JP2005337772A - Infrared imaging apparatus having sensibility correction mechanism of infrared detector - Google Patents

Infrared imaging apparatus having sensibility correction mechanism of infrared detector Download PDF

Info

Publication number
JP2005337772A
JP2005337772A JP2004154166A JP2004154166A JP2005337772A JP 2005337772 A JP2005337772 A JP 2005337772A JP 2004154166 A JP2004154166 A JP 2004154166A JP 2004154166 A JP2004154166 A JP 2004154166A JP 2005337772 A JP2005337772 A JP 2005337772A
Authority
JP
Japan
Prior art keywords
infrared
base plate
optical system
sensitivity correction
wavelength band
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004154166A
Other languages
Japanese (ja)
Other versions
JP4447376B2 (en
Inventor
Tsutomu Maruyama
努 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2004154166A priority Critical patent/JP4447376B2/en
Publication of JP2005337772A publication Critical patent/JP2005337772A/en
Application granted granted Critical
Publication of JP4447376B2 publication Critical patent/JP4447376B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Radiation Pyrometers (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To achieve a compact and lightweight sensitivity correction mechanism of a simplified constitution in an infrared imaging apparatus having a sensitivity correction mechanism of an infrared detector. <P>SOLUTION: The infrared imaging apparatus is provided with infrared detecting elements 12 and 13 corresponding to a plurality of optical systems. A rotating base plate 11 is arranged at a position which intersects with an infrared incident optical path of each optical system. The rotating base plate 11 is provided with a plurality of through holes for passing infrared incident light of each optical system and temperature reference plates 16, 32, 17, and 31 for correcting the sensitivity of the infrared detecting elements. The rotating base plate 11 is rotated to arrange the through holes at positions which intersect with the infrared incident optical path of each optical system when infrared images are taken and arrange the temperature reference plates at positions which intersect with the infrared incident optical path of each optical system in such a way as to oppose the temperature reference plates to the infrared detecting elements when the sensitivity of the infrared detecting elements is corrected. Sensitivity correction data on the side of low temperatures (or on the side of high temperatures) is measured from the infrared detecting elements 12 and 13, and temperature sensitivity correction data on the opposite side is measured by rotating the rotating base plate 11 by 180 degrees. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、赤外線検出器の感度補正機構を有する赤外線撮像装置に関する。赤外線撮像装置の構成を図5に示す。赤外線撮像装置は、物体が輻射する赤外線エネルギー51を赤外線レンズ52で集光し、赤外線検出器53の赤外線検出素子54の受光面に結像した赤外線画像を赤外線検出素子54で検出し、その出力電流(又は電圧)を、増幅・AD変換回路58で増幅及びAD変換し、信号処理回路59を経てモニタ60上に映像として映し出す。なお、赤外線検出器53において、赤外線検出素子54は基台56に搭載された基板55上に複数配列され、基台56には更に循環冷却器57が実装される。   The present invention relates to an infrared imaging device having a sensitivity correction mechanism for an infrared detector. The configuration of the infrared imaging apparatus is shown in FIG. The infrared imaging device collects infrared energy 51 radiated by an object with an infrared lens 52, detects an infrared image formed on the light receiving surface of the infrared detection element 54 of the infrared detector 53 with the infrared detection element 54, and outputs the infrared image. The current (or voltage) is amplified and A / D converted by the amplifying / AD converting circuit 58 and displayed on the monitor 60 via the signal processing circuit 59 as an image. In the infrared detector 53, a plurality of infrared detection elements 54 are arranged on a substrate 55 mounted on a base 56, and a circulation cooler 57 is further mounted on the base 56.

赤外線撮像装置の運用は多種多様であるが、1つの運用例として、目視では視認が不可能な夜間監視などがあり、これは、運用システム毎に適切な倍率の光学系及び感度性能・分解能の検出素子を用いて暗闇での目標物体の探知・識別・監視などに供されるものである。   Although there are many types of operation of infrared imaging devices, one example of operation is night monitoring, which is impossible to visually recognize, and this is because the optical system with appropriate magnification and sensitivity performance / resolution for each operation system The detection element is used for detecting, identifying and monitoring a target object in the dark.

赤外線検出器53の感度補正は、赤外線検出素子54の暗電流成分及び感度ばらつきによる赤外線撮像装置の画質低下を改善するために行われ、特に、複数の赤外線検出素子を有する赤外線検出器において有効であり、感度補正により画質が格段に向上する。   The sensitivity correction of the infrared detector 53 is performed in order to improve the deterioration of the image quality of the infrared imaging device due to the dark current component and sensitivity variation of the infrared detection element 54, and is particularly effective in an infrared detector having a plurality of infrared detection elements. Yes, image quality is greatly improved by sensitivity correction.

赤外線検出素子の感度特性は図6に示すように、物体温度に対してリニアな受信感度特性とならない。即ち、赤外線検出素子の受信感度特性は、各目標物体が発する赤外線エネルギーに比例せず、各目標物体の発する赤外線エネルギーに対して2次曲線的な特性を持つ。更に、均一な赤外線エネルギーを受光しても、各赤外線検出素子の感度のばらつきにより、各赤外線検出素子が出力する電流(又は電圧)は各画素間で不均一となる。   As shown in FIG. 6, the sensitivity characteristic of the infrared detection element does not become a reception sensitivity characteristic linear with respect to the object temperature. That is, the receiving sensitivity characteristic of the infrared detection element is not proportional to the infrared energy emitted from each target object, but has a quadratic curve characteristic with respect to the infrared energy emitted from each target object. Furthermore, even if uniform infrared energy is received, the current (or voltage) output from each infrared detection element is non-uniform between pixels due to variations in sensitivity of each infrared detection element.

この受信感度のばらつきを補正することなく赤外線影像装置を使用すると、表示される映像は品質の低いものとなる。そこで図7に示すように、赤外線検出器53が赤外線エネルギー51を入射する赤外線入射光路上の前方に、黒体処理された均一な赤外線放射面を有する2種類の温度基準板(常温の低温側及び高温側の基準熱源板)62を機械的に挿入し、各赤外線検出素子54の出力電流(又は電圧)を計測し、各赤外線検出素子54の定常偏差を補正する。   If an infrared imaging device is used without correcting this variation in reception sensitivity, the displayed image will be of low quality. Therefore, as shown in FIG. 7, two types of temperature reference plates (on the low temperature side of normal temperature) having a uniform infrared radiation surface treated with a black body in front of the infrared incident optical path where the infrared detector 53 enters the infrared energy 51. And a high-temperature side reference heat source plate) 62 are mechanically inserted, the output current (or voltage) of each infrared detection element 54 is measured, and the steady-state deviation of each infrared detection element 54 is corrected.

温度基準板62は、駆動回路63によって駆動される感度補正機構61により、感度補正実施時にのみ赤外線検出器53の前方に挿入され、通常の撮影時には温度基準板62は赤外線入射光路から退避した位置に移動させられる。温度基準板62としては、常温(背景温度付近)の低温側及び高温側の2点計測による感度補正を行うために、低温及び高温の基準熱源板が必要である。   The temperature reference plate 62 is inserted in front of the infrared detector 53 only when sensitivity correction is performed by the sensitivity correction mechanism 61 driven by the drive circuit 63, and the temperature reference plate 62 is retracted from the infrared incident optical path during normal photographing. Moved to. As the temperature reference plate 62, a low-temperature and high-temperature reference heat source plate is necessary in order to perform sensitivity correction by measuring two points on the low-temperature side and the high-temperature side of normal temperature (near the background temperature).

感度補正実施時には、温度基準板62を赤外線光学系の光路に挿入するが、まず、高温基準熱源板を挿入し、高温データを取得して高温フレームメモリに記憶保持する。次に低温基準熱源板を挿入し、低温データを取得して低温フレームメモリに記憶保持する。   When performing sensitivity correction, the temperature reference plate 62 is inserted into the optical path of the infrared optical system. First, a high temperature reference heat source plate is inserted, high temperature data is acquired, and stored in a high temperature frame memory. Next, a low temperature reference heat source plate is inserted, low temperature data is acquired, and stored in a low temperature frame memory.

高温又は低温のデータの取得時間は、赤外線検出器の全検出素子からの出力データが取得される期間であり、最短でも画面1フレーム分の時間(1/30秒)を必要とし、データ取得フレーム数を増やすことにより、より安定した感度補正を行うことができる。高温フレームメモリ及び低温フレームメモリに記憶保持されたデータを基に感度補正演算を行う。   The acquisition time of high-temperature or low-temperature data is a period in which output data from all detection elements of the infrared detector is acquired, and requires a time of 1 frame (1/30 second) at the shortest. By increasing the number, more stable sensitivity correction can be performed. Sensitivity correction calculation is performed based on data stored and held in the high-temperature frame memory and the low-temperature frame memory.

以下、感度補正演算について説明する。2種類の温度基準板を入射光路中に挿入して取得した高温データ及び低温データから検出素子毎に以下の算出式により差温度データを算出する。
S11(ΔT)=S11(T1)−S11(T2) ・・・(式1−11)
S12(ΔT)=S12(T1)−S12(T2) ・・・(式1−12)

Slm(ΔT)=Slm(T1)−Slm(T2) ・・・(式1−lm)
Hereinafter, the sensitivity correction calculation will be described. Difference temperature data is calculated for each detection element from the high temperature data and the low temperature data acquired by inserting two types of temperature reference plates into the incident optical path.
S11 (ΔT) = S11 (T1) −S11 (T2) (Formula 1-11)
S12 (ΔT) = S12 (T1) −S12 (T2) (Formula 1-12)
:
Slm (ΔT) = Slm (T1) −Slm (T2) (Formula 1-lm)

ここで、lは水平画素数、mは垂直画素数、T1は高温側温度、T2は低温側温度、ΔTはその差温度、Sij(T1),Sij(T2),Sij(ΔT)は、それぞれ水平画素位置i(1≦i≦l)垂直画素位置j(1≦j≦m)の、高温データ、低温データ及びその差温度データである。   Here, l is the number of horizontal pixels, m is the number of vertical pixels, T1 is the high temperature side temperature, T2 is the low temperature side temperature, ΔT is the difference temperature, Sij (T1), Sij (T2), Sij (ΔT) are respectively The high-temperature data, the low-temperature data, and the difference temperature data of the horizontal pixel position i (1 ≦ i ≦ l) and the vertical pixel position j (1 ≦ j ≦ m).

次に、(式1−11)〜(式1−lm)で求めた差温度データの平均値S(ΔT)を以下の算出式により求める。
S(ΔT)=ΣSlm(ΔT)/n ・・・(式2)
ここでnは全画素数である。
Next, an average value S (ΔT) of the difference temperature data obtained by (Equation 1-11) to (Equation 1-lm) is obtained by the following calculation formula.
S (ΔT) = ΣSlm (ΔT) / n (Expression 2)
Here, n is the total number of pixels.

(式1−11)〜(式1−lm)で求めた差温度データと(式2)で求めた差温度データ平均値とから検出素子毎の温度補正係数k(11)〜k(lm)を以下の算出式により求める。
k(11)=S11(ΔT)/S(ΔT) ・・・(式3−11)
k(12)=S12(ΔT)/S(ΔT) ・・・(式3−12)

k(lm)=Slm(ΔT)/S(ΔT) ・・・(式3−lm)
Temperature correction coefficients k (11) to k (lm) for each detection element based on the difference temperature data obtained by (Expression 1-11) to (Expression 1-lm) and the difference temperature data average value obtained by (Expression 2) Is obtained by the following calculation formula.
k (11) = S11 (ΔT) / S (ΔT) (Equation 3-11)
k (12) = S12 (ΔT) / S (ΔT) (Formula 3-12)
:
k (lm) = Slm (ΔT) / S (ΔT) (Formula 3-lm)

上記(式3−11)〜(式3−lm)により求めた温度補正係数k(11)〜k(lm)を各検出素子の出力データS11〜Slmに以下の式のように乗算し、感度補正後の出力データS11´〜Slm´を得る。
S11´=S11×k(11) ・・・(式4−11)
S12´=S12×k(12) ・・・(式4−12)

Slm´=Slm×k(lm) ・・・(式4−lm)
The temperature correction coefficients k (11) to k (lm) obtained by the above (Expression 3-11) to (Expression 3-lm) are multiplied by the output data S11 to Slm of each detection element as shown in the following expression, and the sensitivity is obtained. The corrected output data S11 ′ to Slm ′ are obtained.
S11 ′ = S11 × k (11) (Formula 4-11)
S12 ′ = S12 × k (12) (Formula 4-12)
:
Slm ′ = Slm × k (lm) (Formula 4-lm)

図7において信号処理回路59は、感度補正後の赤外線画像検出データをテレビジョン走査方式等に適合した表示フォーマットに変換し、撮影した赤外線画像をモニタ10に映し出す信号を送出する。本発明は、このような赤外線撮像装置における赤外線検出素子の暗電流成分又は感度ばらつきによる画像品質の低下を改善する感度補正の機構に関するものである。   In FIG. 7, the signal processing circuit 59 converts the infrared image detection data after the sensitivity correction into a display format suitable for the television scanning method or the like, and sends a signal for displaying the captured infrared image on the monitor 10. The present invention relates to a sensitivity correction mechanism for improving deterioration in image quality due to dark current components or sensitivity variations of an infrared detection element in such an infrared imaging device.

一般に、赤外線の大気透過率は波長によって大きく相違する。赤外線撮像装置に用いられる赤外線波長帯としては、8〜12μmの長波長帯と3〜5μmの短波長帯とがあり、大気中の水分が比較的多い夏季には短波長帯を用い、それ以外の季節では長波長帯を用いて観測を行う場合が多い。   In general, infrared atmospheric transmittance varies greatly depending on the wavelength. Infrared wavelength bands used in infrared imaging devices include a long wavelength band of 8 to 12 μm and a short wavelength band of 3 to 5 μm. The short wavelength band is used in summer when the moisture in the atmosphere is relatively high. In many seasons, observations are often made using the long wavelength band.

また、赤外線検出器としては、各種の半導体による赤外線検出素子を二次元配列したものが用いられるが、長波長帯と短波長帯とに共用可能な高感度の赤外線検出素子が存在しないため、長波長帯用と短波長帯用とに別々に対応した赤外線検出素子を用いる構成が採られている。   Infrared detectors are two-dimensionally arrayed with various semiconductor infrared detectors, but there is no highly sensitive infrared detector that can be used for both long and short wavelength bands. A configuration is employed in which infrared detection elements corresponding to the wavelength band and the short wavelength band are used separately.

また、遠方の対象物を観測する場合には、短波長帯用及び長波長帯用のそれぞれに高倍率光学系を設けることになる。高倍率光学系のみの赤外線撮像装置の場合、視野角の狭い探索しか行えないため、広範囲に亘る対象物の探索が困難となる。そこで、広範囲探索用に低倍率の光学系も備えることになる。即ち、長波長帯と短波長帯とにそれぞれ対応した高倍率の光学系と低倍率の光学系とを設けることになる。   When observing a distant object, a high magnification optical system is provided for each of the short wavelength band and the long wavelength band. In the case of an infrared imaging device having only a high-magnification optical system, since only a narrow viewing angle can be searched, it is difficult to search for an object over a wide range. Therefore, a low-magnification optical system is also provided for a wide range search. That is, a high-magnification optical system and a low-magnification optical system corresponding to the long wavelength band and the short wavelength band are provided.

従来の2波長光学系感度補正機構を図8に示す。同図において、(a)は2波長光学系及び感度補正機構の全体のレイアウト、(b)は感度補正機構を上から見た平面図、(c)は感度補正機構を横から見た側面図を示している。同図(a)に示すように、2波長光学系の赤外線撮像装置は、a波長帯光学系61とb波長帯光学系62とを備え、それぞれの光学系の赤外線検出素子63,64の前方(図示の位置では下方)に、感度補正機構65,66を備える。   A conventional two-wavelength optical system sensitivity correction mechanism is shown in FIG. In the figure, (a) is the overall layout of the two-wavelength optical system and the sensitivity correction mechanism, (b) is a plan view of the sensitivity correction mechanism as viewed from above, and (c) is a side view of the sensitivity correction mechanism as viewed from the side. Is shown. As shown in FIG. 2A, the two-wavelength optical system infrared imaging device includes an a-wavelength band optical system 61 and a b-wavelength band optical system 62, and in front of the infrared detection elements 63 and 64 of the respective optical systems. Sensitivity correction mechanisms 65 and 66 are provided (downward in the illustrated position).

それぞれの光学系61,62に備えた感度補正機構65,66は、同一構造であるので、a波長帯光学系61の感度補正機構65の詳細構成を同図の(b)及び(c)に示し、b波長帯光学系62の感度補正機構66の詳細構成については図示を省略しているが、その構成は、同図の(b)及び(c)に示す構成を単に左右反転したものである。   Since the sensitivity correction mechanisms 65 and 66 provided in the respective optical systems 61 and 62 have the same structure, the detailed configuration of the sensitivity correction mechanism 65 of the a wavelength band optical system 61 is shown in FIGS. The detailed configuration of the sensitivity correction mechanism 66 of the b wavelength band optical system 62 is not shown, but the configuration is simply a left-right reversal of the configuration shown in (b) and (c) of FIG. is there.

各波長帯の光学系の赤外線検出器内の検出素子63,64の感度補正を行う場合、感度補正駆動回路67からの指令信号により駆動モータ68を駆動し、感度補正ベース板69を回転させ、高温の温度基準板70を赤外線入射光路に挿入した後、該温度基準板70の赤外線放射エネルギーを赤外線検出素子63に入射させ、該温度基準板70からの放射エネルギーを受光したときの各検出素子の出力を計測する。   When performing sensitivity correction of the detection elements 63 and 64 in the infrared detector of the optical system of each wavelength band, the drive motor 68 is driven by a command signal from the sensitivity correction drive circuit 67, the sensitivity correction base plate 69 is rotated, After the high-temperature temperature reference plate 70 is inserted into the infrared incident optical path, the infrared radiation energy of the temperature reference plate 70 is incident on the infrared detection element 63, and each detection element when receiving the radiation energy from the temperature reference plate 70 is received. Measure the output of.

次に、低温の温度基準板71を、図示省略の同様の感度補正機構により赤外線入射光路に挿入した後、該温度基準板71からの放射エネルギーを受光したときの各赤外線検出素子の出力を計測する。そして高温及び低温の感度ばらつきに対応した出力補正を行うことにより、出力データを均一にしてモニタに送出し、赤外線映像を均一な画質に処理する。   Next, after the low temperature reference plate 71 is inserted into the infrared incident optical path by a similar sensitivity correction mechanism (not shown), the output of each infrared detection element when the radiation energy from the temperature reference plate 71 is received is measured. To do. Then, by performing output correction corresponding to sensitivity variations at high and low temperatures, the output data is made uniform and sent to the monitor, and the infrared image is processed into uniform image quality.

次にペルチェ素子を使用した従来の感度補正機構及び冷却構造を図9〜図12に示す。図9は従来の2波長光学系赤外線撮像装置の側面から見た構成を示し、同図において、101は高倍率対物反射光学系、102は平面ミラー、104は長波長帯結像屈折光学系、106は長波長帯検出素子、107は低倍率対物屈折光学系、108は高温用温度基準板、110は回転テーブル、111はスライドテーブル、115は1次反射鏡、116は2次反射鏡、117は集光屈折光学系、118は光学基板、119は回転機構である。   Next, conventional sensitivity correction mechanisms and cooling structures using Peltier elements are shown in FIGS. FIG. 9 shows a configuration viewed from the side of a conventional two-wavelength optical infrared imaging device. In FIG. 9, 101 is a high-magnification objective reflection optical system, 102 is a plane mirror, 104 is a long-wavelength band imaging refractive optical system, 106 is a long wavelength band detecting element, 107 is a low-magnification objective refracting optical system, 108 is a temperature reference plate for high temperature, 110 is a rotary table, 111 is a slide table, 115 is a primary reflecting mirror, 116 is a secondary reflecting mirror, 117 Is a condensing / refracting optical system, 118 is an optical substrate, and 119 is a rotation mechanism.

図10は図9の2波長光学系赤外線撮像装置を上面から見た構成を示し、図9と同一の符号は同一の構成部を示し、103は短波長帯結像屈折光学系、105は短波長帯検出素子、109は低温用温度基準板を示す。また、図11は短波長帯結像屈折光学系103と短波長帯検出素子105等とを含む構成を示す。なお、屈折光学系を構成する光学レンズは簡略化して示している。   FIG. 10 shows the configuration of the two-wavelength optical infrared imaging device of FIG. 9 as viewed from above. The same reference numerals as those in FIG. 9 denote the same components, 103 denotes a short wavelength band imaging refractive optical system, and 105 denotes a short configuration. A wavelength band detecting element 109 is a temperature reference plate for low temperature. FIG. 11 shows a configuration including a short wavelength band imaging / refractive optical system 103, a short wavelength band detecting element 105, and the like. The optical lens constituting the refractive optical system is shown in a simplified manner.

高倍率対物反射光学系101は、凹面の1次反射鏡115と平面の2次反射鏡116とを有し、1次反射鏡115により集光した赤外線を2次反射鏡116によって上方に反射させ、1次結像を生じさせた後、集光屈折光学系117により集光して平面ミラー102に入射させる。   The high-magnification objective reflection optical system 101 includes a concave primary reflecting mirror 115 and a planar secondary reflecting mirror 116, and reflects the infrared light collected by the primary reflecting mirror 115 upward by the secondary reflecting mirror 116. After the primary image formation, the light is condensed by the condensing / refractive optical system 117 and is incident on the flat mirror 102.

この平面ミラー102により反射されて2次結像を生じさせた後、長波長帯結像屈折光学系104又は短波長帯結像屈折光学系103に入射させる。そして、この高倍率対物反射光学系101の上部に、長波長帯結像屈折光学系104及び長波長帯検出素子106と、短波長帯結像屈折光学系103及び短波長帯検出素子105と、低倍率対物屈折光学系107とをそれぞれの光軸がほぼ平行となるように配置する。   After being reflected by the plane mirror 102 to generate secondary image formation, it is incident on the long wavelength band imaging refractive optical system 104 or the short wavelength band imaging refractive optical system 103. Then, on the upper part of the high-magnification objective reflection optical system 101, a long-wavelength band imaging refractive optical system 104 and a long-wavelength band detection element 106, a short-wavelength band imaging refractive optical system 103 and a short-wavelength band detection element 105, The low-magnification objective refracting optical system 107 is disposed so that the optical axes thereof are substantially parallel.

なお、低倍率対物屈折光学系107と長波長帯結像屈折光学系104との光軸を一致させて配置する。長波長帯検出素子106及び短波長帯検出素子105は、前述のように、それぞれの波長帯の検出感度が高い半導体素子を用い、また、赤外線検出感度を向上させるために、図示を省略した冷却手段により冷却する。   The low-magnification objective refracting optical system 107 and the long wavelength band imaging refracting optical system 104 are arranged so as to coincide with each other. As described above, the long wavelength band detecting element 106 and the short wavelength band detecting element 105 use a semiconductor element having high detection sensitivity in each wavelength band, and cooling is omitted in order to improve infrared detection sensitivity. Cool by means.

また、回転テーブル110に、平面ミラー102を回転機構119と共に図示を省略した支持機構により支持し、高温用温度基準板108と低温用温度基準板109とを直交した関係位置に固定する。この回転テーブル110を、図示を省略しているモータ等により、軸d(図9参照)を中心に矢印aの方向に回動して、高倍率対物反射光学系101に対して、長波長帯結像屈折光学系104と短波長帯結像屈折光学系103との切換えを行う。   Further, the flat mirror 102 is supported on the rotary table 110 by a support mechanism (not shown) together with the rotation mechanism 119, and the high-temperature temperature reference plate 108 and the low-temperature temperature reference plate 109 are fixed at orthogonal positions. The rotary table 110 is rotated in the direction of the arrow a about the axis d (see FIG. 9) by a motor or the like (not shown), so that the high wavelength objective reflection optical system 101 has a long wavelength band. Switching between the imaging refractive optical system 104 and the short wavelength band imaging refractive optical system 103 is performed.

また、スライドテーブル111を、図示を省略しているモータ等により、図10における矢印Aの方向にスライドさせて、回転テーブル110上の平面ミラー102等を点線位置とすると、低倍率対物屈折光学系107の光軸と長波長帯結像屈折光学系104の光軸との間に存在していた平面ミラー102や温度基準板等が移動し、高倍率対物反射光学系101の2次反射鏡116を介した赤外線が遮断された状態となる。従って、低倍率対物屈折光学系107を介した赤外線を長波長帯結像屈折光学系104に入射し、長波長帯検出素子106により撮像することができる。   Further, when the slide table 111 is slid in the direction of arrow A in FIG. 10 by a motor or the like (not shown) and the plane mirror 102 on the rotary table 110 is set to the dotted line position, the low magnification objective refractive optical system The flat mirror 102, the temperature reference plate, etc. that existed between the optical axis 107 and the optical axis of the long wavelength band imaging refractive optical system 104 are moved, and the secondary reflecting mirror 116 of the high-magnification objective reflective optical system 101 is moved. Infrared rays through are blocked. Therefore, infrared rays that have passed through the low-magnification objective refracting optical system 107 can be incident on the long wavelength band imaging refractive optical system 104 and imaged by the long wavelength band detecting element 106.

また、図9において、平面ミラー102を回転機構119により回動可能に支持し、軸cを中心に矢印b方向に回動して、平面ミラー102を点線位置に移動すると、高温用温度基準板108を、長波長帯検出素子106の視野内に入れて、長波長帯検出素子106の高温側の補正を行うことができる。   In FIG. 9, when the plane mirror 102 is rotatably supported by the rotation mechanism 119, is rotated in the direction of the arrow b about the axis c, and the plane mirror 102 is moved to the dotted line position, the temperature reference plate for high temperature is used. 108 can be put in the field of view of the long wavelength band detecting element 106 to correct the high temperature side of the long wavelength band detecting element 106.

また、短波長帯検出素子105の視野内に低温用温度基準板109が入ることになり、短波長帯検出素子105の低温側の補正を行うことができる。この状態から回転テーブル110を90度回転させて、長波長帯検出素子106の視野内に低温用温度基準板109を入れて、低温側の補正を行うことができる。   Further, the low-temperature temperature reference plate 109 enters the field of view of the short wavelength band detecting element 105, and the low temperature side correction of the short wavelength band detecting element 105 can be performed. From this state, the rotary table 110 is rotated by 90 degrees, and the low temperature side temperature reference plate 109 is placed in the field of view of the long wavelength band detecting element 106 to correct the low temperature side.

同様に、短波長帯検出素子105の視野内に高温用温度基準板109が入るように回転テーブル110を回転して、短波長帯検出素子105の高温側の補正を行うことができる。従って、短波長帯検出素子105と長波長帯検出素子106との温度補正を随時行うことができる。   Similarly, the high temperature side of the short wavelength band detecting element 105 can be corrected by rotating the rotary table 110 so that the high temperature temperature reference plate 109 enters the field of view of the short wavelength band detecting element 105. Therefore, temperature correction of the short wavelength band detecting element 105 and the long wavelength band detecting element 106 can be performed at any time.

図12は従来の温度基準板についての説明図であり、前述の各図と同一符号は同一構成部を示し、112は高温用ペルチェ素子、113は低温用ペルチェ素子、114は放熱フィンを示す。図12の(a)は、高温用温度基準板108と低温用温度基準板109とを、それぞれ長波長帯結像屈折光学系及び短波長帯結像屈折光学系の瞳位置(長波長帯検出素子106及び短波長帯検出素子105による撮像範囲)となるように、回転テーブル110上に直交する位置に配置し、回転テーブル110の回転により、高温用温度基準板108と低温用温度基準板109とを切換えて温度補正処理を実行する。   FIG. 12 is an explanatory diagram of a conventional temperature reference plate. The same reference numerals as those in the above-described respective drawings indicate the same components, 112 denotes a high-temperature Peltier element, 113 denotes a low-temperature Peltier element, and 114 denotes a heat radiating fin. FIG. 12A shows a high temperature reference plate 108 and a low temperature reference plate 109 for pupil positions (long wavelength band detection of the long wavelength band imaging refractive optical system and the short wavelength band imaging refractive optical system, respectively. (The imaging range by the element 106 and the short wavelength band detecting element 105) is arranged at a position orthogonal to the rotary table 110, and by the rotation of the rotary table 110, the high-temperature temperature reference plate 108 and the low-temperature temperature reference plate 109. And the temperature correction process is executed.

また、図12の(b)に示すように、高温用温度基準板108と低温用温度基準板109とは、それぞれ高温用ペルチェ素子112と低温用ペルチェ素子113とに接して配置され、高温用ペルチェ素子112と低温用ペルチェ素子113の図示を省略した制御回路による電流制御によって、高温用温度基準板108と低温用温度基準板109とは、高温用基準温度と低温用基準温度とを維持し、放熱フィン114は各ペルチェ素子112,113の背面の熱を放散させる。   As shown in FIG. 12B, the high temperature temperature reference plate 108 and the low temperature temperature reference plate 109 are disposed in contact with the high temperature Peltier element 112 and the low temperature Peltier element 113, respectively. The high temperature reference plate 108 and the low temperature reference plate 109 maintain the high temperature reference temperature and the low temperature reference temperature by current control by a control circuit (not shown) of the Peltier device 112 and the low temperature Peltier device 113. The heat radiation fins 114 dissipate heat from the back surfaces of the Peltier elements 112 and 113.

このように、従来のペルチェ素子を使用した感度補正機構は、高温用及び低温用ペルチェ素子112,113に接した温度基準板108,109及び放熱フィン114を有する構造体が、回転軸を有する回転テーブル110に搭載され、該回転テーブル110は駆動モータ及び制御カードなどにより制御され回転動作する。そして、感度補正を行わない状態では、スライドテーブル111により図10のAの方向に回転テーブル110をスライドし、感度補正機構全体を赤外線光路から退避させる。   As described above, the sensitivity correction mechanism using the conventional Peltier element has a structure in which the temperature reference plates 108 and 109 and the radiation fins 114 in contact with the high-temperature and low-temperature Peltier elements 112 and 113 are rotated. The rotary table 110 is mounted on the table 110 and rotates by being controlled by a drive motor and a control card. In a state where sensitivity correction is not performed, the rotary table 110 is slid in the direction of A in FIG. 10 by the slide table 111, and the entire sensitivity correction mechanism is retracted from the infrared light path.

また、回転テーブル110は、回転ミラー駆動も併せ持つ視野切換え機構の一部であり、従来の感度補正機構は、視野切換え及び感度補正の機構を一体化し、光学系の切換えと感度補正時の温度基準板の挿入切換えの機構を兼用する構造としていたが、駆動する部品の規模が感度補正機構のみの場合に比べて大きくなり、構造も複雑になるとともに、視野切換えの光学的な切換えに対しては精度の高い移動制御構造が必要である。   Further, the rotary table 110 is a part of a visual field switching mechanism that also has a rotating mirror drive. The conventional sensitivity correction mechanism integrates a visual field switching mechanism and a sensitivity correction mechanism to switch an optical system and a temperature reference for sensitivity correction. Although the structure is also used as a mechanism for switching the insertion of the plate, the scale of the parts to be driven is larger than that of the sensitivity correction mechanism alone, and the structure is complicated. A highly accurate movement control structure is required.

しかし、感度補正用の温度基準板の挿入機構は、光学系の切換え機構と異なり、レンズ位置の再現性不良によって発生する光軸ずれなどの影響はないため、本来、視野切換えの移動制御機構ほど高精度な移動制御は不要である。   However, unlike the optical system switching mechanism, the temperature reference plate insertion mechanism for sensitivity correction is not affected by optical axis misalignment caused by poor reproducibility of the lens position. High-precision movement control is not necessary.

本発明に関連する先行技術文献として下記の特許文献がある。
特開2003−78786号公報 特開平04−285825号公報 特許第2644822号公報 特開2003−156391号公報
There are the following patent documents as prior art documents related to the present invention.
JP 2003-78786 A Japanese Patent Laid-Open No. 04-285825 Japanese Patent No. 2644822 JP 2003-156391 A

図8に示す従来例では、各光学系に高温及び低温の温度基準板70を、赤外線検出素子63に対向する適切な位置にそれぞれ個別に挿入する感度補正機構を設ける必要があるため、装置が複雑・大型化し、装置の小型・軽量化を阻害する要因となっていた。更に、感度補正ベース板69は実装スペースの制約から円形とせずチョッパ形状とし、重心を回転軸に合わせ込むためにバランサ用の錘を取付けていたため、その分、駆動部の負荷が増大し、装置全体の小型・軽量化を困難にしていた。   In the conventional example shown in FIG. 8, it is necessary to provide a sensitivity correction mechanism for individually inserting the high and low temperature reference plates 70 at appropriate positions facing the infrared detection element 63 in each optical system. It has become a factor that obstructs the downsizing and weight reduction of the device due to the increase in complexity and size. In addition, the sensitivity correction base plate 69 is not circular due to the limitation of mounting space, but is chopper-shaped, and a weight for the balancer is attached to adjust the center of gravity to the rotation axis. It was difficult to reduce the overall size and weight.

また、図9〜図12に示す従来例のようにペルチェ素子を用いて低温用温度基準板109を冷却する場合、該ペルチェ素子の背面側は発熱するため、該発熱を冷却する冷却機構を設ける必要がある。図9〜図12に示す従来の感度補正機構及び冷却機構は、視野切換え機構と一体の構成であるため、精密な位置制御機構が要求される視野切換え機構全体の構造が大型化し、それがコスト増をもたらすこととなっていた。   Further, when the temperature reference plate 109 for low temperature is cooled using a Peltier element as in the conventional examples shown in FIGS. 9 to 12, since the back side of the Peltier element generates heat, a cooling mechanism for cooling the generated heat is provided. There is a need. Since the conventional sensitivity correction mechanism and cooling mechanism shown in FIGS. 9 to 12 are integrated with the visual field switching mechanism, the overall structure of the visual field switching mechanism that requires a precise position control mechanism is increased in size and cost. It was supposed to bring an increase.

また、従来の感度補正機構と冷却機構は、ペルチェ素子に放熱フィンを搭載していたため、近傍の冷却ファンからの冷却空気が、温度コントロールされた温度基準板の熱を奪いやすく、基準温度が安定し難いという欠点を有していた。また、大型のペルチェ素子を用いる場合、冷却効率の高い冷却構造とすることが必須となり、小型・軽量で冷却効率の高い冷却構造が要求されていた。   In addition, since the conventional sensitivity correction mechanism and cooling mechanism are equipped with heat radiation fins in the Peltier element, the cooling air from the nearby cooling fan can easily take the heat of the temperature-controlled temperature reference plate, and the reference temperature is stable. It had the disadvantage of being difficult. Further, when a large Peltier element is used, it is essential to have a cooling structure with high cooling efficiency, and a cooling structure that is small and lightweight and has high cooling efficiency has been required.

本発明は、赤外線撮像装置の感度補正機構について、小型化・軽量化を図ることを目的とする。また、温度基準板とペルチェ素子間の熱の伝達を効率的に行えるようにすることを目的とする。   An object of the present invention is to reduce the size and weight of a sensitivity correction mechanism of an infrared imaging device. It is another object of the present invention to efficiently transfer heat between the temperature reference plate and the Peltier element.

本発明の赤外線撮像装置は、(1)複数の赤外線検出素子を有する赤外線検出器を複数の光学系対応に備えた赤外線撮像装置において、各光学系の赤外線検出器への赤外線入射光路と交差する位置に配置された回転ベース板と、該回転ベース板を回動させる駆動機構部とを備え、前記回転ベース板に、前記各光学系の赤外線検出器への赤外線入射光をそれぞれ通過させる複数の通過孔と、前記赤外線検出素子の感度補正用の温度基準板とを設け、前記駆動機構部は、前記回転ベース板を回動し、赤外線画像の撮影時に前記通過孔を前記各光学系の赤外線入射光路と交差する位置に配置し、前記赤外線検出素子の感度補正時に前記温度基準板を前記各光学系の赤外線入射光路と交差する位置に配置して赤外線入射光を遮断すると共に前記赤外線検出器に前記温度基準板を対向させることを特徴とする。   The infrared imaging device of the present invention is (1) an infrared imaging device provided with an infrared detector having a plurality of infrared detection elements corresponding to a plurality of optical systems, and intersects an infrared incident optical path to the infrared detector of each optical system. A rotation base plate disposed at a position, and a drive mechanism that rotates the rotation base plate, and a plurality of infrared incident light beams to the infrared detectors of the optical systems are passed through the rotation base plate. A passage hole and a temperature reference plate for correcting the sensitivity of the infrared detection element are provided, and the drive mechanism rotates the rotation base plate, and the infrared passage of each optical system passes through the passage hole when photographing an infrared image. It is arranged at a position intersecting with the incident optical path, and at the time of correcting the sensitivity of the infrared detecting element, the temperature reference plate is arranged at a position intersecting with the infrared incident optical path of each optical system to block the infrared incident light and the infrared It characterized in that for opposing the temperature reference plate on the outlet device.

また、(2)前記温度基準板を前記回転ベース板の表面と裏面に高温用及び低温用の一対の温度基準板としてペルチェ素子を介在させて重ね合わせて配置し、且つ、該高温用及び低温用の一対の温度基準板を前記回転ベース板の複数の箇所に配置すると共に、該複数の箇所に配置した各一対の温度基準板の高温側及び低温側が互いに前記回転ベース板の表面と裏面とで逆向きになるよう配置したことを特徴とする。   (2) The temperature reference plate is disposed on the front and back surfaces of the rotating base plate so as to overlap each other as a pair of high and low temperature reference plates with a Peltier element interposed therebetween. A pair of temperature reference plates for a plurality of locations of the rotating base plate, and the high temperature side and the low temperature side of each of the pair of temperature reference plates arranged at the plurality of locations are respectively connected to the front surface and the back surface of the rotating base plate. It is characterized by being arranged in the opposite direction.

また、(3)前記回転ベース板に放熱ピンフィンを付設し、該放熱ピンフィンに冷風を送風する冷却ファンを、該回転ベース板と一体構造として備えたことを特徴とする。
また、(4)前記回転ベース板上に配置された前記通過孔及び前記温度基準板を少なくとも含む回転機構部の重心が、該回転ベース板の回転軸を中心として点対称になるよう該回転機構部の部材を配置したことを特徴とする。
また、(5)前記回転ベース板の回動が所定の位置で係止するよう、係止用の溝と突起との係合機構から成る位置決め固定機構を備えたことを特徴とする。
(3) The present invention is characterized in that a radiating pin fin is attached to the rotating base plate, and a cooling fan that blows cool air to the radiating pin fin is provided as an integral structure with the rotating base plate.
(4) The rotation mechanism so that the center of gravity of the rotation mechanism unit including at least the passage hole and the temperature reference plate arranged on the rotation base plate is point-symmetric about the rotation axis of the rotation base plate. The member of the part has been arrange | positioned.
(5) A positioning and fixing mechanism including an engaging mechanism between a locking groove and a protrusion is provided so that the rotation of the rotating base plate is locked at a predetermined position.

本発明の感度補正機構は、回転ベース板に温度基準板を配置した一体構造系の温度補正機構の回動により、複数の波長帯(中赤外又は遠赤外等)の光学系に対して、温度補正機構を共用可能にしたことにより、複数の光学系それぞれに個別に感度補正機構を設置する必要がなくなり、電気回路、機構部品の部品点数及びシステム上の実装スペースが削減され、装置の小型化・軽量化・ローコスト化を図ることができる。   The sensitivity correction mechanism of the present invention can be applied to an optical system in a plurality of wavelength bands (such as mid-infrared or far-infrared) by rotating the temperature correction mechanism of an integral structure in which a temperature reference plate is disposed on a rotating base plate. Since the temperature correction mechanism can be shared, there is no need to install a sensitivity correction mechanism individually for each of the plurality of optical systems, the number of electrical circuits, the number of mechanism parts, and the mounting space on the system are reduced. Miniaturization, weight reduction, and cost reduction can be achieved.

また、回転ベース板の表面と裏面に、高温用の温度基準板と低温用の温度基準板とを、ペルチェ素子を介在させて重ね合わせて配置し、且つ、温度基準板の高温側及び低温側が互いに回転ベース板の表面と裏面とで逆向きになるよう複数の温度基準板を開店ベース板に配置したことにより、吸熱と排熱とを効率良く行うことができる。   In addition, a high-temperature temperature reference plate and a low-temperature temperature reference plate are superposed on the front and back surfaces of the rotating base plate with a Peltier element interposed therebetween, and the high-temperature side and the low-temperature side of the temperature reference plate are By arranging the plurality of temperature reference plates on the opening base plate so that the front and back surfaces of the rotating base plate are opposite to each other, heat absorption and exhaust heat can be efficiently performed.

また、温度基準板を基準温度に設定するためのペルチェ素子を回転ベース板に搭載し、回転ベース板に放熱効率の高い冷却ピンフィンを備えた構造とし、更に回転ベース板に強制空冷ファンを設け、回転ベース板と放熱構造とを一体化することにより、放熱部品が小型軽量化されるとともに、回転機構及び冷却機構を個別に設置・アセンブリする必要がなく、組立ての容易化を図ることができる。   In addition, a Peltier element for setting the temperature reference plate to the reference temperature is mounted on the rotating base plate, the rotating base plate is provided with a cooling pin fin with high heat dissipation efficiency, and a forced air cooling fan is provided on the rotating base plate. By integrating the rotating base plate and the heat dissipation structure, the heat dissipation component can be reduced in size and weight, and it is not necessary to separately install and assemble the rotation mechanism and the cooling mechanism, thereby facilitating assembly.

また、回転ベース板上に配置した各光学系の赤外線入射光を通過させる通過孔、及び前述の温度基準板を含む回転機構部の重心が、回転ベース板の中心を対称点として対称形になるよう、即ち回転機構部の重心位置が、駆動軸となるモータ軸中心と完全に一致にするよう構成することにより、駆動負荷が軽減し、小型・軽量な駆動モータが採用可能となり、また、回転機構部の固定位置が震動・衝撃などの外乱の影響を受けにくくなり、装置全体の小型化・軽量化、低消費電力化、耐環境性能の向上化を図ることができる。   Further, the center of gravity of the rotation mechanism portion including the passage hole through which infrared incident light of each optical system disposed on the rotation base plate passes and the temperature reference plate described above is symmetric with respect to the center of the rotation base plate. That is, by configuring the center of gravity of the rotation mechanism to be completely coincident with the center of the motor shaft, which is the drive shaft, the drive load is reduced, and a small and light drive motor can be employed. The fixed position of the mechanism part is less affected by disturbances such as vibration and impact, and the entire apparatus can be reduced in size and weight, reduced in power consumption, and improved in environmental resistance.

また、震動・衝撃などの外乱に対し、回転機構部が影響を受けないよう、感度補正を実施しないときには、回転機構部を所定の位置で係止させる位置決め固定機構を備えることにより、回転機構部の駆動制御をオフにし、駆動モータへ入力する電力をカットすることができるため、消費電力の低減及びモータの寿命延命を図ることができ、信頼性の向上を図ることができる。   In addition, when the sensitivity correction is not performed so that the rotation mechanism is not affected by disturbances such as vibrations and impacts, the rotation mechanism is provided with a positioning fixing mechanism that locks the rotation mechanism at a predetermined position. Since the drive control can be turned off and the power input to the drive motor can be cut, the power consumption can be reduced, the life of the motor can be extended, and the reliability can be improved.

図1は本発明の感度補正機構を示す。同図において、1はa波長帯光学系、2はb波長帯光学系、3は駆動機構部、4は回転機構部、5は駆動モータ、6はポテンショメータ、7はモータ軸、8はポテンショメータ軸、9は第1の歯車、10は第2の歯車、11は回転ベース板、12はa波長帯検出素子、13はb波長帯検出素子、14はa波長帯低温側ペルチェ素子、15はa波長帯高温側ペルチェ素子、16はa波長帯低温側温度基準板、17はa波長帯高温側温度基準板、18は冷却ファン、19は放熱用ピンフィン、20は上フタ、21はa波長帯光軸中心、22はb波長帯光軸中心、23は通過孔、24はハーネス、25はインタフェースコネクタ、26はプランジャ、27はプランジャ軸受け、28はb波長帯低温側ペルチェ素子、29はb波長帯高温側ペルチェ素子、30はモニタ、31はb波長帯低温側温度基準板、32はb波長帯高温側温度基準板、33はバネ、34はボール、35はa波長帯赤外線検出部、36はa波長帯赤外線検出器、37はAD変換回路、38は軸受けである。   FIG. 1 shows the sensitivity correction mechanism of the present invention. In the figure, 1 is an a wavelength band optical system, 2 is a b wavelength band optical system, 3 is a drive mechanism unit, 4 is a rotation mechanism unit, 5 is a drive motor, 6 is a potentiometer, 7 is a motor shaft, and 8 is a potentiometer shaft. , 9 is the first gear, 10 is the second gear, 11 is the rotating base plate, 12 is the a wavelength band detecting element, 13 is the b wavelength band detecting element, 14 is the a wavelength band low temperature side Peltier element, 15 is a Wavelength band high temperature side Peltier element, 16 a wavelength band low temperature side temperature reference plate, 17 a wavelength band high temperature side temperature reference plate, 18 cooling fan, 19 heat dissipation pin fin, 20 upper lid, 21 a wavelength band Optical axis center, 22 b wavelength band optical axis center, 23 passage hole, 24 harness, 25 interface connector, 26 plunger, 27 plunger bearing, 28 b wavelength band low temperature side Peltier element, 29 b wavelength High temperature side Peltier element , 30 is a monitor, 31 is a b wavelength band low temperature side temperature reference plate, 32 is a b wavelength band high temperature side temperature reference plate, 33 is a spring, 34 is a ball, 35 is an a wavelength band infrared detector, and 36 is an a wavelength band infrared. A detector, 37 is an AD conversion circuit, and 38 is a bearing.

本発明の感度補正機構は、a波長帯域及びb波長帯域の光学系1,2に対し、光学的及び物理的に共有且つ実装可能な部位に設置される。本発明の感度補正機構は、大別すると、固定部位となる駆動機構部3と回転部位となる回転機構部4とにより構成される。以下に各部位の構成について説明する。   The sensitivity correction mechanism of the present invention is installed at a site that can be optically and physically shared and mounted on the optical systems 1 and 2 in the a wavelength band and the b wavelength band. The sensitivity correction mechanism according to the present invention is roughly divided into a drive mechanism unit 3 serving as a fixed part and a rotation mechanism unit 4 serving as a rotation part. The configuration of each part will be described below.

駆動機構部3は、回転機構部4を駆動するための駆動モータ5、その回転角度を検出するためのポテンショメータ6、回転機構部に直結されるモータ軸7、ポテンショメータ軸8、各軸の回転伝達のための第1の歯車9、第2の歯車10(減速比1:1)、それらを保持する玉軸受け38から成る。なお、ポテンショメータ軸8は、モータ軸7に対し、歯車伝達によるバックラッシュ検出誤差を除去するために、第2の歯車10にはバックラッシュレス機能を有する歯車を使用する。   The drive mechanism unit 3 includes a drive motor 5 for driving the rotation mechanism unit 4, a potentiometer 6 for detecting the rotation angle, a motor shaft 7 directly connected to the rotation mechanism unit, a potentiometer shaft 8, and rotation transmission of each axis. The first gear 9 for the motor, the second gear 10 (reduction ratio 1: 1), and a ball bearing 38 for holding them. The potentiometer shaft 8 uses a gear having a backlash-less function for the second gear 10 in order to remove a backlash detection error due to gear transmission with respect to the motor shaft 7.

次に回転機構部4の構成について説明する。回転機構部4は、モータ軸7に直結された回転ベース板11を備え、回転ベース板11には、第1の低温側温度基準板16と第1の高温側温度基準板32とが対となって表面と裏面とで背中合わせになるように配置し、また、該第1の低温側温度基準板16と第1の高温側温度基準板32の位置から180度回転した位置に、第2の高温側温度基準板17と第2の低温側温度基準板31とが対となって表面と裏面とで背中合わせになるように配置する。   Next, the configuration of the rotation mechanism unit 4 will be described. The rotation mechanism unit 4 includes a rotation base plate 11 directly connected to the motor shaft 7, and the rotation base plate 11 is paired with a first low temperature side temperature reference plate 16 and a first high temperature side temperature reference plate 32. Are arranged so that the front surface and the back surface are back to back, and the second low temperature side temperature reference plate 16 and the first high temperature side temperature reference plate 32 are rotated 180 degrees from the second position. The high temperature side temperature reference plate 17 and the second low temperature side temperature reference plate 31 are paired so as to be back to back on the front surface and the back surface.

このとき、第1の低温側温度基準板16と第2の高温側温度基準板17とを同一の面(図で下方の面)に配置し、また、第1の高温側温度基準板32と第2の低音側温度基準板31とをその反対側の面(図で上方の面)に配置する。こうすることにより、a波長帯及びb波長帯の光学系検出素子12,13に対して、図示のように、同時に第1の低温側温度基準板16及び第2の低温側温度基準板31を対向位置に挿入し、また、回転ベース板11を180度回転した位置で、同時に第1の高温側温度基準板32及び第2の高温側温度基準板17を光学系検出素子12,13の対向位置に挿入し、a波長帯光学系1及びb波長帯光学系2に対して同時に感度補正を行うことができる。   At this time, the first low temperature side temperature reference plate 16 and the second high temperature side temperature reference plate 17 are arranged on the same surface (the lower surface in the figure), and the first high temperature side temperature reference plate 32 and The second bass-side temperature reference plate 31 is disposed on the opposite surface (upper surface in the figure). By doing so, the first low temperature side temperature reference plate 16 and the second low temperature side temperature reference plate 31 are simultaneously applied to the optical system detection elements 12 and 13 in the a wavelength band and the b wavelength band as shown in the figure. The first high temperature side temperature reference plate 32 and the second high temperature side temperature reference plate 17 are simultaneously opposed to the optical system detection elements 12 and 13 at a position where the rotation base plate 11 is rotated 180 degrees. The sensitivity correction can be performed at the same time for the a wavelength band optical system 1 and the b wavelength band optical system 2.

第1の低温側温度基準板16及び第1の高温側温度基準板32と回転ベース板11との間には、それぞれ、第1の低温側ペルチェ素子14及び第1の高温側のペルチェ素子29が挿入され、また、第2の低温側温度基準板31及び第2の高温側温度基準板17と回転ベース板11との間には、それぞれ、第2の低温側ペルチェ素子28及び第2の高温側のペルチェ素子15が挿入される。   Between the first low temperature side temperature reference plate 16 and the first high temperature side temperature reference plate 32 and the rotating base plate 11, a first low temperature side Peltier element 14 and a first high temperature side Peltier element 29 are provided. Are inserted between the second low temperature side temperature reference plate 31 and the second high temperature side temperature reference plate 17 and the rotary base plate 11, respectively. A high temperature side Peltier element 15 is inserted.

前述の低温側/高温側温度基準板16,31/17,32は、それぞれ、ペルチェ素子14,28/15,29の変化温度を熱伝導により均一に検出素子12,13に照射するためのものである。また、ペルチェ素子の発熱による回転ベース板11の温度上昇を抑えるために、冷却ファン18が回転ベース板11上に設けられる。   The aforementioned low temperature side / high temperature side temperature reference plates 16, 31/17, 32 are for irradiating the detection elements 12, 13 uniformly with thermal conduction of the change temperatures of the Peltier elements 14, 28/15, 29, respectively. It is. Further, a cooling fan 18 is provided on the rotating base plate 11 in order to suppress a temperature rise of the rotating base plate 11 due to heat generated by the Peltier element.

なお、ペルチェ素子の発熱を冷却ファン18で効率的に放熱するために、冷却ファン18から排出した冷却空気が回転ベース板11上に設けた放熱用ピンフィン19を高速且つ効率よく流れるよう、上フタ20を設け、回転ベース板11と上フタ20との間の空間をダクト構造にする。   In order to efficiently dissipate the heat generated by the Peltier element by the cooling fan 18, the cooling air discharged from the cooling fan 18 flows at high speed and efficiently through the heat dissipating pin fins 19 provided on the rotating base plate 11. 20 is provided, and the space between the rotating base plate 11 and the upper lid 20 is formed into a duct structure.

回転ベース板11のa波長帯の感度補正用のペルチェ素子14/29及び温度基準板16/32、並びにb波長帯光学系の感度補正用のペルチェ素子15/28及び温度基準板17/31の相対位置は、回転ベース板11の回転軸から対称的な位置に振り分けて配置し、且つ両波長帯の光軸中心21,22に合致する位置に配置する。   The Peltier element 14/29 and the temperature reference plate 16/32 for sensitivity correction of the a wavelength band of the rotating base plate 11 and the Peltier element 15/28 and the temperature reference plate 17/31 for sensitivity correction of the b wavelength band optical system. The relative positions are distributed and arranged symmetrically from the rotation axis of the rotation base plate 11 and are arranged at positions that coincide with the optical axis centers 21 and 22 in both wavelength bands.

ペルチェ素子の組合せは、a波長帯の低温側ペルチェ素子14とb波長帯の高温側ペルチェ素子29とが、また、a波長帯の高温側ペルチェ素子15とb波長帯の低温側ペルチェ素子28とが互いに背面合わせになるよう実装される。回転ベース板11上には、感度補正を行わない通常の撮影時に、目標物体の赤外線エネルギーをa波長帯及びb波長帯検出素子12,13へ照射するために通過させる通過孔23がa波長帯及びb波長帯用として回転軸に対して対称に2つ設ける。このような構成により、回転ベース板11の質量中心は点対称形であり、回転軸中心と完全に一致させることができる。   The combination of Peltier elements includes a low temperature side Peltier element 14 in the a wavelength band and a high temperature side Peltier element 29 in the b wavelength band, and a high temperature side Peltier element 15 in the a wavelength band and a low temperature side Peltier element 28 in the b wavelength band. Are mounted so that they face each other. On the rotating base plate 11, there is a passage hole 23 through which the infrared energy of the target object is passed to irradiate the a wavelength band and the b wavelength band detecting elements 12 and 13 during normal imaging without performing sensitivity correction. And two symmetrically with respect to the rotation axis for the b wavelength band. With such a configuration, the center of mass of the rotating base plate 11 is point-symmetric and can be completely matched with the center of the rotating shaft.

回転機構部4の各ペルチェ素子14,15,28,29及び冷却ファン18等のハーネス24は、モータ軸7の中空部分より適切な余長をもって駆動機構部3のインタフェースコネクタ25へ接続し、回転機構部4が動作したときにハーネス24がねじれても、ストレスによって断線しないようハーネス24を固定する。   The Peltier elements 14, 15, 28, 29 of the rotation mechanism unit 4 and the harness 24 such as the cooling fan 18 are connected to the interface connector 25 of the drive mechanism unit 3 with an appropriate extra length from the hollow portion of the motor shaft 7 and rotated. Even if the harness 24 is twisted when the mechanism unit 4 is operated, the harness 24 is fixed so as not to be disconnected due to stress.

駆動機構部3の固定部分と回転機構部4のモータ軸7には、同図のy−y断面図に示すように、それぞれプランジャ26とプランジャ受け27の部品が適切な角度で係止し、回転機構部4が感度補正を行わない通常撮影時のポジションに、回転ベース板11の位置を固定する位置決め機構を備える。こうすることにより、サーボオフしたときでも震動等の外囲環境によって回転ベース板11が通常撮影時の位置から回転して視野を遮らないようにすることができる。   As shown in the yy sectional view of the figure, the parts of the plunger 26 and the plunger receiver 27 are respectively locked to the fixed part of the drive mechanism unit 3 and the motor shaft 7 of the rotation mechanism unit 4 at appropriate angles, The rotation mechanism unit 4 includes a positioning mechanism that fixes the position of the rotation base plate 11 at a normal shooting position where sensitivity correction is not performed. By doing so, even when the servo is turned off, the rotating base plate 11 can be rotated from the position at the time of normal photographing by the surrounding environment such as vibration, so that the field of view is not obstructed.

図2に本発明の感度補正機構及び赤外線撮像装置の外観を示す。同図において、(a)は赤外線撮像装置の外観斜視図を示し、(b)及び(c)は感度補正機構の外観斜視図を示す。同図(c)の感度補正機構の外観斜視図は、同図(a)に示す回転機構部4の外観斜視図をそのまま拡大表示したもので、同図(b)の感度補正機構の外観斜視図は、同図(c)に示す感度補正機構を図のA矢印の方から見た外観斜視図を示す。図の21はa波長帯光軸中心、22はb波長帯光軸中心を示している。   FIG. 2 shows the external appearance of the sensitivity correction mechanism and infrared imaging device of the present invention. In this figure, (a) shows an external perspective view of the infrared imaging device, and (b) and (c) show external perspective views of the sensitivity correction mechanism. The external perspective view of the sensitivity correction mechanism in FIG. 6C is an enlarged perspective view of the external appearance perspective view of the rotation mechanism unit 4 shown in FIG. The figure shows an external perspective view of the sensitivity correction mechanism shown in FIG. In the figure, reference numeral 21 denotes the a wavelength band optical axis center, and 22 denotes the b wavelength band optical axis center.

次に本発明の感度補正機構の動作について説明する。
(1)電源オフ時又は目標物体の撮影中など、感度補正を実施していない状態では、感度補正機構は図3(a)に示すように、回転ベース板11に設けられた2個所の通過孔23の中心がそれぞれa波長帯光学系及びb波長帯光学系の光軸中心21,22と概ね合致する位置に回転ベース板11を回動させ、目標物体の赤外線エネルギーをそのまま通過孔23を通過させて各波長帯検出素子12,13に照射させ、モニタ30上に目標物体の映像を映し出す。
Next, the operation of the sensitivity correction mechanism of the present invention will be described.
(1) When sensitivity correction is not performed, such as when the power is turned off or during shooting of the target object, the sensitivity correction mechanism passes through two places provided on the rotary base plate 11 as shown in FIG. The rotation base plate 11 is rotated to a position where the center of the hole 23 substantially coincides with the optical axis centers 21 and 22 of the a wavelength band optical system and the b wavelength band optical system, respectively, and the infrared energy of the target object is passed through the through hole 23 as it is. The light is passed through and irradiated on each of the wavelength band detection elements 12 and 13, and an image of the target object is displayed on the monitor 30.

(2)次に、感度補正回路からの「補正開始」の指令信号によりサーボオン状態にすると、駆動モータ5に駆動電流が流れ、駆動モータ5に直結されたモータ軸7を介して回転機構部4が回転動作を開始する。   (2) Next, when the servo is turned on by the “correction start” command signal from the sensitivity correction circuit, the drive current flows to the drive motor 5 and the rotation mechanism unit 4 is connected via the motor shaft 7 directly connected to the drive motor 5. Starts rotating.

(3)回転機構部4は、ポテンショメータ6により検出される回転角度を基に位置制御を行い、図3(b)に示すよう、時計方向へ90°回転した後、位置制御処理によって設定された時間その位置を持続保持する。   (3) The rotation mechanism unit 4 performs position control based on the rotation angle detected by the potentiometer 6, and is set by position control processing after rotating 90 ° clockwise as shown in FIG. 3B. Hold that position for a time.

(4)上記(3)の状態のとき、a波長帯検出素子12はその光学系光軸21上にあるa波長帯低温側温度基準板16を、b波長帯検出素子13はその光学系光軸22上にあるb波長帯低温側温度基準板31の赤外線エネルギーを一定時間受光し、低温側温度の基準データを取得する。   (4) In the state of (3) above, the a wavelength band detecting element 12 is the a wavelength band low temperature side temperature reference plate 16 on the optical system optical axis 21, and the b wavelength band detecting element 13 is the optical system light. The infrared energy of the b wavelength band low temperature side temperature reference plate 31 on the axis 22 is received for a certain period of time, and low temperature side temperature reference data is acquired.

(5)次に回転機構部4は半時計方向へ180°回転し、上記(3)と同様に位置制御処理によって設定された時間その位置を持続保持する。   (5) Next, the rotation mechanism unit 4 rotates 180 ° counterclockwise, and maintains the position for the time set by the position control process in the same manner as (3) above.

(6)上記(5)の状態のとき、a波長帯検出素子12はその光学系光軸21上にあるa波長帯高温側温度基準板17を、b波長帯検出素子13はその光学系光軸22上にあるb波長帯高温側温度基準板32の赤外線エネルギーを一定時間受光し、高温側温度の基準データを取得する。   (6) In the state of (5) above, the a wavelength band detecting element 12 is the a wavelength band high temperature side temperature reference plate 17 on the optical system optical axis 21, and the b wavelength band detecting element 13 is the optical system light. The infrared energy of the b wavelength band high temperature side temperature reference plate 32 on the axis 22 is received for a certain period of time, and high temperature side temperature reference data is acquired.

(7)上記(6)による基準データの取得後、撮影状態に戻るべく、回転機構部4を時計方向へ90度回転し、図3(a)に示す状態へ復帰させた後、位置制御をオフにする。   (7) After obtaining the reference data in (6) above, the rotation mechanism 4 is rotated 90 degrees clockwise to return to the photographing state, and after returning to the state shown in FIG. Turn off.

なお、回転機構部4が回転し、感度補正を実施していない状態のときは、位置制御オフとなるが、このとき図4(a)に示すよう、モータ軸7に設けたプランジャ軸受27の凹部と駆動機構部3に設けたプランジャ26との係合により、回転機構部4は回転方向に対しメカニカルに固定的に位置決めされ、外部から震動等の外乱を受けても、質量重心が回転中心と一致していること、及びプランジャ26内部に設けたバネ33の押圧によりボール34を一定圧力で常時加圧していることから、プランジャ軸受27の凹部で回転位置が係止され、モータトルクなどの所定以上の回転トルクが発生しない限り、回転機構部4は回転移動しない。   The position control is turned off when the rotation mechanism unit 4 is rotated and sensitivity correction is not performed. At this time, as shown in FIG. 4A, the plunger bearing 27 provided on the motor shaft 7 is turned off. Due to the engagement between the concave portion and the plunger 26 provided in the drive mechanism unit 3, the rotation mechanism unit 4 is mechanically fixedly positioned in the rotation direction, and the center of mass of the mass is the center of rotation even when external disturbance such as vibration is received. And the ball 34 is constantly pressurized at a constant pressure by pressing the spring 33 provided inside the plunger 26, the rotational position is locked by the concave portion of the plunger bearing 27, and the motor torque, etc. As long as a rotational torque not less than a predetermined value is generated, the rotation mechanism unit 4 does not rotate.

なお、図4(b)は、モータ軸7のプランジャ軸受け27凹部と駆動機構部3に設けられたプランジャ26との係合が外れ、回転機構部4がメカニカルに位置決めされていない状態(感度補正実行時の状態)を示している。   FIG. 4B shows a state where the concave portion of the plunger bearing 27 of the motor shaft 7 is disengaged from the plunger 26 provided in the drive mechanism unit 3 and the rotation mechanism unit 4 is not mechanically positioned (sensitivity correction). State at the time of execution).

本発明の感度補正機構を示す図である。It is a figure which shows the sensitivity correction mechanism of this invention. 本発明の感度補正機構及び赤外線撮像装置の外観を示す図である。It is a figure which shows the external appearance of the sensitivity correction mechanism and infrared imaging device of this invention. 本発明の感度補正機構の動作説明図である。It is operation | movement explanatory drawing of the sensitivity correction mechanism of this invention. 本発明の回転機構部の位置決め係止機構を示す図である。It is a figure which shows the positioning locking mechanism of the rotation mechanism part of this invention. 赤外線撮像装置の構成を示す図である。It is a figure which shows the structure of an infrared imaging device. 赤外線検出素子の感度特性を示す図である。It is a figure which shows the sensitivity characteristic of an infrared rays detection element. 赤外線撮像装置の感度補正機構を示す図である。It is a figure which shows the sensitivity correction mechanism of an infrared imaging device. 従来の2波長光学系感度補正機構を示す図である。It is a figure which shows the conventional 2 wavelength optical system sensitivity correction mechanism. ペルチェ素子を使用した従来の感度補正機構を示す図である。It is a figure which shows the conventional sensitivity correction mechanism using a Peltier device. ペルチェ素子を使用した従来の感度補正機構を示す図である。It is a figure which shows the conventional sensitivity correction mechanism using a Peltier device. ペルチェ素子を使用した従来の感度補正機構を示す図である。It is a figure which shows the conventional sensitivity correction mechanism using a Peltier device. ペルチェ素子を使用した従来の感度補正機構及び冷却構造を示す図である。It is a figure which shows the conventional sensitivity correction mechanism and cooling structure using a Peltier device.

符号の説明Explanation of symbols

1 a波長帯光学系
2 b波長帯光学系
3 駆動機構部
4 回転機構部
5 駆動モータ
6 ポテンショメータ
7 モータ軸
8 ポテンショメータ軸
9 第1の歯車
10 第2の歯車
11 回転ベース板
12 a波長帯検出素子
13 b波長帯検出素子
14 a波長帯低温側ペルチェ素子
15 a波長帯高温側ペルチェ素子
16 a波長帯低温側温度基準板
17 a波長帯高温側温度基準板
18 冷却ファン
19 放熱用ピンフィン
20 上フタ
21 a波長帯光軸中心
22 b波長帯光軸中心
23 通過孔
24 ハーネス
25 インタフェースコネクタ
26 プランジャ
27 プランジャ軸受け
28 b波長帯低温側ペルチェ素子
29 b波長帯高温側ペルチェ素子
30 モニタ
31 b波長帯低温側温度基準板
32 b波長帯高温側温度基準板
33 バネ
34 ボール
35 a波長帯赤外線検出部
36 a波長帯赤外線検出器
37 AD変換回路
38 軸受け
DESCRIPTION OF SYMBOLS 1 a wavelength band optical system 2 b wavelength band optical system 3 Drive mechanism part 4 Rotation mechanism part 5 Drive motor 6 Potentiometer 7 Motor shaft 8 Potentiometer shaft 9 1st gear 10 2nd gear 11 Rotation base plate 12 a wavelength band detection Element 13 b wavelength band detection element 14 a wavelength band low temperature side Peltier element 15 a wavelength band high temperature side Peltier element 16 a wavelength band low temperature side temperature reference plate 17 a wavelength band high temperature side temperature reference plate 18 cooling fan 19 heat dissipation pin fin 20 top Lid 21 a wavelength band optical axis center 22 b wavelength band optical axis center 23 passage hole 24 harness 25 interface connector 26 plunger 27 plunger bearing 28 b wavelength band low temperature side Peltier element 29 b wavelength band high temperature side Peltier element 30 monitor 31 b wavelength band Low temperature side temperature reference plate 32 b wavelength band high temperature side temperature reference plate 33 Spring 34 baud 35 a wavelength band infrared detector 36 a wavelength band infrared detector 37 AD conversion circuit 38 bearing

Claims (5)

複数の赤外線検出素子を有する赤外線検出器を複数の光学系対応に備えた赤外線撮像装置において、
各光学系の赤外線検出器への赤外線入射光路と交差する位置に配置された回転ベース板と、該回転ベース板を回動させる駆動機構部とを備え、
前記回転ベース板に、前記各光学系の赤外線検出器への赤外線入射光をそれぞれ通過させる複数の通過孔と、前記赤外線検出素子の感度補正用の温度基準板とを設け、
前記駆動機構部は、前記回転ベース板を回動し、赤外線画像の撮影時に前記通過孔を前記各光学系の赤外線入射光路と交差する位置に配置し、前記赤外線検出素子の感度補正時に前記温度基準板を前記各光学系の赤外線入射光路と交差する位置に配置して赤外線入射光を遮断すると共に前記赤外線検出器に前記温度基準板を対向させることを特徴とする赤外線検出器の感度補正機構を有する赤外線撮像装置。
In an infrared imaging device provided with an infrared detector having a plurality of infrared detection elements corresponding to a plurality of optical systems,
A rotation base plate disposed at a position intersecting the infrared incident optical path to the infrared detector of each optical system, and a drive mechanism unit for rotating the rotation base plate,
The rotating base plate is provided with a plurality of through holes for passing infrared incident light to the infrared detector of each optical system, and a temperature reference plate for correcting the sensitivity of the infrared detecting element,
The drive mechanism rotates the rotating base plate, arranges the passage hole at a position intersecting with an infrared incident optical path of each optical system at the time of capturing an infrared image, and adjusts the temperature at the time of sensitivity correction of the infrared detection element. A sensitivity correction mechanism for an infrared detector, wherein a reference plate is disposed at a position intersecting with an infrared incident optical path of each optical system to block infrared incident light, and the temperature reference plate is opposed to the infrared detector. An infrared imaging device having
前記温度基準板を前記回転ベース板の表面と裏面に高温用及び低温用の一対の温度基準板としてペルチェ素子を介在させて重ね合わせて配置し、且つ、該高温用及び低温用の一対の温度基準板を前記回転ベース板の複数の箇所に配置すると共に、該複数の箇所に配置した各一対の温度基準板の高温側及び低温側が互いに前記回転ベース板の表面と裏面とで逆向きになるよう配置したことを特徴とする請求項1に記載の赤外線検出器の感度補正機構を有する赤外線撮像装置。   The temperature reference plate is disposed on the front and back surfaces of the rotating base plate so as to overlap each other as a pair of high and low temperature reference plates with a Peltier element interposed therebetween, and the pair of high temperature and low temperature The reference plates are arranged at a plurality of locations on the rotating base plate, and the high temperature side and the low temperature side of each pair of temperature reference plates arranged at the plurality of locations are opposite to each other on the front surface and the back surface of the rotating base plate. The infrared imaging device having a sensitivity correction mechanism for an infrared detector according to claim 1, wherein the infrared imaging device is arranged as described above. 前記回転ベース板に放熱ピンフィンを付設し、該放熱ピンフィンに冷風を送風する冷却ファンを、該回転ベース板と一体構造として備えたことを特徴とする請求項1又は2に記載の赤外線検出器の感度補正機構を有する赤外線撮像装置。   3. The infrared detector according to claim 1, wherein a heat radiating pin fin is attached to the rotating base plate, and a cooling fan that blows cool air to the heat radiating pin fin is provided as an integral structure with the rotating base plate. An infrared imaging device having a sensitivity correction mechanism. 前記回転ベース板上に配置された前記通過孔及び前記温度基準板を少なくとも含む回転機構部の重心が、該回転ベース板の回転軸を中心として点対称になるよう該回転機構部の部材を配置したことを特徴とする1乃至3の何れかに記載の赤外線検出器の感度補正機構を有する赤外線撮像装置。   The members of the rotation mechanism unit are arranged so that the center of gravity of the rotation mechanism unit including at least the passage hole and the temperature reference plate arranged on the rotation base plate is point-symmetric about the rotation axis of the rotation base plate. An infrared imaging apparatus having a sensitivity correction mechanism for an infrared detector according to any one of claims 1 to 3. 前記回転ベース板の回動が所定の位置で係止するよう、係止用の溝と突起との係合機構から成る位置決め固定機構を備えたことを特徴とする請求項1乃至4の何れかに記載の赤外線検出器の感度補正機構を有する赤外線撮像装置。   5. A positioning and fixing mechanism comprising an engaging mechanism between a locking groove and a protrusion so that the rotation of the rotating base plate is locked at a predetermined position. An infrared imaging device having the sensitivity correction mechanism of the infrared detector described in 1.
JP2004154166A 2004-05-25 2004-05-25 Infrared imaging device having sensitivity correction mechanism of infrared detector Expired - Fee Related JP4447376B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004154166A JP4447376B2 (en) 2004-05-25 2004-05-25 Infrared imaging device having sensitivity correction mechanism of infrared detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004154166A JP4447376B2 (en) 2004-05-25 2004-05-25 Infrared imaging device having sensitivity correction mechanism of infrared detector

Publications (2)

Publication Number Publication Date
JP2005337772A true JP2005337772A (en) 2005-12-08
JP4447376B2 JP4447376B2 (en) 2010-04-07

Family

ID=35491523

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004154166A Expired - Fee Related JP4447376B2 (en) 2004-05-25 2004-05-25 Infrared imaging device having sensitivity correction mechanism of infrared detector

Country Status (1)

Country Link
JP (1) JP4447376B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010230475A (en) * 2009-03-27 2010-10-14 Fujitsu Ltd Infrared imaging apparatus and peltier-enclosed vacuum case
JP2010230552A (en) * 2009-03-27 2010-10-14 Nec Corp Infrared imaging device, and method for display of infrared image
JP2013126235A (en) * 2011-12-16 2013-06-24 Chuo Electronics Co Ltd Output correction device, method, program, and imaging system
JP2013535010A (en) * 2010-06-30 2013-09-09 清華大学 Millimeter wave inspection equipment

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010230475A (en) * 2009-03-27 2010-10-14 Fujitsu Ltd Infrared imaging apparatus and peltier-enclosed vacuum case
JP2010230552A (en) * 2009-03-27 2010-10-14 Nec Corp Infrared imaging device, and method for display of infrared image
JP2013535010A (en) * 2010-06-30 2013-09-09 清華大学 Millimeter wave inspection equipment
JP2013126235A (en) * 2011-12-16 2013-06-24 Chuo Electronics Co Ltd Output correction device, method, program, and imaging system

Also Published As

Publication number Publication date
JP4447376B2 (en) 2010-04-07

Similar Documents

Publication Publication Date Title
US11044423B2 (en) Mobile gas and chemical imaging camera
Smith et al. The Zwicky transient facility observing system
EP2993885B1 (en) Image photographing apparatus
Baudoz et al. The differential tip-tilt sensor of SPHERE
Huehnerhoff et al. Astrophysical Research Consortium Telescope Imaging Camera (ARCTIC) facility optical imager for the Apache Point Observatory 3.5 m telescope
JP2018518859A (en) Image plane sensor alignment system and method
Dekany et al. The Zwicky Transient Facility Camera
CN102597722A (en) Method and apparatus for in situ solar flat panel diagnostics
JP4447376B2 (en) Infrared imaging device having sensitivity correction mechanism of infrared detector
JP5700803B2 (en) Optical arrangement of infrared camera
KR102277509B1 (en) Thermal imaging apparatus
US7595875B1 (en) Alignment systems for spectrometers
US6825978B2 (en) High sensitivity thermal radiation detection with an emission microscope with room temperature optics
Wang et al. Prime focus instrument of prime focus spectrograph for Subaru telescope
Tokovinin et al. SAM: a facility GLAO instrument
Rinaldi Infrared devices: Short history and new trends
JP4268774B2 (en) Infrared imaging device
US20080272453A1 (en) Optical device cooling apparatus and method
Komiyama et al. Subaru next-generation wide-field camera: HyperSuprime
Hope et al. Thermal reliability testing of digital micromirror devices (DMDs)
Wang et al. The metrology cameras for Subaru PFS and FMOS
JPS5915379A (en) Heat infrared image pickup camera
Hodapp et al. Gemini near-infrared imager
JP3772904B2 (en) Infrared imaging device
Cha et al. KASINICS: KASI Near-Infrared Camera System

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070420

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090901

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091030

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100105

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100120

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130129

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4447376

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130129

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140129

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees