JP2005337100A - 流体機械 - Google Patents

流体機械 Download PDF

Info

Publication number
JP2005337100A
JP2005337100A JP2004156552A JP2004156552A JP2005337100A JP 2005337100 A JP2005337100 A JP 2005337100A JP 2004156552 A JP2004156552 A JP 2004156552A JP 2004156552 A JP2004156552 A JP 2004156552A JP 2005337100 A JP2005337100 A JP 2005337100A
Authority
JP
Japan
Prior art keywords
blade
helical
spiral groove
fluid machine
roller
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004156552A
Other languages
English (en)
Inventor
Takuya Hirayama
卓也 平山
Hisayoshi Fujiwara
尚義 藤原
Hiroyuki Mizuno
弘之 水野
Masayuki Okuda
正幸 奥田
Masatoshi Yoshida
政敏 吉田
Takeshi Fukuda
岳 福田
Satoshi Koyama
聡 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Carrier Corp
Original Assignee
Toshiba Carrier Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Carrier Corp filed Critical Toshiba Carrier Corp
Priority to JP2004156552A priority Critical patent/JP2005337100A/ja
Publication of JP2005337100A publication Critical patent/JP2005337100A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Rotary Pumps (AREA)

Abstract

【課題】本発明は上述した事情を考慮してなされたもので、安価で高信頼性、高性能の流体機械を提供することを目的とする。
【解決手段】本流体機械は、シリンダ内に偏心配置されたローラと、ローラの外周面に形成され吸込み側から吐出側に向かってピッチが徐々に変化するように形成された螺旋状溝と、この螺旋状溝に出没自在に嵌められた螺旋状のブレードからなるヘリカル機構部を備えた流体機械において、螺旋溝の巻き数をn、設定圧縮比又は設定膨張比をεとしたとき、(0.2ε+2)≦n≦(0.7ε+2)となる。
【選択図】 図1

Description

本発明は流体機械に係り、特にヘリカル機構部を有する流体機械に関する。
流体を圧縮する圧縮機には、レシプロタイプの他にロータリタイプの圧縮機が普及しているが、圧縮機構部にヘリカルブレードを採用したヘリカル圧縮機も採用されつつある。このヘリカル圧縮機のヘリカル機構部は、シリンダと、このシリンダ内に偏心配置されたローラと、このローラの外周面に形成された螺旋状溝と、この螺旋状溝に出没自在に嵌められた螺旋状のブレードとからなっているが、螺旋状溝の数、螺旋状溝の起点と終点の軸方向距離、シリンダの内径、ブレードの断面寸法等を適切に設計しないと、性能・信頼性の低下、運転不良の発生、コストアップ、重量の増大等の不具合を招く。
なお、特許文献1には、圧縮機構部にヘリカルブレードを採用したヘリカル圧縮機が開示されているが、その設定圧縮比又は設定膨張比をεと螺旋溝の巻き数をnの関係を特定しておらず、また、特許文献2には、ガスアシストされたヘリカルブレードが開示されているが、その断面形状の改良はなされていない。
特開2004−92518号公報([0022]、図2) 特開平10−61575号公報([0024]、図3)
本発明は上述した事情を考慮してなされたもので、安価で高信頼性、高性能の流体機械を提供することを目的とする。
上述した目的を達成するため、本発明に係る流体機械は、シリンダ内に偏心配置されたローラと、このローラの外周面に形成され吸込み側から吐出側に向かってピッチが徐々に変化するように形成された螺旋状溝と、この螺旋状溝に出没自在に嵌められた螺旋状のブレードからなるヘリカル機構部を備えた流体機械において、前記螺旋溝の巻き数をn、設定圧縮比又は設定膨張比をεとしたとき、(0.2ε+2)≦n≦(0.7ε+2)となるようにしたことを特徴とする。
また、本発明に係る流体機械は、シリンダ内に偏心配置されたローラと、このローラの外周面に形成され吸込み側から吐出側に向かってピッチが徐々に変化するように形成された螺旋状溝と、この螺旋状溝に出没自在に嵌められた螺旋状のプレードからなるヘリカル機構部を備えた流体機械において、設定圧縮比又は設定膨張比が2以下のとき、前記螺旋溝の巻き数をn、一螺旋溝の起点と終点の軸方向距離をL、シリンダ内径をDとしたとき、0.1n≦L/D≦0.2nとなるようにしたことを特徴とする。
本発明に係る流体機械によれば、安価で高信頼性、高性能の流体機械を提供することができる。
以下、本発明に係る流体機械の一実施形態について添付図面を参照して説明する。
図1は本発明に係る流体機械の一実施形態としての横型ヘリカル圧縮機の縦断面図である。
図1に示すように、本実施形態の横型ヘリカル圧縮機1は、ヘリカル機構部2と、このヘリカル機構部2に駆動部(図示せず)からの動力を伝達しこれを回転させる回転軸3を有している。
ヘリカル圧縮機構部2は、シリンダ21と、このシリンダ21内に旋回(公転)自在に偏心配置された環状のローラ22と、このローラ22とシリンダ21間に軸方向に次第に容積が小さくなる圧縮室23を区画する不等ピッチのヘリカルブレード24とを有している。
ローラ22の外周面には、所定寸法の螺旋溝25が図1中左端の吸込み側端から右端の吐出側端に向けてピッチが徐々に小さくなるように形成されており、この螺旋溝25内には弾性を有する螺旋状の上記ヘリカルブレード24が出没自在に嵌め込まれている。なお、圧縮機の場合はピッチを徐々に小さくするが、膨張機の場合は徐々に大きくする。
ヘリカルブレード24はシリンダ21の内周面に気密に当接され、シリンダ21の内周面とローラ22の外周面との環状間隙をヘリカルブレード24により軸方向に沿って複数の圧縮室23に仕切っている。各圧縮室23はヘリカルブレード24の隣り合う2つの巻き間に形成されており、ヘリカルブレード24に沿ってシリンダ21の内周面とローラ22の外周面との接触部から、次の接触部まで延びほぼ三日月状をなしている。これら圧縮室23の各容積はヘリカルブレード24のピッチに対応して図1中左端の吸込み側から図中右端の吐出側へ向って徐々に小さくなっている。
また、回転軸3はその中間部にクランク部3aが形成され、このクランク部3aで2個の単列玉軸受22aを介してローラ22を支持し、さらに、その一側はシリンダ21に取付けられた主軸受部26に一体的に設けられた単列玉軸受26aにより支持され、他側はシリンダ21に取付けられた副軸受部27に一体的に取付けられた単列玉軸受27aにより支持されている。
また、ローラ22の外周面に設けられた螺旋溝25の巻き数は次のように設定される。
すなわち、螺旋溝の巻き数をn、設定圧縮比又は設定膨張比をεとしたとき
[数3]
(0.2ε+2) ≦ n ≦ (0.7ε+2) …… 式(1)
となる。
ここで、εは設定圧縮比の場合は最終圧縮室の容積/排除容積、設定膨張比の場合は最終部屋容積/最初の部屋容積を意味する。
このように、螺旋溝の巻き数を設定することにより、所定の設計圧縮比あるいは膨張比に対し、巻き数の過多によるコストアップ、摺動損失増大等を防ぐことができ、安価で高性能のヘリカル圧縮機が実現する。また、巻き数の過少による螺旋傾き変化率の増加・圧縮室間差圧増大等を防ぐことができ、ブレードの出入り性や信頼性が向上し、リーク減少によりヘリカル圧縮機の性能向上を図ることができる。
なお、特に設計圧縮比あるいは膨張比が2以下の場合においては、
[数4]
(0.2ε+2) ≦ n ≦ (0.7ε+1.5) …… 式(2)
とするのが好ましい。
設計圧縮比あるいは膨張比が2以下の場合において、このように、螺旋溝の巻き数を設定することにより、ブレードの出入り性、信頼性を損なうことなく、より摺動損失増大防止に効果があり、高性能のヘリカル圧縮機が実現する。
また、設定圧縮比又は設定膨張比が2以下の場合、螺旋溝の巻き数をn、螺旋溝の起点と終点の軸方向距離をL、シリンダ内径をDとしたとき、
[数5]
0.1n ≦ L/D ≦ 0.2n …… 式(3)
とするのが好ましい。
このように、軸方向距離とシリンダ内径の比を設定することにより、所定の螺旋巻き数で設計されたヘリカル圧縮機において、L/D過大により螺旋の傾きが増大するのを防止でき、ブレードの出入り性、信頼性、シール性等が向上し、高信頼性、高性能のヘリカル圧縮機が実現する。また、L/D過小(Lに対してDが過大)によるシリンダ、ローラ、軸受部等の構成部品の大型化、重量増大を防ぐことができる。
さらに、上記ヘリカルブレード24は、高圧不活性ガスを注入するガスアシスト成形法によるフッ素樹脂の射出成形によって製造したものを用いるが、一般的に、その断面形状は長方形でなく、その長手方向の位置によって、ほぼ太鼓状あるいは鼓状になる。例えば、その製造時の高圧不活性ガス注入口側(ガス注入口24aを有する断面)は、図2(a)に示すように、ブレードの螺旋方向と直交する断面における中央部の幅寸法wが、外周部及び内周部の幅寸法wに比較して大きくなる傾向にある。また、反ガス注入口側(ガス注入口を有しない断面)は、図2(b)に示すように、中央部の幅寸法wが、外周部及び内周部の幅寸法wに比較して小さくなる傾向があり、これをそのまま用いると、ブレードが嵌合する螺旋溝の形状は長方形であるため、ブレードと溝間のクリアランスにおいて広い部分と狭い部分が生じ、ヘリカルコンプレッサの流量低下、高温時のブレード熱膨張による信頼性低下等を招くおそれがある。
そこで、図3に示すように、ヘリカルブレード24の断面形状を改良し、ガス注入口がブレードの吐出側に位置するときは、ブレードの螺旋方向と直交する断面における中央部の幅寸法wを外周部及び内周部の幅寸法wに比較して、ブレード全長に渡る寸法差(吐出側端のwと吸込み側に向かって移動した任意の各部位におけるwの差)が小さくなるようにする。これにより、運転時高温になりブレードの熱膨張が大きくなる吐出側において、ブレードの平均幅寸法を小さくでき、一方でプレードの熱膨張が小さい吸込み側において、ブレードの平均幅寸法を大きくできる。すなわち、吐出側では溝とブレード間のクリアランスを大きくできるため、高温時の信頼性向上あるいは使用温度範囲の拡大を図ることができ、吸込み側では溝とブレード間のクリアランスを小さくできるため流量の低下を防ぐことができる。
また、図4に示すように、ガス注入口がブレードの吸込み側に位置するときは、外周部及又は内周部の幅寸法wを中央部の幅寸法wに比較して、プレード全長に渡る寸法差が小さくなるようにする。これにより、図3に示すような上記形状の場合と同様の効果が得られる。
なお、アシストガス孔は、プレード全長の半分以上に渡り形成されているのが好ましい。これにより、アシストガス入り特定断面形状のブレードの効果がより確実なものになる。
また、シリンダ21、ローラ22および両軸受部26、27の母材の全てあるいはその一部がマグネシウム合金であるのが好ましい。これにより、シリンダ21、ローラ22および両軸受部26、27の構成部品が大型化しても、加工性、剛性、放熱性等を著しく損なうことなく各構成部品の比重を低減でき、ヘリカル圧縮機1の重量増加を抑制できる。また、ローラ22の軽量化に伴い、ローラ22にかかる遠心力を低減でき、振動・騒音を軽減でき、回転軸3の低剛性化も可能となる。さらに、シリンダ21、両軸受部26、27等をマグネシウム合金にすることにより、振動吸収性(制振性)を向上させることができ、低振動化、低騒音化が実現する。
上述のように本実施形態の横型ヘリカル圧縮機によれば、巻き数の過多によるコストアップ、摺動損失増大等を防ぐことができ、また、巻き数の過少による螺旋傾き変化率の増加・圧縮室間差圧増大等を防ぐことができ、さらに、L/D過大により螺旋の傾きが増大するのを防止し、ブレードの出入り性、信頼性、シール性等の向上を図ることができ、高信頼性、高性能が実現し、また、L/D過小シリンダ、ローラ、軸受部等の構成部品の大型化、重量増大を防ぎ、また、特定断面形状のガスアシスト成形のブレードを用いることにより、高温時の信頼性向上および使用温度範囲の拡大を図ることができる横型ヘリカル圧縮機を提供することができる。
なお、本実施形態では、横型ヘリカル圧縮機を例に採り説明したが、膨張機であっても、また、縦型流体機械であっても同様の効果が得られる。
(試験1)
図1に示すようなヘリカル圧縮機構部を用いて、圧縮比を変化させ、螺旋溝の巻き数と摺動損失の相関を調べた。
結果:図5において、ε=3で代表して示すように、巻き数と摺動損失には、線図のような相関があり、摺動損失を許容値以下に抑えると、式(1)の上限すなわち(0.7ε+2)を導ける。
(試験2)
上記試験1に用いたと同様のヘリカル圧縮機構部のローラの螺旋溝の巻き数と螺旋溝の螺旋傾きの変化率の相関を調べた。
結果:図6において、ε=3で代表して示すように、巻き数と螺旋傾きの変化率には、線図のような相関があり、螺旋傾きの変化率を許容値以下に抑えると、式(1)の下限すなわち(0.2ε+2)を導くことができる。従って、試験1および2から、式(1)を導き出すことができる。
また、試験1において、図7で、ε=1.8で代表して示すように、ε=2以下では、巻き数と摺動損失には、線図のような相関があり、摺動損失を許容値以下に抑えると、式(2)の上限すなわち(0.7ε+1.5)を導くことができ、また、試験2において、図8で、ε=1.8で代表して示すように、ε=2以下では、巻き数と螺旋傾きの変化率には、線図のような相関があり、螺旋傾きの変化率を許容値以下に抑えると、式(2)の下限すなわち(0.2ε+2)を導くことができる。従って、試験1および2から、式(2)を導き出すことができる。
(試験3)
上記試験1に用いたと同様のヘリカル圧縮機構部のローラの螺旋溝の巻き数と圧縮室間平均差圧の相関を調べた。
結果:図9および図10に示すように、巻き数と圧縮室間平均差圧には、線図のような相関があり、圧縮室間平均差圧を許容値以下に抑えると、試験2同様に式(1)、(2)の下限すなわち(0.2ε+2)を導くことができる。試験2の結果に代えて、試験3の結果を式(1)、(2)の下限として用いることもできる。
(試験4)
上記試験1に用いたと同様のヘリカル圧縮機構部を用い、代表的に巻き数n=2.5とし、εを2以下としたときの、L/Dと螺旋の傾きの相関を算出した。
結果:図11に示すように、巻き数と圧縮室間平均差圧には、線図のような相関があり、螺旋の傾きを許容値以下にし、上記線図を用いれば、式(3)の上限すなわち(0.2n)を導くことができる。
(試験5)
上記試験1に用いたと同様のヘリカルコンプレッサを多数設計し、代表的に巻き数n=2.5とし、εを2以下としたときの、L/Dとヘリカルコンプレッサ(ローラ、シリンダおよび軸受部)体積の相関を算出した。
結果:図12に示すように、巻き数とヘリカルコンプレッサ体積には、線図のような相関があり、ヘリカルコンプレッサ体積を許容範囲内にし、巻き数にかかわらず上記線図を用いれば、式(3)の下限すなわち(0.1n)を導くことができる。
従って、試験4および5から、式(3)を導き出すことができる。
本発明の実施形態に係る横型ヘリカル圧縮機の縦断面図。 (a)及び(b)は、流体機械に用いられる一般的な螺旋ブレードの縦断面図。 本発明の実施形態に係る横型ヘリカル圧縮機に用いられる螺旋ブレードの螺旋位置角とブレード寸法の関係を示す線図。 本発明に係る横型ヘリカル圧縮機に用いられる螺旋ブレードの螺旋位置角とブレード寸法の関係を示す線図。 本発明の実施形態に係る横型ヘリカル圧縮機を用いた螺旋溝の巻き数と摺動損失相関を示す試験結果図。 本発明の実施形態に係る横型ヘリカル圧縮機を用いた螺旋溝の巻き数と螺旋傾きの変化率の相関を示す試験結果図。 本発明の実施形態に係る横型ヘリカル圧縮機を用いた螺旋溝の巻き数と摺動損失相関を示す試験結果図。 本発明の実施形態に係る横型ヘリカル圧縮機を用いた螺旋溝の巻き数と螺旋傾きの変化率の相関を示す試験結果図。 本発明の実施形態に係る横型ヘリカル圧縮機を用いた巻き数と圧縮室間平均差圧の相関を示す試験結果図。 本発明の実施形態に係る横型ヘリカル圧縮機を用いた巻き数と圧縮室間平均差圧の相関を示す試験結果図。 本発明の実施形態に係る横型ヘリカル圧縮機を用いたL/Dと螺旋傾きの相関を示す試験結果図。 本発明の実施形態に係る横型ヘリカル圧縮機を用いたL/Dとヘリカルコンプレッサ体積の相関を示す試験結果図。
符号の説明
1…横型ヘリカル圧縮機、2…ヘリカル機構部、3…回転軸、21…シリンダ、22…ローラ、23…圧縮室、24…ヘリカルブレード、25…螺旋溝。

Claims (3)

  1. シリンダ内に偏心配置されたローラと、このローラの外周面に形成され吸込み側から吐出側に向かってピッチが徐々に変化するように形成された螺旋状溝と、この螺旋状溝に出没自在に嵌められた螺旋状のブレードからなるヘリカル機構部を備えた流体機械において、前記螺旋溝の巻き数をn、設定圧縮比又は設定膨張比をεとしたとき、
    [数1]
    (0.2ε+2) ≦ n ≦ (0.7ε+2)
    となるようにしたことを特徴とする流体機械。
  2. シリンダ内に偏心配置されたローラと、このローラの外周面に形成され吸込み側から吐出側に向かってピッチが徐々に変化するように形成された螺旋状溝と、この螺旋状溝に出没自在に嵌められた螺旋状のプレードからなるヘリカル機構部を備えた流体機械において、設定圧縮比又は設定膨張比が2以下のとき、前記螺旋溝の巻き数をn、一螺旋溝の起点と終点の軸方向距離をL、シリンダ内径をDとしたとき、
    [数2]
    0.1n ≦ L/D ≦ 0.2n
    となるようにしたことを特徴とする流体機械。
  3. 前記ブレードは、高圧不活性ガスを注入するガスアシスト成形法によるフッ素樹脂の射出成形によって形成するとともに、高圧不活性ガス注入口がブレードの吐出側に位置するときは、ブレードの螺旋方向と直交する断面における中央部の幅寸法を外周部及び内周部の幅寸法に比較して、ブレード全長に渡る寸法差が小さくなるようにし、高圧不活性ガス注入口がブレードの吸込み側に位置するときは、上記断面における外周部及又は内周部の幅寸法を中央部の幅寸法に比較して、プレード全長に渡る寸法差が小さくなるようにした請求項1または2に記載の流体機械。
JP2004156552A 2004-05-26 2004-05-26 流体機械 Pending JP2005337100A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004156552A JP2005337100A (ja) 2004-05-26 2004-05-26 流体機械

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004156552A JP2005337100A (ja) 2004-05-26 2004-05-26 流体機械

Publications (1)

Publication Number Publication Date
JP2005337100A true JP2005337100A (ja) 2005-12-08

Family

ID=35490947

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004156552A Pending JP2005337100A (ja) 2004-05-26 2004-05-26 流体機械

Country Status (1)

Country Link
JP (1) JP2005337100A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8950366B2 (en) 2013-05-07 2015-02-10 Ford Global Technologies, Llc Method for reducing valve recession in gaseous fuel engines
US9453465B2 (en) 2013-05-07 2016-09-27 Ford Global Technologies, Llc Direct injection of diluents or secondary fuels in gaseous fuel engines
US9624872B2 (en) 2013-05-07 2017-04-18 Ford Global Technologies, Llc Method for reducing valve recession in gaseous fuel engines
US9777646B2 (en) 2013-05-07 2017-10-03 Ford Global Technologies, Llc Direct injection of diluents or secondary fuels in gaseous fuel engines
US9909514B2 (en) 2013-05-07 2018-03-06 Ford Global Technologies, Llc Direct injection of diluents or secondary fuels in gaseous fuel engines

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8950366B2 (en) 2013-05-07 2015-02-10 Ford Global Technologies, Llc Method for reducing valve recession in gaseous fuel engines
US9453465B2 (en) 2013-05-07 2016-09-27 Ford Global Technologies, Llc Direct injection of diluents or secondary fuels in gaseous fuel engines
US9624872B2 (en) 2013-05-07 2017-04-18 Ford Global Technologies, Llc Method for reducing valve recession in gaseous fuel engines
US9777646B2 (en) 2013-05-07 2017-10-03 Ford Global Technologies, Llc Direct injection of diluents or secondary fuels in gaseous fuel engines
US9909514B2 (en) 2013-05-07 2018-03-06 Ford Global Technologies, Llc Direct injection of diluents or secondary fuels in gaseous fuel engines

Similar Documents

Publication Publication Date Title
JP5152359B2 (ja) スクロール型圧縮機
US7789640B2 (en) Scroll fluid machine with a pin shaft and groove for restricting rotation
US20060067847A1 (en) Orbiting scroll in a scroll fluid machine
JP2005337100A (ja) 流体機械
JP2006022789A (ja) 回転式流体機械
JP2010031732A (ja) ロータリ圧縮機
KR101842333B1 (ko) 스크롤 압축기
JP6618663B1 (ja) すべり軸受構造及びスクロール圧縮機
JP2014509706A (ja) スクロール圧縮機
JP4103708B2 (ja) スクリュー圧縮機
JPS5847101A (ja) スクロール流体機械
JP4821660B2 (ja) シングルスクリュー圧縮機
WO2017002967A1 (ja) スクロール型流体機械
JP4320906B2 (ja) スクリュー圧縮機のロータ構造
JP2020094557A (ja) 流体機械
US6663369B2 (en) Fluid compressor
US11466686B2 (en) Rotary compressor
JP2006077744A (ja) 流体機械
JP2007146659A (ja) 油冷式圧縮機
JP2006029252A (ja) スクロール圧縮機
KR930004663B1 (ko) 스크루형 유체 압축기
JP5077194B2 (ja) スクロール膨張機
JP2007107535A (ja) スクロール型流体機械
JP2006242195A (ja) スクロール型流体機械
JP2007071215A (ja) スクロール型流体機械