JP2005336034A - Al2o3-based ceramic and its production method as well as substrate for use in magnetic head using the same - Google Patents

Al2o3-based ceramic and its production method as well as substrate for use in magnetic head using the same Download PDF

Info

Publication number
JP2005336034A
JP2005336034A JP2004160095A JP2004160095A JP2005336034A JP 2005336034 A JP2005336034 A JP 2005336034A JP 2004160095 A JP2004160095 A JP 2004160095A JP 2004160095 A JP2004160095 A JP 2004160095A JP 2005336034 A JP2005336034 A JP 2005336034A
Authority
JP
Japan
Prior art keywords
sample
grain size
magnetic head
crystal grain
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004160095A
Other languages
Japanese (ja)
Other versions
JP4646548B2 (en
Inventor
Shunji Migaki
俊二 三垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2004160095A priority Critical patent/JP4646548B2/en
Publication of JP2005336034A publication Critical patent/JP2005336034A/en
Application granted granted Critical
Publication of JP4646548B2 publication Critical patent/JP4646548B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Magnetic Heads (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a ceramic suitable for a head member, which is excellent in chipping resistance at the time of machining such as slicing or the like, and excellent in surface quality after ion milling or processing with a reactive ion etching method, and which exhibits little decline in thermal conductivity while comprising minute crystals and which can prevent crystal particles from falling off, and a substrate for use in a membrane magnetic head using it as well as its production method. <P>SOLUTION: The Al<SB>2</SB>O<SB>3</SB>-based ceramic comprises Al<SB>2</SB>O<SB>3</SB>of 50-95 wt% and at least one kind selected from among TiC and TiN of 5-50 wt%, and is characterized in that the average crystal particle diameter in the Al<SB>2</SB>O<SB>3</SB>-based ceramic is 0.5-1.2 μm and the smallest crystal particle diameter is 0.2 μm or larger. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、イオンミリング法(RIE法)などのイオン照射によって表面加工するのに適したAl系セラミックスに関するもので、磁気ヘッド用基板や、治具、測定用具などに用いられるAl系セラミックスの製造方法に関するものである。 The present invention is, ion milling (RIE method) relates Al 2 O 3 based ceramics suitable for surface processing by ion irradiation, such as, Al 2 used and a substrate for a magnetic head, a jig, such as the measurement instrument The present invention relates to a method for producing O 3 ceramics.

近年、ハードディスクドライブ等に用いられる磁気記録媒体は急速に高密度化が要求されるようになってきている。この高密度化に対応できるように、記録再生用の磁気ヘッドは、従来のフェライト等を使用した磁気ヘッドに代わり、磁気記録の高密度化に好適な磁性薄膜を使用した磁気ヘッドが注目されている。特に、磁気抵抗効果を用いたMR(Magnetro Resistive)ヘッドやGMR(Giant MR)ヘッド等の注目度が高くなっている。   In recent years, a magnetic recording medium used for a hard disk drive or the like has been rapidly required to have a high density. In order to cope with this higher density, magnetic heads that use magnetic thin films that are suitable for higher density magnetic recording are attracting attention as magnetic heads for recording and reproduction, instead of conventional magnetic heads that use ferrite or the like. Yes. In particular, the attention of MR (Magneto Resistive) heads and GMR (Giant MR) heads using the magnetoresistive effect is increasing.

このような記録再生用の磁気ヘッドは、メディア表面から浮上しており、その浮上量は20nm程度と極めて小さい。そのため、特許文献1には、磁気ディスクの内周と外周の周速の違いで磁気ヘッドの浮上量の差が発生するため、その差を低減しようとして、浮上部に正圧部を設けるだけでなく、浮上面の一部に微小な溝(凹部)を凹設することで、負圧部を形成し、磁気ディスクの内外周で浮上量を一定にしようとする磁気ヘッドが提案されている。   Such a recording / reproducing magnetic head floats from the surface of the medium, and its flying height is as small as about 20 nm. For this reason, in Patent Document 1, a difference in the flying height of the magnetic head occurs due to the difference between the inner and outer peripheral speeds of the magnetic disk. Therefore, in order to reduce the difference, only a positive pressure portion is provided at the flying portion. In addition, a magnetic head has been proposed in which a minute groove (concave portion) is formed in a part of the air bearing surface to form a negative pressure portion so that the flying height is constant on the inner and outer circumferences of the magnetic disk.

また、ハードディスク装置に装着した際、ヘッドとメディアの接触衝撃による粒子脱落のない磁気ヘッド材料が求められており、結晶間の結合力を高める、即ち焼結性を向上させることが必要とされている。   Further, there is a demand for a magnetic head material that does not drop off particles due to contact impact between the head and the medium when mounted on a hard disk device, and it is necessary to increase the bonding force between crystals, that is, to improve the sinterability. Yes.

焼結性向上のためには焼成温度を上げる、或いは焼結助剤成分を添加するという方法があるが、焼成温度を上げると結晶粒子の成長が起こり微細結晶を得難い。   In order to improve the sinterability, there are methods of raising the firing temperature or adding a sintering aid component, but if the firing temperature is raised, crystal grains grow and it is difficult to obtain fine crystals.

焼結助剤添加はイオンミリングや反応性イオンエッチング法による加工時に、加工レートの違いにより加工後の表面部位が劣化するといった問題が起こり十分な解決には至っていない。   The addition of a sintering aid has caused a problem that the surface portion after processing is deteriorated due to a difference in processing rate during processing by ion milling or reactive ion etching, and has not yet been fully solved.

また、ハードディスク装置の記録密度の高密度化要求に伴い、磁気記録の読み取り、書き込み素子であるトランスデューサーの形状の微細化により、記録再生時の発熱が大きくなるに従い、トランスデューサーから磁気ヘッドスライダの熱伝導による温度上昇の抑制の要求が高くなり、高熱伝導性を有する薄膜磁気ヘッドが必要となってきている。   In addition, along with the demand for higher recording density of the hard disk device, the magnetic head slider moves from the transducer as the heat generation during recording / reproduction increases due to the miniaturization of the shape of the transducer that reads and writes magnetic recording. The demand for suppression of temperature rise due to heat conduction has increased, and a thin film magnetic head having high thermal conductivity has become necessary.

このような磁気ヘッドを作成するには、先ず、基板からスライシング加工などを行い、切り出された磁気ヘッドスライダの浮上面に対して研磨処理を施した後、この浮上面に負圧部用の溝を凹設する。この負圧部用の溝は、その深さが数ミクロン程度と非常に浅く、かつ高い加工精度が要求されるため、その加工には通常Ar、CF、CCl、BClなどのイオンビームによるイオンミリング法、反応性イオンエッチング法等のイオン照射を利用した方法が用いられている。 In order to produce such a magnetic head, first, slicing processing is performed from the substrate, and the air bearing surface of the cut magnetic head slider is polished, and then a groove for a negative pressure portion is formed on the air bearing surface. Is recessed. The groove for the negative pressure portion has a very shallow depth of about several microns and high processing accuracy is required. Therefore, an ion beam such as Ar, CF 4 , CCl 4 , or BCl 3 is usually used for the processing. A method using ion irradiation such as ion milling method or reactive ion etching method is used.

従来からこのような加工方法が用いられるため、このような磁気ヘッドスライダ用の材料としては、耐摩チッピング性、および機械加工性に優れる等の特性が要求されている。   Since such a processing method has been conventionally used, such a material for a magnetic head slider is required to have characteristics such as excellent wear resistance and excellent machinability.

ここで、図1は磁気ヘッドにおけるTPCスライダの一例を示す図で、1は基板を示し、2はスライダ浮上面を、3はレールを、4は溝を、5はステップ部を示している。   Here, FIG. 1 is a diagram showing an example of a TPC slider in a magnetic head, wherein 1 is a substrate, 2 is a slider floating surface, 3 is a rail, 4 is a groove, and 5 is a step portion.

これらの要求に満足しえる材料の一つとして、Alに対してTiCを含有するAl−TiC系セラミックスが多用されている。このAl−TiC系セラミックスは、上記特性を満足させるため、MgOやY、Ybなどの焼結助剤を添加し、完全に緻密セラミックスとすることにより鏡面加工性を向上させたり、セラミックスの結晶粒径を1.5〜3μm程度に粒成長させることにより、スライシング加工時の耐チッピング性や機械加工性を向上させていた(特許文献1参照)。 As one may satisfy these requirements materials, Al 2 O 3 -TiC based ceramic containing TiC is frequently used against the Al 2 O 3. In order to satisfy the above characteristics, this Al 2 O 3 —TiC-based ceramic has a mirror finish by adding a sintering aid such as MgO, Y 2 O 3 , Yb 2 O 3 and making it a completely dense ceramic. The chipping resistance and the machinability during slicing processing have been improved by improving the thickness of the ceramics and growing the crystal grain size of the ceramic to about 1.5 to 3 μm (see Patent Document 1).

また、MgOやNiO、Cr、或いはZrOといった快削性付与剤を0.5〜5重量部添加することにより、機械加工における耐チッピング性を向上させることが知られている(特許文献2参照)。 It is also known to improve chipping resistance in machining by adding 0.5 to 5 parts by weight of a free-cutting property imparting agent such as MgO, NiO, Cr 2 O 3 , or ZrO 2 (patent) Reference 2).

また、セラミックス中のTiCの平均粒径が1.0〜2.5μmであり、TiCのうち粒径が0.1μmのものが10重量%以下であることを特徴とし、スライシング加工等の耐チッピング性を向上させたものが知られている(特許文献3参照)。   Further, the average particle diameter of TiC in the ceramic is 1.0 to 2.5 μm, and TiC having a particle diameter of 0.1 μm is 10% by weight or less, and is resistant to chipping such as slicing processing. What improved the property is known (refer patent document 3).

上記手法によれば、いずれもスライシング加工といった機械加工における耐チッピング性は向上するが、現在の磁気ヘッドの浮上面となるABSレール加工が施されるイオンミリング或いは反応性イオンエッチング法のような加工においては、粒子径が大きいとAl2O3とTiCの段差が顕著にあらわれ、また快削性付与剤が、該加工によりAlやTiCとのミリングレートの違いにより突起や穴の発生を伴い、満足できる面品位を得難いといった問題があった。 According to the above methods, the chipping resistance in machining such as slicing is improved, but processing such as ion milling or reactive ion etching method in which ABS rail processing is applied to the air bearing surface of the current magnetic head. in, appears remarkably a step of Al2O3 and TiC and large particle size, also the machinability improving agents, with the generation of projections and holes due to the difference in milling rate of as Al 2 O 3 and TiC by the process, There was a problem that it was difficult to obtain satisfactory surface quality.

そのため、本願出願人はAl−TiC系セラミックスにおいて、先にAlの平均結晶粒径がTiCのそれより5〜50%大きく、さらには結晶全体の平均結晶粒径が1μm以下、TiCの平均結晶粒径が0.9μm以下であり、結晶粒の粒界層の含有量が1.0重量%以下であるセラミックスを提案されている(特許文献4参照)。 Therefore, in the Al 2 O 3 —TiC ceramics, the applicant of the present application previously has an average crystal grain size of Al 2 O 3 of 5 to 50% larger than that of TiC, and further the average crystal grain size of the entire crystal is 1 μm or less. Further, a ceramic having an average crystal grain size of TiC of 0.9 μm or less and a grain boundary layer content of crystal grains of 1.0% by weight or less has been proposed (see Patent Document 4).

これによればイオンミリング性、反応性イオンエッチング法による加工などによる加工面品位は向上している。
特開平2−153860号公報 特開昭57−135773号公報 特開平9−315848号公報 特開平7−242463号公報
According to this, the quality of the processed surface is improved by processing such as ion milling and reactive ion etching.
Japanese Patent Laid-Open No. 2-153860 JP-A-57-135773 JP-A-9-315848 JP-A-7-242463

しかしながら、加工性の向上や粒子脱落防止ならびに熱伝導率向上のために、結晶粒径を大きくすることや、加工性の向上や粒子脱落防止のために焼結助剤を添加することで、イオンミリングや反応性イオンエッチング法による加工時に表面部位が劣化するといった問題があるが、イオンミリングや反応性イオンエッチング法による加工時に表面部位の品質を向上させるためにAl系セラミックスの純度を上げる方法や微細粒径を微細にすることにより、熱伝導率の悪化やスライシング加工時にチッピングが発生する問題があり、その問題は相反する課題となっていた。 However, by increasing the crystal grain size to improve processability, preventing particle dropout and improving thermal conductivity, or adding a sintering aid to improve processability and prevent particle dropout, Although there is a problem that the surface part deteriorates during processing by milling or reactive ion etching, the purity of Al 2 O 3 ceramics is improved in order to improve the quality of the surface part during processing by ion milling or reactive ion etching. There is a problem that chipping occurs at the time of slicing processing due to deterioration in thermal conductivity or by making the fine particle size finer, and the problem has been a conflicting problem.

通常、微細な結晶粒径を含まないAl系セラミックスを得る場合には、原材料の粒子径を選択することや、焼結時の温度を調整し粒成長させるなどして、ある程度の制御は行っているが、それでも完全に除去することは不可能であった。 Usually, when obtaining Al 2 O 3 ceramics that do not contain fine crystal grain size, some control is achieved by selecting the grain size of the raw material or adjusting the temperature during sintering to grow the grain. But still could not be completely removed.

従って本発明は、スライシング加工等の機械加工時の耐チッピング性がよく、イオンイオンミリングや反応性イオンエッチング法による加工後の表面品位に優れるとともに、微細な結晶を有しながらも熱伝導率の低下が少なく、結晶粒子脱落のないヘッド部材に好適なAl系セラミックス及びその製造方法並びにこれを用いた磁気ヘッド用基板を提供することを目的とする。 Therefore, the present invention has good chipping resistance at the time of machining such as slicing processing, excellent surface quality after processing by ion ion milling or reactive ion etching method, and thermal conductivity while having fine crystals. An object of the present invention is to provide an Al 2 O 3 -based ceramic suitable for a head member that is less likely to drop and does not drop crystal grains, a method for manufacturing the same, and a magnetic head substrate using the same.

本発明者らは鋭意検討の結果、Alと、TiCおよびTiNから選ばれる少なくとも1種を含むAl系セラミックスにおける結晶粒子径を制御し、微小なサイズの結晶粒子を含まないセラミックスが、セラミックス内部に介在する内部応力を緩和し、破壊に対する靭性を向上させることができ、スライシング加工時の耐チッピング性、磁気ヘッドの粒子脱落防止、イオンイオンミリングや反応性イオンエッチング法による加工時における表面部位の品質を向上させ、微細な結晶を有しながらも熱伝導率の低下が少ないことを知見し、本発明に至った。すなわち、本発明のセラミックスは50〜95重量%のAlと、TiCおよびTiNから選ばれる少なくとも1種を5〜50重量%含有するAl系セラミックスであって、上記セラミックス中の平均結晶粒径が0.5〜1.2μmかつ最小結晶粒径が0.2μm以上であることを特徴とする。 The present inventors have conducted extensive studies results, Al and 2 O 3, and controlling the crystal grain size in the Al 2 O 3 based ceramics containing at least one selected from TiC and TiN, does not contain crystal grains of very small size Ceramics can relieve internal stresses inside the ceramics and improve toughness against fracture. Chipping resistance during slicing processing, prevention of particle dropout of magnetic head, processing by ion ion milling and reactive ion etching methods The quality of the surface portion at the time was improved, and it was found that there was little decrease in thermal conductivity while having fine crystals, and the present invention was achieved. That is, the ceramic of the present invention is an Al 2 O 3 ceramic containing 50 to 95% by weight of Al 2 O 3 and 5 to 50% by weight of at least one selected from TiC and TiN. The average crystal grain size is 0.5 to 1.2 μm and the minimum crystal grain size is 0.2 μm or more.

さらに本発明によれば、前記セラミックスは原料スラリーを限外ろ過法を用いて得ることを特徴とする。   Furthermore, according to the present invention, the ceramic is characterized in that a raw material slurry is obtained using an ultrafiltration method.

また、Al系セラミックスから成る磁気ヘッド用基板であることを特徴とする。 Further, the magnetic head substrate is made of Al 2 O 3 ceramics.

本発明のセラミックスは50〜95重量%のAlと、TiCおよびTiNから選ばれる少なくとも1種を5〜50重量%含有するセラミックスであって、上記セラミックス中の平均結晶粒径が0.5〜1.2μmかつ結晶粒径が0.2μm以上であることにより、加工時、特にスライシング加工等の機械加工時の耐チッピング性がよく、イオンイオンミリングや反応性イオンエッチング法による加工後の表面品位に優れるとともに、微細な結晶を有しながらも熱伝導率の低下が少なく、結晶粒子脱落のないヘッド部材に好適なセラミックスとすることができる。 The ceramic of the present invention is a ceramic containing 50 to 95% by weight of Al 2 O 3 and 5 to 50% by weight of at least one selected from TiC and TiN, and the average crystal grain size in the ceramic is 0.00. 5 to 1.2 μm and the crystal grain size is 0.2 μm or more, the chipping resistance is good at the time of processing, particularly at the time of mechanical processing such as slicing processing, and after processing by ion ion milling or reactive ion etching method. While having excellent surface quality, there is little decrease in thermal conductivity while having fine crystals, and ceramics suitable for a head member that does not drop crystal grains can be obtained.

さらに、本発明によれば、前記セラミックスは限外ろ過法を用いて得ることにより、焼結前の原料スラリーの段階で限外ろ過を使用して、完全に微粒子を除去してしまうため、原材料の選択や焼結温度を調整する必要がなくなり、容易に微粒結晶を含まないセラミックスを得ることができる。   Furthermore, according to the present invention, since the ceramic is obtained using an ultrafiltration method, the ultrafiltration is used at the stage of the raw material slurry before sintering to completely remove the fine particles. Therefore, there is no need to adjust the selection and the sintering temperature, and a ceramic containing no fine crystals can be easily obtained.

以下、本発明の実施形態を図面を参照して説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は磁気ヘッドにおけるTPCスライダの一例を示す図で、1は基板を示し、2はスライダ浮上面を、3はレールを、4は溝を、5はステップ部を示している。   FIG. 1 is a view showing an example of a TPC slider in a magnetic head. 1 is a substrate, 2 is a slider floating surface, 3 is a rail, 4 is a groove, and 5 is a step portion.

本発明のセラミックスは、50〜95重量%のAlと、TiCおよびTiNから選ばれる少なくとも1種を5〜50重量%含有するAl系セラミックスであって、Al系セラミックス中の平均結晶粒径が0.5〜1.2μmかつ結晶粒径が0.2μm以上であることにより、スライシング加工等の機械加工時の耐チッピング性がよく、イオンイオンミリングや反応性イオンエッチング法による加工後の表面品位に優れるとともに、微細な結晶を有しながらも熱伝導率の低下が少なく、結晶粒子脱落のないヘッド部材に好適なセラミックス、これを用いた薄膜磁気ヘッド用基板、ならびにその製造方法を提供することができる。 Ceramic of the present invention, the Al 2 O 3 50 to 95 wt%, a Al 2 O 3 based ceramic at least one kind of containing 5 to 50 wt% selected from TiC and TiN, Al 2 O 3 system With an average crystal grain size of 0.5 to 1.2 μm and a crystal grain size of 0.2 μm or more in ceramics, chipping resistance during machining such as slicing is good, and ion ion milling and reactive ions Ceramics suitable for a head member that has excellent surface quality after processing by an etching method, has a small crystal and has little decrease in thermal conductivity, and does not drop crystal grains, and a substrate for a thin film magnetic head using the same, In addition, a manufacturing method thereof can be provided.

各成分を上記範囲に限定したのは、TiCおよびTiNから選ばれる少なくとも1種が5重量%より少ないと耐チッピング性が低下しかつ体積固有抵抗値が絶縁体となるためであり、50重量%を超えると、焼結性が低下することにより、チッピングが増加することと、イオンイオンミリングや反応性イオンエッチング法による加工時のスピードが低下し不経済となり、さらにはメディアとの接点が多くなるために磁気ヘッドスライダとしての摺動特性が低下するためである。   The reason why each component is limited to the above range is that when at least one selected from TiC and TiN is less than 5% by weight, chipping resistance decreases and the volume resistivity value becomes an insulator, and 50% by weight. Exceeding sinterability decreases, chipping increases, speed during processing by ion ion milling and reactive ion etching decreases, and it becomes uneconomical, and more contacts with the media increase. This is because the sliding characteristics of the magnetic head slider deteriorate.

含有量の測定としては、蛍光X線分析によりセラミックスに含まれる元素を特定し、X線回折により結晶相を同定して酸化アルミニウムと炭化チタンの結晶相が存在することを確認し、さらに蛍光X線分析により元素の定量分析を行い、アルミニウムとチタンをそれぞれ酸化物換算、炭化物換算する方法を用いた。   For the measurement of the content, the elements contained in the ceramics are specified by fluorescent X-ray analysis, the crystal phase is identified by X-ray diffraction to confirm that the crystal phases of aluminum oxide and titanium carbide exist, and further, the fluorescent X Elemental analysis was performed by line analysis, and aluminum and titanium were converted into oxides and carbides, respectively.

上記組成からなるセラミックスは、組成上はAl結晶粒と、TiCおよびTiNから選ばれる少なくとも1種の結晶粒により構成されるが、焼結助剤成分が含まれると、イオンイオンミリングや反応性イオンエッチング法による加工時において、加工レートの違いにより段差形状に突起や穴が形成され摺動特性が低下する恐れがある。そこで、本発明では焼結助剤を含んでも良いが含有量は0.05〜0.5重量部と少ない方が好ましい。なお、上記焼結助剤成分が0.05重量部未満では焼結性が悪く、また、0.5重量部を超えると焼結性は向上するが、イオンイオンミリングや反応性イオンエッチング法による加工後の表面品位が低下し摺動特性が低下する。焼結助剤としてはMgO、CaO、Y、Yb、Nb等を用いればよい。 The ceramic having the above composition is composed of Al 2 O 3 crystal grains and at least one kind of crystal grains selected from TiC and TiN in terms of composition. When a sintering aid component is included, ion ion milling or At the time of processing by the reactive ion etching method, there is a possibility that protrusions and holes are formed in a stepped shape due to a difference in processing rate, and the sliding characteristics are deteriorated. Therefore, in the present invention, a sintering aid may be included, but the content is preferably as small as 0.05 to 0.5 parts by weight. In addition, if the sintering aid component is less than 0.05 parts by weight, the sinterability is poor, and if it exceeds 0.5 parts by weight, the sinterability is improved, but by ion ion milling or reactive ion etching. Surface quality after processing deteriorates and sliding characteristics deteriorate. As the sintering aid, MgO, CaO, Y 2 O 3 , Yb 2 O 3 , Nb 2 O 5 or the like may be used.

また、セラミックスの結晶の平均結晶粒径を限定したのは、平均結晶粒径が0.5μmより小さいとスライシング加工により加工負荷が大となり、焼結助剤成分の添加が極微量であるために耐チッピング性が低下し、逆に1.2μmより大きいとスライシング加工性は向上し、耐チッピング性には優れるが、前述したようにイオンイオンミリングや反応性イオンエッチング法による加工により、表面品位が低下し、薄膜磁気ヘッドの浮上特性に大きく影響を与え、更には薄膜磁気ヘッドの浮上量が安定せず、ヘッド特性が安定しなくなるためである。平均結晶粒径が0.5〜1.2μmであれば好適な加工面品位が得られ、ヘッド特性を安定化させることができる。   In addition, the average crystal grain size of ceramics crystals is limited because if the average crystal grain size is smaller than 0.5 μm, the processing load increases due to slicing and the addition of sintering aid components is extremely small. Chipping resistance decreases, and conversely, if it is larger than 1.2 μm, slicing processability is improved and chipping resistance is excellent. However, as described above, surface quality is improved by processing by ion ion milling or reactive ion etching. This is because the flying height of the thin film magnetic head is greatly affected, and the flying height of the thin film magnetic head is not stable, and the head characteristics are not stable. If the average crystal grain size is 0.5 to 1.2 μm, suitable processed surface quality can be obtained, and the head characteristics can be stabilized.

また、セラミックスの結晶中に0.2μm以下の結晶粒径を含むと、スライシング加工性が悪くなり、チッピングが増大し、加工面が粗くなる。そのため、ヘッドが衝撃を受けた際に加工面が粗いために結晶粒子が脱落しやすくなる。   In addition, when the crystal grain size of 0.2 μm or less is included in the ceramic crystal, slicing workability is deteriorated, chipping is increased, and the processed surface is roughened. Therefore, when the head receives an impact, the processed surface is rough, so that the crystal particles are likely to fall off.

なお、平均結晶粒径の測定は金属顕微鏡で写真を撮影し、その写真からコード法を採用して測定を行った値である。   The measurement of the average crystal grain size is a value obtained by taking a photograph with a metal microscope and adopting the code method from the photograph.

さらに、セラミックスの結晶中に0.2μm以下の結晶粒径を含むと、結晶粒界が増えることにより熱伝導率が下がる傾向にあり、トランスデューサーの形状の微細化で記録再生時の温度上昇の抑制に応えられなくなるといった問題がある。   Further, if the crystal grain size of 0.2 μm or less is included in the ceramic crystal, the thermal conductivity tends to decrease due to the increase of crystal grain boundaries, and the temperature increase during recording / reproduction is caused by miniaturization of the transducer shape. There is a problem that it becomes impossible to respond to suppression.

微小粒径は、スライシング加工性や熱伝導率等の特性の面からは0.2μm以下を含まないのが好ましく、歩留りの面からは0.1μm以下を含まないのが望ましい。   The fine particle diameter preferably does not include 0.2 μm or less from the viewpoint of characteristics such as slicing processability and thermal conductivity, and desirably does not include 0.1 μm or less from the viewpoint of yield.

さらに本発明によれば、前記セラミックスは限外ろ過法を用いて得ることにより、原材料の選択や焼結温度を調整する必要がなくなり、容易に微粒結晶を含まないセラミックスを得ることができる。   Furthermore, according to the present invention, the ceramics are obtained by using an ultrafiltration method, so that it is not necessary to select raw materials and adjust the sintering temperature, and ceramics containing no fine crystals can be easily obtained.

なお、最小結晶粒径が0.2μm以上である結晶粒径の測定は、透過電子顕微鏡(TEM)により写真を撮影し、その結晶写真中で0.2μm以下の結晶が存在するかを確認したものである。   In addition, the measurement of the crystal grain size in which the minimum crystal grain size is 0.2 μm or more was taken with a transmission electron microscope (TEM), and it was confirmed whether or not there was a crystal of 0.2 μm or less in the crystal photograph. Is.

限外ろ過では、限外ろ過膜と呼ばれるスキン層とスポンジ層からなる非対象膜を使用することにより、高分子量物質は透過させずに、水、イオン分子、低分子量物質を透過させ、特に透水性にすぐれている。通常、分子量1,000〜300,000程度の高分子量物質などを対象とした膜による分離を限外ろ過(UF:Ultrafiltration)と言うが、今回は、この限外ろ過膜を用いて、セラミックスラリー中に含まれる微粒子0.2μm以下のサイズのものを除去したものである。   In ultrafiltration, a non-target membrane consisting of a skin layer and a sponge layer, called an ultrafiltration membrane, is used to permeate water, ionic molecules, and low molecular weight materials without permeating high molecular weight materials. Excellent in sex. Usually, separation by a membrane for a high molecular weight substance having a molecular weight of about 1,000 to 300,000 is called ultrafiltration (UF), but this time, using this ultrafiltration membrane, a ceramic slurry is used. The fine particles having a size of 0.2 μm or less contained therein are removed.

これは、焼結前の原料スラリーの段階で限外ろ過を使用して、完全に微粒子を除去してしまうことによる。   This is because the fine particles are completely removed by using ultrafiltration at the stage of the raw material slurry before sintering.

本発明の上記セラミックスは、Al粉末と、TiCおよびTiNから選ばれる少なくとも1種の粉末を、さらには所定の焼結助剤を前述したような所定の比率で添加した後、ボールミルなど任意の方法で混合し、その後、限外ろ過装置を用いて微粒の粉砕粒子領域をカットする、スラリーを乾燥させた後成形し、その成形体を1500〜1750℃、Alと、TiCおよびTiNから選ばれる少なくとも1種の重量比が概ね7:3であり、ボールミル混合後の一次粒子の平均結晶粒径が1.0μmの場合、望ましくは1700〜1730℃の温度範囲でホットプレス法により焼成すればよい。また熱間静水圧焼成法(HIP法)等によっても焼結できる。 The ceramics of the present invention includes an Al 2 O 3 powder, at least one powder selected from TiC and TiN, and a predetermined sintering aid added at a predetermined ratio as described above, and then a ball mill or the like. After mixing by an arbitrary method, the finely pulverized particle region is cut using an ultrafiltration device, the slurry is dried and then molded, and the molded body is 1500-1750 ° C., Al 2 O 3 and TiC. When the weight ratio of at least one selected from TiN is approximately 7: 3 and the average grain size of the primary particles after ball mill mixing is 1.0 μm, it is preferably a hot press method in a temperature range of 1700 to 1730 ° C. May be fired. It can also be sintered by hot isostatic firing (HIP method) or the like.

前述したようにAl結晶粒と、TiCおよびTiNから選ばれる少なくとも1種の結晶粒を制御するには、出発原料としていずれも粒径が小さく、望ましくはAlが平均粒子径0.3〜1.0μm、TiCおよびTiNは0.3〜1.5μmのものを用いる。また粒度ばらつきの小さい、形状の揃った原料を用い、粒成長を防ぐために焼成温度をできるだけ低く設定することが望ましい。 As described above, in order to control Al 2 O 3 crystal grains and at least one kind of crystal grains selected from TiC and TiN, all of them have a small particle size as a starting material, preferably Al 2 O 3 has an average particle size of 0.3-1.0 micrometer and TiC and TiN use 0.3-1.5 micrometer. In addition, it is desirable to use a raw material with a uniform particle size and uniform shape, and to set the firing temperature as low as possible in order to prevent grain growth.

(実験例1)
平均粒径0.3μmのAl原料(純度99.9%以上)と、平均粒径1.0μmのTiC原料(純度99.5%以上)を使用し、これらをセラミックスの組成としてAl、TiC、および焼結助剤がそれぞれ表1に示す割合となるように秤量し、溶媒にメタノールを使用して前記原料固形分に対して80重量%添加し、振動ミルを用いて120時間粉砕混合した。得られた原料スラリーの平均粒子径は0.4μmであった。
(Experimental example 1)
An Al 2 O 3 raw material (purity of 99.9% or more) having an average particle diameter of 0.3 μm and a TiC raw material (purity of 99.5% or more) having an average particle diameter of 1.0 μm were used, and these were used as ceramic compositions. 2 O 3 , TiC, and sintering aid were weighed so as to have the ratios shown in Table 1, respectively, and methanol was used as a solvent, and 80% by weight was added to the raw material solids, and a vibration mill was used. The mixture was pulverized and mixed for 120 hours. The average particle diameter of the obtained raw material slurry was 0.4 μm.

こうして得られたスラリーにメタノールを添加して4倍に希釈した後、図5に示すような限外ろ過装置を用いてろ過を行った。図中、限外ろ過を行うスラリー20を、攪拌タンク21で攪拌機22を用いて攪拌し、送液ポンプ23を用いて限外ろ過膜装置24に送りろ過を行い、微粒子含有スラリー25を除去した。結果、限外ろ過を行ったスラリーは微粒子を含むメタノールが除去されていくため、濃縮されることとなる。このようにして、限外ろ過装置を用いてセラミックスで0.2μm以下の結晶粒径を含まない条件にて希釈前の容積に戻るまで濃縮、つまり限外ろ過を行った。   After adding methanol to the slurry thus obtained and diluting it four times, filtration was performed using an ultrafiltration apparatus as shown in FIG. In the figure, the slurry 20 to be subjected to ultrafiltration is stirred in a stirring tank 21 using a stirrer 22, and sent to an ultrafiltration membrane device 24 using a liquid feed pump 23 for filtration to remove the fine particle-containing slurry 25. . As a result, the slurry subjected to ultrafiltration is concentrated because methanol containing fine particles is removed. In this way, concentration was carried out using an ultrafiltration device under the condition that the ceramics did not contain a crystal grain size of 0.2 μm or less until it returned to the volume before dilution, that is, ultrafiltration was performed.

Al70%、TiC30%の組成の場合の限外ろ過前後のスラリーの粒度分布測定結果を図6に示す。 FIG. 6 shows the particle size distribution measurement results of the slurry before and after ultrafiltration in the case of the composition of 70% Al 2 O 3 and 30% TiC.

限外ろ過を行った原料スラリーの粒径分布が、粗粒側へシフトしており、微粒がカットされているのがわかる。限外ろ過装置のろ過膜の目開きは、調合組成の比率やスラリーの性状によって変化するので種々条件を見ながら選択すれば良い。   It can be seen that the particle size distribution of the raw slurry subjected to ultrafiltration is shifted to the coarse particle side, and the fine particles are cut. Since the opening of the filtration membrane of the ultrafiltration device varies depending on the ratio of the composition and the properties of the slurry, it can be selected while looking at various conditions.

次に前期微粒を含まない部分のスラリーを乾燥し成形用原料を得た。次いで所望の形状に成形し、1700℃、250kg/cmの圧力で1時間ホットプレス焼成をおこなった。 Next, the slurry of the part which does not contain the fine particles in the previous period was dried to obtain a forming raw material. Next, it was molded into a desired shape and subjected to hot press firing at 1700 ° C. and a pressure of 250 kg / cm 2 for 1 hour.

得られたセラミックスに対してその表面を鏡面加工後、平均結晶粒径、0.2μm以下の結晶粒径の有無の確認、破壊靭性値としてK1c、熱伝導率、内部応力の測定を行った。平均結晶粒径の測定は金属顕微鏡により2,000倍の倍率で写真を撮影し、その写真からコード法を採用して測定を行った。   The surface of the obtained ceramic was mirror-finished, the average crystal grain size, confirmation of the presence or absence of a crystal grain size of 0.2 μm or less, and K1c, thermal conductivity, and internal stress were measured as fracture toughness values. The average crystal grain size was measured by taking a photograph with a metal microscope at a magnification of 2,000 and employing the code method from the photograph.

また、0.2μm以下の結晶粒径の有無の確認は、透過電子顕微鏡(TEM)により20,000倍の写真を撮影し、その結晶写真中で0.2μm以下の結晶が存在するかを確認することで行った。0.2μm以下の結晶の占有率は、前記透過電子顕微鏡写真を画像解析装置(Luzex−FS)にて求めた。のまたK1cの測定は98.065Nの荷重にてIndentation Fracture法(IF法)により行った。熱伝導率については、レーザーフラッシュ法にて求めた。内部応力の測定については、図2(a)(b)に示すブロック11の変形量を下記の(1)〜(4)の手順で測定することにより評価した。   In addition, to confirm the presence or absence of a crystal grain size of 0.2 μm or less, a 20,000-fold photograph was taken with a transmission electron microscope (TEM), and it was confirmed whether or not a crystal of 0.2 μm or less was present in the crystal photograph. It was done by doing. The occupancy ratio of the crystal of 0.2 μm or less was obtained from the transmission electron micrograph with an image analyzer (Luzex-FS). The K1c was measured by the Indentation Fracture method (IF method) with a load of 98.065N. The thermal conductivity was determined by a laser flash method. About the measurement of internal stress, it evaluated by measuring the deformation amount of the block 11 shown to FIG. 2 (a) (b) by the procedure of following (1)-(4).

(1)磁気ヘッド用基板を11aで切断し、切断面を測定面11aとして鏡面加工する。 (1) The magnetic head substrate is cut by 11a, and the cut surface is mirror-finished as the measurement surface 11a.

(2)測定面11aの平面度を表面粗さ計で、A=72mmの距離を測定する。 (2) Measure the flatness of the measurement surface 11a with a surface roughness meter and measure a distance of A = 72 mm.

(3)磁気ヘッド用基板を、測定面11aと平行に11bで切断して、平行面11bを鏡面加工する。また、平行面11bと測定面11aの距離Bは13mmとした。 (3) The magnetic head substrate is cut at 11b parallel to the measurement surface 11a, and the parallel surface 11b is mirror-finished. The distance B between the parallel surface 11b and the measurement surface 11a was 13 mm.

(4)再度、測定面11aの平面度を表面粗さ計で72mm測定する。 (4) The flatness of the measurement surface 11a is again measured 72 mm with a surface roughness meter.

また、本評価方法は特開1999−92213号公報に記載されている方法から応力計算を省略し変形量のみで検討したものである。すなわち、ブロック11の切断前後における変形量が小さいほど磁気ヘッド用基板に残留する内部応力も小さいと判断できる。そして、変形量の測定はTaylor Hobson製のTalysurf series2を使用した。   In addition, this evaluation method is a method in which stress calculation is omitted from the method described in JP-A-1999-92213 and only the amount of deformation is studied. That is, it can be determined that the smaller the amount of deformation before and after the cutting of the block 11, the smaller the internal stress remaining on the magnetic head substrate. The deformation amount was measured using Talysurf series 2 manufactured by Taylor Hobson.

耐チッピング性については試料を3×4×30mmの矩形状に切断し、その表面が鏡面になるまで錫盤等を用いて研磨し、次いでダイヤモンドホイル(レジン#325、φ110mm×1mmt)を回転数5,500rpm、送り40mm/minに設定し、これを用いて上記矩形体を切断し、その切断面よりチッピングの評価を得た。評価基準としてダイヤモンドホイルが通過した界面からチッピングにより除去された部分の長さを測定した。ダイヤモンドホイルが通過した界面の任意の500μmを選び、最大チッピング幅並びにそれ以下で最も大きなチッピング幅をもつ5点を選び、その5点の平均チッピング幅を評価基準としており、その平均チッピング幅が大きくなると耐チッピング性が劣ると判定した。評価基準は表1に示す通りである。   For chipping resistance, the sample was cut into a 3 x 4 x 30 mm rectangle, polished with a tin plate etc. until the surface became a mirror surface, and then diamond foil (resin # 325, φ110 mm x 1 mmt) was rotated. It set to 5,500 rpm and feed 40mm / min, the rectangular body was cut | disconnected using this, and the evaluation of chipping was obtained from the cut surface. As an evaluation standard, the length of the portion removed by chipping from the interface through which the diamond foil passed was measured. Select an arbitrary 500 μm at the interface through which the diamond foil has passed, select 5 points with the maximum chipping width and the largest chipping width below it, and use the average chipping width of the 5 points as the evaluation criterion, and the average chipping width is large It was determined that the chipping resistance was poor. Evaluation criteria are as shown in Table 1.

機械加工性については上記セラミックスをφ76mm、厚みφ4mmの円盤状に研磨し、次いでダイヤモンドホイル(レジン#325、φ110mm×1mmt)を回転数5,500rpm、送り100mm/minに設定し、これを用いて上記円盤を切断したその切断に際してダイヤモンドホイルの主軸に接続された回転駆動用モータの負荷電流を測定し、定常切断時の平均電流値を求めた。この平均電流値が大きくなると切断抵抗が大きくなり、これに伴って機械加工性が低下することを示しており、その評価基準としては○印、△印、×印の3段階に区分し、順次機械加工性が低下することを表す。同様にして、限外ろ過を行わなかった試料の結果についても表1中に7・8・9として示す。   For the machinability, the ceramics were polished into a disk shape of φ76 mm and thickness φ4 mm, and then diamond foil (resin # 325, φ110 mm × 1 mmt) was set at a rotational speed of 5,500 rpm and a feed of 100 mm / min. When the disk was cut, the load current of the rotary drive motor connected to the main shaft of the diamond foil was measured, and the average current value during steady cutting was obtained. When this average current value is increased, the cutting resistance is increased, and accordingly, the machinability is lowered. The evaluation standard is divided into three stages of ○ mark, Δ mark, and X mark, and sequentially. Represents a decrease in machinability. Similarly, the results of the samples that were not subjected to ultrafiltration are also shown in Table 1 as 7 · 8 · 9.

表1からも明らかなように、試料No1はK1cが大きいが、平均結晶粒径が小さいため、機械加工性が低下している。また、内部応力が大きいため耐チッピング性も悪い。試料No5は、K1cが低く耐チッピング性が悪い。試料No2〜4は、限外ろ過により0.2μm以下の微粒子を含まないことから、熱伝導率が18〜23W/m・kと比較用の試料No7〜9の15〜17W/m・kに比較して向上していることがわかる。さらに内部応力についても、試料No2〜4は、0.7〜1.5MPaと比較用の試料No7〜9の2.1〜2.8MPaに比較して向上していることがわかる。耐チッピング性についても、試料No2の○に対し、比較用の試料No7の△、試料No3の◎に対し、比較用の試料No8の△、試料No4の△に対し、比較用の試料No9の×の評価と全ての試料において改善傾向にあることがわかる。   As is clear from Table 1, sample No1 has a large K1c, but the average crystal grain size is small, so the machinability is degraded. Further, since the internal stress is large, chipping resistance is poor. Sample No. 5 has low K1c and poor chipping resistance. Samples Nos. 2 to 4 do not contain fine particles of 0.2 μm or less by ultrafiltration, so the thermal conductivity is 18 to 23 W / m · k, and 15 to 17 W / m · k of Comparative Sample Nos. 7 to 9 It can be seen that the comparison is improved. Furthermore, also about internal stress, it turns out that sample No. 2-4 is improving compared with 2.1-2.8 MPa of 0.7-1.5 MPa and sample No. 7-9 for a comparison. Regarding the chipping resistance, X for sample No2 for comparison, Δ for sample No7 for comparison, Δ for sample No3, △ for sample No8 for comparison, and Δ for sample No4 for ◯ for sample No2. It can be seen that there is an improvement trend in all the samples.

機械加工性についても、試料No2の○に対し、比較用の試料No7の△、試料No3の○に対し、比較用の試料No8の△、試料No4の◎に対し、比較用の試料No9の○の評価として全ての試料において同等以上か改善傾向にあることがわかる。耐チッピング性と機械加工性の差については、平均結晶粒径がほぼ同じであっても微小な粒子が含まれると加工の際に負荷がかかり、チッピングが発生し易くなっていると考えられる。本発明における試料No3の透過電子顕微鏡写真(倍率×20,000)を図3、比較例の試料No8の透過電子顕微鏡写真(倍率×20,000)を図4に示すが、これら結晶写真が示す通り、本願発明の図3では0.2μm以下の結晶粒径を含んでいない。これは内部応力にも関連があると思われ、微粒域をカットした試料No2〜4では総じて耐チッピング性および機械加工性に優れ内部応力の値も小さい。

Figure 2005336034
Regarding the machinability, the comparison of sample No7 for the sample No2 and the comparison for the sample No7 for the sample No3, the comparison for the sample No8 for the comparison No. As a result of the evaluation, it can be seen that all the samples are equal to or higher than those of the samples. Regarding the difference between chipping resistance and machinability, it is considered that even if the average crystal grain size is almost the same, if fine particles are included, a load is applied during processing and chipping is likely to occur. FIG. 3 shows a transmission electron micrograph (magnification × 20,000) of sample No. 3 in the present invention, and FIG. 4 shows a transmission electron micrograph (magnification × 20,000) of sample No. 8 of a comparative example. As shown, FIG. 3 of the present invention does not include a crystal grain size of 0.2 μm or less. This seems to be related to the internal stress, and the samples No. 2 to 4 in which the fine particle region is cut generally have excellent chipping resistance and machinability, and the value of the internal stress is small.
Figure 2005336034

(実験例2)
平均粒径0.3μmのAl原料(純度99.9%以上)と、平均粒径1.2μmのTiN原料(純度99.5%以上)を使用し、これらをセラミックスの組成としてAl、TiN、および焼結助剤がそれぞれ表2に示す割合となるように秤量し、溶媒にメタノールを使用して前記原料固形分に対して80重量%添加し、振動ミルを用いて120時間粉砕混合した。得られた原料スラリーの平均粒子径は0.5μmであった。
(Experimental example 2)
An Al 2 O 3 raw material (purity 99.9% or more) having an average particle diameter of 0.3 μm and a TiN raw material (purity 99.5% or more) having an average particle diameter of 1.2 μm were used, and these were used as ceramic compositions as Al. 2 O 3 , TiN, and sintering aid are weighed so as to have the ratios shown in Table 2, respectively. Using methanol as a solvent, 80 wt% is added to the raw material solids, and using a vibration mill. The mixture was pulverized and mixed for 120 hours. The average particle diameter of the obtained raw material slurry was 0.5 μm.

こうして得られたスラリーにメタノールを添加して4倍に希釈した後、限外ろ過装置を用いてセラミックスで0.2μm以下の結晶粒径を含まない条件にて希釈前の容積に戻るまで濃縮、つまり限外ろ過を行った。その後、前期微粒を含まない部分のスラリーを乾燥し成形用原料を得た。次いで所望の形状に成形し、1650℃、250kg/cmの圧力で1時間ホットプレス焼成をおこなった。 After adding methanol to the slurry thus obtained and diluting it 4 times, using an ultrafiltration device, the ceramic is concentrated until it returns to the volume before dilution under the condition that does not contain a crystal grain size of 0.2 μm or less, That is, ultrafiltration was performed. Then, the slurry of the part which does not contain a fine particle in the previous period was dried and the raw material for shaping | molding was obtained. Next, it was molded into a desired shape and subjected to hot press firing at 1650 ° C. and a pressure of 250 kg / cm 2 for 1 hour.

得られたセラミックスに対して実験例1の時と同様、平均結晶粒径、0.2μm以下の結晶粒径の有無の確認、破壊靭性値としてK1cの測定、熱伝導率の測定、内部応力の評価、耐チッピング性の評価、機械加工性の評価を行った。その結果を表2に示す。   As in the case of Experimental Example 1, the obtained ceramics were confirmed to have an average crystal grain size, a crystal grain size of 0.2 μm or less, measurement of K1c as a fracture toughness value, measurement of thermal conductivity, internal stress Evaluation, chipping resistance, and machinability were evaluated. The results are shown in Table 2.

表2からも明らかなように、試料No10はK1cが大きいが、平均結晶粒径が小さいため、機械加工性が低下している。   As is clear from Table 2, sample No. 10 has a large K1c, but the machinability is low because the average crystal grain size is small.

また、内部応力が大きいため耐チッピング性も悪い。試料No14は、K1cが低く耐チッピング性が悪い。試料No11〜13は、限外ろ過により0.2μm以下の微粒子を含まないことから、熱伝導率が23〜28W/m・kと比較用の試料No15〜17の20〜22W/m・kに比較して向上していることがわかる。   Further, since the internal stress is large, chipping resistance is poor. Sample No. 14 has low K1c and poor chipping resistance. Since sample Nos. 11-13 do not contain fine particles of 0.2 μm or less by ultrafiltration, the thermal conductivity is 23-28 W / m · k and 20-22 W / m · k of sample Nos. 15-17 for comparison. It can be seen that the comparison is improved.

さらに内部応力についても、試料No11〜13は、1.6〜2.6MPaと比較用の試料No15〜17の2.4〜3.6MPaに比較して向上していることがわかる。   Furthermore, also about internal stress, it turns out that sample No. 11-13 has improved compared with 2.4-3.6 MPa of sample No. 15-17 for comparison, and 1.6-2.6 MPa.

耐チッピング性についても、試料No11の○に対し、比較用の試料No15の△、試料No12の◎に対し、比較用の試料No16の△、試料No13の△に対し、比較用の試料No17の×の評価と全ての試料において改善傾向にあることがわかる。   Regarding the chipping resistance, X for sample No11 for comparison, Δ for sample No15 for comparison, Δ for sample No12, Δ for comparison sample No16, Δ for sample No13, × for sample No17 for comparison It can be seen that there is an improvement trend in all the samples.

機械加工性についても、試料No11の○に対し、比較用の試料No15の△、試料No12の○に対し、比較用の試料No16の△、試料No13の◎に対し、比較用の試料No17の○の評価と全ての試料において同等以上か改善傾向にあることがわかる。   As for the machinability, the sample No11 of ○ for comparison, the sample No15 for comparison, the sample No12 of ○, the comparison of sample No16 of Δ, the sample of No13 of ◯ of ○ for comparison. It can be seen that all the samples have the same or better or improved tendency.

耐チッピング性と機械加工性の差については、平均結晶粒径がほぼ同じであっても微小な粒子が含まれると加工の際に負荷がかかり、チッピングが発生し易くなっていると考えられる。これは内部応力にも関連があると思われ、微粒域をカットした試料No11〜13では掃総じて耐チッピング性および機械加工性に優れ内部応力の値も小さい。

Figure 2005336034
Regarding the difference between chipping resistance and machinability, it is considered that even if the average crystal grain size is almost the same, if fine particles are included, a load is applied during processing and chipping is likely to occur. This seems to be related to the internal stress, and Samples Nos. 11 to 13 in which the fine particle region is cut are generally excellent in chipping resistance and machinability and have a small internal stress value.
Figure 2005336034

(実験例3)
平均粒径0.3μmのAl原料(純度99.9%以上)と、平均粒径1.0μmのTiC原料(純度99.5%以上)、平均粒径1.2μmのTiN原料(純度99.5%以上)を使用し、これらをセラミックスの組成としてAl、TiN、および焼結助剤がそれぞれ表3に示す割合となるように秤量し、溶媒にメタノールを使用して前記原料固形分に対して80重量%添加し、振動ミルを用いて120時間粉砕混合した。得られた原料スラリーの平均粒子径は0.5μmであった。
(Experimental example 3)
Al 2 O 3 raw material having an average particle diameter of 0.3 μm (purity 99.9% or more), TiC raw material having an average particle diameter of 1.0 μm (purity 99.5% or more), TiN raw material having an average particle diameter of 1.2 μm ( These were weighed so that the composition of ceramic was Al 2 O 3 , TiN, and sintering aid in the proportions shown in Table 3, and methanol was used as the solvent. 80% by weight based on the solid content of the raw material was added, and pulverized and mixed for 120 hours using a vibration mill. The average particle diameter of the obtained raw material slurry was 0.5 μm.

こうして得られたスラリーにメタノールを添加して4倍に希釈した後、限外ろ過装置を用いてセラミックスで0.2μm以下の結晶粒径を含まない条件にて希釈前の容積に戻るまで濃縮、つまり限外ろ過を行った。その後、前期微粒を含まない部分のスラリーを乾燥し成形用原料を得た。次いで所望の形状に成形し、1675℃、250kg/cmの圧力で1時間ホットプレス焼成をおこなった。 After adding methanol to the slurry thus obtained and diluting it 4 times, using an ultrafiltration device, the ceramic is concentrated until it returns to the volume before dilution under the condition that does not contain a crystal grain size of 0.2 μm or less, That is, ultrafiltration was performed. Then, the slurry of the part which does not contain a fine particle in the previous period was dried and the raw material for shaping | molding was obtained. Next, it was molded into a desired shape and subjected to hot press firing at 1675 ° C. and a pressure of 250 kg / cm 2 for 1 hour.

得られたセラミックスに対して実験例1の時と同様、平均結晶粒径、0.2μm以下の結晶粒径の有無の確認、破壊靭性値としてK1cの測定、熱伝導率の測定、内部応力の評価、耐チッピング性の評価、機械加工性の評価を行った。その結果を表3に示す。   As in the case of Experimental Example 1, for the obtained ceramics, the average crystal grain size, confirmation of the presence or absence of a crystal grain size of 0.2 μm or less, measurement of K1c as a fracture toughness value, measurement of thermal conductivity, internal stress Evaluation, chipping resistance, and machinability were evaluated. The results are shown in Table 3.

表3からも明らかなように、試料No18はK1cが大きいが、平均結晶粒径が小さいため、機械加工性が低下している。   As is apparent from Table 3, sample No. 18 has a large K1c, but the machinability is degraded because the average crystal grain size is small.

また、内部応力が大きいため耐チッピング性も悪い。試料No22は、K1cが低く耐チッピング性が悪い。試料No19〜21は、限外ろ過により0.2μm以下の微粒子を含まないことから、熱伝導率が21〜25W/m・kと比較用の試料No23〜25の18〜20W/m・kに比較して向上していることがわかる。   Further, since the internal stress is large, chipping resistance is poor. Sample No. 22 has low K1c and poor chipping resistance. Samples Nos. 19 to 21 do not contain fine particles of 0.2 μm or less by ultrafiltration, so the thermal conductivity is 21 to 25 W / m · k and 18 to 20 W / m · k of the comparative sample Nos. 23 to 25. It can be seen that the comparison is improved.

さらに内部応力についても、試料No19〜21は、1.2〜2.1MPaと比較用の試料No23〜25の2.4〜3.2MPaに比較して向上していることがわかる。   Furthermore, also about internal stress, it turns out that sample No. 19-21 is improved compared with 2.4-3.2 MPa of sample No. 23-25 for comparison, and 1.2-2.1 MPa.

耐チッピング性についても、試料No19の○に対し、比較用の試料No23の△、試料No20の◎に対し、比較用の試料No24の△、試料No21の△に対し、比較用の試料No25の×、の評価と全ての試料において改善傾向にあることがわかる。   Regarding the chipping resistance, the comparison of sample No. 23 for comparison No. Δ for comparison No. 23, comparison for sample No 20 ◎ for comparison No. 24 for comparison sample No. It can be seen that there is an improvement trend in all the samples and evaluation.

機械加工性についても、試料No19の○に対し、比較用の試料No23の△、試料No20の○に対し、比較用の試料No24の△、試料No21の◎に対し、比較用の試料No25の○の評価と全ての試料において同等以上か改善傾向にあることがわかる。   Regarding the machinability, the comparison of sample No. 23 was compared with the comparison of sample No. 23, the comparison of sample No. 20 was compared with the comparison of sample No. 24, and the comparison of sample No. 21 was. It can be seen that all the samples have the same or better or improved tendency.

耐チッピング性と機械加工性の差については、平均結晶粒径がほぼ同じであっても微小な粒子が含まれると加工の際に負荷がかかり、チッピングが発生し易くなっていると考えられる。これは内部応力にも関連があると思われ、微粒域をカットした試料No19〜21では掃総じて耐チッピング性および機械加工性に優れ内部応力の値も小さい。

Figure 2005336034
Regarding the difference between chipping resistance and machinability, it is considered that even if the average crystal grain size is almost the same, if fine particles are included, a load is applied during processing and chipping is likely to occur. This seems to be related to the internal stress, and sample Nos. 19 to 21 in which the fine particle region is cut are generally excellent in chipping resistance and machinability, and the value of the internal stress is also small.
Figure 2005336034

磁気ヘッドにおけるTPCスライダの一例を示す図である。It is a figure which shows an example of the TPC slider in a magnetic head. 磁気ヘッド用基板の内部応力(変形量)の評価方法示す図である。It is a figure which shows the evaluation method of the internal stress (deformation amount) of the board | substrate for magnetic heads. 本発明における実施例の結晶写真の一例を示す写真である。It is a photograph which shows an example of the crystal | crystallization photograph of the Example in this invention. 本発明における比較例の結晶写真の一例を示す写真である。It is a photograph which shows an example of the crystal | crystallization photograph of the comparative example in this invention. 本発明における限外ろ過装置の一例を示す図である。It is a figure which shows an example of the ultrafiltration apparatus in this invention. 限外ろ過前後のスラリーの粒径分布の差を示す図である。It is a figure which shows the difference of the particle size distribution of the slurry before and behind ultrafiltration.

符号の説明Explanation of symbols

1:基板
2:スライダ浮上面
3:レール
4:溝
5:ステップ部
10:磁気ヘッド用基板
11:ブロック
11a:測定面
11b:平行面
20:スラリー
21:攪拌タンク
22:攪拌機
23:送液ポンプ
24:限外ろ過膜装置
25:微粒子含有スラリー
Al:Al結晶
TiC:TiC結晶
Al:Al結晶
Ti:TiC結晶
1: Substrate 2: Slider floating surface 3: Rail 4: Groove 5: Step part 10: Magnetic head substrate 11: Block 11a: Measurement surface 11b: Parallel surface 20: Slurry 21: Stirring tank 22: Stirrer 23: Liquid feed pump 24: ultrafiltration membrane device 25: the fine particle containing slurry Al 2 O 3: Al 2 O 3 crystal TiC: TiC crystal Al: Al 2 O 3 crystal Ti: TiC crystal

Claims (3)

50〜95重量%のAlと、TiCおよびTiNから選ばれる少なくとも1種を5〜50重量%含有するAl系セラミックスであって、上記セラミックス中の平均結晶粒径が0.5〜1.2μmで、かつ、最小結晶粒径が0.2μm以上であることを特徴とするAl系セラミックス。 Al 2 O 3 ceramics containing 50 to 95% by weight of Al 2 O 3 and 5 to 50% by weight of at least one selected from TiC and TiN. An Al 2 O 3 based ceramic characterized by having a minimum crystal grain size of 0.2 μm or more and a thickness of 5 to 1.2 μm. 請求項1に記載のセラミックスは、原料スラリーを限外ろ過法を用いて得ることを特徴とするAl系セラミックスの製造方法。 Ceramics according to claim 1, the production method of Al 2 O 3 based ceramics, characterized in that the raw material slurry obtained by ultrafiltration. 請求項1〜2のいずれかに記載のAl系セラミックスから成ることを特徴とする磁気ヘッド用基板。 A magnetic head substrate comprising the Al 2 O 3 ceramic according to claim 1.
JP2004160095A 2004-05-28 2004-05-28 Method for producing Al2O3 ceramics Expired - Fee Related JP4646548B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004160095A JP4646548B2 (en) 2004-05-28 2004-05-28 Method for producing Al2O3 ceramics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004160095A JP4646548B2 (en) 2004-05-28 2004-05-28 Method for producing Al2O3 ceramics

Publications (2)

Publication Number Publication Date
JP2005336034A true JP2005336034A (en) 2005-12-08
JP4646548B2 JP4646548B2 (en) 2011-03-09

Family

ID=35490001

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004160095A Expired - Fee Related JP4646548B2 (en) 2004-05-28 2004-05-28 Method for producing Al2O3 ceramics

Country Status (1)

Country Link
JP (1) JP4646548B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010055685A (en) * 2008-08-28 2010-03-11 Kyocera Corp Substrate for magnetic head, magnetic head, and magnetic recorder
CN101856843A (en) * 2010-05-28 2010-10-13 航天科工哈尔滨风华有限公司 Mechanical processing device and method of ceramic-based complex curved surface parts with wave transmissivity
US8173281B2 (en) * 2006-11-07 2012-05-08 Kyocera Corporation Ceramic sinter, magnetic head substrate using the same, magnetic head and recording medium drive unit
US8318330B2 (en) 2007-06-27 2012-11-27 Kyocera Corporation Magnetic read/write head substrate
JP2013032265A (en) * 2011-07-01 2013-02-14 Maruwa Co Ltd Alumina zirconia sintered board for semiconductor device and manufacturing method therefor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0543311A (en) * 1991-08-01 1993-02-23 Denki Kagaku Kogyo Kk Ceramics material and ceramics substrate for thin film magnetic head
JP2000103667A (en) * 1998-09-30 2000-04-11 Kyocera Corp Al2O3-TiC-BASED SINTERED PRODUCT AND SUBSTRATE FOR THIN FILM MAGNETIC HEAD USING THE SAME ii
JP2004153007A (en) * 2002-10-30 2004-05-27 Kyocera Corp Ion milling evaluation board and method for manufacturing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0543311A (en) * 1991-08-01 1993-02-23 Denki Kagaku Kogyo Kk Ceramics material and ceramics substrate for thin film magnetic head
JP2000103667A (en) * 1998-09-30 2000-04-11 Kyocera Corp Al2O3-TiC-BASED SINTERED PRODUCT AND SUBSTRATE FOR THIN FILM MAGNETIC HEAD USING THE SAME ii
JP2004153007A (en) * 2002-10-30 2004-05-27 Kyocera Corp Ion milling evaluation board and method for manufacturing the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8173281B2 (en) * 2006-11-07 2012-05-08 Kyocera Corporation Ceramic sinter, magnetic head substrate using the same, magnetic head and recording medium drive unit
US8318330B2 (en) 2007-06-27 2012-11-27 Kyocera Corporation Magnetic read/write head substrate
JP2010055685A (en) * 2008-08-28 2010-03-11 Kyocera Corp Substrate for magnetic head, magnetic head, and magnetic recorder
CN101856843A (en) * 2010-05-28 2010-10-13 航天科工哈尔滨风华有限公司 Mechanical processing device and method of ceramic-based complex curved surface parts with wave transmissivity
JP2013032265A (en) * 2011-07-01 2013-02-14 Maruwa Co Ltd Alumina zirconia sintered board for semiconductor device and manufacturing method therefor

Also Published As

Publication number Publication date
JP4646548B2 (en) 2011-03-09

Similar Documents

Publication Publication Date Title
JPH0319184B2 (en)
JP3933523B2 (en) Ceramic substrate materials for thin film magnetic heads
JP4646548B2 (en) Method for producing Al2O3 ceramics
JP3121980B2 (en) Substrate for magnetic head
JP5148502B2 (en) Ceramic sintered body, magnetic head substrate and magnetic head using the same, and recording medium driving apparatus
JP2000103667A (en) Al2O3-TiC-BASED SINTERED PRODUCT AND SUBSTRATE FOR THIN FILM MAGNETIC HEAD USING THE SAME ii
JPH0834662A (en) Substrate material for magnetic head having low floating property
JP6563708B2 (en) Thin film magnetic head substrate, magnetic head slider, and hard disk drive device
JP2009110571A (en) Substrate for magnetic head, magnetic head using the same and recording medium drive unit
JPH10212164A (en) Substrate material for magnetic head
JP6359897B2 (en) Thin film magnetic head substrate, magnetic head slider, and hard disk drive device
JP2006347798A (en) Ceramic sintered compact, method of of manufacturing the same, and substrate for magnetic head
JP2010126415A (en) Sintered compact and producing method of the same
JP6563710B2 (en) Thin film magnetic head substrate, magnetic head slider, and hard disk drive device
JP6563709B2 (en) Thin film magnetic head substrate, magnetic head slider, and hard disk drive device
US5060097A (en) Magnetic disc file including a slider which exhibits reduced deformation during operation
JPH1112026A (en) Al2o3-tic-based sintered body and base for magnetic head
JP2007176786A (en) Ceramic sintered compact, magnetic head substrate and magnetic head using the same, and recording medium drive device
JPS6042275A (en) Ceramic blade and manufacture
JP2008243354A (en) Magnetic head substrate, its manufacturing method, magnetic head using this, and recording medium driving apparatus
JP2000339655A (en) Magnetic head slider
EP0377462A1 (en) Magnetic disc file, thin film magnetic head and wafer for making thin film magnetic head
JPS6359984B2 (en)
JPS63134562A (en) Material for magnetic head slider
JP4270066B2 (en) Thin film magnetic head substrate and thin film magnetic head using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070411

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091001

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100601

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100723

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101109

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101207

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131217

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4646548

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees