JP2005336541A - Low yr high tensile strength steel plate and its production method - Google Patents

Low yr high tensile strength steel plate and its production method Download PDF

Info

Publication number
JP2005336541A
JP2005336541A JP2004156375A JP2004156375A JP2005336541A JP 2005336541 A JP2005336541 A JP 2005336541A JP 2004156375 A JP2004156375 A JP 2004156375A JP 2004156375 A JP2004156375 A JP 2004156375A JP 2005336541 A JP2005336541 A JP 2005336541A
Authority
JP
Japan
Prior art keywords
steel
low
toughness
strength
steel sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004156375A
Other languages
Japanese (ja)
Other versions
JP4206056B2 (en
Inventor
Kazutoshi Ichikawa
和利 市川
Masanori Minagawa
昌紀 皆川
Masaaki Nagahara
政明 永原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2004156375A priority Critical patent/JP4206056B2/en
Publication of JP2005336541A publication Critical patent/JP2005336541A/en
Application granted granted Critical
Publication of JP4206056B2 publication Critical patent/JP4206056B2/en
Anticipated expiration legal-status Critical
Active legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high tensile strength steel plate having a tensile strength of ≥590 MPa, a low YR (yield ratio) of ≤80% and having excellent high heat input joint toughness without performing reheating/tempering after hot rolling, and to provide its production method. <P>SOLUTION: The low YR high tensile strength steel plate contains, by mass, 0.04 to 0.20% C, 0.0002 to 0.003% B, 0.0003 to 0.0025% Ca or the like, and the balance Fe with inevitable impurities, and in which the value of C+100×B is 0.1 to 0.32, and the fraction of bainite in a region other than range to 5 mm below the plate surface is ≥50%, and has a plate thickness of ≥70 mm. The steel plate comprising the above components is hot-rolled and is thereafter rapidly cooled from a temperature of an Ar<SB>3</SB>point or higher, thus the fraction of bainite in the steel can be controlled to ≥50% even if the plate thickness of the steel plate is ≥70 mm to increase its strength without causing a strength difference in the plate thickness direction even as-quenched, and, by the movable dislocation of the bainite structure, the YR can be reduced. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、板厚が70mm以上であり、引張強度590MPa以上かつ優れた大入熱継手靭性を有する低YR高張力鋼板及びその製造方法に関するものである。   The present invention relates to a low YR high-tensile steel sheet having a plate thickness of 70 mm or more, a tensile strength of 590 MPa or more and excellent toughness of high heat input joints, and a method for producing the same.

近年、中高層ビル、橋梁などの大型建築構造物に使用される溶接用鋼材の材質特性に対する要望は厳しさを増している。さらにそのような構造物を建造する際、溶接の効率化を促進するため、フラックス−銅バッキング溶接法、エレクトロガス溶接法、エレクトロスラグ溶接法などに代表されるような大入熱溶接法の適用が希望されており、鋼材自身の靭性と同様に、HAZの靭性への要求も厳しさを増している。また、大型建築構造物は、耐震性が要求されるため鋼材自身の低YR(YP/TS)特性及び高い引張強さ590MPa以上の鋼が必要とされている。   In recent years, the demand for material properties of steel materials for welding used in large-scale building structures such as medium- and high-rise buildings and bridges has increased. Furthermore, when constructing such a structure, in order to promote the efficiency of welding, the application of a high heat input welding method represented by a flux-copper backing welding method, an electrogas welding method, an electroslag welding method, etc. The demand for the toughness of the HAZ is becoming stricter as well as the toughness of the steel material itself. In addition, since large-scale building structures are required to have earthquake resistance, steel having a low YR (YP / TS) characteristic and a high tensile strength of 590 MPa or more is required.

ミクロ組織条件下で引張強さ590MPa以上を達成するには、鋼成分系では、特にCを高め、Cu・Ni添加およびNb添加が必要とされるが、これらの成分調整を行うと、超大入熱溶接継手靭性が低下するという問題が発生する。   In order to achieve a tensile strength of 590 MPa or more under the microstructure condition, in the steel component system, it is particularly necessary to increase C and to add Cu / Ni and Nb. The problem that heat weld joint toughness falls occurs.

大入熱溶接時の鋼材のHAZ靭性を向上する方法として、種々の方法が提案されている。   Various methods have been proposed as methods for improving the HAZ toughness of steel materials during high heat input welding.

微細なTi窒化物を鋼中に確保することによって、HAZのオーステナイト粒を小さくし、靭性を向上させる方法、Ti窒化物とMnSとの複合析出物をフェライトの変態核として活用し、HAZの靭性を向上させる方法が提案されている。しかしながら、Ti窒化物は、HAZのうち最高到達温度が1400℃を超える溶接金属との境界(溶接ボンド部と称する)近傍ではほとんど固溶してしまうので靭性向上効果が低下してしまう。   A method to reduce HAZ austenite grains and improve toughness by securing fine Ti nitride in the steel, utilizing the composite precipitates of Ti nitride and MnS as ferrite transformation nuclei, and toughness of HAZ A method for improving the above has been proposed. However, since the Ti nitride is almost dissolved in the vicinity of the boundary (referred to as a weld bond portion) with the weld metal having a maximum temperature exceeding 1400 ° C. in the HAZ, the effect of improving toughness is lowered.

溶接ボンド部近傍の靭性を改善する方法として、Ti酸化物を含有した鋼が厚板、形鋼などの様々な分野で使用されている(特許文献1、特許文献2)。Ti酸化物を含有した鋼は大入熱溶接部靭性向上に非常に有効である。この原理は、鋼の融点においても安定なTi酸化物をサイトとして、溶接後の温度低下途中にTi窒化物、MnS等が析出し、さらにそれらをサイトとして微細フェライトが生成し、その結果靭性に有害な粗大フェライトの生成が抑制され、靭性の劣化が防止できるというものである。   As a method for improving the toughness in the vicinity of the weld bond, steel containing Ti oxide is used in various fields such as thick plates and shaped steels (Patent Documents 1 and 2). Steel containing Ti oxide is very effective for improving the toughness of high heat input welds. This principle is based on the fact that Ti oxide, which is stable even at the melting point of steel, is used as a site, Ti nitride, MnS, etc. are precipitated in the middle of the temperature drop after welding, and fine ferrite is generated using these as a site, resulting in improved toughness. Generation of harmful coarse ferrite is suppressed, and deterioration of toughness can be prevented.

しかしながら、このようなTi酸化物は鋼中へ分散される個数をあまり多くすることができない。その原因はTi酸化物の粗大化や凝集合体であり、Ti酸化物の個数を増加させようとすれば5μm以上の粗大なTi酸化物、いわゆる介在物が増加してしまう。この5μm以上の介在物は構造物の破壊の起点となって有害であり、靭性の低下を引き起こす。したがって、さらなるHAZ靭性の向上を達成するためには、粗大化や凝集合体が起こりにくく、Ti酸化物よりも微細に分散する酸化物を活用する必要がある。   However, the number of such Ti oxides dispersed in the steel cannot be increased so much. The cause is coarsening or aggregation of Ti oxides. If the number of Ti oxides is increased, coarse Ti oxides of 5 μm or more, so-called inclusions increase. The inclusions of 5 μm or more are harmful as a starting point of destruction of the structure and cause a decrease in toughness. Therefore, in order to achieve further improvement in HAZ toughness, it is necessary to utilize an oxide that is less likely to be coarsened or aggregated and is more finely dispersed than Ti oxide.

最近、建設業界等においては、大型の建築用構造材を溶接することが求められていて、500kJ/cm以上、大きいものでは1000kJ/cmものさらなる溶接入熱の増加が進められており、より一層のHAZ靭性を有する高張力鋼材が必要とされている。この際、特に溶接融合部近傍の靭性向上が必要となる。また、大型の建築用構造材には耐震性も要求されることとなるから、80%以下の低YR特性を有する鋼材とすることも必要とされる。   Recently, in the construction industry and the like, it is required to weld large structural materials for construction, and a further increase in welding heat input of 500 kJ / cm or more, and 1000 kJ / cm or more for large ones is being promoted. There is a need for a high-tensile steel material having the HAZ toughness. At this time, it is necessary to improve toughness particularly in the vicinity of the welded fusion part. In addition, since large-scale building structural materials are also required to have earthquake resistance, it is also necessary to use steel materials having a low YR characteristic of 80% or less.

特許文献3には、入熱500kJ/cm以上の超大入熱の溶接時においても、優れたHAZ靭性を実現した低YR特性(YR≦80%)の600MPa級鋼を実現できる発明が記載されている。YR≦80%を達成するため、ミクロ組織がフェライトとベイナイトとの二相でフェライト分率が25〜75%とする。TS≧590MPaを達成するため鋼の成分としてCを高め、Cu、Ni、Nbの添加が必要となるが、これらの元素は超大入熱溶接継手靭性を低下させる。この超大入熱溶接継手靭性の低下を酸化物分散によって防止する。そのため、鋼中に円相当径で0.005〜2.0μmの酸化物粒子を単位面積当たりの個数密度で100〜3000個/mm2含有する。多量の酸化物を形成するためにCaを活用する。 Patent Document 3 describes an invention capable of realizing a 600 MPa class steel with low YR characteristics (YR ≦ 80%) that realizes excellent HAZ toughness even during welding with an ultra-high heat input of 500 kJ / cm or more. Yes. In order to achieve YR ≦ 80%, the microstructure is two-phase of ferrite and bainite and the ferrite fraction is 25 to 75%. In order to achieve TS ≧ 590 MPa, C is increased as a component of steel, and addition of Cu, Ni, and Nb is required. However, these elements reduce the toughness of the super high heat input welded joint. This reduction in toughness of the super high heat input welded joint is prevented by oxide dispersion. Therefore, the steel contains oxide particles having an equivalent circle diameter of 0.005 to 2.0 μm in a number density of 100 to 3000 / mm 2 per unit area. Ca is used to form a large amount of oxide.

非特許文献1には、熱間圧延終了後、Ar3温度以上から水冷焼入れを行い、その後フェライト+オーステナイトの二相域温度に再加熱して再度急冷を行う方法を用いることにより、室温でフェライト+ベーナイトの二相組織を得て低降伏比を達成する方法が記載されている。 In Non-Patent Document 1, after hot rolling is completed, a method of performing water-cooling quenching from Ar 3 temperature or higher, and then reheating to a ferrite + austenite two-phase region temperature and quenching again is used. A method for obtaining a low yield ratio by obtaining a two-phase structure of + bainite is described.

特開昭61−79745号公報JP-A-61-79745 特開昭62−103344号公報JP-A-62-103344 特開2002−256377号公報JP 2002-256377 A 富田幸男ら著「建築用HT60の降伏点に及ぼす各種プロセスの影響」、CAMP−ISIJ、Vol.1(1988)、第88頁Yukio Tomita et al., “Effects of various processes on the yield point of architectural HT60”, CAMP-ISIJ, Vol. 1 (1988), p. 88

超高層ビルなどの大型建築構造物に使用される溶接用鋼材として、板厚が70mmを超える鋼材が要求されている。このような鋼材においても、引張強度590MPa以上、降伏比80%以下の低YRで、かつ優れた大入熱継手靭性を有することが必要である。   As a steel material for welding used in large building structures such as high-rise buildings, steel materials having a plate thickness exceeding 70 mm are required. Even in such a steel material, it is necessary to have a low YR with a tensile strength of 590 MPa or more and a yield ratio of 80% or less, and an excellent large heat input joint toughness.

特許文献3に記載の方法で板厚70mm以上の鋼板を製造しようとすると、板厚中心部の強度が不足して所定の品質を得ることが困難である。   If an attempt is made to manufacture a steel plate having a thickness of 70 mm or more by the method described in Patent Document 3, the strength at the central portion of the thickness is insufficient and it is difficult to obtain a predetermined quality.

非特許文献1に記載のように、熱間圧延終了後、Ar3温度以上から水冷焼入れを行い、その後フェライト+オーステナイトの二相域温度に再加熱して再度急冷を行う方法を用いれば、室温でフェライト+ベーナイトの二相組織を得て低降伏比を達成し、板厚70mm以上の鋼板でも低降伏比、高張力、継手靭性を満足する鋼を製造することが可能である。しかし、熱間圧延後に再加熱・焼き戻しを行うために生産性が悪化し、製造コストの上昇が避け得ない。 As described in Non-Patent Document 1, after hot rolling is completed, water-cooled quenching is performed from the Ar 3 temperature or higher, and then re-heating to the two-phase temperature of ferrite + austenite and rapid cooling is performed at room temperature. Thus, a ferrite and bainite two-phase structure can be obtained to achieve a low yield ratio, and even a steel sheet having a thickness of 70 mm or more can produce a steel that satisfies the low yield ratio, high tension, and joint toughness. However, since reheating and tempering are performed after hot rolling, productivity deteriorates and an increase in manufacturing cost is inevitable.

本発明は、熱間圧延後に再加熱・焼き戻しを行わずに、引張強度590MPa以上、降伏比80%以下の低YRで、かつ優れた大入熱継手靭性を有する高張力鋼板及びその製造方法を提供することを目的とする。   The present invention relates to a high-tensile steel sheet having a low YR with a tensile strength of 590 MPa or more and a yield ratio of 80% or less without reheating and tempering after hot rolling, and a method for producing the same. The purpose is to provide.

鋼中にBを含有させてCとBとの成分範囲を特定し、熱間圧延後にAr3点以上の温度から急冷することによって、たとえ鋼板の板厚が70mm以上であっても鋼のベーナイト分率を50%以上とすることができる。鋼のベーナイト分率を50%以上とすれば、焼入れままでも板厚方向の強度差を生じさせずに高強度化することができると同時に、ベーナイト組織の可動転位によりYRを低減することができる。 Even if the steel sheet thickness is 70 mm or more, B is contained in the steel, the component range of C and B is specified, and the steel is rapidly cooled after the hot rolling from the temperature of the Ar 3 point or higher. The fraction can be 50% or more. If the bainite fraction of the steel is 50% or more, the strength can be increased without causing a difference in strength in the thickness direction even when quenched, and at the same time, YR can be reduced by the movable dislocation of the bainite structure. .

本発明は上記知見に基づいてなされたものであり、その要旨とするところは以下の通りである。
(1)質量%で、C:0.04〜0.20%、Si:0.05〜0.35%、Mn:0.50〜2.50%、Al:0.003〜0.03%、Ti:0.001〜0.02%、B:0.0002〜0.003%、Ca:0.0003〜0.0025%を含有し、N:0.006%以下であり、残部Fe及び不可避不純物からなり、C+100×Bの値が0.1%以上0.32%以下であり、板厚方向で、板表面下5mmまでを除いた領域においてベーナイト分率が50%以上であり、板厚が70mm以上であることを特徴とする低YR高張力鋼板。
(2)さらに質量%で、Ni:0.001〜0.9%、Cr0.001〜0.3%、Mo:0.001〜0.04%、V:0.001〜0.05%、Nb:0.001〜0.05%の1種又は2種以上を含有することを特徴とする上記(1)に記載の低YR高張力鋼板。
(3)鋼中に円相当径で0.005〜2.0μmの酸化物粒子を単位面積当たりの個数密度で100〜3000個/mm2含有し、その酸化物粒子の組成が少なくともCa、Al、Oを含み、Oを除いた元素が質量比で、Ca:5%以上、Al:5%以上を含有することを特徴とする上記(1)又は(2)に記載の低YR高張力鋼板。
(4)耐力440MPa以上、引張強度590MPa以上、降伏比80%以下で優れた大入熱継手靭性を有することを特徴とする上記(1)乃至(3)のいずれかに記載の低YR高張力鋼板。
(5)上記(1)乃至(3)のいずれかに記載の成分を有する鋼板を、熱間圧延終了後、Ar3温度以上から水冷焼入れを開始し、150℃以下まで水冷することを特徴とする低YR高張力鋼板の製造方法。
This invention is made | formed based on the said knowledge, The place made into the summary is as follows.
(1) By mass%, C: 0.04 to 0.20%, Si: 0.05 to 0.35%, Mn: 0.50 to 2.50%, Al: 0.003 to 0.03% Ti: 0.001 to 0.02%, B: 0.0002 to 0.003%, Ca: 0.0003 to 0.0025%, N: 0.006% or less, the balance Fe and It consists of inevitable impurities, the value of C + 100 × B is 0.1% or more and 0.32% or less, and the bainite fraction is 50% or more in the region excluding up to 5 mm below the plate surface in the plate thickness direction. A low YR high-tensile steel sheet having a thickness of 70 mm or more.
(2) Further, by mass%, Ni: 0.001 to 0.9%, Cr 0.001 to 0.3%, Mo: 0.001 to 0.04%, V: 0.001 to 0.05%, Nb: The low YR high-tensile steel sheet according to (1) above, containing one or more of 0.001 to 0.05%.
(3) Oxide particles having an equivalent circle diameter of 0.005 to 2.0 μm are contained in the steel in a number density of 100 to 3000 / mm 2 per unit area, and the composition of the oxide particles is at least Ca, Al The low YR high-tensile steel plate according to (1) or (2) above, wherein the elements containing O and excluding O contain, by mass ratio, Ca: 5% or more and Al: 5% or more .
(4) The low YR high tension according to any one of (1) to (3) above, which has excellent large heat input joint toughness with a yield strength of 440 MPa or more, a tensile strength of 590 MPa or more, and a yield ratio of 80% or less. steel sheet.
(5) The steel sheet having the component according to any one of (1) to (3) above is subjected to water-cooling and quenching from the Ar 3 temperature or higher after the hot rolling is completed, and is water-cooled to 150 ° C. or lower. The manufacturing method of the low YR high-tensile steel sheet.

本発明は、鋼中のC:0.04〜0.20%、B:0.0002〜0.003%、C+100×Bの値が0.1%以上0.32%以下とし、熱間圧延終了後、Ar3温度以上から水冷焼入れを開始し、150℃以下まで水冷することにより、板表面直下を除いて板厚のどの位置においてもベーナイト分率が50%以上とし、板厚が70mm以上であっても焼入れままで、耐力440MPa以上、引張強度590MPa以上、降伏比80%以下で優れた大入熱継手靭性を有する低YR高張力鋼板を提供することが可能となる。 In the present invention, C: 0.04 to 0.20% in steel, B: 0.0002 to 0.003%, the value of C + 100 × B is 0.1% to 0.32%, and hot rolling After completion, water cooling quenching is started from Ar 3 temperature or higher, and water cooling is performed to 150 ° C. or lower, so that the bainite fraction is 50% or higher at any position of the plate thickness except directly below the plate surface, and the plate thickness is 70 mm or more. However, it is possible to provide a low YR high-tensile steel sheet having excellent large heat input joint toughness with a proof stress of 440 MPa or more, a tensile strength of 590 MPa or more, and a yield ratio of 80% or less.

従来の、熱間圧延後の強冷却を用いた焼入れでフェライトとベーナイトの二相組織とし、フェライト分率を25〜75%とする焼入れままの鋼では、板厚を70mm以上とした場合、板厚方向に強度差が生じ、板厚中心部の強度が確保できず、一方では表層部の硬さが過剰になる傾向があった。また、焼入れまま降伏比を抑制しようとすると、Cを高めて硬質相であるセメンタイト周辺の応力集中を生じさせ、そこでの降伏を誘起することを用いているが、単純にCを高めると近年の大入熱溶接継手靭性を確保するのが困難である。   In a conventional as-quenched steel with a ferrite and bainite two-phase structure by quenching using strong cooling after hot rolling and a ferrite fraction of 25 to 75%, when the plate thickness is 70 mm or more, There was a difference in strength in the thickness direction, and the strength at the central portion of the plate thickness could not be secured, while the hardness of the surface layer portion tended to be excessive. Moreover, when trying to suppress the yield ratio while quenching, it is used to increase the C to cause stress concentration around cementite, which is a hard phase, and to induce the yield there. It is difficult to ensure high heat input weld joint toughness.

本発明では、鋼中のCを0.04%以上、Bを0.0002%以上、C+100×Bの値を0.1%以上0.32%以下とし、熱間圧延終了後、Ar3温度以上から水冷焼入れを開始し、150℃以下まで水冷することにより、、たとえ鋼板の板厚が70mm以上であっても、板表面直下を除いて板厚のどの位置においてもベーナイト分率が50%以上とすることができ、これらの課題を解決した。 In the present invention, the C in the steel 0.04% or more, B 0.0002% or more, the value of C + 100 × B 0.32% or less than 0.1%, after the end of hot rolling, Ar 3 temperature By starting water cooling and cooling to 150 ° C. or less, the bainite fraction is 50% at any position of the plate thickness except directly below the plate surface even if the plate thickness is 70 mm or more. As described above, these problems have been solved.

ベーナイト組織は変態ままの状態では可動転位を多く含み、応力負荷下ではそのような可動転位から先に降伏が開始するので、降伏比を低減することができる。またベーナイト組織はC+100×B≦0.32%の条件では炭化物を微細に分散し、これらに応力集中することも降伏比の低減に寄与する。   The bainitic structure contains many mobile dislocations in the state of transformation, and the yield ratio can be reduced because the yield starts before such mobile dislocations under stress loading. In the bainite structure, carbides are finely dispersed under the condition of C + 100 × B ≦ 0.32%, and the stress concentration on these also contributes to the reduction of the yield ratio.

本発明は鋼中のCを0.04%以上、Bを0.0002%以上、C+100×Bの値を0.1%以上として鋼組織をベーナイト組織にすることにより、降伏強度を440MPa以上、引張強度を590MPa以上とする。特に板厚が70mmを超える厚手材であっても、焼入れままで板厚中心部まで強度を確保することが可能となる。   The present invention has a yield strength of 440 MPa or more by making the steel structure a bainitic structure with C in the steel being 0.04% or more, B being 0.0002% or more, and C + 100 × B being 0.1% or more. The tensile strength is set to 590 MPa or more. In particular, even a thick material having a plate thickness exceeding 70 mm can ensure strength to the center of the plate thickness as it is quenched.

一方、C、Bともに溶接熱影響部(HAZ)の焼入性を増大させるので、C+100×Bを0.32%以下に限定し、これによってHAZの硬さを低減し、HAZの靭性を確保することができる。特にCは脆化相である粗大なセメンタイトを多く形成するので、C≦0.20%に限定して靭性の確保を図っている。   On the other hand, both C and B increase the hardenability of the weld heat affected zone (HAZ), so C + 100 × B is limited to 0.32% or less, thereby reducing HAZ hardness and ensuring HAZ toughness. can do. In particular, C forms a large amount of coarse cementite which is an embrittled phase, so that the toughness is ensured by limiting to C ≦ 0.20%.

本発明は、1400℃以上に加熱されるHAZ領域の再加熱オーステナイト細粒化を、酸化物を利用して達成することにより、HAZ靭性を向上させる。   The present invention improves the HAZ toughness by achieving reheated austenite refinement of the HAZ region heated to 1400 ° C. or higher by using an oxide.

再加熱オーステナイト粒を細粒化するためには高温でのオーステナイト粒成長を抑制することが必要である。その手段として最も有効な方法は、分散粒子によりオーステナイトの粒界をピンニングし、粒界の移動を止める方法である。そのような作用をする分散粒子の一つとしては、従来、Ti窒化物と酸化物が有効であると考えられていた。しかしながらTi窒化物は1400℃以上の高温では固溶する割合が大きくなるため、ピンニング効果が小さくなる。これに対し、高温で安定な酸化物をピンニング粒子として活用することが必要である。また、分散粒子による結晶粒界のピンニング効果は、分散粒子の体積率が大きいほど、一個の粒子径が大きいほど大きい。ただし、分散粒子の体積率は鋼中に含まれる粒子を構成する元素の濃度によって上限があるので、体積率を一定と仮定した場合には、粒子径はある程度小さい方がピンニングには有効である。   In order to refine the reheated austenite grains, it is necessary to suppress austenite grain growth at high temperatures. The most effective method for this is to pin the austenite grain boundaries with dispersed particles and stop the movement of the grain boundaries. Conventionally, Ti nitrides and oxides have been considered effective as one of the dispersed particles having such an action. However, since the ratio of solid solution of Ti nitride increases at a high temperature of 1400 ° C. or higher, the pinning effect is reduced. On the other hand, it is necessary to use an oxide that is stable at high temperatures as pinning particles. Further, the pinning effect of the crystal grain boundaries by the dispersed particles is larger as the volume ratio of the dispersed particles is larger and the size of one particle is larger. However, since the volume fraction of dispersed particles has an upper limit depending on the concentration of the elements constituting the particles contained in the steel, if the volume fraction is assumed to be constant, a smaller particle diameter is more effective for pinning. .

酸化物の体積分率を大きくする手段として、酸素との溶解度積が小さい元素を活用することができる。酸素との溶解度積が小さい、すなわち強脱酸元素として、一般的にはAlが用いられる。しかしながら、Alだけでは酸素を充分利用するには不充分で、さらにAlよりも強い脱酸元素が必要で、鉄鋼の脱酸工程で汎用的に使用されるCaを活用することが重要である。Caは酸素との溶解度積が小さいため、同量の酸素に対してAlよりも一層多量の酸化物を生成することができる。鋼中に生成する酸化物粒子の組成として、Caが5%以上、Alが5%以上含まれることで、鋼中に円相当径で0.005〜2.0μmの酸化物粒子を単位面積当たりの個数密度で100〜3000個/mm2含有させ、酸化物の体積分率すなわち酸化物量を大きくすることが可能となる。 As a means for increasing the volume fraction of the oxide, an element having a small solubility product with oxygen can be used. Generally, Al is used as a small product of solubility with oxygen, that is, as a strong deoxidizing element. However, Al alone is insufficient to sufficiently use oxygen, and a deoxidizing element stronger than Al is required, and it is important to utilize Ca that is widely used in the deoxidation process of steel. Since Ca has a small solubility product with oxygen, a larger amount of oxide than Al can be generated for the same amount of oxygen. As a composition of oxide particles generated in steel, Ca is contained at 5% or more and Al is contained at 5% or more, whereby oxide particles having an equivalent circle diameter of 0.005 to 2.0 μm per unit area in steel. It is possible to increase the volume fraction of oxide, that is, the amount of oxide, by containing 100 to 3000 / mm 2 in number density.

本発明では、鋼中にCaを0.0003%以上含有することにより、上記のとおり鋼中に酸化物粒子を分散させ、これによってHAZ靭性を大幅に向上する。   In the present invention, by containing 0.0003% or more of Ca in the steel, oxide particles are dispersed in the steel as described above, thereby greatly improving the HAZ toughness.

以下、本発明の成分をはじめとする限定理由について説明する。%は質量%を意味する。   Hereinafter, the reasons for limitation including the components of the present invention will be described. % Means mass%.

Cは鋼の強度を向上させる有効な成分であるとともに、焼入れ組織をベーナイト組織とするために必要である。Cが0.04%未満ではベーナイト分率を50%以上とすることが難しく、母材強度が不足するので、下限を0.04%とする。一方、過剰の添加は、鋼材の溶接性やHAZ靭性などを著しく低下させるので、上限を0.20%とした。   C is an effective component for improving the strength of the steel and is necessary for making the quenched structure a bainitic structure. If C is less than 0.04%, it is difficult to make the bainite fraction 50% or more, and the base material strength is insufficient, so the lower limit is made 0.04%. On the other hand, excessive addition significantly reduces the weldability and HAZ toughness of the steel material, so the upper limit was made 0.20%.

Siは母材の強度確保、脱酸などに必要な成分であり、0.05%以上含有することでその効果を発揮させることができる。一方、HAZの硬化により靭性が低下するのを防止するため上限を0.35%とした。   Si is a component necessary for securing the strength of the base material, deoxidation, and the like, and its effect can be exhibited by containing 0.05% or more. On the other hand, the upper limit was made 0.35% in order to prevent the toughness from being lowered by the hardening of HAZ.

Mnは母材の強度、HAZ靭性の確保に有効な成分として0.50%以上含有させる。一方、Mn含有量が高すぎるとHAZ靭性が低下するので、上限を2.50%とした。   Mn is contained in an amount of 0.50% or more as an effective component for ensuring the strength of the base material and the HAZ toughness. On the other hand, if the Mn content is too high, the HAZ toughness decreases, so the upper limit was made 2.50%.

Alは重要な脱酸元素であり、下限値を0.003%とした。また、Alが多量に存在すると、鋳片の表面品位が劣化するため、上限を0.03%とした。また、Al含有量をこの範囲内とすることにより、HAZ靭性を確保することができる。   Al is an important deoxidizing element, and the lower limit was set to 0.003%. Further, when a large amount of Al is present, the surface quality of the slab deteriorates, so the upper limit was made 0.03%. Moreover, HAZ toughness is securable by making Al content into this range.

TiはNと結合してTi窒化物を形成させるために0.001%以上添加する。しかし、固溶Ti量が増加するとHAZ靭性が低下するため、0.02%を上限とした。また、Ti含有量をこの範囲内とすることにより、HAZ靭性を確保することができる。さらにTiを含有させることは、ベイナイト分率を確保する上でも有効である。   Ti is added in an amount of 0.001% or more in order to combine with N to form Ti nitride. However, since the HAZ toughness decreases as the amount of dissolved Ti increases, the upper limit was made 0.02%. Moreover, HAZ toughness is securable by making Ti content into this range. Furthermore, containing Ti is also effective in securing the bainite fraction.

Bは焼入れ組織をベーナイト組織とするために必要であり、Bが0.0002%未満では、特に板厚が70mm以上の鋼板においてベーナイト分率を50%以上とすることが難しく、母材強度が不足するので、下限を0.0002%とする。一方、過剰の添加は、HAZ靭性を低下させるので、上限を0.003%とした。   B is necessary to make the quenched structure a bainite structure. When B is less than 0.0002%, it is difficult to make the bainite fraction 50% or more particularly in a steel sheet having a thickness of 70 mm or more, and the base material strength is low. Since it is insufficient, the lower limit is made 0.0002%. On the other hand, excessive addition reduces the HAZ toughness, so the upper limit was made 0.003%.

本発明においては、C+100×Bの値を0.1%以上0.32%以下とする。ここでCはC含有量(質量%)、BはB含有量(質量%)を意味する。C+100×Bの値が0.1%未満では、焼入れ組織をベーナイト組織とすることができず、強度の目標である降伏強度440MPa以上、引張強度590MPa以上を達成することができない。特に本件のように70mmを超える厚鋼板の場合には板厚中心部の強度が不足する。一方、C、Bともに溶接熱影響部(HAZ)の焼入性を増大させるので、C+100×Bの値が0.32%を超えると、HAZの硬さが課題となり、靭性が低下する。C+100×Bの値は0.30%以下とするとより好ましい。0.24%以下とするとさらに好ましい。   In the present invention, the value of C + 100 × B is set to 0.1% or more and 0.32% or less. Here, C means C content (mass%), and B means B content (mass%). When the value of C + 100 × B is less than 0.1%, the quenched structure cannot be a bainite structure, and the target strength of yield strength of 440 MPa or more and tensile strength of 590 MPa or more cannot be achieved. In particular, in the case of a thick steel plate exceeding 70 mm as in the present case, the strength of the thickness center portion is insufficient. On the other hand, both C and B increase the hardenability of the weld heat affected zone (HAZ). Therefore, if the value of C + 100 × B exceeds 0.32%, the hardness of the HAZ becomes a problem, and the toughness decreases. The value of C + 100 × B is more preferably 0.30% or less. More preferably, it is 0.24% or less.

CaはCa系酸化物を生成させるために0.0003%以上の添加が必要である。しかしながら、過剰の添加は粗大介在物を生成させるため、0.0025%を上限とした。Ca含有量をこの範囲内とすることにより、微細なCa含有酸化物を分散させ、これによってHAZ領域の再加熱オーステナイトを細粒化させ、HAZ靭性を確保することができる。   Ca needs to be added in an amount of 0.0003% or more in order to form a Ca-based oxide. However, excessive addition generates coarse inclusions, so 0.0025% was made the upper limit. By setting the Ca content within this range, fine Ca-containing oxides can be dispersed, whereby reheated austenite in the HAZ region can be made finer and HAZ toughness can be ensured.

Nはマトリックスに固溶してその靭性を低下させると共に、Bと結合することでBが有する効果を阻止するため、上限を0.006%とする。   N dissolves in the matrix and lowers its toughness, and also prevents the effect of B by bonding with B, so the upper limit is made 0.006%.

次に選択元素の好ましい含有範囲について説明する。   Next, a preferable content range of the selective element will be described.

Niは鋼材の強度および靭性を向上させるために有効であり、0.001%以上の含有でその効果を得ることができる。一方、Ni含有量が0.9%を超えるとYRが大きくなるとともに、Ni量の増加は製造コストを上昇させるので、0.9%を上限とした。   Ni is effective for improving the strength and toughness of the steel material, and the effect can be obtained with a content of 0.001% or more. On the other hand, when the Ni content exceeds 0.9%, the YR increases, and the increase in the Ni content increases the manufacturing cost, so 0.9% was made the upper limit.

Cr、Mo、Vは鋼の強度及び靭性を向上させる効果を有するので、必要に応じてそれぞれ0.001%以上含有させる。一方、過剰な添加はHAZ靭性を著しく低下させるため、それぞれ0.3%、0.04%、0.05%を上限とした。   Since Cr, Mo, and V have the effect of improving the strength and toughness of the steel, each is contained by 0.001% or more as necessary. On the other hand, excessive addition significantly decreases the HAZ toughness, so 0.3%, 0.04% and 0.05% were made the upper limits, respectively.

Nbは焼入れ性を向上させることにより鋼の強度および靭性を向上させるために有効な元素であり、必要に応じて0.001%以上含有させる。一方、過剰な添加はHAZ靭性を著しく低下させるため0.05%を上限とした。   Nb is an effective element for improving the strength and toughness of steel by improving hardenability, and is contained in an amount of 0.001% or more as necessary. On the other hand, excessive addition significantly reduces the HAZ toughness, so 0.05% was made the upper limit.

次に本発明の鋼板が有する金属組織について説明する。   Next, the metal structure which the steel plate of this invention has is demonstrated.

本発明の鋼板は、板厚方向で、板表面下5mmまでを除いた領域においてベーナイト分率が50%以上である。鋼のベーナイト分率を50%以上とすれば、焼入れままでも板厚方向の強度差を生じさせず、板厚が70mm以上であっても板厚の全範囲で高強度化することができると同時に、ベーナイト組織の可動転位によりYRを低減することができる。ベーナイト分率を60%以上とするとより好ましい。これにはC及びBを調整してC+100×Bの値を0.15%以上とすることにより、ベーナイト分率を60%以上とすることができる。ベーナイト分率を70%以上とするとさらに好ましい。これには上記同様にしてC+100×Bの値を0.20%以上とする。なお、板表面下5mmまでの領域については、ベーナイト+マルテンサイトが主体となった組織が形成される。   The steel sheet of the present invention has a bainite fraction of 50% or more in a region excluding up to 5 mm below the plate surface in the plate thickness direction. If the bainite fraction of steel is 50% or more, even if it is quenched, it will not cause a difference in strength in the thickness direction, and even if the thickness is 70 mm or more, the strength can be increased over the entire thickness range. At the same time, YR can be reduced by the movable dislocation of the bainite structure. More preferably, the bainite fraction is 60% or more. For this purpose, by adjusting C and B so that the value of C + 100 × B is 0.15% or more, the bainite fraction can be 60% or more. More preferably, the bainite fraction is 70% or more. For this purpose, the value of C + 100 × B is set to 0.20% or more in the same manner as described above. In the region up to 5 mm below the plate surface, a structure mainly composed of bainite + martensite is formed.

本発明では、鋼中のCを0.04%以上、Bを0.0002%以上、C+100×Bの値を0.1%以上0.32%以下とし、熱間圧延終了後、Ar3温度以上から水冷焼入れを開始し、150℃以下まで水冷することにより、板表面直下を除いて板厚のどの位置においてもベーナイト分率を50%以上とすることができる。これにより、板厚が70mm以上であっても、焼入れ後に焼き戻し熱処理を行うことなく、焼入れままで耐力440MPa以上、引張強度590MPa以上、降伏比80%以下で優れた大入熱継手靭性を有する低YR高張力鋼板を提供することが可能となる。 In the present invention, the C in the steel 0.04% or more, B 0.0002% or more, the value of C + 100 × B 0.32% or less than 0.1%, after the end of hot rolling, Ar 3 temperature By starting water cooling and quenching to 150 ° C. or less from the above, the bainite fraction can be 50% or more at any position in the plate thickness except directly below the plate surface. Thereby, even if the plate thickness is 70 mm or more, it has excellent large heat input joint toughness with a yield strength of 440 MPa or more, a tensile strength of 590 MPa or more, and a yield ratio of 80% or less without quenching after tempering heat treatment. It becomes possible to provide a low YR high strength steel sheet.

熱間圧延後の鋼板の水冷焼入れについては、冷却速度を4〜7.5℃/sec、好ましくは5〜6.5℃/secとすればよい。水冷終了時の鋼板温度については、150℃以下であれば良く、通常は室温まで水冷することとすればよい。   About the water cooling quenching of the steel plate after hot rolling, the cooling rate may be 4 to 7.5 ° C / sec, preferably 5 to 6.5 ° C / sec. About the steel plate temperature at the time of completion | finish of water cooling, what is necessary is just 150 degrees C or less, and what is necessary is just to normally water-cool to room temperature.

最後に、HAZ領域の再加熱オーステナイト細粒化を実現してHAZ靭性を改善するために必要な酸化物粒子の好ましい大きさ及び個数について説明する。   Finally, the preferable size and number of oxide particles necessary for realizing reheated austenite refinement in the HAZ region and improving the HAZ toughness will be described.

酸化物粒子の円相当径が0.1μmより小さくなるとピンニング効果は徐々に減少し、0.005μmより小さくなるとほとんどピンニング効果を発揮しない。また、2.0μmより大きい酸化物粒子はピンニング効果はあるものの、脆性破壊の起点となることがあるため鋼材の特性上不適である。この結果より、必要な粒子径を0.005〜2.0μm、その中でも特に0.1〜2.0μmとした。   When the equivalent circle diameter of the oxide particles is smaller than 0.1 μm, the pinning effect gradually decreases, and when it is smaller than 0.005 μm, the pinning effect is hardly exhibited. Moreover, although oxide particles larger than 2.0 μm have a pinning effect, they may be a starting point for brittle fracture, and are therefore unsuitable for the properties of steel materials. From this result, the required particle size was set to 0.005 to 2.0 μm, and in particular, 0.1 to 2.0 μm.

酸化物粒子個数が多いほど組織単位は微細になり、粒子個数が多いほどHAZ靭性が向上するが、鋼材に要求されるHAZ靭性は、その用途、使用される溶接方法などによって複雑に異なる。特に要求特性が厳しいと考えられる高強度の造船用鋼で大入熱溶接施工される場合に要求されるHAZ靭性、例えば、試験温度−40℃において吸収エネルギー50J以上を満足するためには、円相当径が0.005〜2.0μmの酸化物粒子数が100個/mm2以上であると好ましい。ただし、粒子数が多くなるほど、その靭性向上効果は小さくなり、必要以上に粒子個数を多くすることは靭性に有害な粗大な粒子が生成する可能性が高くなることを考えると、粒子数の上限は3000個/mm2が適切である。 As the number of oxide particles increases, the structural unit becomes finer, and as the number of particles increases, the HAZ toughness improves. However, the HAZ toughness required for steel materials differs in a complicated manner depending on the application, the welding method used, and the like. In order to satisfy the HAZ toughness required for high heat input welding with high strength shipbuilding steel, which is considered to have particularly strict requirements, for example, to satisfy the absorbed energy of 50 J or more at a test temperature of −40 ° C. The number of oxide particles having an equivalent diameter of 0.005 to 2.0 μm is preferably 100 / mm 2 or more. However, as the number of particles increases, the effect of improving toughness decreases, and considering that increasing the number of particles more than necessary increases the possibility of generating coarse particles harmful to toughness, the upper limit of the number of particles Is suitably 3000 pieces / mm 2 .

この酸化物粒子の大きさおよび個数の測定は、例えば以下の要領で行なう。母材となる鋼板から抽出レプリカを作製し、それを電子顕微鏡にて10000倍で20視野以上、観察面積にして1000μm2以上を観察することで該酸化物の大きさおよび個数を測定する。大きさの測定は、例えば粒子を撮影した写真をもとに、その円相当径を求める。このとき鋼板の表層部から中心部までどの部位から採取した抽出レプリカでもよい。また、粒子が適正に観察可能であれば、観察倍率を低くしてもかまわない。 Measurement of the size and number of the oxide particles is performed, for example, in the following manner. An extracted replica is prepared from a steel plate as a base material, and the size and number of the oxides are measured by observing at least 1000 μm 2 in an observation area with an electron microscope at 10,000 magnifications for 20 fields of view or more. For the measurement of the size, for example, the equivalent circle diameter is obtained based on a photograph of particles. At this time, an extraction replica collected from any part from the surface layer part to the center part of the steel sheet may be used. If the particles can be observed properly, the observation magnification may be lowered.

本発明により、板厚が70mm以上の鋼板について、焼き戻しを行うことなく焼入れままで、耐力440MPa以上、引張強度590MPa以上、降伏比80%以下で優れた大入熱継手靭性を有する低YR高張力鋼板を実現することができる。少なくとも板厚100mmまでの鋼板については、本発明により上記品質を有する鋼板を実現することができる。   According to the present invention, a steel sheet having a thickness of 70 mm or more has a low YR and high toughness with excellent heat input joints, with a proof stress of 440 MPa or more, a tensile strength of 590 MPa or more, and a yield ratio of 80% or less, without quenching. A tensile steel plate can be realized. For a steel plate having a thickness of at least 100 mm, a steel plate having the above-described quality can be realized by the present invention.

鋼を転炉溶製し、RH真空脱ガス装置によって真空脱ガス時に脱酸を行い、表1に示す成分を有する鋼を試作した。連続鋳造により280mm厚の鋳片に鋳造した後、1150℃で加熱後、表2に示す条件で厚板圧延を経て水冷し室温まで冷却し、板厚100mmの鋼板とした。S1〜S29が本発明鋼、S30〜S51が比較鋼である。得られた鋼板を汎用の溶接材料を用いて1パスのエレクストロスラグ溶接を行った。入熱は約900kJ/cmである。   Steel was melted in a converter, and deoxidized at the time of vacuum degassing by an RH vacuum degassing apparatus, and a steel having the components shown in Table 1 was made as a trial. After casting into a 280 mm-thick slab by continuous casting, after heating at 1150 ° C., it was cooled to room temperature through thick plate rolling under the conditions shown in Table 2 to obtain a steel plate having a thickness of 100 mm. S1 to S29 are steels of the present invention, and S30 to S51 are comparative steels. The obtained steel sheet was subjected to 1-pass electroslag welding using a general-purpose welding material. The heat input is about 900 kJ / cm.

表3には母材特性、ベーナイト分率、HAZ靭性を示す。母材特性及びベーナイト分率の計測は板厚中心および板厚の1/4の位置により代表的に評価した。HAZ靭性評価のためのシャルピー吸収エネルギーは、フュージョンライン部位で試験温度0℃にて6本の試験を行い、その平均値を記入した。   Table 3 shows the base material characteristics, bainite fraction, and HAZ toughness. The measurement of the base material characteristics and the bainite fraction was typically evaluated by the thickness center and the position of 1/4 of the thickness. For Charpy absorbed energy for HAZ toughness evaluation, six tests were conducted at a test temperature of 0 ° C. at the fusion line site, and the average value was entered.

Figure 2005336541
Figure 2005336541

Figure 2005336541
Figure 2005336541

Figure 2005336541
Figure 2005336541

表3から明らかなように、S1〜S29の本発明鋼はベーナイト分率が板厚中心および板厚の1/4の位置のいずれにおいても50%以上となり、吸収エネルギーが70J以上の優れたHAZ靭性、ならびにYRが80%以下の優れた低YR特性を有する0.2%耐力(0.2%PS)が440MPa以上、引張強度(TS)が590MPa以上の高強度鋼であることがわかる。   As is apparent from Table 3, the steels of the present invention of S1 to S29 have an excellent HAZ with a bainite fraction of 50% or more at both the center of the plate thickness and the position of 1/4 of the plate thickness, and an absorbed energy of 70 J or more. It can be seen that the steel is a high-strength steel having 0.2% proof stress (0.2% PS) of 440 MPa or more and tensile strength (TS) of 590 MPa or more, which has excellent low YR characteristics with toughness and YR of 80% or less.

一方、比較例のS30はCが過小でベーナイト分率が不足し、母材強度が不足した。S31、34はC+100×Bが過大で、HAZ靭性が不足した。S32はC+100×Bが過小でベーナイト分率が不足し、母材強度が不足した。S33はBが過小でベーナイト分率が不足し、HAZ靭性が不足した。S35はCが過大でHAZ靭性が不足した。S36はSiが不足し、S38はMnが不足し、いずれも母材強度、HAZ靭性が不足した。S37はSiが過大で、S39はMnが過大で、S40はAlが過小で、S41はAlが過大で、S42はTiが過小で、S43はTiが過大で、S44はCaが過小で、S45はCaが過大で、いずれもHAZ靭性が不足した。S46はNiが過大でYRが過大となった。S47はCrが過大で、S48はMoが過大で、S49はVが過大で、S50はNbが過大で、いずれもHAZ靭性が不足した。S51は圧延後の水冷開始温度が低すぎて、母材強度、HAZ靭性が不足した。   On the other hand, in S30 of the comparative example, C was too small, the bainite fraction was insufficient, and the base material strength was insufficient. In S31 and 34, C + 100 × B was excessive, and HAZ toughness was insufficient. In S32, C + 100 × B was too small, the bainite fraction was insufficient, and the base material strength was insufficient. In S33, B was too small, the bainite fraction was insufficient, and the HAZ toughness was insufficient. In S35, C was excessive and HAZ toughness was insufficient. S36 was deficient in Si, S38 was deficient in Mn, and both the base metal strength and HAZ toughness were deficient. S37 has excessive Si, S39 has excessive Mn, S40 has excessive Al, S41 has excessive Al, S42 has excessive Ti, S43 has excessive Ti, S44 has excessive Ca, S45 , Ca was excessive and both had insufficient HAZ toughness. In S46, Ni was excessive and YR was excessive. S47 had excessive Cr, S48 had excessive Mo, S49 had excessive V, and S50 had excessive Nb, both of which lacked HAZ toughness. In S51, the water cooling start temperature after rolling was too low, and the base metal strength and the HAZ toughness were insufficient.

Claims (5)

質量%で、C:0.04〜0.20%、Si:0.05〜0.35%、Mn:0.50〜2.50%、Al:0.003〜0.03%、Ti:0.001〜0.02%、B:0.0002〜0.003%、Ca:0.0003〜0.0025%を含有し、N:0.006%以下であり、残部Fe及び不可避不純物からなり、C+100×Bの値が0.1%以上0.32%以下であり、板厚方向で、板表面下5mmまでを除いた領域においてベーナイト分率が50%以上であり、板厚が70mm以上であることを特徴とする低YR高張力鋼板。   In mass%, C: 0.04 to 0.20%, Si: 0.05 to 0.35%, Mn: 0.50 to 2.50%, Al: 0.003 to 0.03%, Ti: 0.001 to 0.02%, B: 0.0002 to 0.003%, Ca: 0.0003 to 0.0025%, N: 0.006% or less, from the remaining Fe and inevitable impurities The value of C + 100 × B is 0.1% or more and 0.32% or less, the bainite fraction is 50% or more in the region excluding up to 5 mm below the plate surface in the plate thickness direction, and the plate thickness is 70 mm. A low YR high-tensile steel sheet characterized by the above. さらに質量%で、Ni:0.001〜0.9%、Cr0.001〜0.3%、Mo:0.001〜0.04%、V:0.001〜0.05%、Nb:0.001〜0.05%の1種又は2種以上を含有することを特徴とする請求項1に記載の低YR高張力鋼板。   Further, by mass%, Ni: 0.001 to 0.9%, Cr 0.001 to 0.3%, Mo: 0.001 to 0.04%, V: 0.001 to 0.05%, Nb: 0 The low YR high-tensile steel sheet according to claim 1, containing 0.001 to 0.05% of one kind or two or more kinds. 鋼中に円相当径で0.005〜2.0μmの酸化物粒子を単位面積当たりの個数密度で100〜3000個/mm2含有し、その酸化物粒子の組成が少なくともCa、Al、Oを含み、Oを除いた元素が質量比で、Ca:5%以上、Al:5%以上を含有することを特徴とする請求項1又は2に記載の低YR高張力鋼板。 The steel contains oxide particles having an equivalent circle diameter of 0.005 to 2.0 μm in a number density per unit area of 100 to 3000 / mm 2, and the composition of the oxide particles is at least Ca, Al, and O. The low YR high-tensile steel sheet according to claim 1 or 2, wherein the elements excluding O contain Ca: 5% or more and Al: 5% or more by mass ratio. 耐力440MPa以上、引張強度590MPa以上、降伏比80%以下で優れた大入熱継手靭性を有することを特徴とする請求項1乃至3のいずれかに記載の低YR高張力鋼板。   The low YR high-tensile steel sheet according to any one of claims 1 to 3, which has excellent large heat input joint toughness at a yield strength of 440 MPa or more, a tensile strength of 590 MPa or more, and a yield ratio of 80% or less. 請求項1乃至3のいずれかに記載の成分を有する鋼板を、熱間圧延終了後、Ar3温度以上から水冷焼入れを開始し、150℃以下まで水冷することを特徴とする低YR高張力鋼板の製造方法。 A low YR high-tensile steel sheet, characterized in that after the hot rolling, the steel sheet having the component according to any one of claims 1 to 3 is subjected to water-cooling quenching from Ar 3 temperature or higher and water-cooled to 150 ° C or lower. Manufacturing method.
JP2004156375A 2004-05-26 2004-05-26 Low YR high strength steel sheet and method for manufacturing the same Active JP4206056B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004156375A JP4206056B2 (en) 2004-05-26 2004-05-26 Low YR high strength steel sheet and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004156375A JP4206056B2 (en) 2004-05-26 2004-05-26 Low YR high strength steel sheet and method for manufacturing the same

Publications (2)

Publication Number Publication Date
JP2005336541A true JP2005336541A (en) 2005-12-08
JP4206056B2 JP4206056B2 (en) 2009-01-07

Family

ID=35490429

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004156375A Active JP4206056B2 (en) 2004-05-26 2004-05-26 Low YR high strength steel sheet and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP4206056B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1865086A1 (en) 2006-06-07 2007-12-12 ThyssenKrupp Steel AG Manganese-boron steel, sheet-like product made of the steel and method of its production
CN102851589A (en) * 2011-06-29 2013-01-02 宝山钢铁股份有限公司 Steel for low temperature structure with low yield ratio and capable of performing ultrahigh heat input and manufacture method thereof
CN105063479A (en) * 2015-08-25 2015-11-18 内蒙古包钢钢联股份有限公司 Production method for boron-containing cold heading steel

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105063484B (en) * 2015-08-28 2017-10-31 宝山钢铁股份有限公司 500MPa grades of high-elongation hot-dip aluminizing zincs of yield strength and color coated steel sheet and its manufacture method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1865086A1 (en) 2006-06-07 2007-12-12 ThyssenKrupp Steel AG Manganese-boron steel, sheet-like product made of the steel and method of its production
WO2007141152A1 (en) * 2006-06-07 2007-12-13 Thyssenkrupp Steel Ag Manganese boron steel, flat products produced from such steel, and production method
CN102851589A (en) * 2011-06-29 2013-01-02 宝山钢铁股份有限公司 Steel for low temperature structure with low yield ratio and capable of performing ultrahigh heat input and manufacture method thereof
CN102851589B (en) * 2011-06-29 2014-06-04 宝山钢铁股份有限公司 Steel for low temperature structure with low yield ratio and capable of performing ultrahigh heat input and manufacture method thereof
CN105063479A (en) * 2015-08-25 2015-11-18 内蒙古包钢钢联股份有限公司 Production method for boron-containing cold heading steel

Also Published As

Publication number Publication date
JP4206056B2 (en) 2009-01-07

Similar Documents

Publication Publication Date Title
JP5162382B2 (en) Low yield ratio high toughness steel plate
JP5476763B2 (en) High tensile steel plate with excellent ductility and method for producing the same
JP2005320624A (en) Thick high-strength steel plate having excellent low-temperature toughness in weld heat-affected zone effected by large heat input welding
JP2009270194A (en) PROCESS FOR PRODUCTION OF 780 MPa-GRADE HIGH-TENSILE-STRENGTH STEEL PLATE EXCELLENT IN LOW-TEMPERATURE TOUGHNESS
JP4897126B2 (en) Thick steel plate manufacturing method
JP2008308736A (en) Low-yield-ratio and high-strength thick steel plate superior in toughness at heat-affected zone in high-heat-input weld, and manufacturing method therefor
JP5217092B2 (en) Manufacturing method of steel material with excellent fatigue crack propagation resistance
JP2011246768A (en) High-tensile steel sheet and production method therefor
JP2010229453A (en) High strength thick steel plate having excellent toughness to one layer large heat input welding affected zone and method of manufacturing the same
JP5796636B2 (en) Steel material for large heat input welding
JP2019199649A (en) Non-tempered low yield ratio high tensile thick steel sheet and its production method
JP4507708B2 (en) Low yield ratio high strength high toughness steel sheet manufacturing method
JP6086090B2 (en) Non-tempered low yield ratio high tensile thick steel plate with excellent weld heat affected zone toughness and method for producing the same
JP2005105322A (en) Thick steel plate excellent in toughness of welded joint subjected to large heat input welding, and its production method
JP5157387B2 (en) Method for manufacturing thick-walled, high-strength, high-toughness steel pipe material with high deformability
JP2005068478A (en) Method for manufacturing thick steel plate with low yield ratio and high tension superior in toughness at heat-affected zone in super heavy-heat-input welding
JP4008378B2 (en) Low yield ratio high strength steel with excellent toughness and weldability
JP4449388B2 (en) Manufacturing method of high-strength thick steel plates with excellent brittle crack propagation stop properties and super high heat input welding heat-affected zone toughness
JP5390922B2 (en) Low yield ratio high toughness steel plate
JP4206056B2 (en) Low YR high strength steel sheet and method for manufacturing the same
JP2005097694A (en) Method for manufacturing non-heat-treated high-strength thick steel plate superior in brittle crack arrestability
JP6237681B2 (en) Low yield ratio high strength steel plate with excellent weld heat affected zone toughness
JPWO2019180957A1 (en) Rolled H-section steel and manufacturing method thereof
JP2006274403A (en) Thick steel plate having superior fatigue-crack-propagation characteristics and toughness, and manufacturing method therefor
JP5126375B2 (en) Steel material for large heat input welding

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060907

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080929

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081007

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081017

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111024

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4206056

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111024

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111024

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121024

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121024

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131024

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131024

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131024

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350