower three optical fibers is prepared.
In this V-groove substrate, three parallel V-grooves are formed in advance at a pitch P which is larger than the diameter d of the optical fiber and less than twice the predetermined distance, and three V-grooves are formed in these V-grooves. The optical fiber is placed, and the other two optical fibers are placed between them and fixed.
In this state, as in the case of the above-described embodiment, resin as a plating mask material is applied to the entire periphery of these five optical fibers. After the applied plating mask material is cured, the resin is cut for each optical fiber and separated for each optical fiber, and wiring is performed on the side surface of the optical fiber 1 by electroless plating, as in the above-described embodiment. After the pattern 5 is formed, the resin is removed and the wiring pattern is polished.
Thereby, a some wiring pattern can be formed in arbitrary positions with respect to one optical fiber.
FIG. 4 shows an example in which electrical connection is made between the optical element 10 and the circuit component 38 device mounted on the substrate 30 using the optical fiber having the wiring pattern formed on the side surface as described above. In the figure, reference numeral 30 denotes a substrate on which the optical element module is mounted. The optical fiber 20 of the optical element module is inserted into a mounting hole 32 provided through the substrate 30, and a conductive adhesive is formed at the edge of the mounting hole 32. Alternatively, the wiring pattern 34 and the wiring pattern 22 provided on the side surface of the optical fiber 20 are electrically connected by using a conductive material 36 such as solder. The conductive material 36 has an action of electrically connecting the wiring pattern 22 and the wiring pattern 34 and an action of adhering the optical fiber 20 to the substrate 30 and supporting the optical element module to the substrate 30.
The wiring pattern 34 is formed to be slightly wider so as to face the edge of the mounting hole 32 in accordance with the arrangement of the wiring patterns 22 and 22 formed on the outer surface of the optical fiber 20 and to be electrically connected to the wiring pattern 22. A connection electrode is provided. By aligning the connection electrode and the wiring pattern 22 of the optical fiber 20 and applying a conductive material 36 between the connection electrode and the wiring pattern 22, the wiring pattern 22 of the optical fiber 20 and the wiring of the substrate 30 are arranged. The optical fiber 20 can be attached to and supported by the substrate 30 while being electrically connected to the pattern 34. If the adhesive force by the conductive material 36 is not sufficient, an adhesive having electrical insulation may be applied to the peripheral portion of the mounting hole 32 to firmly fix the optical fiber 20 through the mounting hole 32.
Reference numeral 38 denotes a circuit component such as a driver amplifier of the optical element 10 mounted on the substrate 30. Thus, the optical element module can be mounted in a state where the optical element 10 and the circuit component 38 are electrically connected via the wiring pattern 22 formed on the side surface of the optical fiber 20.
Although the embodiments of the present invention have been described with reference to the accompanying drawings, the present invention is not limited to the above-described embodiments, and various forms, modifications, corrections, and the like are possible within the spirit and scope of the present invention. It is.

以上説明したように、本発明によれば、光ファイバの外周面に、容易に、光ファイバの軸線方向に向けて延びた配線パターンを形成することができ、面発光のレーザ素子やフォトダイオード等の発光用あるいは発光用の光素子と光ファイバを組み合わせて構成した光素子モジュール装置等において、光素子と半導体との間を電気的に接続する場合に当該配線パターンを好適に用いることができる。   As described above, according to the present invention, it is possible to easily form a wiring pattern extending in the axial direction of the optical fiber on the outer peripheral surface of the optical fiber, such as a surface emitting laser element or a photodiode. In an optical element module device or the like configured by combining a light emitting element or a light emitting optical element and an optical fiber, the wiring pattern can be suitably used when the optical element and the semiconductor are electrically connected.

本発明による光ファイバ側面へのパターン形成方法の前半の工程を示す。The process of the first half of the pattern formation method to the optical fiber side surface by this invention is shown. 本発明に係る光ファイバ側面へのパターン形成方法の後半の工程を示す。The latter half process of the pattern formation method to the side surface of the optical fiber which concerns on this invention is shown. 光ファイバ側面の任意に位置にパターンを形成する場合を示す。A case where a pattern is formed at an arbitrary position on the side surface of the optical fiber is shown. 本発明により形成したパターンの利用例を示す。The utilization example of the pattern formed by this invention is shown.

符号の説明Explanation of symbols

1…光ファイバ
2…V溝基板
3…樹脂
4…切断線
5…配線パターン
10…光素子
20…光ファイバ
22…配線パターン
30…基板
38…半導体装置
DESCRIPTION OF SYMBOLS 1 ... Optical fiber 2 ... V-groove board | substrate 3 ... Resin 4 ... Cutting line 5 ... Wiring pattern 10 ... Optical element 20 ... Optical fiber 22 ... Wiring pattern 30 ... Substrate 38 ... Semiconductor device

Claims (5)

複数の光ファイバをそれらの側面が互いに長手方向に接触するように配置する工程と、この状態で前記複数の光ファイバの外側面の全面にマスク材としての樹脂を塗布する工程と、該樹脂の硬化後、各光ファイバ毎に該樹脂を切断して各光ファイバ毎に分離する工程と、該光ファイバの側面の前記樹脂から露出した部分に金属導電膜を形成する工程と、前記樹脂を除去する工程と、からなることを特徴とする光ファイバ側面へのパターン形成方法。   A step of arranging a plurality of optical fibers such that their side surfaces are in contact with each other in the longitudinal direction; a step of applying a resin as a mask material over the entire outer surface of the plurality of optical fibers in this state; After curing, the step of cutting the resin for each optical fiber and separating it for each optical fiber, the step of forming a metal conductive film on the side of the optical fiber exposed from the resin, and removing the resin And a pattern forming method on the side surface of the optical fiber. 前記光ファイバの側面の前記樹脂から露出した部分に金属導電膜を形成する工程は、光ファイバの側面に無電解めっきを施す工程からなることを特徴とする請求項1に記載の光ファイバ側面へのパターン形成方法。   2. The optical fiber side surface according to claim 1, wherein the step of forming a metal conductive film on a portion of the side surface of the optical fiber exposed from the resin includes a step of performing electroless plating on the side surface of the optical fiber. Pattern formation method. 複数の光ファイバを、複数のV字形の溝に平面的に配置した後、マスク材としての樹脂を塗布することを特徴とする請求項1又は2に記載の光ファイバ側面へのパターン形成方法。   The method of forming a pattern on the side surface of an optical fiber according to claim 1 or 2, wherein a plurality of optical fibers are arranged in a plane in a plurality of V-shaped grooves, and then a resin as a mask material is applied. 隣接する2以上の光ファイバとの接触位置が任意の角度となるように、3つ以上の光ファイバを配置した後、マスク材としての樹脂を塗布することを特徴とする請求項1又は2に記載の光ファイバ側面へのパターン形成方法。   3. The resin as a mask material is applied after arranging three or more optical fibers so that a contact position with two or more adjacent optical fibers becomes an arbitrary angle. The pattern formation method to the optical fiber side of description. 前記マスク材としての樹脂を除去した後、無電解めっきを施したパターン面を研磨することを特徴とする請求項1〜4のいずれか1項に記載の光ファイバ側面へのパターン形成方法。   The method for forming a pattern on a side surface of an optical fiber according to any one of claims 1 to 4, wherein after the resin as the mask material is removed, a pattern surface subjected to electroless plating is polished.
JP2004153586A 2004-05-24 2004-05-24 Pattern forming method on side of optical fiber Expired - Fee Related JP4683859B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004153586A JP4683859B2 (en) 2004-05-24 2004-05-24 Pattern forming method on side of optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004153586A JP4683859B2 (en) 2004-05-24 2004-05-24 Pattern forming method on side of optical fiber

Publications (2)

Publication Number Publication Date
JP2005340285A true JP2005340285A (en) 2005-12-08
JP4683859B2 JP4683859B2 (en) 2011-05-18

Family

ID=35493539

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004153586A Expired - Fee Related JP4683859B2 (en) 2004-05-24 2004-05-24 Pattern forming method on side of optical fiber

Country Status (1)

Country Link
JP (1) JP4683859B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009192873A (en) * 2008-02-15 2009-08-27 Seiko Epson Corp Light source device, image display device and monitor device

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4973150A (en) * 1972-11-13 1974-07-15
JPS60198871A (en) * 1984-03-23 1985-10-08 Fujitsu Ltd Light semiconductor device
JPS63244695A (en) * 1987-03-30 1988-10-12 Fujitsu Ltd Semiconductor light emitting device
JPH08220383A (en) * 1995-02-09 1996-08-30 Hitachi Cable Ltd Optical element module
JPH08254635A (en) * 1995-02-09 1996-10-01 At & T Ipm Corp Optical interconnection device
JPH1039162A (en) * 1996-07-24 1998-02-13 Mitsubishi Electric Corp Optical semiconductor device, semiconductor photodetector, and formation of optical fiber
JPH10186186A (en) * 1996-12-20 1998-07-14 Oki Electric Ind Co Ltd Optical array module
JP2000028871A (en) * 1998-07-15 2000-01-28 Nippon Telegr & Teleph Corp <Ntt> Packaging form of optical semiconductor module
JP2002296457A (en) * 2001-03-29 2002-10-09 Kyocera Corp Optical module
JP2004342675A (en) * 2003-05-13 2004-12-02 Shinko Electric Ind Co Ltd Optical element module and device thereof

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4973150A (en) * 1972-11-13 1974-07-15
JPS60198871A (en) * 1984-03-23 1985-10-08 Fujitsu Ltd Light semiconductor device
JPS63244695A (en) * 1987-03-30 1988-10-12 Fujitsu Ltd Semiconductor light emitting device
JPH08220383A (en) * 1995-02-09 1996-08-30 Hitachi Cable Ltd Optical element module
JPH08254635A (en) * 1995-02-09 1996-10-01 At & T Ipm Corp Optical interconnection device
JPH1039162A (en) * 1996-07-24 1998-02-13 Mitsubishi Electric Corp Optical semiconductor device, semiconductor photodetector, and formation of optical fiber
JPH10186186A (en) * 1996-12-20 1998-07-14 Oki Electric Ind Co Ltd Optical array module
JP2000028871A (en) * 1998-07-15 2000-01-28 Nippon Telegr & Teleph Corp <Ntt> Packaging form of optical semiconductor module
JP2002296457A (en) * 2001-03-29 2002-10-09 Kyocera Corp Optical module
JP2004342675A (en) * 2003-05-13 2004-12-02 Shinko Electric Ind Co Ltd Optical element module and device thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009192873A (en) * 2008-02-15 2009-08-27 Seiko Epson Corp Light source device, image display device and monitor device

Also Published As

Publication number Publication date
JP4683859B2 (en) 2011-05-18

Similar Documents

Publication Publication Date Title
JP2007212565A (en) Multi-channel optical communication module
WO2019239839A1 (en) Optical fiber connection component and optical device manufacturing method
JP2010170150A (en) Method of manufacturing printed circuit board
JP2006065163A (en) Optical waveguide device
JP2008129385A (en) Optical component mounting substrate and optical module
JP2006184754A (en) Optical waveguide, optical fiber module, optical fiber mounting fixture, and optical fiber mounting method
US6860650B2 (en) Assembly for aligning an optical array with optical fibers
WO2004074892A1 (en) Optical transmission medium connecting method, optical connecting structure, and optical transmission medium connecting part
JP4683859B2 (en) Pattern forming method on side of optical fiber
CN110764196B (en) Guide pin-free pluggable alignment structure for coupling optical fiber array and planar optical waveguide
US20150099398A1 (en) Connector for printed circuit boards
JP2012002882A (en) Optical fiber connector
JP2005292379A (en) Optical coupling device and manufacturing method therefor
JP5212390B2 (en) Photoelectric conversion device
US9857544B2 (en) Carrier having ablation-susceptible and ablation-insusceptible materials
JP4703441B2 (en) Optical waveguide device and opto-electric hybrid device
JP6551077B2 (en) Optical module
JP2005157092A (en) Optical fiber array
JP2006023661A (en) Film optical waveguide and its manufacturing method, and base material for film optical waveguide
JP6690131B2 (en) Optical wiring board, optical module, and optical active cable
JP2016118594A (en) Method for manufacturing polymer optical waveguide having positioning structure, polymer optical waveguide manufactured thereby, and optical module using the same
KR100873249B1 (en) Connecting structure between printed circuit boards andpcb assembly having the same
JP2004534272A (en) Method of manufacturing optical access unit, optical access unit and fiber optic ferrule module
JP2005338704A (en) Wiring board with optical coupling function, its manufacturing method and optical coupling system
JP3199170B2 (en) Optical wiring component and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070402

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110111

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110208

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140218

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees