JP2005340066A - Cold cathode fluorescent lamp, manufacturing method of the same, and illumination device using the same - Google Patents

Cold cathode fluorescent lamp, manufacturing method of the same, and illumination device using the same Download PDF

Info

Publication number
JP2005340066A
JP2005340066A JP2004159043A JP2004159043A JP2005340066A JP 2005340066 A JP2005340066 A JP 2005340066A JP 2004159043 A JP2004159043 A JP 2004159043A JP 2004159043 A JP2004159043 A JP 2004159043A JP 2005340066 A JP2005340066 A JP 2005340066A
Authority
JP
Japan
Prior art keywords
glass tube
cold cathode
cathode fluorescent
layer
fluorescent lamp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004159043A
Other languages
Japanese (ja)
Inventor
Naoya Imai
直也 今井
Takashi Nishihara
隆史 西原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Lighting and Technology Corp
Original Assignee
Harison Toshiba Lighting Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harison Toshiba Lighting Corp filed Critical Harison Toshiba Lighting Corp
Priority to JP2004159043A priority Critical patent/JP2005340066A/en
Publication of JP2005340066A publication Critical patent/JP2005340066A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cold cathode fluorescent lamp, of which a defect caused by exfoliation of a phosphor layer is reduced. <P>SOLUTION: The cold cathode fluorescent lamp is composed of a frosted layer 11 formed on an inner wall of a glass tube main body 10; a protection film layer 12 formed on the surface of the frosted layer 11 preventing deterioration of the glass tube main body; a phosphor layer 13 formed on the protection film layer; rare gas 16 filled in the glass tube main body 10 on which the phosphor layer 13 is formed; and a pair of electrodes 14 sealed on both ends of the glass tube main body 10 in which the rare gas 16 is filled. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、冷陰極蛍光ランプおよびこれを用いた照明装置に関するものである。   The present invention relates to a cold cathode fluorescent lamp and an illumination device using the same.

従来、冷陰極蛍光ランプの構造は、ガラス管体の内壁面に蛍光体層が設けられ、両端にそれぞれ封装された1対の電極を備える。このガラス管体の内部には、放電媒体として例えばネオンおよびアルゴンの混合ガスからなる希ガスが封入され、両端部が気密に封止されている。また、従来蛍光ランプでは、水銀等の放電媒体とガラスとの化学反応に起因するガラス管体の黒化あるいは劣化を防止するために内面保護膜層を設けることも行なわれている。すなわち、図4(a)、(b)に示すように、ガラス管体51の内面に、金属酸化物よりなる保護膜52が塗布コーティングにより形成され、さらにこの保護膜52の上に蛍光体層53が形成されている(例えば、特許文献1及び特許文献2参照。)。   Conventionally, the structure of a cold cathode fluorescent lamp is provided with a pair of electrodes each provided with a phosphor layer on the inner wall surface of a glass tube and sealed at both ends. Inside the glass tube body, a rare gas made of, for example, a mixed gas of neon and argon is sealed as a discharge medium, and both ends are sealed airtight. Further, in a conventional fluorescent lamp, an inner surface protective film layer is also provided in order to prevent blackening or deterioration of a glass tube due to a chemical reaction between a discharge medium such as mercury and glass. That is, as shown in FIGS. 4A and 4B, a protective film 52 made of a metal oxide is formed on the inner surface of the glass tube 51 by coating, and a phosphor layer is further formed on the protective film 52. 53 is formed (see, for example, Patent Document 1 and Patent Document 2).

このように製造された冷陰極蛍光ランプは、また、複数本のランプを並列に配列することにより液晶表示装置の直下型バックライトユニットとして使用される。
特開2002−324515号公報 特開平11−191389号公報
The cold cathode fluorescent lamp manufactured in this way is also used as a direct type backlight unit of a liquid crystal display device by arranging a plurality of lamps in parallel.
JP 2002-324515 A Japanese Patent Laid-Open No. 11-191389

しかし、冷陰極蛍光ランプの蛍光体コーティング工程において、ガラス管内壁に保護膜を施し蛍光体を塗布する保護膜仕様や、長尺のガラス管体の蛍光ランプで、ガラスと保護膜層あるいは蛍光体層との間の結着力の不足による蛍光体剥がれが多発している。   However, in the phosphor coating process of the cold cathode fluorescent lamp, a protective film specification in which a protective film is applied to the inner wall of the glass tube and the phosphor is applied, or a long glass tube fluorescent lamp, the glass and protective film layer or phosphor The phosphor peels frequently due to insufficient binding force between the layers.

また、これらの蛍光ランプを用いた液晶表示装置用のバックライトユニットにおいては、各蛍光ランプの輝度ムラが生じ、均一な発光が得られなかった。   Further, in a backlight unit for a liquid crystal display device using these fluorescent lamps, luminance unevenness of each fluorescent lamp occurs, and uniform light emission cannot be obtained.

本発明は上記のような従来の問題点に鑑みてなされたもので、保護膜層あるいは蛍光体のガラス管内壁への結着力を高めて、蛍光体剥がれによる不良発生を低減した冷陰極蛍光ランプ及びその製造方法及びこれを用いた輝度ムラを低減した照明装置を提供することを目的とする。   The present invention has been made in view of the conventional problems as described above, and has improved the binding force of the protective film layer or the phosphor to the inner wall of the glass tube, thereby reducing the occurrence of defects due to the peeling of the phosphor. Another object of the present invention is to provide a method for manufacturing the same and a lighting device using the same that reduces uneven brightness.

上記の目的を達成するために、本発明の冷陰極蛍光ランプは、ガラス管体の内壁に形成されたフロスト処理層と、このフロスト層の表面に形成した保護膜層と、この保護膜層の表面に形成した蛍光体層と、この蛍光体層を形成した前記ガラス管体の管内に充填した希ガスと、希ガスが充填された前記ガラス管の両端にそれぞれ封装された1対の電極とからなることを特徴とするものである。   In order to achieve the above object, a cold cathode fluorescent lamp of the present invention comprises a frosted layer formed on the inner wall of a glass tube, a protective film layer formed on the surface of the frosted layer, A phosphor layer formed on the surface, a rare gas filled in the tube of the glass tube formed with the phosphor layer, and a pair of electrodes sealed at both ends of the glass tube filled with the rare gas, It is characterized by comprising.

また、上記の目的を達成するために、本発明の冷陰極蛍光ランプは、ガラス管体の内壁に形成されたフロスト処理層と、このフロスト層の表面に形成した蛍光体層と、この蛍光体層を形成した前記ガラス管体の管内に充填した希ガスと、希ガスが充填された前記ガラス管の両端にそれぞれ封装された1対の電極とからなることを特徴とするものである。   In order to achieve the above object, the cold cathode fluorescent lamp of the present invention comprises a frosted layer formed on the inner wall of a glass tube, a phosphor layer formed on the surface of the frost layer, and the phosphor. It is characterized by comprising a rare gas filled in a tube of the glass tube body in which a layer is formed and a pair of electrodes sealed at both ends of the glass tube filled with the rare gas.

さらに、上記本発明の冷陰極蛍光ランプにおいては、前記フロスト処理層は、フッ酸処理により形成したことを特徴とするものである。   Furthermore, in the cold cathode fluorescent lamp of the present invention, the frosted layer is formed by a hydrofluoric acid treatment.

また、上記の目的を達成するために、本発明の冷陰極蛍光ランプの製造方法は、ガラス管体の内壁にフロスト処理層を形成する工程と、このフロスト処理層の表面に保護膜層を形成する工程と、この保護膜層の表面に蛍光体層を形成する工程と、この蛍光体層を形成した前記ガラス管体の管内に希ガスを充填する工程と、希ガスが充填された前記ガラス管の両端に1対の電極をそれぞれ封装する工程を含むことを特徴とするものである。   In order to achieve the above object, the manufacturing method of the cold cathode fluorescent lamp of the present invention includes a step of forming a frosted layer on the inner wall of the glass tube and a protective film layer on the surface of the frosted layer. A step of forming a phosphor layer on the surface of the protective film layer, a step of filling a rare gas in the tube of the glass tube on which the phosphor layer is formed, and the glass filled with a rare gas The method includes a step of sealing a pair of electrodes at both ends of the tube.

また、上記の目的を達成するために、本発明の冷陰極蛍光ランプの製造方法は、ガラス管体の内壁にフロスト処理層を形成する工程と、このフロスト処理層の表面に蛍光体層を形成する工程と、この蛍光体層を形成した前記ガラス管体の管内に希ガスを充填する工程と、希ガスが充填された前記ガラス管の両端に1対の電極をそれぞれ封装する工程を含むことを特徴とするものである。   In order to achieve the above object, the manufacturing method of the cold cathode fluorescent lamp of the present invention includes a step of forming a frosted layer on the inner wall of the glass tube and a phosphor layer formed on the surface of the frosted layer. A step of filling a rare gas into the tube of the glass tube on which the phosphor layer is formed, and a step of sealing a pair of electrodes at both ends of the glass tube filled with the rare gas. It is characterized by.

また、本発明の照明装置は、前記の冷陰極蛍光ランプの複数を配列して設置したことを特徴とするものである。   The illumination device of the present invention is characterized in that a plurality of the cold cathode fluorescent lamps are arranged and installed.

本発明によれば、ガラス管体の内壁に対し施したフロスト加工処理により、蛍光体層の剥がれを防止することができ、特に保護膜上に蛍光体層を形成した冷陰極蛍光ランプに比べて、蛍光体剥がれ不良の発生率を飛躍的に低減した冷陰極蛍光ランプを製造できる。   According to the present invention, the phosphor layer can be prevented from being peeled off by the frost processing applied to the inner wall of the glass tube body, particularly compared to a cold cathode fluorescent lamp in which the phosphor layer is formed on the protective film. Thus, it is possible to manufacture a cold cathode fluorescent lamp in which the occurrence rate of phosphor peeling failure is drastically reduced.

また、本発明による複数個の冷陰極蛍光ランプが平行に配列された、例えば液晶表示装置のバックライトユニットのような面照明装置では、ガラス管体に施したフロスト加工処理により、ガラス管体から放射される光を広角に拡散させるので、配列方向の輝度ムラが低減する効果がある。   Further, in a surface illumination device such as a backlight unit of a liquid crystal display device in which a plurality of cold cathode fluorescent lamps according to the present invention are arranged in parallel, a frost processing applied to the glass tube allows the glass tube to Since the emitted light is diffused at a wide angle, there is an effect of reducing unevenness in luminance in the arrangement direction.

以下、本発明の実施形態について図面及び特性の評価結果を用いて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings and evaluation results of characteristics.

本実施形態は、冷陰極管蛍光ランプの製造におけるガラス(ホウ珪酸ガラス)管の加工工程において、図1(a)に模式的に示すように、このガラス管体10の内壁に、フッ酸(HF)により溶解処理を行なって、フロスト層部11を形成する。さらに、同図(c)に横断面で示すように、このフロスト加工により形成したフロスト層11にガラス管内壁の黒化等の劣化防止用の保護膜12を形成し、この保護膜12に蛍光体を塗布して蛍光体層13を形成する。この蛍光体層13を形成したガラス管体10の内部に希ガス16を充填し、このガラス管体10の両端部に1対の電極14それぞれを気密封装15して、本実施形態の冷陰極蛍光ランプが製造される。あるいは、保護膜の形成を行なわず、このフロスト層部11に直接蛍光体を塗布して蛍光体層13を形成し、冷陰極蛍光ランプが製造される。同図(b)に、このガラス管体10の内壁に形成したフロスト層部11の正面からの顕微鏡写真の例を示す。この顕微鏡写真から、このフッ酸による溶解により内壁の表面は、5μm程度の凹凸(フロスト)が形成される。このフロスト層部11に形成される凹凸の状態は、フッ酸の濃度、溶解処理温度、添加剤の条件などを変えることにより変化することができる。   In the present embodiment, in the process of processing a glass (borosilicate glass) tube in the manufacture of a cold cathode fluorescent lamp, as shown schematically in FIG. 1 (a), hydrofluoric acid ( The frost layer portion 11 is formed by performing a dissolution treatment by HF). Further, as shown in a cross section in FIG. 2C, a protective film 12 for preventing deterioration such as blackening of the inner wall of the glass tube is formed on the frost layer 11 formed by the frost processing, and the fluorescent film is formed on the protective film 12. The body is applied to form the phosphor layer 13. The glass tube 10 in which the phosphor layer 13 is formed is filled with a rare gas 16, and a pair of electrodes 14 are hermetically sealed 15 at both ends of the glass tube 10. A fluorescent lamp is manufactured. Alternatively, without forming a protective film, a phosphor is directly applied to the frost layer portion 11 to form the phosphor layer 13 to manufacture a cold cathode fluorescent lamp. The same figure (b) shows the example of the microscope picture from the front of the frost layer part 11 formed in the inner wall of this glass tube body 10. FIG. From this micrograph, the surface of the inner wall is formed with unevenness (frost) of about 5 μm by dissolution with hydrofluoric acid. The uneven state formed in the frosted layer portion 11 can be changed by changing the concentration of hydrofluoric acid, the dissolution treatment temperature, the additive conditions, and the like.

表1には、本実施形態のフッ酸による溶解処理を施してフロスト層部を形成した場合と、フッ酸による処理を行なわない従来の場合とにおいて、蛍光体の剥がれ発生率のそれぞれ比較を示す。
Table 1 shows a comparison of the rate of occurrence of phosphor peeling in the case where the frost layer is formed by performing the dissolution treatment with hydrofluoric acid of the present embodiment and in the conventional case where the treatment with hydrofluoric acid is not performed. .

この蛍光体剥がれの比較を行なった試験試料のカラス管体は、表1に示すように、外形φ4mm(内径φ3.0mm)で長さ900mmの試料21、22と、これより細い外形φ2.4mm(内径φ2.0mm)で長さ350mmの試料23、24の2種の管径である。また、表1の試験試料の試料21、23がフッ酸によるフロスト加工を行なっていない従来のもので、試料22、24が本発明のフッ酸によるフロスト加工を施したものである。このフロスト加工の有無に加えて、さらにそれぞれに内面保護膜層の形成の有無の組み合わせを加えた。すなわち、従来のフロスト加工を行なっていない、内面保護膜層を塗布せずにガラス管体内壁に直接蛍光体層を形成した管径の異なる試料21a、23aと、ガラス管体の内壁に先ず内面保護膜層を形成して、それに蛍光体層を形成した管径の異なる試料21b、23bと、さらに本発明のフロスト加工を施し、内面保護膜層を塗布せずにフロスト加工した内壁に直接蛍光体層を形成した管径の異なる試料22a,24aと、フロスト加工した内壁に内面保護膜を形成して、それに蛍光体層を形成した管径の異なる試料22b、24bの8種の試料について、それぞれ400本を基準サンプル数とした。   As shown in Table 1, the crow tube of the test sample on which the phosphor peeling was compared was made with samples 21 and 22 having an outer diameter of 4 mm (inner diameter of φ3.0 mm) and a length of 900 mm, and a thinner outer diameter of φ2.4 mm. Two types of tube diameters of samples 23 and 24 having an inner diameter of 2.0 mm and a length of 350 mm. Further, samples 21 and 23 of the test samples in Table 1 are conventional ones that have not been subjected to frost processing with hydrofluoric acid, and samples 22 and 24 have been subjected to frost processing with hydrofluoric acid of the present invention. In addition to the presence or absence of this frost processing, the combination of the presence or absence of the formation of the inner surface protective film layer was further added to each. That is, the samples 21a and 23a having different tube diameters in which the phosphor layer is directly formed on the inner wall of the glass tube without applying the inner surface protective film layer without applying the conventional frost processing, and the inner surface first on the inner wall of the glass tube The protective film layer is formed, and the phosphor layers are formed on the samples 21b and 23b having different tube diameters. Further, the frost processing of the present invention is applied, and the inner wall subjected to the frost processing without applying the inner surface protective film layer is directly fluorescent. Eight types of samples 22a and 24a with different tube diameters forming body layers, and samples 22b and 24b with different tube diameters formed with an inner surface protective film on the inner wall subjected to frost processing, Each of the 400 samples was used as the reference sample number.

また、蛍光体の剥がれの試験方法は、厚さ10mmのベークライト板上で、先ず、ランプの一方の端部(例えば、ランプ製造工程で先に電極を封着した封止側端)を支点に、ランプの傾きが80度以上になるように立て、他端(ランプ製造工程で管内の気体を排気した排気側端)を自然落下させる。次に、今度は逆に排気側端を支点とし、封止側端をランプの傾きが80度以上になるように立て、他端(封止側)を自然落下させる。このような転倒・落下をそれぞれ5回繰り返した後、蛍光体の剥がれの有無を判定し、剥がれのない試料と剥がれの生じた試料のそれぞれの数をカウントした。   In addition, the test method for peeling of the phosphor is on a bakelite plate having a thickness of 10 mm, with one end of the lamp (for example, the sealed end where the electrode is first sealed in the lamp manufacturing process) as a fulcrum. , Stand so that the inclination of the lamp is 80 degrees or more, and let the other end (exhaust side end from which the gas in the tube is exhausted in the lamp manufacturing process) fall naturally. Next, conversely, the exhaust side end is used as a fulcrum, the sealing side end is set up so that the inclination of the lamp is 80 degrees or more, and the other end (sealing side) is naturally dropped. After such overturning and dropping were repeated 5 times, the presence or absence of peeling of the phosphor was determined, and the number of samples with no peeling and the samples with peeling were counted.

この試料試験の結果は、表1の蛍光体剥がれ発生数の欄25に示すように、フロスト加工を行なわない従来のランプでは、蛍光体層の剥がれが、いずれの管径のガラス管体21、23でも発生した。すなわち、保護膜の無い試料21a、23aで4本あるいは2本、保護膜を塗布した試料21ab、23bで15本あるいは11本の蛍光体剥がれが発生している。   As shown in the column 25 of the number of occurrences of phosphor peeling in Table 1, the results of this sample test are as follows. In a conventional lamp that does not perform frosting, the phosphor layer peels off the glass tube 21 of any tube diameter, 23 also occurred. That is, four or two phosphors are peeled off in the samples 21a and 23a having no protective film, and 15 or 11 phosphors are peeled off in the samples 21ab and 23b coated with the protective film.

一方、本発明のフロスト加工を行なったランプにおいては、保護膜の有無に係わらず全ての試料22a、22b、24a、24bで、蛍光体剥がれの発生は皆無であった。   On the other hand, in the lamp subjected to the frost processing of the present invention, no phosphor peeling occurred in all the samples 22a, 22b, 24a, and 24b regardless of the presence or absence of the protective film.

次に、上述の冷陰極蛍光ランプを使用した照明装置について、図2及び図3を用いて説明する。   Next, an illumination device using the above-described cold cathode fluorescent lamp will be described with reference to FIGS.

図2は、上述のフロスト加工を施し蛍光体層を形成した冷陰極蛍光ランプの複数本を平行に配列した本発明の他の実施形態である面照明装置の構成を示す模式図である。同図(b)に示すこの面照明装置40は、例えば液晶表示装置の液晶素子の背部に配置されて、配列された冷陰極蛍光ランプ41a〜41nが液晶素子の背面を照明するバックライト照明ユニットとして使用されるものである。   FIG. 2 is a schematic view showing a configuration of a surface illumination device according to another embodiment of the present invention in which a plurality of cold cathode fluorescent lamps which have been subjected to the above-mentioned frost processing and formed a phosphor layer are arranged in parallel. The surface illumination device 40 shown in FIG. 4B is disposed on the back of a liquid crystal element of a liquid crystal display device, for example, and a backlight illumination unit in which the arranged cold cathode fluorescent lamps 41a to 41n illuminate the back surface of the liquid crystal element. It is used as

同図(a)は、配列方向に沿った断面方向に輝度変化の特性を示した輝度分布特性図である。同図のフロスト加工を行なわない従来の冷陰極蛍光ランプを配列した場合の輝度分布特性42は、拡散が少なく輝度が高いので、ランプ正面の輝度とランプ間中央の輝度の輝度差42aは大きい。一方、同図のフロスト加工を施した本実施形態の冷陰極蛍光ランプの輝度分布特性43は、拡散が多くて輝度は低いが、従来品の輝度差42aに比較して小さい輝度差43aとなって、輝度ムラを抑えた面照明装置を実現している。従来のフロスト加工を行なわない冷陰極蛍光ランプによる面照明装置では、冷陰極蛍光ランプの正面に拡散板などの輝度ムラを緩和する光学部材を配置する必要があったが、フロスト加工を施した冷陰極蛍光ランプを用いた本発明のバックライト照明装置では、これらの光学部材を不要とし、コストを削減できると共に、照明装置をコンパクトにすることができる。   FIG. 6A is a luminance distribution characteristic diagram showing the characteristic of luminance change in the cross-sectional direction along the arrangement direction. The luminance distribution characteristic 42 in the case where the conventional cold cathode fluorescent lamps without the frost processing shown in the figure are arranged has a small luminance and a high luminance, so that the luminance difference 42a between the luminance at the front of the lamp and the luminance at the center between the lamps is large. On the other hand, the luminance distribution characteristic 43 of the cold cathode fluorescent lamp according to the present embodiment subjected to the frost processing shown in the figure has a large luminance difference 43a compared with the luminance difference 42a of the conventional product, although the diffusion is large and the luminance is low. As a result, a surface illumination device with reduced luminance unevenness is realized. In a conventional surface illuminating device using a cold cathode fluorescent lamp that does not perform frost processing, it is necessary to arrange an optical member that reduces uneven brightness such as a diffusion plate in front of the cold cathode fluorescent lamp. In the backlight illumination device of the present invention using a cathode fluorescent lamp, these optical members are unnecessary, the cost can be reduced, and the illumination device can be made compact.

図3に本実施形態のフロスト加工を施した冷陰極蛍光ランプとフロスト加工を行なっていない従来の冷陰極蛍光ランプそれぞれの輝度特性、および全光束特性を示す。同図(a)に示す輝度特性図によれば、従来の冷陰極蛍光ランプの特性32に比べて、本実施形態のフロスト加工を施した冷陰極蛍光ランプの特性31は約7%の輝度の減少があり、同図(b)に示す全光束特性図では、本実施形態の冷陰極蛍光ランプも従来品も3mA〜8mAのランプ電流の範囲で同等の光束33が出力されていることが分かる。この特性の差異は、本実施形態の例えばフッ酸によるガラス管体の内壁に対するフロスト加工により生じる内壁の凹凸が、ランプで発生した光を広角に拡散させることによると考えられる。   FIG. 3 shows the luminance characteristics and the total luminous flux characteristics of the cold cathode fluorescent lamp subjected to the frost processing of the present embodiment and the conventional cold cathode fluorescent lamp not subjected to the frost processing. According to the luminance characteristic diagram shown in FIG. 6A, the characteristic 31 of the cold cathode fluorescent lamp subjected to the frost processing of the present embodiment has a luminance of about 7% as compared with the characteristic 32 of the conventional cold cathode fluorescent lamp. In the total luminous flux characteristic diagram shown in FIG. 4B, it can be seen that the cold cathode fluorescent lamp of this embodiment and the conventional product output the same luminous flux 33 in the range of the lamp current of 3 mA to 8 mA. . This difference in characteristics is considered to be due to the fact that the unevenness of the inner wall caused by the frost processing on the inner wall of the glass tube body by, for example, hydrofluoric acid in this embodiment diffuses the light generated by the lamp to a wide angle.

本発明の照明装置によれば、冷陰極蛍光ランプの配列方向における輝度ムラを減少し、均質の照明を行なうことができるため、液晶表示装置などのバックライトユニットに好適する。またこの場合、拡散のための光学部材を不要とすることもできるので、部材コストの削減と、装置のコンパクト化を可能とすることができる利点がある。   The illumination device of the present invention is suitable for a backlight unit such as a liquid crystal display device because luminance unevenness in the arrangement direction of the cold cathode fluorescent lamps can be reduced and uniform illumination can be performed. Further, in this case, since an optical member for diffusion can be eliminated, there are advantages that the cost of the member can be reduced and the apparatus can be made compact.

本発明の冷陰極蛍光ランプの構成を示す模式断面図。The schematic cross section which shows the structure of the cold cathode fluorescent lamp of this invention. 本発明の面照明装置の構成と輝度ムラ特性を示す図。The figure which shows the structure and brightness nonuniformity characteristic of the surface lighting apparatus of this invention. 本発明の冷陰極蛍光ランプおよび従来品の輝度特性図と全光束特性図。The brightness | luminance characteristic view and total luminous flux characteristic view of the cold cathode fluorescent lamp of this invention and a conventional product. 従来の冷陰極蛍光ランプの構成を示す断面図。Sectional drawing which shows the structure of the conventional cold cathode fluorescent lamp.

符号の説明Explanation of symbols

10、51・・・ガラス管体、
11・・・フロスト加工をした内壁面、
12、52・・・保護膜、
13、53・・・蛍光体層、
14、56・・・電極、
15、54・・・気密封装、
16・・・希ガス充填、
17、55・・・入線、
20・・・蛍光体剥がれ比較試験の結果表、
21、23・・・蛍光体剥がれ比較試験の従来品試料、
22、24・・・蛍光体剥がれ比較試験の本実施形態(フロスト加工)試料、
21a、22a、23a、24a・・・蛍光体剥がれ比較試験の保護膜の無い試料、
21b、22b、23b、24b・・・蛍光体剥がれ比較試験の保護膜の有る試料、
31・・・本実施形態の輝度特性、
32・・・従来品の輝度特性、
33・・・従来品と本実施形態のランプ全光束特性(特性が重なる)、
40・・・他の実施形態の照明装置(BLU)、
41a、41b〜41n・・・配列した冷陰極蛍光ランプ、
42・・・従来の冷陰極蛍光ランプを配列した照明装置の発光強度の分布、
42a・・・従来の冷陰極蛍光ランプを配列した照明装置の輝度ムラの大きさ、
43・・・フロスト加工による冷陰極蛍光ランプを配列した本実施形態の照明装置の発光強度の分布、
43a・・・本実施形態の照明装置の輝度ムラの大きさ。
10, 51 ... glass tube,
11 ... Frosted inner wall surface,
12, 52 ... protective film,
13, 53 ... phosphor layer,
14, 56 ... electrodes,
15, 54 ... Air-sealing equipment,
16 ... Noble gas filling,
17, 55 ... incoming line,
20 ... Results table of phosphor peeling comparison test,
21, 23... Conventional product sample for phosphor peeling comparison test,
22, 24... This embodiment of the phosphor peeling comparison test (frost processing) sample,
21a, 22a, 23a, 24a ... Samples without a protective film in the phosphor peeling comparison test,
21b, 22b, 23b, 24b ... Samples with a protective film for phosphor peeling comparison test,
31 ... Luminance characteristics of this embodiment,
32 ... Luminance characteristics of conventional products,
33 ... The total luminous flux characteristics (characteristics overlap) of the conventional product and this embodiment,
40: Lighting device (BLU) of another embodiment,
41a, 41b-41n ... arranged cold cathode fluorescent lamps,
42: Distribution of light emission intensity of a lighting device in which conventional cold cathode fluorescent lamps are arranged,
42a ... the size of luminance unevenness of the illumination device in which the conventional cold cathode fluorescent lamps are arranged,
43 ... Distribution of light emission intensity of the illumination device of the present embodiment in which cold cathode fluorescent lamps by frosting are arranged,
43a ... The magnitude of luminance unevenness of the illumination device of this embodiment.

Claims (6)

ガラス管体の内壁に形成されたフロスト処理層と、
このフロスト層の表面に形成した保護膜層と、
この保護膜層の表面に形成した蛍光体層と、
この蛍光体層を形成した前記ガラス管体の管内に充填した希ガスと、
希ガスが充填された前記ガラス管の両端にそれぞれ封装された1対の電極とからなることを特徴とする冷陰極蛍光ランプ。
A frosted layer formed on the inner wall of the glass tube,
A protective film layer formed on the surface of the frost layer;
A phosphor layer formed on the surface of the protective film layer;
A rare gas filled in the tube of the glass tube formed with the phosphor layer;
A cold cathode fluorescent lamp comprising a pair of electrodes sealed at both ends of the glass tube filled with a rare gas.
ガラス管体の内壁に形成されたフロスト処理層と、
このフロスト層の表面に形成した蛍光体層と、
この蛍光体層を形成した前記ガラス管体の管内に充填した希ガスと、
希ガスが充填された前記ガラス管の両端にそれぞれ封装された1対の電極とからなることを特徴とする冷陰極蛍光ランプ。
A frosted layer formed on the inner wall of the glass tube,
A phosphor layer formed on the surface of the frost layer;
A rare gas filled in the tube of the glass tube formed with the phosphor layer;
A cold cathode fluorescent lamp comprising a pair of electrodes sealed at both ends of the glass tube filled with a rare gas.
前記フロスト処理層は、フッ酸処理により形成したことを特徴とする請求項1または2記載の冷陰極蛍光ランプ。   The cold cathode fluorescent lamp according to claim 1 or 2, wherein the frosted layer is formed by a hydrofluoric acid treatment. ガラス管体の内壁にフロスト処理層を形成する工程と、
このフロスト処理層の表面に保護膜層を形成する工程と、
この保護膜層の表面に蛍光体層を形成する工程と、
この蛍光体層を形成した前記ガラス管体の管内に希ガスを充填する工程と、
希ガスが充填された前記ガラス管の両端に1対の電極をそれぞれ封装する工程を含むことを特徴とする冷陰極蛍光ランプ製造の方法。
Forming a frosted layer on the inner wall of the glass tube;
Forming a protective film layer on the surface of the frosted layer;
Forming a phosphor layer on the surface of the protective film layer;
Filling the rare earth gas into the tube of the glass tube with the phosphor layer formed;
A method of manufacturing a cold cathode fluorescent lamp, comprising a step of sealing a pair of electrodes on both ends of the glass tube filled with a rare gas.
ガラス管体の内壁にフロスト処理層を形成する工程と、
このフロスト処理層の表面に蛍光体層を形成する工程と、
この蛍光体層を形成した前記ガラス管体の管内に希ガスを充填する工程と、
希ガスが充填された前記ガラス管の両端に1対の電極をそれぞれ封装する工程を含むことを特徴とする冷陰極蛍光ランプ製造の方法。
Forming a frosted layer on the inner wall of the glass tube;
Forming a phosphor layer on the surface of the frosted layer;
Filling the rare earth gas into the tube of the glass tube with the phosphor layer formed;
A method of manufacturing a cold cathode fluorescent lamp, comprising a step of sealing a pair of electrodes on both ends of the glass tube filled with a rare gas.
請求項1乃至3いずれか記載の冷陰極蛍光ランプの複数を配列して設置したことを特徴とする照明装置。   4. An illuminating device comprising a plurality of the cold cathode fluorescent lamps according to claim 1 arranged in an array.
JP2004159043A 2004-05-28 2004-05-28 Cold cathode fluorescent lamp, manufacturing method of the same, and illumination device using the same Pending JP2005340066A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004159043A JP2005340066A (en) 2004-05-28 2004-05-28 Cold cathode fluorescent lamp, manufacturing method of the same, and illumination device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004159043A JP2005340066A (en) 2004-05-28 2004-05-28 Cold cathode fluorescent lamp, manufacturing method of the same, and illumination device using the same

Publications (1)

Publication Number Publication Date
JP2005340066A true JP2005340066A (en) 2005-12-08

Family

ID=35493377

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004159043A Pending JP2005340066A (en) 2004-05-28 2004-05-28 Cold cathode fluorescent lamp, manufacturing method of the same, and illumination device using the same

Country Status (1)

Country Link
JP (1) JP2005340066A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106224820B (en) * 2016-07-25 2019-05-31 连云港市一明医疗科技有限公司 A kind of high photosynthetic efficiency eye-protecting lamp

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106224820B (en) * 2016-07-25 2019-05-31 连云港市一明医疗科技有限公司 A kind of high photosynthetic efficiency eye-protecting lamp

Similar Documents

Publication Publication Date Title
US20020030437A1 (en) Light-emitting device and backlight for flat display
US7159999B2 (en) Backlight assembly and liquid crystal display apparatus having the same
JP2010097834A (en) Backlight unit
EP1298704B1 (en) Cold cathode fluorescent lamp with a double-tube construction
US20100220259A1 (en) Illumination device and liquid crystal display device
US7034446B2 (en) Fluorescent lamp composed of arrayed glass structures
JP2005340066A (en) Cold cathode fluorescent lamp, manufacturing method of the same, and illumination device using the same
Ko et al. Recent research trends in the development of new light sources for the backlight unit of liquid crystal display
EP1693881A1 (en) Flat fluorescent lamp
JPS61198189A (en) Lighting apparatus for liquid crystal display
JP2009123406A (en) External electrode type rare gas fluorescent lamp
TW200947502A (en) Discharge lamp for display device and backlight using the same
JP2008123817A (en) Fluorescent lamp, and manufacturing method of fluorescent lamp
KR100784710B1 (en) Back light unit using discharge gas emitting long wave length uv
JP2006202515A (en) Cold cathode fluorescent lamp
JP2001266795A (en) Fluorescent discharge tube, and illumination apparatus and liquid crystal display using the same
JP2002533885A (en) Planar lighting device and lighting method
US20060087240A1 (en) Light generating device, method of manufacturing the same, backlight assembly having the same and display device having the same
JP4735673B2 (en) Mercury emitter and method of manufacturing discharge lamp
JP2007095559A (en) Light emitting device and liquid crystal display using this
JP2003257378A (en) Light source device and liquid crystal display device
JPH09283081A (en) Cold cathode low pressure mercury vapor discharge lamp, display device and lighting system
Koo et al. Development and application of less‐mercury flat fluorescent lamps for backlights and general lighting
JP2006202514A (en) Flat cold-cathode fluorescent lamp
JP2003197147A (en) Cold-cathode low-pressure discharge tube