JP2005336714A - Vibration damping structure of slab - Google Patents

Vibration damping structure of slab Download PDF

Info

Publication number
JP2005336714A
JP2005336714A JP2004153152A JP2004153152A JP2005336714A JP 2005336714 A JP2005336714 A JP 2005336714A JP 2004153152 A JP2004153152 A JP 2004153152A JP 2004153152 A JP2004153152 A JP 2004153152A JP 2005336714 A JP2005336714 A JP 2005336714A
Authority
JP
Japan
Prior art keywords
slab
vibration
column
slabs
floor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004153152A
Other languages
Japanese (ja)
Inventor
Hiroshi Takahashi
啓 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Construction Co Ltd
Shimizu Corp
Original Assignee
Shimizu Construction Co Ltd
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Construction Co Ltd, Shimizu Corp filed Critical Shimizu Construction Co Ltd
Priority to JP2004153152A priority Critical patent/JP2005336714A/en
Publication of JP2005336714A publication Critical patent/JP2005336714A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Building Environments (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a vibration damping structure of a slab capable of following also to a creep deformation phenomenon of the slab while decreasing the vibration of the slab by effectively absorbing the oscillation of the slab at a low cost. <P>SOLUTION: In the vibration damping structure of the slab damping the vibration of the slab 4 by connecting between upper and lower slabs 4 of a multi-story building with a strut, the strut is equipped with a lower side strut member 9 erected on the upper surface of the downstairs slab 4, an upper side strut member 10 vertically hung down to the lower surface of the upstairs slab 4 and a damper member 11 consisting of a viscoelastic material, and the lower side strut member 9 and the upper side strut member 10 are so constituted that both of them are fitted to each other through the damper member 11. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、多層建物のスラブの制振構造に関する。   The present invention relates to a vibration damping structure for a slab of a multi-layer building.

最近の集合住宅建物では、室内の有効天井高さを大きく確保するため、またフリープランに高度に対応するため、住戸内の天井部に梁形が突出することを避ける傾向にあり、特に小梁を省略、或いは極力少なくする構造が一般的となっている。このような構造の場合、スラブが大スパン間に形成されて大面積化するため、スラブの振動が生じ易くなり、重量床衝撃音の遮断性も低下する。   In recent apartment buildings, in order to ensure a large effective ceiling height in the room and to cope with the high level of the free plan, there is a tendency to avoid projecting the beam shape on the ceiling in the dwelling unit. The structure which omits or reduces as much as possible is common. In the case of such a structure, since the slab is formed between large spans to increase the area, vibration of the slab is likely to occur, and the insulation performance of heavy floor impact sound is also reduced.

上述した梁の省略等による弊害に対応するため、スラブ厚さを大きくしてスラブの剛性を増加させてスラブの振動を抑制する方法が考えられるが、スラブ厚さを大きくすると、有効天井高さが低くなるばかりでなくコストが高くなる。また、従来、制振効果を有する二重床等を設置する方法もあるが、その効果はあまり期待できない。そこで、近年、上下のスラブ間を支柱で連結する構造が提案されている。これによって、スラブ厚さを大きくすることなく、スラブの振動を抑制することができる(例えば、特許文献1参照。)。
特開2003−41684号公報
In order to cope with the above-mentioned adverse effects caused by the omission of the beam, etc., a method of suppressing the vibration of the slab by increasing the slab rigidity by increasing the slab thickness is considered. However, if the slab thickness is increased, the effective ceiling height is increased. Not only lowers but also increases cost. Conventionally, there is a method of installing a double floor or the like having a vibration damping effect, but the effect cannot be expected so much. Therefore, in recent years, a structure in which the upper and lower slabs are connected by a support column has been proposed. Accordingly, vibration of the slab can be suppressed without increasing the slab thickness (see, for example, Patent Document 1).
JP 2003-41684 A

しかしながら、上記した従来のスラブの制振構造では、スラブ間に設置された支柱は一定長さに保たれており、上下のスラブが剛接合されているため、大きな揺れが生じた際に支柱が破損する虞がある。また、支柱がスラブに長期間にわたる荷重によって生じるクリープ変形に追従できないという問題が存在する。クリープ変形に追従できない支柱でスラブ間を連結していると、クリープ変形現象が生じたときに、スラブに対して過度の押圧力や引き抜き力を与えることとなり、スラブに損傷が生じる虞がある。   However, in the above-described conventional slab vibration control structure, the columns installed between the slabs are maintained at a certain length, and the upper and lower slabs are rigidly joined. There is a risk of damage. In addition, there is a problem that the strut cannot follow the creep deformation caused by the load applied to the slab for a long time. If the slabs are connected by a column that cannot follow creep deformation, when a creep deformation phenomenon occurs, an excessive pressing force or pulling force is applied to the slab, and the slab may be damaged.

本発明は、上記した従来の問題が考慮されたものであり、低コスト且つ効果的にスラブの揺れを吸収してスラブの振動を低減しつつ、スラブのクリープ変形現象にも追従することができるスラブの制振構造を提供することを目的としている。   The present invention takes the above-described conventional problems into consideration, and can effectively follow the slab creep deformation phenomenon while absorbing vibration of the slab and reducing vibration of the slab at low cost and effectively. The purpose is to provide a vibration control structure for slabs.

請求項1記載の発明は、多層建物の上下のスラブ間を支柱によって連結して該スラブの振動を抑制するスラブの制振構造において、前記支柱には、下階のスラブ上面に立設された下側支柱部材と、上階のスラブ下面に垂設された上側支柱部材と、粘弾性体からなるダンパー部材とが備えられ、前記下側支柱部材と前記上側支柱部材とは、前記ダンパー部材を介して嵌合されていることを特徴としている。   According to the first aspect of the present invention, in the vibration suppression structure of a slab that suppresses vibration of the slab by connecting the upper and lower slabs of the multi-layer building with the support, the support is erected on the upper surface of the lower slab. A lower strut member, an upper strut member suspended from the lower surface of the slab on the upper floor, and a damper member made of a viscoelastic body, and the lower strut member and the upper strut member include the damper member It is characterized by being fitted through.

本発明に係るスラブの制振構造によれば、上下のスラブ間は支柱によって連結され、下側支柱部材と上側支柱部材とはダンパー部材を介して嵌合されているため、該ダンパー部材によってスラブの揺れが吸収されてスラブの振動を効果的に低減することができるとともに、クリープ変形現象が生じた場合に、ダンパー部材が非線形化し、支柱の全体長さを実際の上下のスラブ間隔に応じた適正長さに保つことができる。また、ダンパー部材は粘弾性体からなるため、支柱を安価に製作することができ、本発明に係るスラブの制振構造を低コストで提供することができる。   According to the vibration suppression structure for a slab according to the present invention, the upper and lower slabs are connected by the support column, and the lower support member and the upper support member are fitted via the damper member. The vibration of the slab can be effectively reduced by absorbing the vibration of the slab, and when the creep deformation phenomenon occurs, the damper member becomes non-linear, and the overall length of the strut corresponds to the actual vertical slab interval An appropriate length can be maintained. Further, since the damper member is made of a viscoelastic body, the support column can be manufactured at low cost, and the vibration damping structure for the slab according to the present invention can be provided at low cost.

図1は、本実施の形態に係る建物の断面図である。図1に示すように、この建物は、例えば集合住宅等の多層建物であり、その概略構成は、柱1、大梁2、戸境壁3および鉄筋コンクリート造のスラブ4である。この建物には、上下のスラブ4間には複数の間仕切壁5が設けられており、各住戸内は間仕切壁5によって仕切られ、各住戸内には複数の居室がそれぞれ形成されている。また、各住戸内には、二重天井6および二重床7がそれぞれ形成されている。   FIG. 1 is a cross-sectional view of a building according to the present embodiment. As shown in FIG. 1, this building is a multi-layered building such as an apartment house, and its schematic configuration is a column 1, a large beam 2, a door wall 3, and a reinforced concrete slab 4. In this building, a plurality of partition walls 5 are provided between the upper and lower slabs 4. Each dwelling unit is partitioned by the partition walls 5, and a plurality of living rooms are formed in each dwelling unit. Moreover, the double ceiling 6 and the double floor 7 are each formed in each dwelling unit.

上記した建物は、小梁が省略されており、住戸内の有効天井高さは十分に確保されている一方で、スラブ4全体が1枚の大面積床版となっている。大面積化されたスラブ4は振動が生じ易く、微振動による居住性の低下や下階の住戸に対する重量床衝撃音の遮断性能の低下が懸念されるため、当該建物には、スラブ4の振動を抑制する制振構造が適用されている。   In the above-mentioned building, the beam is omitted, and the effective ceiling height in the dwelling unit is sufficiently secured, while the entire slab 4 is a single large area floor slab. Since the slab 4 with a large area is likely to vibrate, there is a concern about the decrease in the comfortability due to the slight vibration and the decrease in the performance of blocking the heavy floor impact sound against the lower floor dwelling units. The vibration control structure which suppresses is applied.

以下、スラブの制振構造の第1,第2の実施の形態について、図面に基いてそれぞれ説明する。   Hereinafter, the first and second embodiments of the slab damping structure will be described with reference to the drawings.

[第1の実施の形態]
図1に示すように、間仕切壁5内には、上下のスラブ4間を連結する支柱8が納められている。支柱8は、室内に露出させる位置に設置してもその機能的には何ら支障はないが、意匠的に隠蔽する意味で間仕切壁5内に納められている。支柱8は、下階のスラブ4上面に立設された下側支柱部材9と、上階のスラブ4下面に垂設された上側支柱部材10と、粘弾性体からなるダンパー部材11とから構成されている。
[First Embodiment]
As shown in FIG. 1, a support column 8 that connects the upper and lower slabs 4 is accommodated in the partition wall 5. Even if the support column 8 is installed at a position where it is exposed to the room, there is no functional problem. The support column 8 includes a lower support member 9 erected on the upper surface of the slab 4 on the lower floor, an upper support member 10 suspended on the lower surface of the slab 4 of the upper floor, and a damper member 11 made of a viscoelastic body. Has been.

図2(a)は支柱8の縦断面図である。図2(a)に示すように、下側支柱部材9は、断面寸法が90mm×90mmで厚さが3.2mmの角形鋼管からなる軸部12と、軸部12の下端部に隅肉溶接された鋼板からなるベース部13と、ベース部13の中心部分に設けられたレベル調節手段14とから構成されている。軸部12は外形寸法が90mm×90mmと小さい鋼管が用いられているため、支柱8を間仕切壁5内に納めることができる。勿論、軸部12は、更に小さい外形寸法のものでもよい。   FIG. 2A is a longitudinal sectional view of the column 8. As shown in FIG. 2A, the lower support member 9 includes a shaft portion 12 made of a square steel pipe having a cross-sectional dimension of 90 mm × 90 mm and a thickness of 3.2 mm, and fillet welded to the lower end portion of the shaft portion 12. The base portion 13 is made of a steel plate and the level adjusting means 14 is provided at the central portion of the base portion 13. Since the shaft portion 12 uses a steel pipe having a small outer dimension of 90 mm × 90 mm, the column 8 can be accommodated in the partition wall 5. Of course, the shaft portion 12 may have a smaller outer dimension.

ベース部13は軸部12の外周面によりも鍔状に張り出されており、張り出された部分には複数(例えば4本)の孔13aが等間隔であけられている。孔13aには、下階のスラブ4上面に打ち込まれた後施工アンカーボルト15が挿通されており、ベース部13は、後施工アンカーボルト15及びナット16によって下階のスラブ4にボルト固定されている。また、ベース部13は下階のスラブ4上面との間に隙間をあけて配置されており、ベース部13と下階のスラブ4との間には無収縮モルタル等からなる充填材17が介在されている。   The base portion 13 also projects like a bowl from the outer peripheral surface of the shaft portion 12, and a plurality of (for example, four) holes 13a are formed at equal intervals in the projected portion. A post-construction anchor bolt 15 driven into the upper surface of the lower floor slab 4 is inserted into the hole 13a, and the base portion 13 is bolted to the lower floor slab 4 by the post-construction anchor bolt 15 and the nut 16. Yes. The base portion 13 is disposed with a gap between the upper surface of the lower slab 4 and a filler 17 made of non-shrink mortar or the like is interposed between the base portion 13 and the lower slab 4. Has been.

レベル調節手段14は、支柱8の鉛直方向の位置調節を行うものであり、鉛直方向に延在するレベル調節ボルト18と、ベース部13の下方に配置されたレベル調節ナット19とから構成されている。レベル調節ボルト18はベース部13の中心部に形成された孔13bに上下移動可能に挿通されており、レベル調節ナット19はベース部13の下方に突出したレベル調節ボルト18の下端部に螺合されている。   The level adjusting means 14 adjusts the position of the column 8 in the vertical direction, and is composed of a level adjusting bolt 18 extending in the vertical direction and a level adjusting nut 19 disposed below the base portion 13. Yes. The level adjustment bolt 18 is inserted into a hole 13b formed in the center of the base portion 13 so as to be movable up and down, and the level adjustment nut 19 is screwed into a lower end portion of the level adjustment bolt 18 protruding below the base portion 13. Has been.

図2(b)は上側支柱部材10と上階のスラブ4との接合箇所の部分拡大図であり、図3は図2(a)に示すA―A間の断面図である。図2(a),図2(b),図3に示すように、上側支柱部材10は、上階のスラブ4底面に接する矩形鋼板からなる頂板部20と、頂板部20に垂設された複数のL形アングルピース23からなる被嵌入部21とから構成されている。   FIG. 2B is a partially enlarged view of a joint portion between the upper column member 10 and the slab 4 on the upper floor, and FIG. 3 is a cross-sectional view taken along a line AA shown in FIG. As shown in FIGS. 2A, 2 </ b> B, and 3, the upper column member 10 is suspended from the top plate portion 20 made of a rectangular steel plate in contact with the bottom surface of the slab 4 on the upper floor, and the top plate portion 20. It is comprised from the insertion part 21 which consists of several L-shaped angle piece 23. FIG.

頂板部20の四隅部には孔20aがそれぞれ形成されており、頂板部20の下面には隣り合う孔20aの間の位置に被嵌入部21を取り付けるためのスタッドボルト24がそれぞれ付設されている。孔20aには、上階のスラブ4底面に打ち込まれた後施工アンカーボルト26が挿通されており、頂板部20は、後施工アンカーボルト26及びナット22によって上階のスラブ4にボルト固定されている。   Holes 20a are respectively formed in the four corners of the top plate portion 20, and stud bolts 24 for attaching the fitting portions 21 are attached to the lower surface of the top plate portion 20 at positions between the adjacent holes 20a. . A post-construction anchor bolt 26 that is driven into the bottom surface of the upper floor slab 4 is inserted into the hole 20a, and the top plate portion 20 is bolted to the upper floor slab 4 by the post-construction anchor bolt 26 and the nut 22. Yes.

被嵌入部21を構成するL形アングルピース23の水平部23aにはスタッドボルト24が挿通される孔23bが形成されており、L形アングルピース23はスタッドボルト24およびナット25によって頂板部20にボルト固定されている。L形アングルピース23は、下側支柱部材9の軸部12上端の四方にそれぞれ配設されており、軸部12を中心に十字状に配置されている。また、複数のL形アングルピース23は、対向する鉛直部23c同士が互いに背中合わせになる向きでそれぞれ設置されており、L形アングルピース23の鉛直部23cの背面と下側支柱部材9の上端部の側面(外周面)とは、所定の間隔をあけて互いに対向されている。このように、被嵌入部21は、軸部12の上端が1mm程度の隙間をあけて緩挿される鞘状のものである。   A hole 23b through which the stud bolt 24 is inserted is formed in the horizontal portion 23a of the L-shaped angle piece 23 constituting the inserted portion 21, and the L-shaped angle piece 23 is formed in the top plate portion 20 by the stud bolt 24 and the nut 25. Bolts are fixed. The L-shaped angle pieces 23 are respectively disposed on the four sides of the upper end of the shaft portion 12 of the lower column member 9 and are disposed in a cross shape with the shaft portion 12 as the center. The plurality of L-shaped angle pieces 23 are installed such that the opposing vertical portions 23 c face each other, the back surface of the vertical portion 23 c of the L-shaped angle piece 23 and the upper end portion of the lower column member 9. Are opposed to each other with a predetermined interval. Thus, the insertion part 21 is a sheath-like thing which the upper end of the shaft part 12 is loosely inserted with a gap of about 1 mm.

上記上側支柱部材10の被嵌入部21と下側支柱部材9の軸部12上端とは、粘弾性体からなるダンパー部材11を介して嵌合されている。この粘弾性体は鉛直方向に延在する厚さ1mm程度のゴムアスファルト製等のシートであり、L形アングルピース23の鉛直部23cの背面と軸部12の上端部の側面との間に介在されたシート状のダンパー部材11は、鉛直部23cの背面および軸部12の側面にそれぞれ接着接合されている。   The fitted portion 21 of the upper column member 10 and the upper end of the shaft portion 12 of the lower column member 9 are fitted via a damper member 11 made of a viscoelastic body. This viscoelastic body is a sheet made of rubber asphalt having a thickness of about 1 mm extending in the vertical direction, and is interposed between the back surface of the vertical portion 23c of the L-shaped angle piece 23 and the side surface of the upper end portion of the shaft portion 12. The sheet-like damper member 11 thus formed is adhesively bonded to the back surface of the vertical portion 23 c and the side surface of the shaft portion 12.

上記した支柱8の設置位置は、振動するスラブ4の振幅が最も大きくなる位置、つまり振動の腹となる位置に設置することが最も効果的であり、逆に振動の節となる位置に支柱8を設置してもあまり効果的ではない。したがって、スラブ4の面積や形状を考慮してその振動特性を把握し、その振動を最も効果的に制御し得る位置に支柱7を設置することが望ましい。   It is most effective to install the support column 8 at a position where the amplitude of the vibrating slab 4 becomes the largest, that is, a position where the vibration slab 4 becomes an antinode. Is not very effective. Therefore, it is desirable to grasp the vibration characteristics in consideration of the area and shape of the slab 4 and to install the column 7 at a position where the vibration can be most effectively controlled.

また、支柱8は、スラブ4を挟んで上下方向に連続的に配置する必要はなく、図1に示すように、各階においてそれぞれ最適位置に支柱8を設置すればよく、スラブ4を挟んで上下で支柱8の位置をずらして設置した場合、間に挟まれているスラブ4は上下階のスラブ4に対して2箇所で連結されることとなるため、スラブ4を挟んで上下方向に連続的に配置する場合に比べて制振効果が向上する場合もある。   Further, the support columns 8 do not need to be continuously arranged in the vertical direction with the slab 4 interposed therebetween, and as shown in FIG. In this case, the slab 4 sandwiched between the slabs 4 is connected to the slabs 4 on the upper and lower floors at two locations. In some cases, the vibration damping effect may be improved as compared with the case where the antenna is disposed in the case.

次に、上記した構成からなるスラブの制振構造の構築方法について説明する。   Next, a method for constructing a vibration control structure for a slab having the above-described configuration will be described.

まず、下側支柱部材9を組み立てる。具体的には、軸部12の下端面にベース部13を隅肉溶接するとともに、ベース部13中心部の孔13bにレベル調節ナット19が螺合されたレベル調節ボルト18を挿通してベース部13にレベル調節手段14を取り付ける。また、軸部12の上端部にダンパー部材11を介して被嵌入部21を取り付ける。   First, the lower support member 9 is assembled. Specifically, the base portion 13 is fillet welded to the lower end surface of the shaft portion 12, and the level adjusting bolt 18 having the level adjusting nut 19 screwed into the hole 13 b at the center portion of the base portion 13 is inserted into the base portion. A level adjusting means 14 is attached to 13. Further, the fitted portion 21 is attached to the upper end portion of the shaft portion 12 via the damper member 11.

一方で、間仕切壁5内に位置する所定箇所の下階のスラブ4上面に複数の後施工アンカーボルト15をそれぞれ打ち込むとともに、その鉛直上方に位置する上階のスラブ4底面に複数の後施工アンカーボルト26をそれぞれ打ち込む。そして、頂板部20を上階のスラブ4底面に対向させて、頂板部20に形成された孔20aに上階のスラブ4底面から突出した複数の後施工アンカーボルト26の下端部をそれぞれ挿通させてナット22で締結する。また、頂板部20の下面に複数のスタッドボルト24を溶接しておく。   On the other hand, a plurality of post-installed anchor bolts 15 are driven into the upper surface of the lower slab 4 at predetermined locations located in the partition wall 5, and a plurality of post-installed anchors are installed on the bottom surface of the upper slab 4 positioned vertically above it. Each bolt 26 is driven. Then, the top plate portion 20 is opposed to the bottom surface of the slab 4 on the upper floor, and the lower end portions of the plurality of post-installed anchor bolts 26 protruding from the bottom surface of the slab 4 on the upper floor are respectively inserted into the holes 20a formed in the top plate portion 20. Fasten with nut 22. A plurality of stud bolts 24 are welded to the lower surface of the top plate portion 20.

次に、ダンパー部材11を介して被嵌入部21が取り付けられた下側支柱部材9を下階のスラブ4上面と上階のスラブ4底面との間に配置する。このとき、レベル調節ボルト18の下端面は下階のスラブ4上面に当接しており、レベル調節ナット19を回転させることでベース部13の高さを調節する。このレベル調節手段14によって、支柱8の設置レベルを調節する。   Next, the lower column member 9 to which the insertion portion 21 is attached via the damper member 11 is disposed between the upper surface of the slab 4 on the lower floor and the bottom surface of the slab 4 on the upper floor. At this time, the lower end surface of the level adjustment bolt 18 is in contact with the upper surface of the lower slab 4, and the height of the base portion 13 is adjusted by rotating the level adjustment nut 19. The level adjusting means 14 adjusts the installation level of the column 8.

そして、ベース部13を下階のスラブ4上面に固定するとともに、被嵌入部21を頂板部20の下面にボルト固定する。具体的には、ベース部13の四隅に形成された孔13a内に下階のスラブ4上面から突出した複数の後施工アンカーボルト15の上端部をそれぞれ挿通させてナット16で締結するとともに、L形アングルピース23の水平部23aに形成された孔23b内に頂板部20に付設されたスタッドボルト24を挿通させてナット25で締結する。   And while fixing the base part 13 to the upper surface of the slab 4 of a lower floor, the to-be-inserted part 21 is bolt-fixed to the lower surface of the top-plate part 20. As shown in FIG. Specifically, the upper ends of a plurality of post-installed anchor bolts 15 protruding from the upper surface of the slab 4 on the lower floor are inserted into holes 13a formed at the four corners of the base portion 13 and fastened with nuts 16; A stud bolt 24 attached to the top plate portion 20 is inserted into a hole 23 b formed in the horizontal portion 23 a of the shaped angle piece 23 and fastened with a nut 25.

最後に、ベース部13の周囲を図示せぬ型枠で囲い、この型枠内に充填性能に優れた高流動性の充填材17を注入する。そして、充填材17が固化した後に、図示せぬ型枠を取り外し、スラブの制振構造の構築は完了する。   Finally, the periphery of the base portion 13 is surrounded by a mold (not shown), and a highly fluid filler 17 having excellent filling performance is injected into the mold. Then, after the filler 17 is solidified, the mold (not shown) is removed, and the construction of the vibration suppression structure for the slab is completed.

[第2の実施の形態]
図4は支柱100の上端部の縦断面図であり、図5は図4に示すB―B間の断面図である。図4,図5に示すように、下側支柱部材101は上述した第1の実施の形態と同様の構成からなり、下側支柱部材101には断面寸法が90mm×90mmで厚さが3.2mmの角形鋼管からなる軸部102が備えられている。また、上側支柱部材103は、上階のスラブ104底面に接する矩形鋼板からなる頂板部105と、頂板部105に垂設された2つの筒部材106からなる被嵌入部107とから構成されている。
[Second Embodiment]
4 is a vertical cross-sectional view of the upper end portion of the support column 100, and FIG. 5 is a cross-sectional view taken along the line BB shown in FIG. 4 and 5, the lower column member 101 has the same configuration as that of the first embodiment described above, and the lower column member 101 has a cross-sectional dimension of 90 mm × 90 mm and a thickness of 3 mm. A shaft portion 102 made of a 2 mm square steel pipe is provided. The upper column member 103 includes a top plate portion 105 made of a rectangular steel plate in contact with the bottom surface of the slab 104 on the upper floor, and a fitted portion 107 made up of two cylindrical members 106 suspended from the top plate portion 105. .

頂板部105の四隅部には孔105aがそれぞれ形成されており、孔105aには、上階のスラブ104底面に打ち込まれた後施工アンカーボルト108が挿通されており、頂板部105は、後施工アンカーボルト108及びナット109によって上階のスラブ104にボルト固定されている。   Holes 105a are respectively formed at the four corners of the top plate portion 105, and post-installed anchor bolts 108 that are driven into the bottom surface of the slab 104 on the upper floor are inserted into the holes 105a. The bolts are fixed to the upper slab 104 by anchor bolts 108 and nuts 109.

筒部材106は、軸部102よりも小さい断面寸法の角形鋼管からなる内側筒部材110と、軸部102よりも大きい断面寸法の角形鋼管からなる外側筒部材111とからなっている。内側筒部材110および外側筒部材111は、それぞれ頂板部105に対して垂直に設けられており、頂板部105の下面にそれぞれ隅肉溶接されている。また、内側筒部材110は、内側筒部材110の外周面と外側筒部材111の内周面との間に所定(1.8mm)の隙間をあけた状態で外側筒部材111の中に配置されている。   The cylindrical member 106 includes an inner cylindrical member 110 made of a square steel pipe having a smaller cross-sectional size than the shaft portion 102 and an outer cylindrical member 111 made of a square steel pipe having a larger cross-sectional size than the shaft portion 102. The inner cylinder member 110 and the outer cylinder member 111 are each provided perpendicular to the top plate portion 105, and are fillet welded to the lower surface of the top plate portion 105. The inner cylindrical member 110 is disposed in the outer cylindrical member 111 with a predetermined (1.8 mm) gap between the outer peripheral surface of the inner cylindrical member 110 and the inner peripheral surface of the outer cylindrical member 111. ing.

内側筒部材110の外周面と外側筒部材111の内周面との間には、軸部102の上端部が嵌め込まれるとともに、粘弾性体からなるダンパー部材112が充填されており、下側支柱部材103の被嵌入部107と下側支柱部材101の軸部12上端とは、粘弾性体からなるダンパー部材11を介して嵌合されている。この粘弾性体は、スチレン系エラストマー等の溶融成形型のものであり、ダンパー部材112は内側筒部材110と外側筒部材111との間にあけられた隙間に溶融された粘弾性体を流し込み固化させることで形成される。また、軸部102は、いずれの方向にも片寄ることなく内側筒部材110の外周面と外側筒部材111の内周面との間の中央に配置されており、内側筒部材110の外周面と軸部102の内周面との間に介在されている粘弾性体の厚さと、外側筒部材111の内周面と軸部102の外周面との間に介在されている粘弾性体の厚さとは、均一に形成されている。   Between the outer peripheral surface of the inner cylindrical member 110 and the inner peripheral surface of the outer cylindrical member 111, the upper end portion of the shaft portion 102 is fitted and a damper member 112 made of a viscoelastic body is filled. The fitted portion 107 of the member 103 and the upper end of the shaft portion 12 of the lower column member 101 are fitted via a damper member 11 made of a viscoelastic body. This viscoelastic body is of a melt-molding type such as a styrene elastomer, and the damper member 112 is poured and solidified by pouring the melted viscoelastic body into a gap formed between the inner cylinder member 110 and the outer cylinder member 111. It is formed by letting. Further, the shaft portion 102 is disposed at the center between the outer peripheral surface of the inner cylindrical member 110 and the inner peripheral surface of the outer cylindrical member 111 without being offset in any direction, The thickness of the viscoelastic body interposed between the inner peripheral surface of the shaft portion 102 and the thickness of the viscoelastic body interposed between the inner peripheral surface of the outer cylindrical member 111 and the outer peripheral surface of the shaft portion 102. Sato is uniformly formed.

次に上記した構成からなるスラブの制振構造の構築について説明する。   Next, the construction of the slab vibration damping structure having the above-described configuration will be described.

まず、頂板部105の下面に内側筒部材110および外側筒部材111をそれぞれ溶接して上側支柱部材102を形成する。そして、上側支柱部材102を上下に反転させて軸部102の先端を内側筒部材110と外側筒部材111との間に嵌入するとともに、溶融された粘弾性体を流し込み溶融成形する。このとき、軸部102の内外にそれぞれ形成されるダンパー部材112の厚さが均一になるように軸部102を配置して保持する。   First, the upper column member 102 is formed by welding the inner cylinder member 110 and the outer cylinder member 111 to the lower surface of the top plate portion 105. Then, the upper column member 102 is turned upside down so that the tip of the shaft portion 102 is fitted between the inner cylinder member 110 and the outer cylinder member 111, and the melted viscoelastic body is poured and melt molded. At this time, the shaft portion 102 is arranged and held so that the thickness of the damper member 112 formed inside and outside the shaft portion 102 is uniform.

一方、第1の実施の形態と同様に、予め上下のスラブ104に後施工アンカー108を打ち込んでおく。そして、粘弾性体の固化後、支柱100を上下に反転させて上下のスラブ104間に配置し、ボルト109で後施工アンカー108に固定する。   On the other hand, as in the first embodiment, the post-construction anchor 108 is driven in advance into the upper and lower slabs 104. Then, after the viscoelastic body is solidified, the support column 100 is turned upside down and placed between the upper and lower slabs 104 and fixed to the post-construction anchor 108 with the bolt 109.

上記した第1,第2の実施形態の構成からなるスラブの制振構造によれば、上下のスラブ間は支柱によって連結され、下側支柱部材9,101と上側支柱部材10,103とはダンパー部材11,112を介して嵌合されているため、該ダンパー部材11,112によってスラブ4,104の揺れが吸収されてスラブ4,104の振動を効果的に低減することができるとともに、クリープ変形現象が生じた場合に、ダンパー部材11,112が非線形化し、支柱8,100の全体長さを実際の上下のスラブ4,104間隔に応じた適正長さに保つことができる。また、ダンパー部材11,112は粘弾性体からなるため、支柱8,100を安価に製作することができ、本発明に係るスラブの制振構造を低コストで提供することができる。   According to the slab vibration damping structure having the configuration of the first and second embodiments described above, the upper and lower slabs are connected by the columns, and the lower column members 9 and 101 and the upper column members 10 and 103 are the dampers. Since the dampers 11 and 112 are fitted through the members 11 and 112, the vibration of the slabs 4 and 104 can be effectively absorbed by the damper members 11 and 112, and the creep deformation can be reduced. When the phenomenon occurs, the damper members 11 and 112 become non-linear, and the entire length of the support columns 8 and 100 can be maintained at an appropriate length according to the actual distance between the upper and lower slabs 4 and 104. Further, since the damper members 11 and 112 are made of a viscoelastic body, the support columns 8 and 100 can be manufactured at low cost, and the slab damping structure according to the present invention can be provided at a low cost.

以上、本発明に係るスラブの制振構造の実施の形態について説明したが、本発明は上記した実施の形態に限定されるものではなく、その趣旨を逸脱しない範囲で適宜変更可能である。例えば、上記した実施の形態では、新築の集合住宅の用途に用いられる多層建物に適用しているが、本発明は、例えばオフィスビルに適用しても良く、集合住宅に限らず任意の用途の多層建物に適用可能である。また、新築建物のみならず既存建物に対する補修ないし改修工事として支柱8,100を設置してもよい。   As mentioned above, although embodiment of the vibration suppression structure of the slab concerning this invention was described, this invention is not limited to above-described embodiment, In the range which does not deviate from the meaning, it can change suitably. For example, in the above-described embodiment, the present invention is applied to a multi-layered building used for a newly built apartment house. However, the present invention may be applied to, for example, an office building and is not limited to an apartment house. Applicable to multi-story buildings. In addition, the columns 8 and 100 may be installed as repair or repair work for an existing building as well as a new building.

また、上記した実施の形態では、支柱8,100を鉄筋コンクリート造のスラブ4,104間に設置し、該スラブ4,104に後施工アンカーボルト15,26,108を打ち込んで支柱8,100を固定しているが、本発明は、鉄筋コンクリート造のスラブ4,104に替えてボイドスラブを適用してもよく、この場合、後施工アンカーボルト15,26,108に替えてワンサイドボルトが使用される。   In the above-described embodiment, the columns 8 and 100 are installed between the slabs 4 and 104 made of reinforced concrete, and the post-installed anchor bolts 15, 26 and 108 are driven into the slabs 4 and 104 to fix the columns 8 and 100. However, in the present invention, a void slab may be applied instead of the reinforced concrete slabs 4 and 104, and in this case, one-side bolts are used instead of the post-installed anchor bolts 15, 26 and 108.

また、上記した実施の形態では、支柱8,100の上端部分で、下側支柱部材9,101と上側支柱部材10,103とがダンパー部材11,112を介して嵌合されているが、本発明は、支柱の中間部分や下端部分で下側支柱部材と上側支柱部材とを嵌合させてもよい。   In the above-described embodiment, the lower column members 9 and 101 and the upper column members 10 and 103 are fitted via the damper members 11 and 112 at the upper ends of the columns 8 and 100. In the invention, the lower support member and the upper support member may be fitted to each other at the middle portion or the lower end portion of the support.

また、上記した実施の形態では、上側支柱部材10,103の中に下側支柱部材9,101が嵌入されているが、本発明は、下側支柱部材の中に上側支柱部材が嵌入されていてもよく、上記した実施の形態における支柱8,100を上下反転させて使用してもよい。   In the above-described embodiment, the lower support members 9 and 101 are inserted into the upper support members 10 and 103. However, in the present invention, the upper support member is inserted into the lower support member. Alternatively, the support columns 8 and 100 in the above-described embodiment may be used upside down.

本発明に係るスラブの制振構造の第1の実施の形態を説明するための全体図である。1 is an overall view for explaining a first embodiment of a vibration suppression structure for a slab according to the present invention. (a)は本発明に係るスラブの制振構造の第1の実施の形態を説明するための縦断面図であり、(b)は部分拡大図である。(A) is a longitudinal cross-sectional view for demonstrating 1st Embodiment of the vibration suppression structure of the slab based on this invention, (b) is the elements on larger scale. 図2(a)に示すA―A間の横断面図である。It is a cross-sectional view between AA shown to Fig.2 (a). 本発明に係るスラブの制振構造の第2の実施の形態を説明するための縦断面図である。It is a longitudinal cross-sectional view for demonstrating 2nd Embodiment of the vibration suppression structure of the slab which concerns on this invention. 図4に示すB―B間の横断面図である。It is a cross-sectional view between BB shown in FIG.

符号の説明Explanation of symbols

4,104 スラブ
8,100 支柱
9,101 下側支柱部材
10,103 上側支柱部材
11,112 ダンパー部材

4,104 Slab 8,100 Post 9,101 Lower post 10,103 Upper post 11,112 Damper

Claims (1)

多層建物の上下のスラブ間を支柱によって連結して該スラブの振動を抑制するスラブの制振構造において、
前記支柱には、下階のスラブ上面に立設された下側支柱部材と、上階のスラブ下面に垂設された上側支柱部材と、粘弾性体からなるダンパー部材とが備えられ、
前記下側支柱部材と前記上側支柱部材とは、前記ダンパー部材を介して嵌合されていることを特徴とするスラブの制振構造。

In the vibration control structure of the slab that suppresses the vibration of the slab by connecting the upper and lower slabs of the multi-layer building with a support column,
The support column includes a lower support member erected on the upper surface of the slab on the lower floor, an upper support member suspended on the lower surface of the slab of the upper floor, and a damper member made of a viscoelastic body.
The slab vibration damping structure, wherein the lower support member and the upper support member are fitted via the damper member.

JP2004153152A 2004-05-24 2004-05-24 Vibration damping structure of slab Pending JP2005336714A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004153152A JP2005336714A (en) 2004-05-24 2004-05-24 Vibration damping structure of slab

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004153152A JP2005336714A (en) 2004-05-24 2004-05-24 Vibration damping structure of slab

Publications (1)

Publication Number Publication Date
JP2005336714A true JP2005336714A (en) 2005-12-08

Family

ID=35490583

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004153152A Pending JP2005336714A (en) 2004-05-24 2004-05-24 Vibration damping structure of slab

Country Status (1)

Country Link
JP (1) JP2005336714A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009007901A (en) * 2007-06-29 2009-01-15 Takenaka Komuten Co Ltd Vibration-proofing stud
KR101105047B1 (en) 2011-01-27 2012-01-16 김종찬 A vibration prevent device for railway station cinema
JP2015183363A (en) * 2014-03-20 2015-10-22 公益財団法人鉄道総合技術研究所 Earthquake-resistant and rainfall-resistant measure slope stabilization method for earth structure using small-diameter square rod-like reinforcement body

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009007901A (en) * 2007-06-29 2009-01-15 Takenaka Komuten Co Ltd Vibration-proofing stud
KR101105047B1 (en) 2011-01-27 2012-01-16 김종찬 A vibration prevent device for railway station cinema
JP2015183363A (en) * 2014-03-20 2015-10-22 公益財団法人鉄道総合技術研究所 Earthquake-resistant and rainfall-resistant measure slope stabilization method for earth structure using small-diameter square rod-like reinforcement body

Similar Documents

Publication Publication Date Title
KR101832706B1 (en) The seismic dry type pad for up and down control for water tank
KR101572926B1 (en) the steel-concrete hybrid precast concrete beam connecting structure for a horizontal extending a building and the construction method thereof
JP2010047910A (en) Composite beam, construction method for the same, and fireproof building
EP0131030A1 (en) Cassette for casting of framework.
JP2005336714A (en) Vibration damping structure of slab
WO2007032300A1 (en) Vibration damping wall panel
JP4674718B2 (en) Connection structure of adjacent buildings
JP2007146437A (en) Vibration control device of building
JP5207078B2 (en) Construction method for seismic control columns
JP4412731B2 (en) Floating floor construction method and floating floor structure
JP2000226952A (en) Attaching structure of hysteresis damping member in concrete building frame structure, attaching method and vibration control concrete building frame structure
JP4154472B2 (en) Deformation suppression device
JP7217144B2 (en) damping mechanism for building
JP2007009450A (en) Base isolation device and base isolation structure of building of panel construction method
JP2008063910A (en) Thermal insulation method for detached vibration-isolated building, heat accumulating method for detached vibration-isolated building and construction method for detached vibration-isolated building
JP2010270478A (en) Floor structure system for steel construction building
JP2008274622A (en) Intermediate-story base-isolating mechanism of building
JPH11172759A (en) Vibration-controlling building material, vibration control structure, and method for constructing the same
JP4432581B2 (en) Building structure that can change floor height
JP6960835B2 (en) Joining structure of concrete beam and viscous damping wall, and joining method of concrete beam and viscous damping wall
JP2006265893A (en) Foundation structure
JP2024048795A (en) Vertical furring strip support structure
JP4552320B2 (en) Damping structure
JP2021133953A (en) Connection structure of container, container, and connection method of container
JP2008248507A (en) Damper, floor structure, building unit, unit building and building

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20070118

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20080731

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080812

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081209