JP2005337915A - Electron source for electron beam irradiation device - Google Patents

Electron source for electron beam irradiation device Download PDF

Info

Publication number
JP2005337915A
JP2005337915A JP2004157769A JP2004157769A JP2005337915A JP 2005337915 A JP2005337915 A JP 2005337915A JP 2004157769 A JP2004157769 A JP 2004157769A JP 2004157769 A JP2004157769 A JP 2004157769A JP 2005337915 A JP2005337915 A JP 2005337915A
Authority
JP
Japan
Prior art keywords
extraction electrode
extraction
electron beam
electron
downstream
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004157769A
Other languages
Japanese (ja)
Other versions
JP4127244B2 (en
Inventor
Mutsumi Mizutani
睦 水谷
Keizo Akita
啓三 穐田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NHV Corp
Original Assignee
NHV Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NHV Corp filed Critical NHV Corp
Priority to JP2004157769A priority Critical patent/JP4127244B2/en
Publication of JP2005337915A publication Critical patent/JP2005337915A/en
Application granted granted Critical
Publication of JP4127244B2 publication Critical patent/JP4127244B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To prevent uniformity in a Y-directional electron beam distribution from getting worse caused by thermal deformation of an extraction electrode piece constituting an extraction electrode in the most downstream side. <P>SOLUTION: This electron source concerned in the present invention has one stage or more of the extraction electrodes along an extraction direction Z of an electron beam 14. The extraction electrode 12a in the most downstream side out of them is divided with clearances 26 Y-directionally in the plurality of extraction electrode pieces 22. Bent parts 30 with an end part bent toward an opposite direction of the electron beam extraction direction Z are formed respectively in the end parts of clearance 26 sides in the respective extraction electrode pieces 22 constituting the extraction electrode 12a. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明は、非走査型(エリア型とも呼ばれる)の電子線照射装置に用いられる電子源であって、フィラメントから放出された電子を電子線として引き出す引出し電極を1段以上有していて、電子線引出し方向の最下流側の引出し電極が分割構造の電子源に関し、より具体的には、前記最下流側の引出し電極の熱変形等に起因する電子線量分布の均一性悪化を防止する手段に関する。   The present invention is an electron source used in a non-scanning type (also called area type) electron beam irradiation apparatus, and has one or more extraction electrodes for extracting electrons emitted from a filament as an electron beam. The extraction electrode on the most downstream side in the line extraction direction relates to an electron source having a split structure, and more specifically, to a means for preventing deterioration in uniformity of electron dose distribution due to thermal deformation or the like of the extraction electrode on the most downstream side. .

この種の電子源を備える非走査型の電子線照射装置の一例を図7に示す。なお、これとほぼ同様の構造をした電子線照射装置が特許文献1に記載されている。   An example of a non-scanning electron beam irradiation apparatus provided with this type of electron source is shown in FIG. An electron beam irradiation apparatus having a structure substantially similar to this is described in Patent Document 1.

特開2003−4898号公報(段落0020、0021、図1、図2)Japanese Patent Laying-Open No. 2003-4898 (paragraphs 0020, 0021, FIGS. 1 and 2)

図7に示す電子線照射装置は、紙面の表裏方向(Y方向)に長い筒状の真空容器2内に、Y方向に長い筒状をした電界集中緩和用のシールド電極4を配置し、その中にY方向に長い電子源6を配置した構造をしている。   The electron beam irradiation apparatus shown in FIG. 7 arranges a shield electrode 4 for reducing electric field concentration that has a long cylindrical shape in the Y direction in a cylindrical vacuum vessel 2 that is long in the front and back direction (Y direction). It has a structure in which an electron source 6 long in the Y direction is arranged.

電子源6は、電子を放出するものであってX方向に伸びた複数本の線状(棒状とも言える)のフィラメント8を有しており、これらを当該X方向に直交する前記Y方向に、互いに平行にかつ互いに同一平面上に所定の間隔をあけて並べた構造をしている(図9も参照)。このフィラメント8を並べたY方向は、電子線14の照射幅方向とも呼ばれる。X方向は、被照射物搬送方向とも呼ばれる。   The electron source 6 emits electrons and has a plurality of linear (also referred to as rod-shaped) filaments 8 extending in the X direction, and these are in the Y direction perpendicular to the X direction. They are arranged parallel to each other and on the same plane with a predetermined interval (see also FIG. 9). The Y direction in which the filaments 8 are arranged is also called the irradiation width direction of the electron beam 14. The X direction is also referred to as an irradiation object transport direction.

電子源6は、更に、フィラメント8を並べた面に平行に配置されていて、各フィラメント8から放出された電子を電子線14として引き出す多孔の引出し電極10、12を有している。引出し電極10、12は、この例では、前記X方向およびY方向に直交する電子線引出し方向Zに互いに間をあけて2段に配置されている。両引出し電極10、12およびシールド電極4は、互いに電気的に同電位に接続されている。   The electron source 6 further includes porous extraction electrodes 10 and 12 that are arranged in parallel to the plane on which the filaments 8 are arranged and draw out electrons emitted from the filaments 8 as electron beams 14. In this example, the extraction electrodes 10 and 12 are arranged in two stages at intervals in the electron beam extraction direction Z perpendicular to the X direction and the Y direction. The two extraction electrodes 10 and 12 and the shield electrode 4 are electrically connected to each other at the same potential.

両引出し電極10、12は、多数の電子引出し孔(例えば図8の電子引出し孔24参照)をそれぞれ有している。この電子引出し孔の形状は、図8等に示すような円形に限定されるものではなく、四角等の他の形状でも良い(後述する図1等の実施形態においても同様)。   Both extraction electrodes 10 and 12 each have a large number of electron extraction holes (see, for example, the electron extraction hole 24 in FIG. 8). The shape of the electron extraction hole is not limited to a circular shape as shown in FIG. 8 or the like, and may be another shape such as a square (the same applies to the embodiment of FIG. 1 described later).

引出し電極は、1段(1枚)でも良いけれども、この例のように2段(2枚)の引出し電極10、12を設けると、上流側の引出し電極10によって、フィラメント8からの輻射熱が下流側の引出し電極12に達するのを減少させて、引出し電極12の熱変形を軽減することができると共に、下流側の引出し電極12によって、後述する加速電圧VA による加速電界が遮蔽されて、加速電界が上流側の熱変形しやすい引出し電極10に及ぶことを防止することができるので、電子線14の線量分布の均一性を良くすることができる。これと同様の目的で、互いに同電位の引出し電極を3段(3枚)以上設ける場合もある。 Although the extraction electrode may be one stage (one sheet), if two stages (two sheets) of extraction electrodes 10 and 12 are provided as in this example, the radiant heat from the filament 8 is downstream by the upstream extraction electrode 10. It is possible to reduce the thermal deformation of the extraction electrode 12 by reducing the reaching to the extraction electrode 12 on the side, and to accelerate the acceleration electric field due to the acceleration voltage V A described later by the extraction electrode 12 on the downstream side. Since it is possible to prevent the electric field from reaching the extraction electrode 10 which is easily thermally deformed on the upstream side, the uniformity of the dose distribution of the electron beam 14 can be improved. For the same purpose, there are cases where three or more extraction electrodes having the same potential are provided.

各フィラメント8の上部とシールド電極4との間には、図7に示す例のように、各フィラメント8から放出された電子を引出し電極10、12側へ押し戻すリフレクタ電極16を設けておいても良い。この例では、各フィラメント8は、図示しない支持手段によってリフレクタ電極16から電気的に絶縁して支持されている。引出し電極10は、複数の絶縁支柱18を介してリフレクタ電極16から支持されている。引出し電極12は、シールド電極4の開口部に取り付けられて、その周縁部がシールド電極4に固定されている。   A reflector electrode 16 may be provided between the upper part of each filament 8 and the shield electrode 4 so as to push back the electrons emitted from each filament 8 to the extraction electrodes 10 and 12 as shown in FIG. good. In this example, each filament 8 is supported by being electrically insulated from the reflector electrode 16 by a support means (not shown). The extraction electrode 10 is supported from the reflector electrode 16 via a plurality of insulating columns 18. The extraction electrode 12 is attached to the opening of the shield electrode 4, and the peripheral edge thereof is fixed to the shield electrode 4.

シールド電極4、引出し電極10および12は前記のように互いに同電位に接続されており、それらと各フィラメント8との間には、フィラメント8側を負にして、電子線14の引出し用の直流の引出し電圧VE が図示しない引出し電源から印加される。また、真空容器2の開口部には真空容器2と同電位の窓箔20が設けられており、これらと引出し電極12等との間には、引出し電極12側を負にして、電子線14の加速用の直流の加速電圧VA が図示しない加速電源から印加される。 The shield electrode 4 and the extraction electrodes 10 and 12 are connected to each other at the same potential as described above, and between them and each filament 8, the filament 8 side is negative, and the direct current for extracting the electron beam 14 is used. The extraction voltage V E is applied from an extraction power source (not shown). Further, a window foil 20 having the same potential as that of the vacuum container 2 is provided at the opening of the vacuum container 2, and the extraction electrode 12 side is negative between these window foils 20 and the electron beam 14. A DC acceleration voltage V A for acceleration is applied from an acceleration power source (not shown).

このようにして、電子源6から引き出され、かつ加速された電子線14は、真空容器2の内外の雰囲気を分離する窓箔20を透過して真空容器2外に取り出され、被照射物(図示省略)に照射されて、それの改質等の処理に供される。   The electron beam 14 drawn out and accelerated from the electron source 6 in this way passes through the window foil 20 that separates the atmosphere inside and outside the vacuum vessel 2 and is taken out of the vacuum vessel 2 to be irradiated ( (Not shown) and subjected to a process such as reforming.

ところで、引出し電極を上記のように2段に配置しても、下流側の引出し電極12は、依然として、フィラメント8からの熱および電子引出し孔24以外の部分に当たった電子線14によって加熱される。前記Y方向の長さを短くして引出し電極12の上記加熱による熱変形を軽減するために、引出し電極12は、図8に示す例のように、Y方向において複数の引出し電極片22に隙間26を設けて分割されている。分割部の、即ち隣り合う引出し電極片22間の隙間26は、引出し電極片22のY方向の熱膨張を吸収することができる幅を有している。但し、電気的には、全ての引出し電極片22は図示しない配線によって互いに同電位に接続されており、引出し電極12は全体として見れば1枚の電極として働く。分割数は、即ち引出し電極片22の数は、図示例のように三つに限られるものではない。   By the way, even if the extraction electrodes are arranged in two stages as described above, the extraction electrode 12 on the downstream side is still heated by the heat from the filament 8 and the electron beam 14 that has hit the portions other than the electron extraction holes 24. . In order to reduce the length in the Y direction and reduce the thermal deformation of the extraction electrode 12 due to the heating, the extraction electrode 12 has gaps between the plurality of extraction electrode pieces 22 in the Y direction, as shown in FIG. 26 is divided. A gap 26 between the adjacent extraction electrode pieces 22 in the divided portion has a width that can absorb the thermal expansion of the extraction electrode piece 22 in the Y direction. However, electrically, all the extraction electrode pieces 22 are connected to each other at the same potential by a wiring (not shown), and the extraction electrode 12 functions as one electrode as a whole. The number of divisions, that is, the number of extraction electrode pieces 22 is not limited to three as in the illustrated example.

上流側の引出し電極10も、フィラメント8からの熱および電子引出し孔以外の部分に当たった電子によって引出し電極12よりも強く加熱される。それによる熱変形を軽減するために、通常は引出し電極12と同様に前記Y方向において複数の引出し電極片に隙間を設けて分割されている。分割数は引出し電極12よりも多くする場合が多い。   The extraction electrode 10 on the upstream side is also heated more strongly than the extraction electrode 12 by heat from the filament 8 and electrons hitting a portion other than the electron extraction hole. In order to reduce the thermal deformation caused by this, normally, like the extraction electrode 12, a plurality of extraction electrode pieces are provided with gaps in the Y direction. In many cases, the number of divisions is larger than that of the extraction electrode 12.

上記下流側の引出し電極12に着目すると、当該引出し電極12のすぐ下流側には、より具体的には引出し電極12とそれに対面する前記窓箔20との間には、前記加速電圧VA による加速電界が形成される。この加速電界の等電位面28の例を図9に示す。なお、図9では、引出し電極10、12の電子引出し孔の図示を省略している(図3、図5においても同様)。 Paying attention to the extraction electrode 12 on the downstream side, more specifically, on the downstream side of the extraction electrode 12, more specifically between the extraction electrode 12 and the window foil 20 facing it, due to the acceleration voltage V A. An acceleration electric field is formed. An example of the equipotential surface 28 of this acceleration electric field is shown in FIG. In FIG. 9, the electron extraction holes of the extraction electrodes 10 and 12 are not shown (the same applies to FIGS. 3 and 5).

引出し電極12を上記のように複数の引出し電極片22に分割すると、一体の場合に比べてY方向の長さが短くなって熱変形は軽減されるけれども、各引出し電極片22は依然として加熱されて熱変形を起こす。特に、各引出し電極片22の隙間26側の端部は、他の物に固定されていない自由端であるので熱変形を起こしやすい。その状態の一例を図8中に二点鎖線22aで示す。ここでは、下流側に凸状に熱変形した例を示している。この熱変形の方向や大きさは、各引出し電極片22が置かれている状況が通常は互いに異なるので、通常は各引出し電極片22によって互いに異なる。その結果、隣り合う引出し電極片22間において段差が生じることが起こる。図9はその一例の断面を拡大して示すものである。   When the extraction electrode 12 is divided into a plurality of extraction electrode pieces 22 as described above, the length in the Y direction is shortened and thermal deformation is reduced as compared with the case where the extraction electrode pieces 22 are integrated, but each extraction electrode piece 22 is still heated. Cause thermal deformation. In particular, the end portion on the gap 26 side of each extraction electrode piece 22 is a free end that is not fixed to another object, and thus tends to be thermally deformed. An example of this state is shown by a two-dot chain line 22a in FIG. Here, the example which carried out the heat deformation in the convex shape downstream is shown. The direction and magnitude of this thermal deformation usually differ from each other in the situation in which each extraction electrode piece 22 is placed, and therefore usually differs from one extraction electrode piece 22 to another. As a result, a step occurs between adjacent extraction electrode pieces 22. FIG. 9 shows an enlarged cross section of an example.

上記のように段差が生じると、図9に示す例のように、隣り合う引出し電極片22間の隙間26付近の加速電界(等電位面28を参照)が乱れて不均一になり、引出し電極12から引き出されて加速される電子線14の一部分が例えば図示例のようにY方向に曲げられて、電子線14の加速方向が不均一になり、その結果、電子線14のY方向における線量分布の均一性が悪化する。   When the step is generated as described above, the acceleration electric field (see the equipotential surface 28) in the vicinity of the gap 26 between the adjacent extraction electrode pieces 22 is disturbed and becomes non-uniform as shown in the example shown in FIG. A part of the electron beam 14 extracted from 12 and accelerated is bent, for example, in the Y direction as shown in the example, and the acceleration direction of the electron beam 14 becomes non-uniform. As a result, the dose of the electron beam 14 in the Y direction The uniformity of distribution deteriorates.

上記のような課題は、引出し電極が1段の場合にも、上記例のように2段の場合にも、あるいは3段以上の場合にも存在する。即ち、1段以上の引出し電極の最下流側の引出し電極が上記のように分割されている場合に存在する。引出し電極が何段であっても、最下流側の引出し電極のすぐ下流側に上記加速電界が形成され、それが上記段差によって乱されるからである。1段の場合は、当該1段の引出し電極は最下流側の引出し電極でもあり(換言すれば最下流側の引出し電極と見ることもでき)、2段の場合は下流側の引出し電極12が最下流側の引出し電極である。この最下流側の引出し電極は、前記窓箔20に対面する引出し電極と言うこともできる。また、複数段の場合の最下流側の引出し電極は、上記のように加速電界が印加されるので、加速電極とも呼ばれる。   The above-described problems exist even when the number of extraction electrodes is one, when the extraction electrode is two, as in the above example, or when there are three or more. That is, it exists when the most downstream extraction electrode of one or more extraction electrodes is divided as described above. This is because, regardless of the number of extraction electrodes, the acceleration electric field is formed immediately downstream of the most downstream extraction electrode and is disturbed by the step. In the case of one stage, the one-stage extraction electrode is also the most downstream extraction electrode (in other words, it can be regarded as the most downstream extraction electrode). In the case of two stages, the downstream extraction electrode 12 It is the extraction electrode on the most downstream side. It can be said that the most downstream extraction electrode is an extraction electrode facing the window foil 20. Further, the most downstream extraction electrode in the case of a plurality of stages is also referred to as an acceleration electrode because an acceleration electric field is applied as described above.

そこでこの発明は、最下流側の引出し電極を構成する引出し電極片の熱変形に起因するY方向の電子線量分布の均一性悪化を防止することを主たる目的としている。   Accordingly, the main object of the present invention is to prevent the deterioration of the uniformity of the electron dose distribution in the Y direction due to the thermal deformation of the extraction electrode piece constituting the most downstream extraction electrode.

この発明に係る電子源は、前記最下流側の引出し電極を構成する各引出し電極片の前記隙間側の端部に、当該端部を電子線引出し方向とは反対方向に折り曲げた折曲げ部をそれぞれ形成していることを特徴としている。   In the electron source according to the present invention, a bent portion obtained by bending the end portion in the direction opposite to the electron beam extraction direction is formed at the end portion on the gap side of each extraction electrode piece constituting the most downstream extraction electrode. It is characterized by forming each.

上記構成によれば、折曲げ部によって引出し電極片の断面係数が大きくなって機械的強度が増大するので、各引出し電極片の熱変形を小さくして、特に各引出し電極片の前記隙間側の端部の熱変形を小さくして、隣り合う引出し電極片間において段差が生じるのを防止することができる。   According to the above configuration, since the sectional modulus of the extraction electrode piece is increased by the bent portion and the mechanical strength is increased, the thermal deformation of each extraction electrode piece is reduced, and particularly on the gap side of each extraction electrode piece. It is possible to reduce the thermal deformation of the end portion and prevent a step from being generated between adjacent extraction electrode pieces.

前記引出し電極片の隣り合う折曲げ部同士間に、それぞれ、一方の折曲げ部に固定され他方の折曲げ部の穴を前記Y方向に伸縮自在に貫通している複数の導電棒を、前記X方向に並べて設けておいても良い。   A plurality of conductive rods that are fixed to one bent portion and extend through the holes of the other bent portion so as to be stretchable in the Y direction between adjacent bent portions of the extraction electrode piece, They may be provided side by side in the X direction.

請求項1に記載の発明によれば、折曲げ部によって引出し電極片の断面係数が大きくなって機械的強度が増大するので、各引出し電極片の熱変形を小さくして、特に各引出し電極片の前記隙間側の端部の熱変形を小さくして、隣り合う引出し電極片間において段差が生じるのを防止することができる。その結果、最下流側の引出し電極のすぐ下流側に形成される加速電界が乱れて不均一になるのを防止することができるので、Y方向の電子線量分布の均一性悪化を防止することができる。   According to the first aspect of the present invention, since the sectional modulus of the extraction electrode piece is increased by the bent portion and the mechanical strength is increased, the thermal deformation of each extraction electrode piece is reduced, and in particular each extraction electrode piece. It is possible to reduce the thermal deformation of the end portion on the gap side and to prevent a step from occurring between adjacent extraction electrode pieces. As a result, it is possible to prevent the accelerating electric field formed immediately downstream of the most downstream extraction electrode from being disturbed and non-uniform, thereby preventing deterioration in the uniformity of the electron dose distribution in the Y direction. it can.

請求項2に記載の発明によれば、前記導電棒によって、隣り合う引出し電極片は上下方向には互いにずれないように機械的に連結された構造になるので、隣り合う引出し電極片間において段差が生じるのをより確実に防止することができる。その結果、段差発生に起因するY方向の電子線量分布の均一性悪化をより確実に防止することができる。   According to the second aspect of the present invention, since the adjacent extraction electrode pieces are mechanically connected by the conductive rods so as not to deviate from each other in the vertical direction, there is a step between the adjacent extraction electrode pieces. Can be prevented more reliably. As a result, it is possible to more reliably prevent the deterioration of the uniformity of the electron dose distribution in the Y direction due to the generation of the step.

しかも、前記導電棒によって、加速電界が引出し電極片間の隙間に入り込むのを阻止することができるので、当該隙間に加速電界が入り込んで加速電界が乱れて不均一になり、これが原因でY方向の電子線量分布の均一性が悪化することを防止することができる。   In addition, since the accelerating electric field can be prevented from entering the gap between the extraction electrode pieces by the conductive rod, the accelerating electric field enters the gap and the accelerating electric field is disturbed and becomes non-uniform. It is possible to prevent the uniformity of the electron dose distribution from deteriorating.

従って、上記二つの効果が合わさって、Y方向の電子線量分布の均一性悪化をより確実に防止することができる。   Therefore, the above two effects are combined, and the deterioration of the uniformity of the electron dose distribution in the Y direction can be prevented more reliably.

図1は、この発明に係る電子源を構成する最下流側の引出し電極の一例を示す斜視図である。図2は、図1の引出し電極を拡大して部分的に示す斜視図である。図8に示した従来例と同一または相当する部分には同一符号を付し、以下においては当該従来例との相違点を主に説明する。また、前記引出し電極12を以下に述べる引出し電極12aで置き換えた以外の電子源6の構成および電子線照射装置全体の構成の例は、前記図7およびその説明と同様であるのでそれらを参照するものとし、ここでは重複説明を省略する。   FIG. 1 is a perspective view showing an example of the most downstream extraction electrode constituting the electron source according to the present invention. FIG. 2 is a partially enlarged perspective view of the extraction electrode of FIG. Portions that are the same as or correspond to those in the conventional example shown in FIG. 8 are denoted by the same reference numerals, and differences from the conventional example will be mainly described below. Further, the configuration of the electron source 6 and the configuration of the entire electron beam irradiation apparatus other than the extraction electrode 12a replaced with the extraction electrode 12a described below are the same as those in FIG. Here, redundant description is omitted.

この図1および図2に示す引出し電極12aは、前記引出し電極12に替わるものであり、当該引出し電極12aを構成する前述したような各引出し電極片22の隙間26側の端部に、当該端部を電子線引出し方向Zとは反対方向に断面L形に折り曲げた折曲げ部30をそれぞれ形成している。各折曲げ部30は、隙間26に沿って前記X方向に平行に伸びている。   The extraction electrode 12a shown in FIGS. 1 and 2 is an alternative to the extraction electrode 12, and the end of each extraction electrode piece 22 constituting the extraction electrode 12a is connected to the end on the gap 26 side. The bent portions 30 are formed by bending the portions in the L-shaped cross section in the direction opposite to the electron beam extraction direction Z. Each bent portion 30 extends along the gap 26 in parallel with the X direction.

各折曲げ部30は、図1に示す例のように、引出し電極片22のX方向の一端から他端まで連続して設けるのが、加工が簡単でしかも強度が一番大きくなるので好ましいけれども、必ずしもそれに限られるものではない。必要に応じて一部分を省略しても良い。   As shown in the example shown in FIG. 1, it is preferable that each bent portion 30 is provided continuously from one end to the other end in the X direction of the extraction electrode piece 22 because the processing is simple and the strength is maximized. However, it is not necessarily limited to that. A part may be omitted if necessary.

引出し電極片22の端部を電子線引出し方向Zとは反対方向に折り曲げて折曲げ部30を形成しているのは、当該折曲げ部30によって、引出し電極12aのすぐ下流側に形成される前記加速電界を乱さないようにするためである。引出し電極12aの上流側に前記引出し電極10が存在しても、両電極10、12aは前記のように同電位であるから、折曲げ部30によって両電極10、12a間の電界を乱すということは起こらない。   The bent portion 30 is formed by bending the end portion of the extraction electrode piece 22 in the direction opposite to the electron beam extraction direction Z. The bent portion 30 is formed immediately downstream of the extraction electrode 12a. This is to prevent the acceleration electric field from being disturbed. Even if the extraction electrode 10 exists on the upstream side of the extraction electrode 12a, both the electrodes 10 and 12a are at the same potential as described above. Does not happen.

なお、引出し電極片22の隙間26に面していないY方向の端部には、折曲げ部30を設けなくても良く、図1の例では設けていない。当該端部は、例えば前述したようにシールド電極4に固定されるからである。   Note that the bent portion 30 may not be provided at the end portion in the Y direction that does not face the gap 26 of the extraction electrode piece 22, and is not provided in the example of FIG. This is because the end is fixed to the shield electrode 4 as described above, for example.

上記構成によれば、折曲げ部30によって引出し電極片22の断面係数が大きくなって機械的強度が増大するので、各引出し電極片22の熱変形を小さくして、特に各引出し電極片22の前記隙間26側の端部の熱変形を小さくして、隣り合う引出し電極片22間において段差が生じるのを防止することができる。その結果、この引出し電極12aのすぐ下流側に形成される前記加速電界が乱れて不均一になるのを防止することができるので、電子線14のY方向における線量分布の均一性悪化を防止することができる。   According to the above configuration, the bending modulus 30 increases the sectional modulus of the extraction electrode piece 22 and increases the mechanical strength. Therefore, the thermal deformation of each extraction electrode piece 22 is reduced, and in particular, The thermal deformation at the end on the gap 26 side can be reduced to prevent a step between adjacent extraction electrode pieces 22. As a result, it is possible to prevent the accelerating electric field formed immediately downstream of the extraction electrode 12a from being disturbed and non-uniform, thereby preventing deterioration of the uniformity of the dose distribution of the electron beam 14 in the Y direction. be able to.

この引出し電極12aは、前記引出し電極12と同様に、2段の引出し電極の下流側(即ち最下流側)の引出し電極の場合の例であるけれども、前述したように、引出し電極が1段の場合は、その引出し電極が最下流側の引出し電極でもあるので、当該引出し電極を構成する引出し電極片に上記のような折曲げ部30を設けておけば良い。また、引出し電極が3段以上の場合は、最下流側の引出し電極を構成する引出し電極片に上記のような折曲げ部30を設けておけば良い。   This extraction electrode 12a is an example in the case of the extraction electrode on the downstream side (that is, the most downstream side) of the two-stage extraction electrode, similarly to the extraction electrode 12, but as described above, the extraction electrode has one stage. In this case, since the extraction electrode is also the extraction electrode on the most downstream side, the bent portion 30 as described above may be provided in the extraction electrode piece constituting the extraction electrode. When the number of extraction electrodes is three or more, the bent portion 30 as described above may be provided on the extraction electrode piece constituting the most downstream extraction electrode.

図2を参照して、各隙間26の幅aは、前記のように、引出し電極片22のY方向の熱膨張を吸収することができる大きさにしている。その両側の各折曲げ部30の高さbは、機械的強度向上の観点からはある程度大きいのが好ましい。但し、引出し電極が1段の場合は、即ち前記引出し電極10が無くてこの引出し電極12aが1段目となりそのすぐ上側に前記フィラメント8が位置する場合は、a≧bにするのが好ましい。   Referring to FIG. 2, the width a of each gap 26 is set to a size capable of absorbing the thermal expansion in the Y direction of the extraction electrode piece 22 as described above. The height b of each bent portion 30 on both sides is preferably large to some extent from the viewpoint of improving mechanical strength. However, when the extraction electrode has one stage, that is, when there is no extraction electrode 10 and the extraction electrode 12a is in the first stage and the filament 8 is positioned immediately above, it is preferable that a ≧ b.

これは、フィラメント8は前述したように所定の間隔をあけて並設されていて(例えば図3参照)、各フィラメント8から放出される電子の殆どは湾曲して1段目の引出し電極(この場合は上記引出し電極12a)に引きつけられることになり、その際に、a≧bにしておくと、上記電子が隙間26を通して引き出される際に折曲げ部30が邪魔になりにくく、隙間26を電子引き出しにより有効に利用することができるからである。引出し電極が複数段の場合は、最下流側の引出し電極12aに入る電子は電子線引出し方向Zにほぼ平行になっているので、必ずしもa≧bにする必要はない。   This is because the filaments 8 are arranged side by side at a predetermined interval as described above (see, for example, FIG. 3), and most of the electrons emitted from each filament 8 are curved to form a first-stage extraction electrode (this In such a case, if a ≧ b is set, the bent portion 30 is unlikely to become an obstacle when the electrons are drawn through the gap 26, and the gap 26 is This is because it can be used effectively by drawing. When there are a plurality of extraction electrodes, the electrons entering the most downstream extraction electrode 12a are substantially parallel to the electron beam extraction direction Z, and therefore it is not always necessary to satisfy a ≧ b.

ところで、前記図9およびその説明では、各隙間26に加速電界が入り込むことは無視していたが、詳細に見ると、図3に示す例のように、引出し電極12aにおける段差の有無に拘わらず、各隙間26に加速電界が入り込み、各隙間26付近の加速電界が乱れて不均一になり、隙間26付近から引き出されて加速される電子線14が曲げられ、これも電子線14のY方向における線量分布の均一性を悪化させる要因になる。そこで、このような課題をも解決することができる手段を次に説明する。   By the way, in FIG. 9 and the description thereof, it is ignored that the acceleration electric field enters each gap 26. However, in detail, as in the example shown in FIG. 3, regardless of the presence or absence of a step in the extraction electrode 12a. The acceleration electric field enters each gap 26, the acceleration electric field in the vicinity of each gap 26 becomes disordered and becomes non-uniform, and the electron beam 14 drawn out and accelerated from the vicinity of the gap 26 is bent, which is also the Y direction of the electron beam 14. It becomes a factor which deteriorates the uniformity of the dose distribution in. Therefore, means capable of solving such a problem will be described next.

図4に示す引出し電極12aにおいては、各引出し電極片22の隣り合う折曲げ部30同士間に、それぞれ、一方(図4では右側)の折曲げ部30に固定され、他方(図4では左側)の折曲げ部30に設けられた穴34を前記Y方向に伸縮自在に貫通している複数の導電棒32を、前記X方向に並べて設けている。   In the extraction electrode 12a shown in FIG. 4, between the adjacent bending parts 30 of each extraction electrode piece 22, it fixes to one bending part 30 (right side in FIG. 4), and the other (left side in FIG. 4). ), A plurality of conductive rods 32 penetrating through the holes 34 provided in the bent portion 30 in the Y direction are provided side by side in the X direction.

この複数の導電棒32は、X方向に互いに等間隔で配置するのが好ましい。そのようにすると、後述する加速電界の隙間26への入り込み阻止作用を均一にすることができる。各導電棒32は、隙間26の幅a(図2参照)よりも長くしている。引出し電極片22の熱膨張による隙間26の収縮に対応するためである。各導電棒32の材質は、折曲げ部30を含めた引出し電極片22と同じ材質にするのが好ましい。そのようにすると、引出し電極片22と熱膨張率等が同じになるからである。例えば、ニッケル、ステンレス鋼、モリブデン等である。   The plurality of conductive bars 32 are preferably arranged at equal intervals in the X direction. If it does so, the penetration | inhibition effect | action to the clearance gap 26 of the acceleration electric field mentioned later can be made uniform. Each conductive rod 32 is longer than the width a of the gap 26 (see FIG. 2). This is to cope with contraction of the gap 26 due to thermal expansion of the extraction electrode piece 22. The material of each conductive rod 32 is preferably the same material as that of the extraction electrode piece 22 including the bent portion 30. This is because the coefficient of thermal expansion is the same as that of the extraction electrode piece 22. For example, nickel, stainless steel, molybdenum and the like.

各穴34は、各導電棒32に対応する位置に設けられており、その大きさは、導電棒32のY方向の伸縮を許容できる範囲で小さくするのが好ましい。そのようにすると、穴34の外周部と導電棒32との間の隙間が小さくなるので、後述する段差発生防止の作用効果をより高めることができる。   Each hole 34 is provided at a position corresponding to each conductive rod 32, and the size thereof is preferably reduced within a range in which expansion and contraction of the conductive rod 32 in the Y direction can be allowed. By doing so, the gap between the outer peripheral portion of the hole 34 and the conductive rod 32 becomes small, so that the effect of preventing the later-described step generation can be further enhanced.

上記のような複数の導電棒32を設けると、各導電棒32は一方の折曲げ部30に固定されていて引出し電極片22と同電位であるので、当該導電棒32によって、図5に示す例のように、加速電界が各隙間26に入り込むのを阻止することができる。その結果、各隙間26に加速電界が入り込んで加速電界が乱れて不均一になり、これが原因で電子線14のY方向における線量分布の均一性が悪化することを防止することができる。   When a plurality of conductive bars 32 as described above are provided, each conductive bar 32 is fixed to one bent portion 30 and has the same potential as the extraction electrode piece 22. As an example, the accelerating electric field can be prevented from entering each gap 26. As a result, an accelerating electric field enters each gap 26 and the accelerating electric field is disturbed and becomes non-uniform. This can prevent the uniformity of the dose distribution in the Y direction of the electron beam 14 from deteriorating.

しかも、導電棒32によって、隣り合う引出し電極片22は上下方向には互いにずれないように機械的に連結された構造になるので、隣り合う引出し電極片22間において段差が生じるのをより確実に防止することができる。その結果、段差発生に起因する電子線14のY方向における線量分布の均一性悪化をより確実に防止することができる。   Moreover, since the adjacent extraction electrode pieces 22 are mechanically connected to each other by the conductive rod 32 so as not to be displaced in the vertical direction, it is more sure that a step is generated between the adjacent extraction electrode pieces 22. Can be prevented. As a result, it is possible to more reliably prevent the deterioration of the uniformity of the dose distribution in the Y direction of the electron beam 14 due to the generation of the step.

従って、上記二つの効果が合わさって、電子線14のY方向における線量分布の均一性悪化をより確実に防止することができる。   Therefore, the above two effects are combined, and the deterioration of the uniformity of the dose distribution in the Y direction of the electron beam 14 can be prevented more reliably.

なお、各導電棒32は、一方の折曲げ部30に固定され他方の折曲げ部30の穴34をY方向に伸縮自在に貫通しているので、引出し電極片22のY方向の熱膨張を許容することができる。従って、引出し電極12aをY方向において複数の引出し電極片22に分割した本来の前記作用効果(即ち引出し電極12aの熱変形の軽減)を減ずるものではない。   Each conductive bar 32 is fixed to one bent portion 30 and penetrates the hole 34 of the other bent portion 30 in the Y direction so that it can expand and contract in the Y direction. Can be tolerated. Therefore, the original effect (that is, reduction of thermal deformation of the extraction electrode 12a) obtained by dividing the extraction electrode 12a into the plurality of extraction electrode pieces 22 in the Y direction is not reduced.

図4の例は、全ての導電棒32を、同一の折曲げ部30に固定し、その反対側の折曲げ部30の穴34を貫通させているけれども、図6に示す例のように、各導電棒32の固定と穴34の貫通とが交互になるようにしても良い。そのようにしても、図4の例の場合と同様の作用効果を奏する。   In the example of FIG. 4, all the conductive bars 32 are fixed to the same bent portion 30 and penetrated through the hole 34 of the opposite bent portion 30, but as in the example shown in FIG. 6, The fixing of the conductive bars 32 and the penetration of the holes 34 may be alternated. Even if it does so, there exists an effect similar to the case of the example of FIG.

この発明に係る電子源を構成する最下流側の引出し電極の一例を示す斜視図である。It is a perspective view which shows an example of the extraction electrode of the most downstream side which comprises the electron source which concerns on this invention. 図1の引出し電極を拡大して部分的に示す斜視図である。It is a perspective view which expands and shows partially the extraction electrode of FIG. 図2の引出し電極を用いた場合の電子線の軌道の例を示す図である。It is a figure which shows the example of the track | orbit of an electron beam at the time of using the extraction electrode of FIG. この発明に係る電子源を構成する最下流側の引出し電極の他の例を拡大して部分的に示す斜視図である。It is a perspective view which expands and partially shows the other example of the extraction electrode of the most downstream side which comprises the electron source which concerns on this invention. 図4の引出し電極を用いた場合の電子線の軌道の例を示す図である。It is a figure which shows the example of the track | orbit of an electron beam at the time of using the extraction electrode of FIG. この発明に係る電子源を構成する最下流側の引出し電極の更に他の例を拡大して部分的に示す斜視図である。It is a perspective view which expands and partially shows other example of the extraction electrode of the most downstream side which comprises the electron source which concerns on this invention. 電子源を備える非走査型の電子線照射装置の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of a non-scanning type electron beam irradiation apparatus provided with an electron source. 従来の電子源を構成する下流側の引出し電極の一例を示す斜視図である。It is a perspective view which shows an example of the extraction electrode of the downstream which comprises the conventional electron source. 図8の引出し電極を用いた場合の電子線の軌道の例を示す図である。It is a figure which shows the example of the track | orbit of an electron beam at the time of using the extraction electrode of FIG.

符号の説明Explanation of symbols

6 電子源
8 フィラメント
10 引出し電極
12a 引出し電極(最下流側の引出し電極)
14 電子線
22 引出し電極片
26 隙間
30 折曲げ部
32 導電棒
34 穴
6 Electron source 8 Filament 10 Extraction electrode 12a Extraction electrode (the most downstream extraction electrode)
14 Electron beam 22 Extraction electrode piece 26 Gap 30 Bending part 32 Conductive rod 34 Hole

Claims (2)

各々はX方向に伸びていて電子を放出するものであってしかも互いに同一平面上にかつ前記X方向と直交するY方向に並べて配置された複数のフィラメントと、当該フィラメントに沿って配置されていて当該フィラメントから放出された電子を電子線として引き出す引出し電極とを備えており、かつ当該引出し電極は互いに同電位のものが電子線引出し方向に1段以上に配置されていて、電子線引出し方向の最下流側の引出し電極は前記Y方向において複数の引出し電極片に隙間を設けて分割されている電子源において、
前記最下流側の引出し電極を構成する各引出し電極片の前記隙間側の端部に、当該端部を電子線引出し方向とは反対方向に折り曲げた折曲げ部をそれぞれ形成していることを特徴とする電子線照射装置用の電子源。
Each of them extends in the X direction and emits electrons, and is arranged along the filament with a plurality of filaments arranged on the same plane and arranged in the Y direction orthogonal to the X direction. And an extraction electrode for extracting electrons emitted from the filament as an electron beam, and the extraction electrodes having the same potential are arranged in one or more stages in the electron beam extraction direction. In the electron source in which the most downstream extraction electrode is divided in the Y direction by providing a plurality of extraction electrode pieces with gaps,
Bending portions are formed by bending the end portions in the direction opposite to the electron beam extraction direction at the end portions on the gap side of the extraction electrode pieces constituting the most downstream extraction electrode. An electron source for an electron beam irradiation apparatus.
前記引出し電極片の隣り合う折曲げ部同士間に、それぞれ、一方の折曲げ部に固定され他方の折曲げ部の穴を前記Y方向に伸縮自在に貫通している複数の導電棒を、前記X方向に並べて設けている請求項1記載の電子線照射装置用の電子源。   A plurality of conductive rods that are fixed to one bent portion and extend through the holes of the other bent portion so as to be stretchable in the Y direction between adjacent bent portions of the extraction electrode piece, 2. The electron source for an electron beam irradiation apparatus according to claim 1, wherein the electron source is arranged in the X direction.
JP2004157769A 2004-05-27 2004-05-27 Electron source for electron beam irradiation equipment Expired - Fee Related JP4127244B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004157769A JP4127244B2 (en) 2004-05-27 2004-05-27 Electron source for electron beam irradiation equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004157769A JP4127244B2 (en) 2004-05-27 2004-05-27 Electron source for electron beam irradiation equipment

Publications (2)

Publication Number Publication Date
JP2005337915A true JP2005337915A (en) 2005-12-08
JP4127244B2 JP4127244B2 (en) 2008-07-30

Family

ID=35491654

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004157769A Expired - Fee Related JP4127244B2 (en) 2004-05-27 2004-05-27 Electron source for electron beam irradiation equipment

Country Status (1)

Country Link
JP (1) JP4127244B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007064918A (en) * 2005-09-02 2007-03-15 Bridgestone Corp Electron beam irradiation device
US7894524B2 (en) 2001-07-11 2011-02-22 Dolby Laboratories Licensing Corporation Interpolation of video compression frames

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7894524B2 (en) 2001-07-11 2011-02-22 Dolby Laboratories Licensing Corporation Interpolation of video compression frames
US8050323B2 (en) 2001-07-11 2011-11-01 Dolby Laboratories Licensing Corporation Interpolation of video compression frames
US8477851B2 (en) 2001-07-11 2013-07-02 Dolby Laboratories Licensing Corporation Video image compression using unequal weights
JP2007064918A (en) * 2005-09-02 2007-03-15 Bridgestone Corp Electron beam irradiation device
JP4648802B2 (en) * 2005-09-02 2011-03-09 株式会社ブリヂストン Electron beam irradiation device

Also Published As

Publication number Publication date
JP4127244B2 (en) 2008-07-30

Similar Documents

Publication Publication Date Title
CN103311079B (en) X-ray tube
JP4653649B2 (en) Multi-beam klystron equipment
US9666401B2 (en) Field-emission device with improved beams-convergence
JP4127244B2 (en) Electron source for electron beam irradiation equipment
JP2008010249A (en) Ion beam irradiation device
US9711321B2 (en) Low aberration, high intensity electron beam for X-ray tubes
JP4556678B2 (en) Electron beam irradiation device
JP2006003300A (en) Electron source for electron beam irradiation equipment
Watanabe et al. Development of a large volume negative-ion source for ITER neutral beam injector
KR20130047674A (en) Ion beam extraction electrode and ion source
US8907554B2 (en) Assembly and method for reducing foil wrinkles
JP2003004898A (en) Electron source
JP4648802B2 (en) Electron beam irradiation device
JP2996242B1 (en) Extraction electrode
KR102324260B1 (en) X-ray source with carbon nano tube and gate linearly aligned to each other
CN210274658U (en) Electron curtain accelerator and cathode assembly
JP3536821B2 (en) Electron beam irradiation device
JP2002122700A (en) Electron source
JP2006198532A (en) Electron beam irradiation apparatus
US11335530B2 (en) Electron emission structure and X-ray tube including the same
JP2003066199A (en) Electron source
JP3896809B2 (en) Electron beam irradiation device
JP2000249799A (en) Electron source for electron beam irradiation device
JP2004055390A (en) Ion source
JP2001021700A (en) Electron beam irradiation device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080327

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080422

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080505

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110523

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4127244

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110523

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120523

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120523

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130523

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130523

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130523

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130523

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130523

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees