JP2005334944A - Continuous casting method for heat-resisting low-alloy steel, and continuously cast slab - Google Patents

Continuous casting method for heat-resisting low-alloy steel, and continuously cast slab Download PDF

Info

Publication number
JP2005334944A
JP2005334944A JP2004157799A JP2004157799A JP2005334944A JP 2005334944 A JP2005334944 A JP 2005334944A JP 2004157799 A JP2004157799 A JP 2004157799A JP 2004157799 A JP2004157799 A JP 2004157799A JP 2005334944 A JP2005334944 A JP 2005334944A
Authority
JP
Japan
Prior art keywords
slab
cooling
steel
solidification
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004157799A
Other languages
Japanese (ja)
Other versions
JP4301081B2 (en
Inventor
Manabu Adachi
学 足立
Hiroshi Hayashi
浩史 林
Shuichiro Kosaka
周一郎 小坂
Atsushi Hirata
敦嗣 平田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2004157799A priority Critical patent/JP4301081B2/en
Publication of JP2005334944A publication Critical patent/JP2005334944A/en
Application granted granted Critical
Publication of JP4301081B2 publication Critical patent/JP4301081B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a continuous casting method for heat-resisting low-alloy steel capable of preventing the cracks in the vicinity of the surface skin and the cracks in the central part of a slab by optimizing the cooling conditions at the last stage of solidification for the slab, and to provide the slab. <P>SOLUTION: (1) In the continuous casting method, when heat-resisting low-alloy steel containing 0.03 to 0.08% C, 1.5 to 2.5% Cr, 0.1 to 0.3% Mo and 1.0 to 2.0% W is continuously cast into a round cast slab, the steel is subjected to secondary cooling in the part directly below a die, and is thereafter subjected to forced water cooling at the last stage of solidification, the specific water content in the secondary cooling is controlled to ≥0.30 l/kg, and the specific water content in the forced water cooling at the last stage of the solidification in the meanwhile from a position at which the solid phase ratio in the central part of the cast slab reaches 0.1 to 0.8 to the one at which it reaches ≥0.99 is controlled to ≤0.35 l/kg. (2) The round cast slab of heat resisting low alloy steel is produced by the continuous casting method described in the above (1), and the expansion ratio at the circumferential length in the cross-section of the round cast slab at ordinary temperature is <2.0% to the nominal circumferential length. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は耐熱用低合金鋼の表面近傍の割れ(以下、「表皮下割れ」とも称する)および中心部割れのない連続鋳造鋳片を製造する連続鋳造方法およびその方法により鋳造される鋳片に関する。   The present invention relates to a continuous casting method for producing a continuous cast slab free from cracks in the vicinity of the surface of a heat-resistant low alloy steel (hereinafter also referred to as “subcutaneous crack”) and a center part crack, and a slab cast by the method. .

丸ビレットの鋳片の内部品質を向上させる技術として、特許文献1には、凝固末期において強制冷却する方法(凝固末期冷却法)が開示されている。この方法は、鋼のブルームまたはビレットの連続鋳造において、残溶湯のプールの鋳込み方向最先端より手前0.1〜2.0mの位置から鋳片中心部の固相率が0.99以上となるまで、凝固末期強制冷却帯で鋳片表面を100〜300リットル/(min・m2)で水冷却する鋳片の冷却方法である。ここで開示された方法によれば、鋳片の中心部割れを防止することはできるものの、鋳片の表皮下割れが発生し、このようなビレットをマンネスマン製管法により製管した場合に、パイプの表面が不良となるだけでなく、ピアサーによる穿孔時に操業トラブルが発生し、製管が不能となることがあった。 As a technique for improving the internal quality of a round billet slab, Patent Document 1 discloses a method of forced cooling at the end of solidification (end of solidification cooling method). In this method, in the continuous casting of a steel bloom or billet, the solid phase rate at the center of the slab becomes 0.99 or more from a position 0.1 to 2.0 m before the foremost direction of casting of the residual molten metal pool. Until the solidification end forced cooling zone, the slab surface is water cooled at 100 to 300 liters / (min · m 2 ). According to the method disclosed here, although it is possible to prevent the center part crack of the slab, when the subcutaneous crack of the slab occurs, and when such a billet is manufactured by the Mannesmann tube method, Not only was the surface of the pipe defective, but there were also operational problems when drilling with a piercer, making pipe production impossible.

特許文献2には、連続鋳造により断面積が所定値以下の鋼片を作成するに際して、鋳片中心部の固相率が0.1〜0.8になる位置から0.99以上になるまでの間、すなわち、凝固末期を所定の範囲の水量密度で強制冷却する耐熱用低合金鋼管の製造方法が開示されている。しかしながら、鋳型直下における二次冷却に関する記載がなく、この方法では鋳片の表皮下割れを完全に防止することはできなかった。   In Patent Document 2, when producing a steel slab having a cross-sectional area of a predetermined value or less by continuous casting, from the position where the solid phase ratio of the slab central portion becomes 0.1 to 0.8 or more until 0.99 or more. In other words, a method for producing a heat-resistant low-alloy steel pipe is disclosed in which the end-solidification period is forcibly cooled at a water density in a predetermined range. However, there is no description about secondary cooling directly under the mold, and this method could not completely prevent the epidermis cracking of the slab.

特許文献3には、鋳片中心部の固相率が0.1〜0.3になった時点で水冷却による鋳片の表面冷却を開始し、鋳片中心部の固相率が0.8以上になるまで水冷却を継続することによりセンターポロシティの発生を低減する鋳片の冷却方法が開示されており、また、特許文献4には、鋳片の中心部固相率が0.2〜0.8の時点で、水冷却による鋳片の表面冷却を開始し、完全凝固するまで水冷却を継続する鋳片の内質改善方法が開示されている。しかし、特許文献3および4においては、バルジングが発生しないための最低冷却速度と記載されているのみであり、二次冷却における冷却速度について明確には開示されていなかった。   In Patent Document 3, the cooling of the surface of the slab by water cooling is started when the solid phase rate at the center of the slab reaches 0.1 to 0.3, and the solid phase rate at the center of the slab is 0. 0. A slab cooling method is disclosed in which the generation of center porosity is reduced by continuing water cooling until it reaches 8 or more. Patent Document 4 discloses a slab center solid phase ratio of 0.2. A method for improving the inner quality of a slab is disclosed in which surface cooling of the slab by water cooling is started at a time of ˜0.8 and water cooling is continued until the slab is completely solidified. However, Patent Documents 3 and 4 only describe the minimum cooling rate for preventing bulging, and did not clearly disclose the cooling rate in secondary cooling.

しかしながら、丸鋳片の場合には、溶鋼の静圧が鋳片の円周方向の各方位に均等に作用することから、特許文献5に記載されているとおり、バルジングは殆ど発生せず、したがって、操業トラブルが発生しないための最低の二次冷却水量による冷却条件では、鋳片の表皮下割れを防止することはできなかった。   However, in the case of round slabs, since the static pressure of the molten steel acts equally on each direction in the circumferential direction of the slab, as described in Patent Document 5, bulging hardly occurs, therefore Under the cooling conditions with the minimum amount of secondary cooling water so as not to cause operational troubles, it was not possible to prevent subepidermal cracking of the slab.

上記の特許文献5には、予め設定したモールドスプレーの設置位置に基づき、モールド直下から最初にスプレー冷却されるまでの間の復熱量をモールド直下における凝固シェル厚さで除した比の値が所定値以下となるように、冷却水量および鋳造速度の一つ以上を制御する冷却方法が開示されている。ここで開示された方法によれば、二次冷却時の鋳片表面の復熱量を低減して、C含有率が0.3〜1.0%の高炭素鋼の表皮下割れを防止することができる。   In the above-mentioned Patent Document 5, a ratio value obtained by dividing the amount of recuperation from immediately below the mold to the first spray cooling by the thickness of the solidified shell immediately below the mold is predetermined based on a preset position of the mold spray. A cooling method is disclosed in which one or more of the cooling water amount and the casting speed are controlled so as to be less than the value. According to the method disclosed herein, the amount of recuperation on the surface of the slab during secondary cooling is reduced, and subsurface cracking of high carbon steel having a C content of 0.3 to 1.0% is prevented. Can do.

しかしながら、特許文献5に開示された方法は、高炭素鋼の表皮下割れの防止に対しては効果が大きいものの、C含有率が0.03〜0.08%の耐熱用低合金鋼の表皮下割れに対しては防止効果が薄く、健全な製管用鋳片を製造することは困難であった。   However, although the method disclosed in Patent Document 5 has a great effect on prevention of subepidermal cracking of high carbon steel, the skin of heat-resistant low alloy steel having a C content of 0.03 to 0.08%. It has been difficult to produce a slab for pipe making that has a low prevention effect against under cracks.

特開2001−62550号公報(特許請求の範囲および段落[0015]〜段落[0027])JP 2001-62550 A (Claims and paragraphs [0015] to [0027])

特開2003−64449号公報(特許請求の範囲および段落[0025]〜[0034])JP 2003-64449 A (claims and paragraphs [0025] to [0034]) 特開平7−1096号公報(特許請求の範囲および段落[0009]〜[0015])JP-A-7-1096 (Claims and paragraphs [0009] to [0015]) 特開平8−332556号公報(特許請求の範囲ならびに段落[0007]および[0008])JP-A-8-332556 (Claims and paragraphs [0007] and [0008]) 特開2000−317598号公報(特許請求の範囲ならびに段落[0009]および[0011])JP 2000-317598 A (claims and paragraphs [0009] and [0011])

本発明は、上記の問題を同時に解決するためになされたものであり、その課題は、鋳片の凝固末期における冷却条件を適正に制御することにより、鋳片の表皮下割れおよび中心部割れをともに防止することができる耐熱用低合金鋼の連続鋳造方法および連続鋳造鋳片を提供することにある。   The present invention has been made to solve the above-mentioned problems at the same time, and the problem is to appropriately control the cooling conditions at the end of solidification of the slab, thereby reducing the subepidermal and central cracks of the slab. It is an object of the present invention to provide a continuous casting method and continuous cast slab of heat-resistant low alloy steel that can be prevented together.

本発明者らは、上記した課題を解決するために、耐熱用低合金鋼鋳片における表皮下割れの調査を行って、その発生原因を究明し、下記の(a)〜(e)の知見を得て、本発明を完成させた。   In order to solve the above-mentioned problems, the present inventors have investigated the subepidermal cracks in a heat-resistant low alloy steel slab, investigated the cause of the occurrence, and found the following findings (a) to (e) To complete the present invention.

(a)表皮下割れには、割れの発生した部分に、偏析成分の燐(P)の濃化をともなう場合と、Pの濃化をともなわない場合とがある。   (A) In the subepidermal crack, there are a case where the segregation component phosphorus (P) is concentrated in the cracked portion and a case where P is not concentrated.

(b)Pの濃化をともなう表皮下割れは、低炭素含有率においてフェライト生成元素であるCr、MoおよびWを多量に含有する耐熱用低合金鋼に特有の現象であり、鋳造初期においてδフェライトが存在する温度範囲が広く、鋳片横断面の周長の膨張によるバルジングに起因する内部割れである。   (B) Subepidermal cracking with P concentration is a phenomenon peculiar to heat-resistant low alloy steels containing a large amount of ferrite-forming elements such as Cr, Mo and W at a low carbon content. The temperature range in which ferrite exists is wide, and it is an internal crack caused by bulging due to expansion of the circumferential length of the slab cross section.

(c)上記(b)の表皮下割れは、二次冷却の比水量を0.30(リットル/kg−鋼)以上として、鋳片の周長の熱膨張率を2%未満とすることにより、その発生を防止できる。   (C) Subcutaneous cracking of (b) above is caused by setting the specific water amount of secondary cooling to 0.30 (liter / kg-steel) or more and the thermal expansion coefficient of the peripheral length of the slab to less than 2%. , Can prevent its occurrence.

(d)Pの濃化をともなわない表皮下割れは、凝固末期冷却帯において鋳片表面温度がA3変態温度を下回り、鋳片表面に変態膨張が発生して表皮下部に引張り応力が作用することによる。これは、低炭素含有率においてフェライト生成元素を多量に含有することによりA3変態温度が上昇する一方、凝固末期冷却法により鋳片表面温度が容易にA3変態温度を下回るという耐熱用低合金鋼に特有の現象である。 (D) subepidermal cracking without the enrichment of P is cast slab surface temperature in the coagulation end cooling zone below the A 3 transformation temperature, tensile stress acts on the epidermis lower portion transformation expansion occurs in the billet surface It depends. This, while A 3 transformation temperature by containing a large amount of ferrite-forming elements in a low carbon content is increased, heat-resistant low alloy called billet surface temperature by solidification end cooling method is easily below the A 3 transformation temperature This phenomenon is unique to steel.

(e)上記(d)の表皮下割れは、凝固末期冷却の比水量を0.35(リットル/kg−鋼)以下として、鋳片表面温度がA3変態温度を100℃以上下回らないようにすることにより、防止できる。 Subepidermal cracking (e) above (d) is the ratio water coagulation end cooling as 0.35 (liter / kg-steel), as the slab surface temperature does not fall below the A 3 transformation temperature 100 ° C. or higher This can be prevented.

本発明は、上記の知見に基いて完成されたものであり、その要旨は、下記の(1)に示す連続鋳造方法および(2)に示す連続鋳造鋳片にある。   The present invention has been completed based on the above findings, and the gist of the present invention resides in the continuous casting method shown in the following (1) and the continuous cast slab shown in (2).

(1)質量%で、C:0.03〜0.08%、Cr:1.5〜2.5%、Mo:0.1〜0.3%およびW:1.0〜2.0%を含有する耐熱用低合金鋼を丸鋳片に連続鋳造するに際して、鋳型直下において二次冷却した後に、さらに凝固末期において強制水冷却する連続鋳造方法であって、該二次冷却の比水量を0.30(リットル/kg−鋼)以上とし、鋳片中心部の固相率が0.1〜0.8となる位置から0.99以上となるまでの間の該凝固末期における強制水冷却の比水量を0.35(リットル/kg−鋼)以下とする丸鋳片の連続鋳造方法。   (1) By mass%, C: 0.03-0.08%, Cr: 1.5-2.5%, Mo: 0.1-0.3% and W: 1.0-2.0% When continuously casting a heat-resistant low alloy steel containing slabs into a round slab, the secondary cooling is performed immediately below the mold, and then forced water cooling is performed at the end of solidification. Forced water cooling at the end of solidification from 0.30 (liter / kg-steel) or more until the solid phase ratio at the center of the slab becomes 0.1 to 0.8 or more. The continuous casting method of round slabs with a specific water amount of 0.35 (liter / kg-steel) or less.

(2)前記(1)に記載の連続鋳造方法により鋳造された丸鋳片であって、常温における丸鋳片の横断面の周長の膨張率が公称周長に対して2.0%未満である耐熱用低合金鋼の丸鋳片。   (2) A round slab cast by the continuous casting method according to (1), wherein the expansion rate of the circumferential length of the cross section of the round slab at room temperature is less than 2.0% with respect to the nominal circumferential length A heat-resistant low alloy steel round slab.

本発明において、「丸鋳片」とは、横断面の形状が円形である鋳片をいう。   In the present invention, “round cast piece” refers to a cast piece having a circular cross-sectional shape.

「耐熱用低合金鋼」とは、炭素鋼中に低濃度の第三元素を含有させることにより、高温、または高温高圧に耐えるように製造された合金鋼をいう。   “Heat resistant low alloy steel” refers to an alloy steel manufactured to withstand high temperatures or high temperatures and pressures by containing a low concentration of a third element in carbon steel.

「凝固末期」とは、鋳片の中心部の固相率が0.1以上であって0.99以上までの範囲をいう。   “End solidification phase” refers to a range in which the solid phase ratio at the center of the slab is 0.1 or more and 0.99 or more.

「鋳片中心部の固相率」とは、鋳片中心部の固相および液相の共存相において、固相の占める分率をいい、実測または凝固時の伝熱計算により得られる温度分布および平衡状態図に基いて求めることができる。   “Solid fraction at the center of the slab” refers to the fraction of the solid phase in the coexisting phase of the solid phase and the liquid phase at the center of the slab, and the temperature distribution obtained by actual measurement or heat transfer calculation during solidification And based on the equilibrium diagram.

そして、「公称周長」とは、常温における鋳片の目標直径に基いて算出される鋳片の横断面の周長をいう。   And "nominal circumference" means the circumference of the cross section of the slab calculated based on the target diameter of the slab at room temperature.

本発明の方法によれば、鋳型直下の二次冷却における比水量を0.30(リットル/kg−鋼)以上とし、凝固末期冷却における比水量を0.35(リットル/kg−鋼)以下とすることにより、鋳片の表皮下割れおよび中心部割れをともに防止した耐熱用低合金鋼の丸鋳片を製造することができる。また、本発明の耐熱用低合金鋼の丸鋳片は、マンネスマン製管法などによる耐熱用低合金鋼管の製造に最適である。   According to the method of the present invention, the specific water amount in the secondary cooling just below the mold is set to 0.30 (liter / kg-steel) or more, and the specific water amount in the end-of-solidification cooling is set to 0.35 (liter / kg-steel) or less. By doing so, it is possible to manufacture a round cast slab of heat-resistant low alloy steel that prevents both subepidermal cracking and center part cracking of the slab. In addition, the heat-resistant low alloy steel round slab of the present invention is optimal for the production of heat-resistant low alloy steel pipes by the Mannesmann tube method or the like.

本発明は、前記のとおり、C、Cr、MoおよびWを含有する耐熱用低合金鋼を丸鋳片に連続鋳造するに際して、鋳型直下において二次冷却した後に、さらに凝固末期において強制水冷却する連続鋳造方法であって、鋳型直下における二次冷却の比水量および凝固末期における強制水冷却の比水量を調整する丸鋳片の連続鋳造方法、およびその連続鋳造方法により鋳造された耐熱用低合金鋼の丸鋳片である。   As described above, in the present invention, when continuously casting a heat-resistant low alloy steel containing C, Cr, Mo, and W into a round cast piece, the secondary cooling is performed immediately below the mold, and then forced water cooling is performed at the end of solidification. A continuous casting method for adjusting the specific water amount of secondary cooling directly under the mold and the specific water amount of forced water cooling at the end of solidification, and a heat-resistant low alloy cast by the continuous casting method. It is a steel slab.

本発明者らは、耐熱用低合金鋳片について表皮下割れの調査を行い、その結果に基いて表皮下割れの発生機構を究明して本発明を完成させた。   The inventors of the present invention investigated the subepidermal cracking of the heat-resistant low alloy slab, and based on the results, investigated the mechanism of subepidermal cracking and completed the present invention.

図1は、本発明の連続鋳造方法を実施するための連続鋳造装置の一例を模式的に示す縦断面図である。タンディッシュ1内の溶鋼3は、連続鋳造用鋳型2に注入され、鋳型2内において冷却され、鋳型2と接触する部分から凝固シェル4を形成する。凝固シェル4を形成し内部に未凝固部9を含んだ丸鋳片8は、ピンチロール6により鋳型2から引き抜かれ、二次冷却帯5において冷却され、さらに凝固末期冷却帯7において強制水冷却されて、凝固を完了する。なお、上記の凝固末期冷却帯7における強制水冷却としては、エアミストによる冷却が好ましい。   FIG. 1 is a longitudinal sectional view schematically showing an example of a continuous casting apparatus for carrying out the continuous casting method of the present invention. Molten steel 3 in the tundish 1 is poured into a continuous casting mold 2, cooled in the mold 2, and forms a solidified shell 4 from a portion in contact with the mold 2. A round cast slab 8 that forms a solidified shell 4 and includes an unsolidified portion 9 inside is pulled out of the mold 2 by a pinch roll 6, cooled in a secondary cooling zone 5, and further forced water cooled in a final solidification cooling zone 7. To complete the coagulation. In addition, as forced water cooling in said end-of-solidification cooling zone 7, cooling by air mist is preferable.

以下に、本発明が規定する範囲を前記のとおり限定した理由、および好ましい範囲について説明する。   The reason why the range defined by the present invention is limited as described above and the preferable range will be described below.

(A)二次冷却における比水量、凝固末期における強制水冷却の比水量、および丸鋳片の横断面の周長の膨張率
前記の図1に示す連続鋳造装置を用いて鋳造試験を行い、表皮下割れの発生状況を調査した。なお、連続鋳造装置としては、曲率半径が10.5mの湾曲型連続鋳造装置を用い、表1に示される成分組成を有する供試鋼1の耐熱用低合金鋼の溶鋼を使用して、直径が191mmφの丸鋳片を鋳造した。鋳造速度は2.7m/min、タンディッシュ内における溶鋼の過熱度は40〜50℃に調整した。また、一部の試験では、鋳片中心部の固相率が0.1〜0.8になる位置から0.99以上になるまでの範囲において凝固末期の冷却を行った。
(A) The specific water amount in secondary cooling, the specific water amount in forced water cooling at the end of solidification, and the expansion rate of the circumferential length of the cross-section of the round slab are cast using the continuous casting apparatus shown in FIG. The occurrence of subepidermal cracking was investigated. In addition, as a continuous casting apparatus, a curved continuous casting apparatus having a curvature radius of 10.5 m is used, and a molten steel of a heat-resistant low alloy steel of the test steel 1 having the component composition shown in Table 1 is used. Cast 191 mmφ round cast slabs. The casting speed was 2.7 m / min, and the superheat degree of the molten steel in the tundish was adjusted to 40 to 50 ° C. Further, in some tests, cooling at the end of solidification was performed in a range from the position where the solid phase ratio at the center of the slab becomes 0.1 to 0.8 to 0.99 or more.

Figure 2005334944
Figure 2005334944

表皮下割れの発生した鋳片について調査を行ったところ、割れ部にPの濃化が観察された表皮下割れと、Pの濃化が観察されない表皮下割れとの2種類の表皮下割れが存在することが明らかとなった。なお、表皮下割れの有無については、鋳片横断面および縦断面のマクロ組織観察により判定し、P元素の濃化の有無については、EPMAカラーマッピング法により判定した。   When investigating the slab where subsurface cracks occurred, there were two types of subsurface cracks: subsurface cracks where P concentration was observed in the cracks and subepidermal cracks where P concentration was not observed. It became clear that it existed. The presence or absence of subepidermal cracks was determined by observing the macrostructure of the slab transverse section and the longitudinal section, and the presence or absence of P element concentration was determined by the EPMA color mapping method.

ここで、EPMAカラーマッピング法とは、試料に電子線を照射することにより各元素に固有の特性X線を放出させ、その強度により各成分の濃度分布を検出する分析方法である。   Here, the EPMA color mapping method is an analysis method in which a characteristic X-ray unique to each element is emitted by irradiating a sample with an electron beam, and the concentration distribution of each component is detected based on the intensity.

(a)元素Pの濃化をともなう表皮下割れ
前記の2種類の表皮下割れの原因を究明するために、さらに調査を行った結果、Pの濃化をともなう表皮下割れにおいては、鋳片の横断面の周長が増加(膨張)し、バルジングが発生していることが判明した。
(A) Subcutaneous crack with concentration of element P As a result of further investigation to investigate the cause of the above-mentioned two types of subcutaneous crack, It was found that the circumferential length of the cross section increased (expanded) and bulging occurred.

図2は、鋳片横断面の周長と表皮下割れとの関係を示す図である。同図において、表皮
下割れ発生率は、目視により確認できる長さ(0.5mm程度)以上の割れが発生した鋳片数を全対象鋳片数で除して百分率により表示した値である。
FIG. 2 is a diagram showing the relationship between the perimeter of the slab cross section and the subepidermal crack. In the figure, the incidence of subepidermal cracking is a value expressed as a percentage by dividing the number of slabs in which cracks having a length (about 0.5 mm) or more that can be visually confirmed are divided by the number of all target slabs.

図2の結果から、表皮下割れは、鋳片横断面の周長が612mm以上になった鋳片で発生していることが明らかとなった。そこで、この結果に基づき、元素Pの濃化をともなう表皮下割れは、鋳片のバルジングに起因する内部割れによるものであると推定した。   From the results shown in FIG. 2, it has been clarified that the subepidermal crack is generated in the slab whose peripheral length of the slab cross section is 612 mm or more. Therefore, based on this result, it was presumed that the subepidermal crack accompanied by the enrichment of the element P was caused by an internal crack caused by bulging of the slab.

図3は、前記の図2の結果に基いて、さらに鋳片横断面の周長の膨張率と表皮下割れとの関係として整理した図である。図3において、周長の膨張率は下記式により算出した値
を用いた。
FIG. 3 is a diagram further arranged as a relationship between the expansion coefficient of the peripheral length of the slab cross section and the subepidermal crack based on the result of FIG. In FIG. 3, the value calculated by the following formula was used for the expansion coefficient of the circumference.

鋳片横断面の周長の膨張率={(鋳片横断面の周長の実測値−鋳片横断面の公称周長)/鋳片横断面の公称周長}×100(%)
図3の結果から、表皮下割れは、鋳片横断面の周長の膨張率が2%以上において発生し、周長の膨張率が2%未満においては表皮下割れは発生しないことが判明した。
Expansion rate of perimeter of slab cross section = {(actual value of perimeter of slab cross section−nominal perimeter of slab cross section) / nominal perimeter of slab cross section} × 100 (%)
From the results shown in FIG. 3, it was found that subepidermal cracks occurred when the expansion rate of the circumferential length of the slab cross section was 2% or more, and no subepidermal cracking occurred when the expansion rate of the circumferential length was less than 2%. .

同図の結果は、前述の知見、すなわち、丸鋳片では、溶鋼の静圧は鋳片横断面の円周方向の各方位に均等に作用することから、矩形または多角形の横断面を有する鋳片とは異なり、内部割れ(表皮下割れ)に影響を与えるようなバルジングは発生しない、つまり円形の鋳片横断面は、それ自身がバルジングによる力学的な最終均衡形状であるとされた従来の知見とは相違する。   The result of the figure is the above-mentioned knowledge, that is, in the round slab, the static pressure of the molten steel acts equally in each direction in the circumferential direction of the slab cross section, and thus has a rectangular or polygonal cross section. Unlike slabs, bulging that affects internal cracks (subcutaneous cracks) does not occur. In other words, a circular slab cross-section is itself a mechanically balanced final shape due to bulging. It is different from the findings of.

本発明者らは、横断面の形状が円形の丸鋳片においてバルジングが発生する現象は、本発明で対象としている耐熱用低合金鋼はC含有率が低く、フェライト生成元素であるCr、MoおよびWを多量に含有することから、鋳造初期において、δフェライトの生成する温度範囲が広く、しかも、このδフェライトの高温強度が低いことに起因していると推察した。そこで、この点を明確にするために、さらに、鋼の高温における引張試験を行って引張強度におよぼす温度および鉄相の影響を調査した。   The inventors of the present invention have found that the phenomenon of bulging in a round slab having a circular cross-sectional shape is that the heat-resistant low alloy steel of the present invention has a low C content and is a ferrite-forming element such as Cr, Mo. Since a large amount of W and W are contained, it is presumed that this is due to the fact that the temperature range in which δ ferrite is generated is wide in the initial casting and that the high temperature strength of the δ ferrite is low. Therefore, in order to clarify this point, a tensile test at a high temperature of steel was further conducted to investigate the effects of temperature and iron phase on the tensile strength.

図4は、鋼の引張強度におよぼす温度の影響を示す図である。なお、同図の結果は、直径10mm、標点間距離100mmの引張試験片を用い、種々の試験温度において引張強度を測定した結果をまとめたものである。   FIG. 4 is a diagram showing the influence of temperature on the tensile strength of steel. In addition, the result of the figure puts together the result of having measured the tensile strength in various test temperature using the tensile test piece of diameter 10mm and the distance between gauge points of 100mm.

図4の結果によれば、鋼の高温引張強度はδフェライト相の存在により低下することが明らかである。したがって、表皮下割れの発生は、δフェライトの形成により凝固シェルの強度が低下し、バルジングが発生したことによる鋳片の内部割れに起因しており、この現象は、耐熱用低合金鋼に特有の現象であることが確認された。   According to the results of FIG. 4, it is clear that the high-temperature tensile strength of the steel is lowered by the presence of the δ ferrite phase. Therefore, the occurrence of subepidermal cracking is caused by the internal cracking of the slab due to the decrease in the strength of the solidified shell due to the formation of δ ferrite and the occurrence of bulging. This phenomenon is unique to heat-resistant low alloy steels. It was confirmed that this was a phenomenon.

そこで、鋳片横断面の周長の膨張率を2%未満とするための二次冷却の条件について調査を行った。図5は、連続鋳造の二次冷却帯における比水量と鋳片横断面の周長との関係を示す図である。同図の結果から、二次冷却帯における比水量を0.30(リットル/kg−鋼)以上とすることにより、鋳片横断面の周長の膨張率を2%未満とできることが判明した。   Therefore, investigations were made on the conditions of secondary cooling to make the expansion rate of the peripheral length of the slab cross section less than 2%. FIG. 5 is a diagram showing the relationship between the specific water amount in the secondary cooling zone of continuous casting and the circumferential length of the slab cross section. From the results shown in the figure, it was found that the expansion rate of the circumferential length of the slab cross section can be made less than 2% by setting the specific water amount in the secondary cooling zone to 0.30 (liter / kg-steel) or more.

なお、凝固末期において強制冷却を行う場合には、最終凝固位置を凝固末期冷却帯の範囲内に納めなければならない。二次冷却の比水量を増加させるほど、鋳造速度を増加させる必要が生じるため、初期凝固の安定性および鋳片切断トーチによる切断のサイクルタイムを考慮すると、二次冷却の比水量は、0.60(リットル/kg−鋼)以下に抑えることが好ましい。   When forced cooling is performed at the end of solidification, the final solidification position must be within the range of the end-solidification cooling zone. As the specific water amount of the secondary cooling is increased, the casting speed needs to be increased. Therefore, in consideration of the stability of the initial solidification and the cycle time of cutting by the slab cutting torch, the specific water amount of the secondary cooling is 0. It is preferable to suppress to 60 (liter / kg-steel) or less.

(b)元素Pの濃化をともなわない表皮下割れ
元素Pの濃化が認められない表皮下割れは、凝固末期冷却法を適用した場合にのみ発生することがわかった。そこで、凝固末期における冷却条件と表皮下割れとの関係について調査を行った。
(B) Subcutaneous cracking without concentration of element P It was found that subepidermal cracking in which no concentration of element P was observed occurred only when the end-solidification cooling method was applied. Therefore, the relationship between cooling conditions and subepidermal cracking at the end of solidification was investigated.

図6は、連続鋳造の凝固末期冷却帯における比水量と鋳片の表皮下割れ長さとの関係を示す図である。なお、同図に示す調査を行うに当たっては、バルジングに起因する表皮下割れとの区別を明確にするため、二次冷却帯における比水量は、バルジングに起因する表皮下割れを発生させない範囲である0.30(リットル/kg−鋼)以上として試験を行った。また、同図における表皮下割れ長さは、鋳片横断面における半径方向の表皮下割れ長さにより表示した。図6の結果によれば、凝固末期冷却帯における比水量が0.35(リットル/kg−鋼)を超えて高い値の場合に表皮下割れ長さが長くなる。   FIG. 6 is a diagram showing the relationship between the specific water amount in the continuous solidification end cooling zone of continuous casting and the subepidermal crack length of the slab. In order to clarify the distinction from subepidermal cracking caused by bulging, the specific water amount in the secondary cooling zone is within a range that does not cause subepidermal cracking caused by bulging. The test was conducted at 0.30 (liter / kg-steel) or more. In addition, the subepidermal crack length in the figure is indicated by the radial subdermal crack length in the cross section of the slab. According to the result of FIG. 6, the epidermal crack length becomes long when the specific water amount in the final solidification cooling zone is higher than 0.35 (liter / kg-steel).

そこで、さらに、図6の結果を鋳片表面温度との関係で整理した。   Therefore, the results of FIG. 6 were further arranged in relation to the slab surface temperature.

図7は、連続鋳造の凝固末期冷却帯における比水量と鋳片の表面温度との関係を示す図である。同図の結果から、凝固末期冷却帯における比水量が多い場合には、鋳片の表面温度が凝固末期冷却帯においてA3変態温度を大幅に下回り、その結果、鋳片表面においてオーステナイト相からフェライト相への変態膨張が発生し、表皮下部に引張応力が作用することにより、割れが発生したものと推察された。なお、耐熱用低合金鋼のA3変態温度は、示差熱分析法により求めた。 FIG. 7 is a diagram showing the relationship between the specific water amount and the surface temperature of the slab in the final solidification cooling zone of continuous casting. From the results of the drawing, when the ratio amount of water in the coagulation end cooling zone is large, substantially below the A 3 transformation temperature the surface temperature of the slab in the coagulation end cooling zone, resulting in ferrite from austenite phase in the slab surface It was inferred that cracking occurred due to the transformation expansion into the phase and the tensile stress acting on the epidermis. Incidentally, A 3 transformation temperature of the heat-resistant low-alloy steel was determined by differential thermal analysis.

上記の現象は、C含有率が低く、フェライト生成元素を多量に含有する結果、鋼のA3変態温度が上昇したことにより、凝固末期における強制冷却により鋳片表面温度が容易にA3変態温度未満の温度に達したという耐熱用低合金鋼に特有の現象である。 The above phenomenon has a low C content, the result containing a large amount of ferrite-forming element, by A 3 transformation temperature of the steel rises, slab surface temperature by forced cooling in the solidification end is readily A 3 transformation temperature This is a phenomenon peculiar to heat-resistant low-alloy steels that have reached a temperature below.

図7の結果から、表皮下割れ長さが急増し始める時の鋳片表面温度、すなわち、鋳片表面温度が(A3変態温度−100℃)を下回らないようにするためには、凝固末期冷却帯における比水量を0.35(リットル/kg−鋼)以下とする必要のあることが明らかとなった。 From the result of FIG. 7, in order to prevent the slab surface temperature when the subepidermal crack length starts to increase rapidly, that is, the slab surface temperature does not fall below (A 3 transformation temperature−100 ° C.) It became clear that the specific water amount in the cooling zone needs to be 0.35 (liter / kg-steel) or less.

なお、凝固末期冷却により鋳片中心部において熱的圧下量を確保する観点から、凝固末期冷却帯における比水量は0.12(リットル/kg−鋼)以上とすることが好ましい。   In addition, from the viewpoint of ensuring the thermal reduction amount at the center of the slab by cooling at the end of solidification, the specific water amount in the cooling zone at the end of solidification is preferably 0.12 (liter / kg-steel) or more.

上述の(a)および(b)の結果に基づいて、第1発明では、二次冷却水の比水量を0.30(リットル/kg−鋼)以上とし、凝固末期における強制水冷却の比水量を0.35(リットル/kg−鋼)以下とした。また、第2発明では、丸鋳片の横断面の周長の膨張率を公称周長に対して2.0%未満とした。   Based on the results of (a) and (b) above, in the first invention, the specific water amount of the secondary cooling water is 0.30 (liter / kg-steel) or more, and the specific water amount of forced water cooling at the end of solidification Was set to 0.35 (liter / kg-steel) or less. Moreover, in the 2nd invention, the expansion coefficient of the circumferential length of the cross section of a round slab was made into less than 2.0% with respect to a nominal circumferential length.

(B)凝固末期冷却を行う固相率の範囲
(a)凝固末期冷却を開始する時の鋳片中心部の固相率
凝固末期冷却における鋳片表面の冷却は、鋳片中心部の固相率が0.10〜0.80の位置から開始する必要がある。これは、中心部の固相率が0.10未満では、冷却開始時期が早すぎるため、鋳片中心部での収縮量が増大する時期において、表面での十分な収縮量が確保できなくなり、中心部における十分な圧縮応力が得られなくなって、中心部欠陥の低減効果が得られなくなるからである。
(B) Range of solid phase ratio for cooling at the end of solidification (a) Solid fraction of the slab center when starting the cooling at the end of solidification Cooling of the slab surface in the cooling at the end of solidification depends on the solid phase at the center of the slab It is necessary to start from a position where the rate is between 0.10 and 0.80. This is because if the solid phase ratio in the center is less than 0.10, the cooling start time is too early, so that at the time when the shrinkage at the center of the slab increases, a sufficient shrinkage at the surface cannot be secured, This is because sufficient compressive stress cannot be obtained in the central portion, and the effect of reducing the central portion defects cannot be obtained.

逆に、鋳片中心部の固相率が0.80を超える位置から冷却を開始した場合には、冷却位置が最終凝固位置に近すぎて、鋳片中心部における欠陥低減効果を発揮するための時間的余裕が不足するからである。   On the contrary, when cooling is started from a position where the solid phase ratio of the slab center part exceeds 0.80, the cooling position is too close to the final solidification position, and the defect reduction effect in the slab center part is exhibited. This is because there is not enough time margin.

(b)凝固末期冷却を終了する時の鋳片中心部の固相率
凝固末期冷却における鋳片表面の冷却は、鋳片中心部の固相率が0.99以上の位置(好ましくは、鋳片中心部においてδ鉄からγ鉄への変態が完了する位置)まで冷却する必要がある。これは、中心部の固相率が0.99未満において冷却を終了すると、完全凝固前に冷却が終了し、鋳片表面の復熱による熱膨張により中心部に引張応力が発生し、中心部欠陥を拡大するからである。
(B) Solid phase ratio at the center of the slab at the end of solidification end cooling Cooling of the slab surface at the end of solidification cooling is performed at a position where the solid ratio at the center of the slab is 0.99 or more (preferably, casting It is necessary to cool to a position where the transformation from δ iron to γ iron is completed at the center of the piece. This is because when the solid phase ratio in the central part is less than 0.99, the cooling is completed before complete solidification, and tensile stress is generated in the central part due to thermal expansion due to reheating of the slab surface. This is because the defect is enlarged.

(C)対象とする耐熱用低合金の成分組成
本発明で対象とする耐熱用低合金鋼の成分組成の限定理由および好ましい範囲について説明する。なお、組成は質量%により表示する。
(C) Component composition of heat-resistant low alloy steel as a target The reason for limitation and the preferred range of the component composition of heat-resistant low alloy steel as a target in the present invention will be described. The composition is expressed by mass%.

(a)C:0.03〜0.08%、Cr:1.5〜2.5%、Mo:0.1〜0.3%およびW:1.0〜2.0%を含有する耐熱用低合金鋼:
C:0.03〜0.08%:
Cは、Nb、Vなどの元素と炭化物を形成し、高温強度を高める効果を有する。C含有率が0.03%未満では炭化物が十分に析出せず、焼入性の効果を十分に発揮できない。他方、その含有率が0.08%を超えて高くなると、連続鋳造時における鋳片の縦割れ感受性が高くなるとともに、溶接性が低下する。そこで、C含有率の範囲を0.03〜0.08%とした。
(A) Heat resistance containing C: 0.03-0.08%, Cr: 1.5-2.5%, Mo: 0.1-0.3% and W: 1.0-2.0% Low alloy steel for:
C: 0.03-0.08%:
C forms carbides with elements such as Nb and V, and has the effect of increasing the high temperature strength. If the C content is less than 0.03%, carbides are not sufficiently precipitated, and the effect of hardenability cannot be sufficiently exhibited. On the other hand, when the content rate exceeds 0.08%, the susceptibility to vertical cracks during continuous casting increases and weldability decreases. Therefore, the range of the C content is set to 0.03 to 0.08%.

Cr:1.5〜2.5%:
Crは、高温での耐食性を向上させる効果を有する元素である。その効果を得るためにはCrを1.5%以上含有させる必要がある。他方、その含有率が2.5%を超えて高くなると、溶接施工性が低下する。そこで、Cr含有率の範囲は1.5〜2.5%とした。
Cr: 1.5-2.5%:
Cr is an element having an effect of improving corrosion resistance at high temperatures. In order to acquire the effect, it is necessary to contain 1.5% or more of Cr. On the other hand, when the content rate exceeds 2.5%, the weldability decreases. Therefore, the range of the Cr content is set to 1.5 to 2.5%.

Mo:0.1〜0.3%:
Moは、クリープ強度を向上させる効果を有する。クリープ強度を向上させるためには、その含有率を0.1%以上とする必要がある。一方、0.3%以上を含有させても、その効果は飽和し、また、Moは高価な元素であることから、経済性が損なわれる。そこで本発明においては、Mo含有率を0.1〜0.3%の範囲とした。
Mo: 0.1 to 0.3%:
Mo has the effect of improving the creep strength. In order to improve the creep strength, the content must be 0.1% or more. On the other hand, even if 0.3% or more is contained, the effect is saturated, and since Mo is an expensive element, economic efficiency is impaired. Therefore, in the present invention, the Mo content is in the range of 0.1 to 0.3%.

W:1.0〜2.0%:
Wは、クリープ強度を向上させる作用を有する元素である。クリープ強度を向上させるためには、1.0%以上を含有させる必要がある。しかし、2.0%以上を含有させても、その効果は飽和し、また、Wは高価な元素であることから、経済的に不利となる。そこで、W含有率の適正範囲を1.0〜2.0%とした。
W: 1.0-2.0%:
W is an element having an effect of improving the creep strength. In order to improve the creep strength, it is necessary to contain 1.0% or more. However, even if it contains 2.0% or more, the effect is saturated, and W is an expensive element because it is an expensive element. Therefore, the appropriate range of W content is set to 1.0 to 2.0%.

(b)前記(a)の耐熱用低合金鋼において、Feの一部に代えて、下記の含有率の範囲でSi、MnおよびAlを含有させ、さらに、PおよびSの含有率を制限してもよい。     (B) In the heat-resistant low alloy steel of (a), instead of a part of Fe, Si, Mn and Al are contained within the following content ranges, and further, the P and S content rates are limited. May be.

Si:0.1〜0.5%:
Siは溶鋼の脱酸作用を有する元素である。Siは含有させても、含有させなくてもよいが、脱酸効果を必要とする場合には、0.1%以上を含有させるのが好ましい。しかし、その含有率が0.5%を超えて高くなると耐熱用低合金鋼の靭性が低下するので好ましくない。したがって、Siの好ましい含有率の範囲は、0.1〜0.5%である。
Si: 0.1 to 0.5%:
Si is an element having a deoxidizing action of molten steel. Si may or may not be contained, but when a deoxidizing effect is required, it is preferable to contain 0.1% or more. However, if the content exceeds 0.5%, the toughness of the heat-resistant low alloy steel decreases, which is not preferable. Therefore, the range of the preferable content rate of Si is 0.1 to 0.5%.

Mn:0.1〜1.0%:
Mnは、鋼の強度を向上させる作用を有する元素である。含有させても、含有させなくてもよいが、強度の向上を要求される場合には、0.1%以上を含有させるのが好ましい。しかし、Mn含有率が1.0%を超えて高くなると、鋳造中にモールドパウダが変質することがあるので好ましくない。したがって、Mnは0.1〜1.0%の範囲で含有させるのが好ましい。
Mn: 0.1 to 1.0%:
Mn is an element having an effect of improving the strength of steel. It may or may not be contained, but when improvement in strength is required, it is preferable to contain 0.1% or more. However, if the Mn content exceeds 1.0%, the mold powder may be altered during casting, which is not preferable. Therefore, it is preferable to contain Mn in the range of 0.1 to 1.0%.

Al:0.003〜0.02%:
Alは、溶鋼の強力な脱酸作用を有する元素である。脱酸の目的に応じて含有させる。Alによる脱酸効果を必要とする場合は0.003%以上を含有させることが好ましい。しかしながら、0.02%を超えて過剰に含有させると、鋼中の非金属介在物量が増加し、鋼のクリープ強度が低下するので、好ましくない。したがって、Al含有率の好ましい範囲は0.003〜0.02%である。
Al: 0.003 to 0.02%:
Al is an element having a strong deoxidizing action of molten steel. It is contained according to the purpose of deoxidation. When the deoxidation effect by Al is required, it is preferable to contain 0.003% or more. However, if the content exceeds 0.02%, the amount of nonmetallic inclusions in the steel increases and the creep strength of the steel decreases, which is not preferable. Therefore, the preferable range of Al content is 0.003 to 0.02%.

P:0.02%以下:
Pは、不可避的に鋼中に含有される不純物元素であり、その含有率は、低ければ低いほど好ましい。特に、Pが0.02%を超えて多量に含有されると、溶接特性が悪化するので好ましくない。したがって、P含有率は0.02%以下とすることが好ましい。
P: 0.02% or less:
P is an impurity element inevitably contained in the steel, and the content is preferably as low as possible. In particular, if P is contained in a large amount exceeding 0.02%, the welding characteristics deteriorate, which is not preferable. Therefore, the P content is preferably 0.02% or less.

S:0.006%以下:
Sは、不可避的に鋼中に含まれる不純物元素であり、その含有率は、低いほど好ましい。S含有率が増加すると製管時における熱間加工性が低下するので好ましくない。特に、パイプの内面疵の発生を防止するためには、その含有率は0.006%以下とすることが好ましい。
S: 0.006% or less:
S is an impurity element inevitably contained in the steel, and its content is preferably as low as possible. An increase in the S content is not preferable because hot workability at the time of pipe making is lowered. In particular, in order to prevent the occurrence of inner surface flaws in the pipe, the content is preferably 0.006% or less.

(c)前記(a)または(b)に記載の耐熱用低合金鋼において、さらにFeの一部に代えて、下記の含有率の範囲でTi、V、Nb、BおよびCaの1種以上を含有し、残部がFeおよび不純物からなる鋼であってもよい。     (C) In the heat-resistant low alloy steel as described in (a) or (b), in place of a part of Fe, at least one of Ti, V, Nb, B and Ca within the following content range It may be a steel containing the balance of Fe and impurities.

Ti:0.01〜0.02%:
Tiは、鋼中のNを固定し、鋳片の表面割れ発生を助長するAlNの析出を抑制する作用を有する元素である。AlNの析出抑制効果を必要とする場合には、0.01%以上を含有させることが好ましい。一方、その含有量が0.02%を超えて高くなると鋼の靭性が低下するので、好ましくない。したがって、Ti含有率の好ましい範囲は0.01〜0.02%である。
Ti: 0.01-0.02%:
Ti is an element having an action of fixing N in steel and suppressing precipitation of AlN which promotes surface cracking of the slab. When the effect of suppressing precipitation of AlN is required, it is preferable to contain 0.01% or more. On the other hand, if the content exceeds 0.02%, the toughness of the steel decreases, which is not preferable. Therefore, the preferable range of Ti content is 0.01 to 0.02%.

V:0.1〜0.5%:
Vは、鋼中で炭化物を形成し、高温強度を高める作用を有する元素である。その効果を必要とする場合には、0.1%以上を含有させることが好ましい。しかし、その含有量が0.5%を超えて高くなると鋼の靭性を低下させるので、好ましくない。したがって、Vを含有させる場合には、その含有率を0.1〜0.5%の範囲とするのが好ましい。
V: 0.1 to 0.5%:
V is an element which has the effect | action which forms a carbide | carbonized_material in steel and raises high temperature strength. When the effect is required, it is preferable to contain 0.1% or more. However, if the content exceeds 0.5%, the toughness of the steel is lowered, which is not preferable. Therefore, when it contains V, it is preferable to make the content rate into the range of 0.1 to 0.5%.

Nb:0.01〜0.3%:
Nbは、鋼中で炭化物を形成し、高温強度を高める作用を有する元素である。その効果を要求される場合には、0.01%以上を含有させることが好ましい。一方、その含有量が0.3%を超えて高くなると鋼の靭性が低下するので、好ましくない。したがって、Nbを含有させる場合には、その含有率を0.01〜0.3%の範囲とすることが好ましい。
Nb: 0.01 to 0.3%:
Nb is an element which has the effect | action which forms a carbide | carbonized_material in steel and raises high temperature strength. When the effect is required, it is preferable to contain 0.01% or more. On the other hand, if the content exceeds 0.3%, the toughness of the steel decreases, which is not preferable. Therefore, when Nb is contained, the content is preferably in the range of 0.01 to 0.3%.

B:0.002〜0.01%:
Bは、鋼の焼入れ性を向上させる作用を有する元素である。焼入れ性の向上を必要とする場合は、0.002%以上を含有させることが好ましい。しかし、Bが0.01%を超えて過剰に含有されると鋼の靭性が低下するので、好ましくない。したがって、Bを含有させる場合には、その含有率を0.002〜0.01%の範囲とすることが好ましい。
B: 0.002 to 0.01%:
B is an element having an effect of improving the hardenability of steel. When improvement of hardenability is required, it is preferable to contain 0.002% or more. However, if B is contained in excess of 0.01%, the toughness of the steel decreases, which is not preferable. Therefore, when it contains B, it is preferable to make the content rate into 0.002 to 0.01% of range.

Ca:0.005%以下:
Caは、連続鋳造時におけるノズル詰まりを防止する効果を有する。Caは含有させても、含有させなくてもよいが、ノズル詰まりの防止効果を必要とする場合には、含有させることが好ましい。しかし、その含有率が0.005%を超えて高くなるとCa系介在物が増加し、鋼のクリープ強度が低下するので、好ましくない。したがって、Caを含有させる場合は、その含有率を0.005%以下の範囲とするのが好ましい。
Ca: 0.005% or less:
Ca has the effect of preventing nozzle clogging during continuous casting. Ca may or may not be contained, but it is preferably contained when an effect of preventing nozzle clogging is required. However, when the content exceeds 0.005%, Ca inclusions increase and the creep strength of the steel decreases, which is not preferable. Therefore, when Ca is contained, the content is preferably in the range of 0.005% or less.

(d)前記(a)〜(c)に記載の耐熱用低合金鋼において、下記のCu、NiまたはNが不純物として含まれる場合は、その含有率は下記の範囲内とすることが好ましい。     (D) In the heat-resistant low alloy steel described in (a) to (c), when the following Cu, Ni, or N is contained as an impurity, the content is preferably within the following range.

Cu:0.1%以下:
Cuは、鋳片表面のスケールの性状を大きく変化させる。Cu含有率が増加すると二次冷却および凝固末期冷却時の鋳片の冷却特性が著しく変化するので、その含有率は0.1%以下とすることが好ましい。
Cu: 0.1% or less:
Cu greatly changes the properties of the scale on the surface of the slab. As the Cu content increases, the cooling characteristics of the slab at the time of secondary cooling and cooling at the end of solidification change remarkably, so the content is preferably 0.1% or less.

Ni:0.2%以下:
Niも、鋳片表面のスケールの性状を大きく変化させる。Ni含有率が増加すると二次冷却および凝固末期冷却時の鋳片の冷却特性が著しく変化するので、その含有率は0.2%以下とするのが好ましい。
Ni: 0.2% or less:
Ni also greatly changes the scale properties of the slab surface. As the Ni content increases, the cooling characteristics of the slab at the time of secondary cooling and end-of-solidification cooling change remarkably, so the content is preferably 0.2% or less.

N:0.01%以下:
N含有率の増加は、鋼の焼入れ性を低下させる。高い焼入れ性を必要とする場合は、N含有率を0.01%以下とすることが好ましい。
N: 0.01% or less:
Increasing the N content decreases the hardenability of the steel. When high hardenability is required, the N content is preferably 0.01% or less.

本発明の連続鋳造方法の効果および連続鋳造鋳片の性能を確認するため、以下に述べる鋳造試験を行い、その結果を評価した。   In order to confirm the effect of the continuous casting method of the present invention and the performance of the continuous cast slab, the following casting test was performed and the results were evaluated.

(試験方法)
図1に示した曲率半径が10.5mの湾曲型連続鋳造機を用い、前記の表1に示した鋼成分組成を有する供試鋼1および2の耐熱用低合金の溶鋼を使用して、横断面形状が直径191mmφの丸鋳片を鋳造した。鋳造方法は、図1について前記に説明した方法と同様の方法を採用し、鋳型直下の二次冷却帯における比水量および凝固末期冷却帯における比水量を種々に変更して鋳造試験を実施した。
(Test method)
Using a curved continuous casting machine having a radius of curvature of 10.5 m shown in FIG. 1, using heat-resistant low alloy molten steels of test steels 1 and 2 having the steel composition shown in Table 1 above, A round slab having a diameter of 191 mmφ in cross-sectional shape was cast. As the casting method, a method similar to the method described above with reference to FIG. 1 was adopted, and the casting test was carried out by variously changing the specific water amount in the secondary cooling zone directly below the mold and the specific water amount in the final solidification cooling zone.

なお、鋳造速度は2.7m/min、タンディッシュ内における溶鋼の過熱度は40〜50℃に調整し、凝固末期冷却帯における冷却は、鋳片中心部の固相率が0.1〜0.8となる位置から中心部の固相率が0.99以上となる位置までの鋳片表面を、鋳造方向長さが5mの12段リングスプレー式冷却装置により強制水冷(エアミスト冷却)することにより行った。   The casting speed is 2.7 m / min, the superheat degree of the molten steel in the tundish is adjusted to 40 to 50 ° C., and the cooling in the final solidification cooling zone has a solid phase ratio of 0.1 to 0 at the center of the slab. . Forced water cooling (air mist cooling) of the slab surface from the position where it becomes .8 to the position where the solid fraction of the central part is 0.99 or more by a 12-stage ring spray type cooling device with a casting direction length of 5 m. It went by.

表皮下割れが発生していない鋳片について、さらにマンネスマン製管を行い、鋼管の品質調査を行った。   Mannesmann pipes were further manufactured for the slabs in which no subepidermal cracking occurred, and the quality of the steel pipes was investigated.

(試験結果)
表2に、試験条件および試験結果をまとめて示した。
(Test results)
Table 2 summarizes the test conditions and test results.

Figure 2005334944
Figure 2005334944

同表において、表皮下割れは、下記の基準により評価した。すなわち、鋳片横断面の表皮下部における半径方向の割れが目視により確認できなかった場合を良好(○)と評価し、半径方向の割れが確認できた場合を不良(×)と評価した。   In the table, subepidermal cracking was evaluated according to the following criteria. That is, the case where the radial crack in the subepidermal portion of the slab cross section could not be visually confirmed was evaluated as good (◯), and the case where the radial crack was confirmed was evaluated as poor (x).

また、鋳片の中心部割れについては、鋳片横断面を研磨した後、浸透探傷試験を行い、
その染み出し径により評価した。すなわち、鋳片横断面の中心部における染み出し径が5
mm未満の場合を良好(○)と評価し、中心部の染み出し径が5mm以上の場合を不良(×)と評価した。
In addition, for the center crack of the slab, after polishing the cross-section of the slab, conduct a penetration flaw test,
The exuded diameter was evaluated. That is, the seepage diameter at the center of the slab cross section is 5
The case of less than mm was evaluated as good (◯), and the case where the oozing diameter at the center was 5 mm or more was evaluated as defective (x).

さらに、製管は、表皮下割れが発生していない鋳片、すなわち、表2において、Pの濃化の有無によらず、良好(○)と評価された鋳片についてのみ実施した。   Furthermore, pipe making was carried out only for a slab in which no subepidermal cracking occurred, that is, a slab evaluated as good (O) in Table 2 regardless of the presence or absence of P concentration.

そして、製管後の管外面および管内面の疵の発生状況の評価は、下記の基準にしたがった。すなわち、管外面および内面について超音波探傷試験および目視により疵の有無の調査を行い、疵が全く確認されなかった場合を良好(○)と評価し、長さや太さなどによらず疵が確認された場合を不良(×)と評価した。   And the evaluation of the generation | occurrence | production state of the flaw of the pipe outer surface after pipe making and the pipe inner surface followed the following reference | standard. In other words, the outer surface and the inner surface of the tube are subjected to an ultrasonic flaw detection test and visual inspection for the presence or absence of wrinkles. If no wrinkles are confirmed, it is evaluated as good (○), and wrinkles are confirmed regardless of the length and thickness. The case was evaluated as bad (x).

供試鋼1を使用した試験番号8、9および12、ならびに供試鋼2を使用した試験番号14〜16は、本発明の第1発明で規定した二次冷却帯における比水量および凝固末期冷却帯における比水量の範囲のいずれをも満足する本発明例である。これらの試験例では、得られた丸鋳片は、鋳片横断面の周長の膨張率についても、第2発明で規定する範囲を満たしていた。   Test numbers 8, 9 and 12 using the test steel 1 and test numbers 14 to 16 using the test steel 2 are the specific water amount and the end-of-solidification cooling in the secondary cooling zone defined in the first invention of the present invention. This is an example of the present invention that satisfies all the ranges of the specific water amount in the belt. In these test examples, the obtained round slabs satisfied the range defined by the second invention in terms of the expansion coefficient of the circumferential length of the slab cross section.

上記の本発明例の鋳造試験では、いずれも、表皮下割れおよび中心部割れの発生がなく、良好な性状の鋳片が得られた。また、これらの鋳片をマンネスマン製管して得られた鋼管は、管の外面疵および内面疵の発生がなく、総合評価も良好であった。   In any of the above-described casting tests of the present invention examples, a slab having good properties was obtained without occurrence of subepidermal cracking and central cracking. In addition, the steel pipes obtained by manufacturing these cast slabs with Mannesmann's pipe did not generate any outer surface defects or inner surface defects, and the overall evaluation was good.

これらに対して、試験番号1〜7、10、11および13の鋳造試験は、二次冷却帯における比水量または凝固末期冷却帯における比水量の少なくともいずれかが第1発明で規定された範囲を外れた比較例の試験である。   On the other hand, in the casting tests of test numbers 1 to 7, 10, 11 and 13, at least one of the specific water amount in the secondary cooling zone and the specific water amount in the end solidification cooling zone falls within the range defined in the first invention. This is a test of a comparative example that has been removed.

試験番号1、2、4および5は、二次冷却における比水量が少なすぎたために、鋳片横断面の周長の膨張率が大きく、Pの濃化をともなう表皮下割れが発生し、これらの鋳片を用いて製管することは不可能であった。   In Test Nos. 1, 2, 4 and 5, since the specific water amount in the secondary cooling was too small, the expansion rate of the peripheral length of the slab cross section was large, and subepidermal cracking accompanied with P concentration occurred. It was impossible to make a pipe using this slab.

試験番号3および6は、二次冷却における比水量が少なすぎ、しかも、凝固末期冷却での比水量が多すぎたために、鋳片においてPの濃化をともなう表皮下割れおよびPの濃化をともなわない表皮下割れの双方が発生し、これらの鋳片を用いた製管は不可能であった。試験番号10は、二次冷却の比水量は本発明の範囲内であったが、凝固末期冷却における比水量が多すぎたために、鋳片においてPの濃化をともなわない表皮下割れが発生し、この鋳片を用いた製管は不可能であった。   In Test Nos. 3 and 6, since the specific water amount in the secondary cooling was too small, and the specific water amount in the end-of-solidification cooling was too large, the subcutaneous cracking accompanied with the P concentration and the P concentration in the slab Both subepidermal cracks occurred and tube production using these slabs was impossible. In Test No. 10, the specific water amount of the secondary cooling was within the range of the present invention, but because of the excessive specific water amount in the cooling at the end of solidification, subepidermal cracking without P concentration occurred in the slab. Pipe making using this slab was impossible.

試験番号7、11および13は、二次冷却の比水量は本発明の範囲内であったが、凝固末期冷却を行わなかったために、製管は可能であったものの、製管後の管内面に内面疵が発生し、総合評価は不良となった。なお、管の内面疵を防止するには凝固末期冷却における比水量0.12〜0.35(リットル/kg−鋼)の範囲とすることが好ましい。   Test Nos. 7, 11 and 13 were such that the specific water amount of the secondary cooling was within the scope of the present invention, but because the end-solidification cooling was not performed, pipe production was possible, but the pipe inner surface after pipe production As a result, internal flaws occurred and the overall evaluation was poor. In order to prevent flaws on the inner surface of the pipe, the specific water amount in the cooling at the end of solidification is preferably in the range of 0.12 to 0.35 (liter / kg-steel).

本発明の方法によれば、鋳型直下の二次冷却における比水量を0.30(リットル/kg−鋼)以上とし、凝固末期冷却における比水量を0.35(リットル/kg−鋼)以下とすることにより、鋳片の表皮下割れおよび中心部割れをともに防止した耐熱用低合金鋼の丸鋳片を製造することができる。また、本発明の耐熱用低合金鋼の丸鋳片は、マンネスマン製管法などによる耐熱低合金鋼管の製造に最適である。したがって、本発明の連続鋳造方法および丸鋳片は、耐熱用低合金鋼管の製造分野において、内面疵の防止技術として広範に適用できる。   According to the method of the present invention, the specific water amount in the secondary cooling just below the mold is set to 0.30 (liter / kg-steel) or more, and the specific water amount in the end-of-solidification cooling is set to 0.35 (liter / kg-steel) or less. By doing so, it is possible to manufacture a round cast slab of heat-resistant low alloy steel that prevents both subepidermal cracking and center part cracking of the slab. The heat-resistant low alloy steel round slab of the present invention is most suitable for the production of heat-resistant low alloy steel pipes by the Mannesmann pipe manufacturing method or the like. Therefore, the continuous casting method and round slab of the present invention can be widely applied as a technique for preventing internal flaws in the field of manufacturing heat-resistant low alloy steel pipes.

本発明の連続鋳造方法を実施するための連続鋳造装置の例を模式的に示す図である。It is a figure which shows typically the example of the continuous casting apparatus for enforcing the continuous casting method of this invention. 鋳片横断面の周長と表皮下割れとの関係を示す図である。It is a figure which shows the relationship between the perimeter of a slab cross section, and a subepidermal crack. 鋳片横断面の周長の膨張率と表皮下割れとの関係を示す図である。It is a figure which shows the relationship between the expansion coefficient of the perimeter of a slab cross section, and a subepidermal crack. 鋼の引張強度におよぼす温度の影響を示す図である。It is a figure which shows the influence of the temperature which acts on the tensile strength of steel. 連続鋳造の二次冷却帯における比水量と鋳片横断面の周長との関係を示す図である。It is a figure which shows the relationship between the specific water amount in the secondary cooling zone of continuous casting, and the perimeter of a slab cross section. 連続鋳造の凝固末期冷却帯における比水量と鋳片の表皮下割れ長さとの関係を示す図である。It is a figure which shows the relationship between the specific water quantity in the solidification end stage cooling zone of continuous casting, and the subepidermal crack length of slab. 連続鋳造の凝固末期冷却帯における比水量と鋳片の表面温度との関係を示す図である。It is a figure which shows the relationship between the specific water amount in the solidification end stage cooling zone of continuous casting, and the surface temperature of slab.

符号の説明Explanation of symbols

1:タンディッシュ
2:連続鋳造用鋳型
3:溶鋼
4:凝固シェル
5:二次冷却帯
6:ピンチロール
7:凝固末期冷却帯
8:丸鋳片
9:未凝固部
1: Tundish 2: Mold for continuous casting 3: Molten steel 4: Solidified shell 5: Secondary cooling zone 6: Pinch roll 7: End-solidification cooling zone 8: Round slab 9: Unsolidified part

Claims (2)

質量%で、C:0.03〜0.08%、Cr:1.5〜2.5%、Mo:0.1〜0.3%およびW:1.0〜2.0%を含有する耐熱用低合金鋼を丸鋳片に連続鋳造するに際して、鋳型直下において二次冷却した後に、さらに凝固末期において強制水冷却する連続鋳造方法であって、該二次冷却の比水量を0.30(リットル/kg−鋼)以上とし、鋳片中心部の固相率が0.1〜0.8となる位置から0.99以上となるまでの間の該凝固末期における強制水冷却の比水量を0.35(リットル/kg−鋼)以下とすることを特徴とする丸鋳片の連続鋳造方法。   In mass%, C: 0.03-0.08%, Cr: 1.5-2.5%, Mo: 0.1-0.3% and W: 1.0-2.0% When continuously casting a heat-resistant low alloy steel into a round slab, a secondary casting method in which secondary cooling is performed immediately below the mold and then forced water cooling is performed at the end of solidification, and the specific water amount of the secondary cooling is 0.30. (Liter / kg-steel) The specific water amount of forced water cooling at the end of solidification from the position where the solid phase rate at the center of the slab becomes 0.1 to 0.8 to 0.99 or more. Is a continuous casting method for round slabs, characterized in that it is 0.35 (liter / kg-steel) or less. 請求項1に記載の連続鋳造方法により鋳造された丸鋳片であって、常温における丸鋳片の横断面の周長の膨張率が公称周長に対して2.0%未満であることを特徴とする耐熱用低合金鋼の丸鋳片。
It is a round slab cast by the continuous casting method according to claim 1, wherein the expansion ratio of the circumferential length of the cross section of the round cast slab at room temperature is less than 2.0% with respect to the nominal circumferential length. A heat-resistant low alloy steel round slab.
JP2004157799A 2004-05-27 2004-05-27 Continuous casting method and continuous cast slab of heat resistant low alloy steel Active JP4301081B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004157799A JP4301081B2 (en) 2004-05-27 2004-05-27 Continuous casting method and continuous cast slab of heat resistant low alloy steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004157799A JP4301081B2 (en) 2004-05-27 2004-05-27 Continuous casting method and continuous cast slab of heat resistant low alloy steel

Publications (2)

Publication Number Publication Date
JP2005334944A true JP2005334944A (en) 2005-12-08
JP4301081B2 JP4301081B2 (en) 2009-07-22

Family

ID=35489057

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004157799A Active JP4301081B2 (en) 2004-05-27 2004-05-27 Continuous casting method and continuous cast slab of heat resistant low alloy steel

Country Status (1)

Country Link
JP (1) JP4301081B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110976800A (en) * 2019-12-03 2020-04-10 张家港荣盛特钢有限公司 Method for solving casting blank cracks of high-carbon crack sensitive steel
JP2020069512A (en) * 2018-10-31 2020-05-07 日本製鉄株式会社 Continuous casting method for billet cast piece
CN113145817A (en) * 2020-12-24 2021-07-23 山东寿光巨能特钢有限公司 Method for controlling surface microcracks of manganese-containing steel round billet

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020069512A (en) * 2018-10-31 2020-05-07 日本製鉄株式会社 Continuous casting method for billet cast piece
JP7147477B2 (en) 2018-10-31 2022-10-05 日本製鉄株式会社 Continuous casting method for billet slab
CN110976800A (en) * 2019-12-03 2020-04-10 张家港荣盛特钢有限公司 Method for solving casting blank cracks of high-carbon crack sensitive steel
CN110976800B (en) * 2019-12-03 2021-11-02 张家港荣盛特钢有限公司 Method for solving casting blank cracks of high-carbon crack sensitive steel
CN113145817A (en) * 2020-12-24 2021-07-23 山东寿光巨能特钢有限公司 Method for controlling surface microcracks of manganese-containing steel round billet

Also Published As

Publication number Publication date
JP4301081B2 (en) 2009-07-22

Similar Documents

Publication Publication Date Title
JP5142141B2 (en) Hot-rolled steel sheets for hydroforming, steel pipes for hydroforming, and methods for producing them
RU2613824C2 (en) High-strength thin-walled steel pipes welded by electric resistance welding with high impact strength and method of their production
JP5392441B1 (en) Steel tube for high-strength line pipe excellent in resistance to hydrogen-induced cracking, steel plate for high-strength line pipe used therefor, and production method thereof
TWI392748B (en) Pipeline steel and steel pipe
JP4725437B2 (en) Continuous cast slab for thick steel plate, method for producing the same, and thick steel plate
RU2620837C2 (en) Thick high-tensile acid-resistant main pipe and method of its manufacture
KR101757710B1 (en) Method for producing thick-walled high-strength sour-resistant line pipe
JP6584912B2 (en) Steel plate and line pipe steel pipe with excellent hydrogen-induced crack resistance
JP5915818B2 (en) Seamless steel pipe for line pipe used in sour environment
JP2006063351A (en) High strength steel plate with excellent hydrogen induced cracking resistance, its manufacturing method, and steel pipe for line pipe
JP4867088B2 (en) Manufacturing method of high Cr seamless steel pipe
JP6028863B2 (en) Seamless steel pipe for line pipe used in sour environment
JP5803270B2 (en) High strength sour line pipe excellent in crush resistance and manufacturing method thereof
JP2007302908A (en) High tensile strength steel plate and its manufacturing method
JP5206239B2 (en) Continuous casting method of high N content duplex stainless steel
CN108411197A (en) A kind of effective think gauge X80 hot rolled coils of Φ 1422mm super large caliber spiral submerged arc weldeds and its manufacturing method
JP4301081B2 (en) Continuous casting method and continuous cast slab of heat resistant low alloy steel
JP7206907B2 (en) Rolled H-section steel and its manufacturing method
JP4301133B2 (en) Method for continuous casting of round slab, method for making round slab and seamless pipe
JP3711959B2 (en) Heat resistant low alloy steel pipe and method for producing the same
JP6390813B2 (en) Low-temperature H-section steel and its manufacturing method
JPH04224659A (en) Seamless martensitic steel tube and its production
JP6402581B2 (en) Welded joint and method for producing welded joint
JP2007301601A (en) METHOD FOR CASTING Cr-CONTAINING STEEL
JP2006283148A (en) WELDED STEEL PIPE HAVING EXCELLENT Cr-FREE SOUR RESISTANCE CHARACTERISTIC

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060601

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090123

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090331

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120501

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4301081

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090413

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120501

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130501

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130501

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130501

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140501

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350