JP2005334873A - Method for treating waste water from elemental chlorine free bleaching process - Google Patents

Method for treating waste water from elemental chlorine free bleaching process Download PDF

Info

Publication number
JP2005334873A
JP2005334873A JP2005127919A JP2005127919A JP2005334873A JP 2005334873 A JP2005334873 A JP 2005334873A JP 2005127919 A JP2005127919 A JP 2005127919A JP 2005127919 A JP2005127919 A JP 2005127919A JP 2005334873 A JP2005334873 A JP 2005334873A
Authority
JP
Japan
Prior art keywords
ash
wastewater
waste water
treatment
treating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005127919A
Other languages
Japanese (ja)
Inventor
Hajime Takahashi
高橋  元
Hitoshi Kagawa
仁志 香川
Sadaki Hirai
禎樹 平井
Hiroyuki Arikawa
浩之 蟻川
Atsushi Tanaka
温 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Oji Paper Co Ltd
Original Assignee
Oji Paper Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oji Paper Co Ltd filed Critical Oji Paper Co Ltd
Priority to JP2005127919A priority Critical patent/JP2005334873A/en
Publication of JP2005334873A publication Critical patent/JP2005334873A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for treating waste water from an elemental chlorine free ECF bleaching process of a paper pulp production process for simply and effectively removing an organic component and a coloring component at a low cost by a combined use of an activated sludge treatment and an adsorption treatment using incineration ash. <P>SOLUTION: This method is for treating the waste water from the ECF bleaching process for effectively removing the organic component and the coloring component in the waste water by mixing the waste water with ash discharged from a boiler or an incinerator, and thereafter by treating the waste water via the activated sludge treatment. The specific surface of the ash is preferably 2,000 cm<SP>2</SP>/g or more. The pH of the ECF bleaching waste water during the treatment is preferably not less than 8. The used ash can be reused after incinerating at 800°C or higher. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、パルプ工場の排水、特に元素状塩素を使用しない、いわゆるECF(Elemental Chlorine Free)漂白工程から排出される排水に含まれる有機成分及び着色成分の処理方法に関する。 The present invention relates to a method for treating organic components and coloring components contained in wastewater discharged from pulp factory wastewater, particularly wastewater discharged from a so-called ECF (Elemental Chlorine Free) bleaching process that does not use elemental chlorine.

リグノセルロース物質を製紙原料として多くの用途に使用するためには、蒸解のような化学作用によってパルプ化した後、或いはリファイナー等を用いて機械的作用によってパルプ化した後、得られるパルプを漂白薬品で漂白して白色度を高める必要がある。例えば、クラフトパルプは包装資材のように強度を必要とする用途に使う場合を除いて、通常、アルカリ酸素漂白した後、原子状塩素、次亜塩素酸塩、二酸化塩素、過酸化水素、酸素、オゾン、苛性ソーダ等の漂白剤及び漂白助剤により漂白処理され、パルプに含まれる着色原因物質であるリグニン等が除去された後に漂白クラフトパルプとして使用されるのが一般的である。また、機械パルプの漂白は、通常、過酸化水素及びハイドロサルファイト等の薬品を用い、1段或いは2段で漂白される。 In order to use lignocellulosic material as a papermaking raw material in many applications, after pulping by chemical action such as cooking, or pulping by mechanical action using a refiner etc., the resulting pulp is bleached by chemicals. Need to be bleached to increase whiteness. For example, kraft pulp is usually subjected to alkaline oxygen bleaching, except when used for applications that require strength such as packaging materials, and then atomic chlorine, hypochlorite, chlorine dioxide, hydrogen peroxide, oxygen, It is generally used as bleached kraft pulp after being bleached with a bleaching agent such as ozone or caustic soda and a bleaching aid, and lignin, which is a color-causing substance contained in the pulp, is removed. In addition, mechanical pulp is usually bleached in one or two stages using chemicals such as hydrogen peroxide and hydrosulfite.

昨今、日本国内では、有機塩素化合物の抑制を目的として元素状塩素を使用しない、いわゆる ECF(Elemental Chlorine Free)化が進行中である。通常、塩素を用いた漂白としては、前述の通り、原子状塩素(C)、苛性ソーダ/酸素(E/O)、次亜塩素酸塩(H)、二酸化塩素(D)等が用いられ、C−E/O−H−Dの4段シーケンスとするのが、漂白コストの面から有利と言われている。また、このシーケンスをECF化するためには、塩素及び次亜塩素酸塩を他の薬品へ代替する必要があるが、塩素の代替薬品としては、反応性の似ており、且つ、現状の反応塔で代用できる二酸化塩素が用いられ、次亜塩素酸塩の代替としては、同様に、過酸化水素(P)が用いられることが多い。 In recent years, so-called ECF (Elemental Chlorine Free), which does not use elemental chlorine for the purpose of suppressing organic chlorine compounds, is in progress in Japan. Usually, as bleaching using chlorine, as described above, atomic chlorine (C), caustic soda / oxygen (E / O), hypochlorite (H), chlorine dioxide (D), etc. are used. It is said that the 4-stage sequence of -E / O-H-D is advantageous from the viewpoint of bleaching cost. In addition, in order to convert this sequence to ECF, it is necessary to substitute chlorine and hypochlorite with other chemicals. However, as a chemical substitute for chlorine, the reactivity is similar and the current reaction Chlorine dioxide that can be substituted in the tower is used, and hydrogen peroxide (P) is often used as an alternative to hypochlorite as well.

ECF漂白工程からの排水は、有機成分および着色成分を除去するために、単独あるいは他工程の排水と混合後、生物処理や凝集沈澱処理の他、水酸化鉄との共沈を利用した脱色処理や吸着処理、オゾン酸化など種々の方法を組み合わせて処理される。 Wastewater from the ECF bleaching process is decolorized using coprecipitation with iron hydroxide in addition to biological treatment and coagulation sedimentation treatment after being mixed with wastewater from single or other processes to remove organic components and coloring components. It is processed by combining various methods such as adsorption treatment and ozone oxidation.

排水の凝集沈殿処理では高分子凝集剤や硫酸ばんどあるいはポリ塩化アルミニウムを使用する方法がある。また、特公昭 31−4636号公報(特許文献1参照)のように漂白工程の排水処理では塩素段から発生する酸性排水に鉄屑を溶解させ、アルカリ性排水他と混合し、消石灰を添加してpH調整し、水酸化鉄を生成させ、このフロックに排水の有機成分及び着色成分を吸着凝集沈殿させる処理方法も知られているが、排水中の塩素イオンの少ないECF漂白排水の処理には不適である。 There is a method of using a polymer flocculant, sulfuric acid sulfate or polyaluminum chloride in the coagulation sedimentation treatment of waste water. Also, as in Japanese Patent Publication No. 31-4636 (see Patent Document 1), in wastewater treatment in the bleaching process, iron waste is dissolved in acidic wastewater generated from the chlorine stage, mixed with alkaline wastewater, etc., and slaked lime is added. A treatment method is also known in which the pH is adjusted to produce iron hydroxide, and the organic components and colored components of the waste water are adsorbed and coagulated and precipitated in this floc, but it is not suitable for the treatment of ECF bleaching waste water with less chlorine ions in the waste water. It is.

また、通常漂白シーケンス(C−E/O−H−D等)からECF漂白シーケンス(D1−E/O−P−D2等)に切替えた場合、特開2002−186975号公報(特許文献2参照)のように塩化第一鉄を代用する方法も考あるが、排水汚泥中の塩化物イオン量を上昇させるほか、処理コストが高いという問題点があった。 In addition, when switching from a normal bleaching sequence (CE / O-HD etc.) to an ECF bleaching sequence (D1-E / OPPD2 etc.), Japanese Patent Laid-Open No. 2002-186975 (see Patent Document 2) Although there is a method of substituting ferrous chloride as in (1), there is a problem that the treatment cost is high in addition to increasing the amount of chloride ions in the wastewater sludge.

また、特開平10-249327号公報(特許文献3参照)には石炭ボイラから発生するフライアッシュを添加、混合、沈降分離させるパルプ排水の処理方法が開示されているがこれは活性汚泥処理後や2次処理後のパルプ排水を対象としたもので沈降分離に時間がかかる。
特公昭 31−4636号公報 特開2002−186975号公報 特開平10−249327号公報
Japanese Patent Laid-Open No. 10-249327 (see Patent Document 3) discloses a method for treating pulp wastewater in which fly ash generated from a coal boiler is added, mixed, and settled. It is intended for pulp wastewater after the secondary treatment and takes time for sedimentation separation.
Japanese Patent Publication No. 31-4636 JP 2002-186975 A JP-A-10-249327

本発明は紙パルプ製造工程のECF漂白排水を焼却灰を用いた吸着処理と活性汚泥処理を併用することにより、安価で簡便に効率よく有機成分及び着色成分を処理することを目的とする。 An object of the present invention is to treat organic components and colored components at low cost simply and efficiently by using an ECF bleaching wastewater in a paper pulp manufacturing process in combination with an adsorption treatment using incinerated ash and an activated sludge treatment.

本発明により、ECF漂白排水を安価で簡便に効率よく処理する事が可能であり、更に製紙工場内で発生する様々な焼却灰の利用が可能となる。 According to the present invention, it is possible to easily and efficiently treat ECF bleaching wastewater at low cost, and it is possible to use various incineration ash generated in a paper mill.

上記課題を達成するために、本発明者らは、ECF漂白工程排水の処理について、鋭意研究を重ねた結果、以下の知見を得た。すなわち、漂白排水にボイラーあるいは焼却炉より排出される灰を混合した後、活性汚泥処理することにより、効率的に排水中の有機成分及び着色成分を除去できることを見出し、本発明を完成するにいたった。 In order to achieve the above-mentioned problems, the present inventors have earnestly studied the treatment of ECF bleaching process wastewater and obtained the following knowledge. That is, after mixing the ash discharged from the boiler or the incinerator with the bleaching effluent, it was found that organic components and coloring components in the effluent can be efficiently removed by treating with activated sludge, and the present invention was completed. It was.

本発明は以下の発明を包括する。
(1)紙パルプ製造工程の元素状塩素を使用しない(ECF)漂白工程から発生する排水にボイラーあるいは焼却炉より排出される灰を混合した後、活性汚泥処理するECF漂白工程排水の処理方法。
(2)前記灰の比表面積が2000cm2以上であることを特徴とする(1)記載のECF漂白工程排水の処理方法。
(3)前記灰の粒径が2〜80μmである(1)又は(2)記載のECF漂白排水の処理方法。
(4)前記灰は0.01質量%〜5.0質量%範囲で排水に混合する(1)〜(3)のいずれか1項記載のECF排水の処理方法。
(5)灰と排水の混合はpH8以上で行う(1)〜(4)のいずれか1項記載のECF漂白工程排水の処理方法。
(6)排水と混合処理した後、灰は800℃以上で燃焼し、再利用する(1)〜(5)のいずれか1項記載のECF漂白工程排水の処理方法。
The present invention encompasses the following inventions.
(1) No elemental chlorine used in the paper pulp manufacturing process (ECF) A method of treating ECF bleaching process wastewater in which activated sludge is treated after mixing the ash discharged from the boiler or incinerator with the wastewater generated from the bleaching process.
(2) The method for treating ECF bleaching process waste water according to (1), wherein the specific surface area of the ash is 2000 cm 2 or more.
(3) The method for treating ECF bleaching waste water according to (1) or (2), wherein the ash has a particle size of 2 to 80 μm.
(4) The ECF wastewater treatment method according to any one of (1) to (3), wherein the ash is mixed with wastewater in a range of 0.01% by mass to 5.0% by mass.
(5) The method for treating ECF bleaching process waste water according to any one of (1) to (4), wherein mixing of ash and waste water is performed at a pH of 8 or more.
(6) The method for treating ECF bleaching process waste water according to any one of (1) to (5), wherein the ash is combusted at 800 ° C. or higher after being mixed with waste water and reused.

ECF漂白工程から発生する排水にボイラーあるいは焼却炉より排出される灰を混合した後、活性汚泥処理することによる漂白工程排水の有機成分や着色成分の除去機構は以下のように考えられる。最初の焼却灰を用いた処理では漂白工程排水に含まれるリグニンなど生物難分解な有機着色成分が、焼却灰表面に付着した未燃炭素に吸着除去される。一方、後に続く活性汚泥処理では、有機成分を分解するとともに焼却灰を菌体が出す粘性物質により凝集分離し、清澄な処理水が得られる。 The mechanism of removing organic components and colored components from the bleaching process wastewater by treating the activated sludge after mixing the ash discharged from the boiler or the incinerator with the wastewater generated from the ECF bleaching process is considered as follows. In the first treatment using incinerated ash, organically difficult-to-decompose organic coloring components such as lignin contained in the bleaching process wastewater are adsorbed and removed by unburned carbon adhering to the incinerated ash surface. On the other hand, in the subsequent activated sludge treatment, the organic components are decomposed and the incinerated ash is agglomerated and separated by a viscous substance produced by the fungus body, thereby obtaining a clear treated water.

漂白工程の排水処理には、活性汚泥および凝集沈殿が併用されることが多いが、焼却灰による吸着処理を活性汚泥処理の前に置くことにより、活性汚泥処理後の有機物濃度や色度が低下し、後工程の負荷を下げることができ、排水処理コストの低減が可能となる。 Activated sludge and coagulation sedimentation are often used together with wastewater treatment in the bleaching process, but the organic matter concentration and chromaticity after activated sludge treatment are reduced by placing adsorption treatment with incinerated ash before activated sludge treatment. In addition, the load on the subsequent process can be reduced, and the wastewater treatment cost can be reduced.

本発明でECF漂白工程から発生する排水に添加、混合する灰は製紙工場内で発生する灰を用いる。
多くはボイラーおよび焼却炉から発生するもので、焼却炉としては流動床炉やストーカー炉などがある。発生する灰は排ガス側に回る飛灰(フライアッシュ)と炉底に残る燃殻(クリンカーアッシュ)に大別される。本発明では、上述のボイラーおよび焼却炉から排出される何れの灰をも使用可能である。
灰の中でも未燃炭素が少ないものは建材などに、塩素などの妨害成分の少ないものはセメント原料などに有効利用できるが、未燃炭素、妨害成分ともにある程度含有する灰についてはこれまで有効利用先がなく、処理するのに多くの労力とコストがかけられてきた。
In the present invention, ash generated in a paper mill is used as ash to be added to and mixed with wastewater generated from the ECF bleaching step.
Most of them are generated from boilers and incinerators, and incinerators include fluidized bed furnaces and stalker furnaces. The generated ash is roughly divided into fly ash that turns to the exhaust gas side (fly ash) and fuel shells (clinker ash) that remain in the furnace bottom. In the present invention, any ash discharged from the above-described boiler and incinerator can be used.
Of the ash, those with less unburned carbon can be used effectively for building materials, and those with less disturbing components such as chlorine can be used effectively as cement raw materials. There has been a lot of effort and cost to process.

本発明では比表面積が1000cm/g以上の灰が好ましく、より好ましくは2000cm2/g以上である灰を使用する。比表面積が2000未満のものでは吸着能力が少ないため好ましくない。比表面積は大きければ大きいほど吸着能力が高くなるので好ましいが上記ボイラー等で発生する灰は大きくても8000cm2/g程度である。 In the present invention, ash having a specific surface area of 1000 cm 2 / g or more is preferable, and ash having a specific surface area of 2000 cm 2 / g or more is used. Those having a specific surface area of less than 2000 are not preferred because of their low adsorption capacity. The larger the specific surface area, the higher the adsorption capacity, which is preferable. However, the ash generated in the boiler or the like is about 8000 cm 2 / g at most.

本発明では粒径が2〜80μmのものであれば、上記のような未燃炭素および妨害成分をある程度含有する灰等も効果があり、これらは排水と混合後分離して焼却したり、活性汚泥処理後に分離して800℃以上で焼却した後は、未燃炭素や妨害成分がなくなり、セメント原料や建材原料、陶磁器原料、路盤材、土壌改良材として有効利用する事ができる。助燃に費やすエネルギーや炉の寿命を考慮すれば800〜850℃で燃焼すれば十分である。
粒径については2μm未満のものは吸着能力が少なく、分離しにくいため好ましくない。また80μmを越えて大きなものは比表面積が小さく好ましくない。
焼却灰は運搬時の飛散などを防ぐ目的で加湿することがあるが、本処理方法においては乾燥灰および加湿灰のいずれでも使用できるが、加湿量は少ない方が好ましい。
In the present invention, if the particle size is 2 to 80 μm, ash containing unburned carbon and interference components to some extent as described above is also effective. After separation after sludge treatment and incineration at 800 ° C. or higher, unburned carbon and interfering components disappear, and can be effectively used as a cement raw material, building material raw material, ceramic raw material, roadbed material, and soil improvement material. Considering the energy spent for auxiliary combustion and the life of the furnace, it is sufficient to burn at 800 to 850 ° C.
A particle size of less than 2 μm is not preferable because it has a small adsorption capacity and is difficult to separate. Moreover, the thing larger than 80 micrometers is unpreferable because the specific surface area is small.
Incinerated ash may be humidified for the purpose of preventing scattering during transportation, but either dry ash or humidified ash can be used in this treatment method, but it is preferable that the amount of humidification is small.

漂白排水量に対する灰の添加量は漂白排水に対し0.01質量%〜5.0質%が好ましく。灰の添加量が多いと有機成分ならびに着色成分の吸着量も増加するが、排水中の焼却灰の残濃度が高くなり、沈降するのに時間がかかる上に、後に続く活性汚泥の負担が大きくなり、最終的に効率が落ちるため、さらに好ましくは0.05質量%〜2質量%とする。
5.0質量%を超えて越えて灰を多量に使用する場合は、活性汚泥処理前に吸着処理した焼却灰を自然沈降などにより排水から分離除去する工程が必要となる。
The amount of ash added to the bleaching wastewater is preferably 0.01% by mass to 5.0% by mass with respect to the bleaching wastewater. If the amount of ash added is large, the amount of organic and colored components adsorbed will also increase, but the residual concentration of incinerated ash in the wastewater will increase, and it will take time to settle, and the burden on the activated sludge that follows will be large. In the end, the efficiency is lowered, and more preferably 0.05% by mass to 2% by mass.
When a large amount of ash is used exceeding 5.0% by mass, a step of separating and removing the incinerated ash adsorbed before the activated sludge treatment from the wastewater by natural sedimentation or the like is required.

漂白工程から排出されるECF排水は、ECFシーケンスから排出される排水であれば、シーケンスを問わない。例えば、D(二酸化塩素)−E/O−D、Ez(キシラナーゼ酵素処理)−D−E/O−D、D−E/OP(過酸化水素)−D、D−E/O−P−D、Z(オゾン)−E/O−D、A(酸処理)−Z−E/O−D、Z/D−E/O−D、A−D−E/O−D 等のECFシーケンス、或いは、Z−E/O−P、A−Z−E/O−P、E/OP−X(キレート処理)−E/OP、E/OXP−E/OXP等のように塩素系漂白薬品を一切用いない多段漂白シーケンスからの排水でも用いることができ、ECFであれば、特に限定されるものではない。また、例えば、P段、D段、Z段のように単段での漂白工程からの排水でもよく、段数についても限定されるものではない。 The ECF wastewater discharged from the bleaching process may be any sequence as long as it is discharged from the ECF sequence. For example, D (chlorine dioxide) -E / OD, Ez (xylanase enzyme treatment) -DE / OD, DE / OP (hydrogen peroxide) -D, DE / OP- ECF sequences such as D, Z (ozone) -E / OD, A (acid treatment) -ZE / OD, Z / DE / OD, ADE / OD Or chlorinated bleaching chemicals such as ZE / OP, AZE / OP, E / OP-X (chelate treatment) -E / OP, E / OXP-E / OXP It can also be used in waste water from a multi-stage bleaching sequence that does not use any, and there is no particular limitation as long as it is ECF. Further, for example, waste water from a single-stage bleaching process such as P stage, D stage, and Z stage may be used, and the number of stages is not limited.

一般的な漂白シーケンス(D−E/O−P−D)より排出される排水負荷は、到達白色度や薬品添加率等によっても変動するが、CODはパルプトン当たり5kg/ADT〜35kg/ADT、BODはパルプトン当たり2kg/ADT〜25kg/ADT、色度2kg/ADT〜35kg/ADT、酸性排水pHは1.5〜6.0、アルカリ排水pH9.0〜12.5であるが、本発明は、何れの領域の排水にでも使用することが出来るが、灰に含まれる重金属類が溶出する場合にはpHを8以上に調整する事が好ましい。 The drainage load discharged from a general bleaching sequence (DE / OPD) varies depending on the reached whiteness, chemical addition rate, etc., but COD is 5 kg / ADT to 35 kg / ADT per pulp ton, BOD is 2 kg / ADT to 25 kg / ADT per pulp ton, color 2 kg / ADT to 35 kg / ADT, acidic drainage pH is 1.5 to 6.0, and alkaline drainage pH is 9.0 to 12.5. Although it can be used for drainage of any region, it is preferable to adjust pH to 8 or more when heavy metals contained in ash are eluted.

以下に、本発明の実施例を説明するが、本発明はこれらの実施例に何ら限定されるものではない。
(比表面積の測定)
島津体比表面積測定装置 SS−100形により測定
(粒径の測定)
日機装製マイクロトラック粒度分布計9300HRAで測定。
(CODの測定)
JIS K−0102の「100℃における過マンガン酸カリウムによる酸素消費量(CODMn)」測定方法に準拠して行なった。また、CODカット率は、以下の式で算出した。
CODカット率(%)=((処理前COD)−(処理後COD))/(処理前COD)×100
Examples of the present invention will be described below, but the present invention is not limited to these examples.
(Measurement of specific surface area)
Shimadzu specific surface area measuring device Measured with SS-100 type
(Measurement of particle size)
Measured with Nikkiso Microtrac Particle Size Analyzer 9300HRA.
(Measurement of COD)
The measurement was carried out in accordance with JIS K-0102 “Oxygen consumption by potassium permanganate at 100 ° C. (CODMn)”. The COD cut rate was calculated by the following formula.
COD cut rate (%) = ((COD before treatment) − (COD after treatment)) / (COD before treatment) × 100

(色度の測定)
JIS K−0101の「白金・コバルトによる色度」測定方法に準拠して行なった。また、色度のカット率は、以下の式で算出した。
色度カット率(%)=((処理前色度)−処理後色度))/(処理前色度)×100
(Measurement of chromaticity)
This was carried out in accordance with JIS K-0101 “Platinum / Cobalt Chromaticity” measurement method. The chromaticity cut rate was calculated by the following equation.
Chromaticity cut rate (%) = ((chromaticity before processing) −chromaticity after processing)) / (chromaticity before processing) × 100

焼却灰を用いた吸着処理は、1リットルのビーカーに排水1リットルを入れ、これに所定量の焼却灰を加え、ジャーテスターを用いて100rpmで3分間攪拌する。 In the adsorption treatment using incinerated ash, 1 liter of waste water is put into a 1 liter beaker, a predetermined amount of incinerated ash is added thereto, and the mixture is stirred at 100 rpm for 3 minutes using a jar tester.

活性汚泥処理は、35℃の湯煎に入れた3リットルのビーカーに排水1リットルと実排水処理設備の返送汚泥0.5リットルを入れ、エアーを吹き込みながら3時間攪拌した後、30分間静置した上澄み液を処理水とする。 In the activated sludge treatment, 1 liter of waste water and 0.5 liter of returned sludge from the actual waste water treatment facility were placed in a 3 liter beaker placed in a 35 ° C. water bath, stirred for 3 hours while blowing air, and then allowed to stand for 30 minutes. The supernatant liquid is treated water.

実施例 1〜7、及び比較例1〜3は、ECF漂白工程のD1−E/O−D2シーケンスから発生する酸性及びアルカリ性の排水を4:6の比率で混合した排水を原水として使用する。原水の水質は、pH8.0、COD631mg/l、色度472度である。 In Examples 1 to 7 and Comparative Examples 1 to 3, wastewater obtained by mixing acidic and alkaline wastewater generated from the D1-E / O-D2 sequence of the ECF bleaching process at a ratio of 4: 6 is used as raw water. The quality of raw water is pH 8.0, COD 631 mg / l, chromaticity 472 degrees.

実施例1
前記酸性排水とアルカリ性排水の混合排水にストーカー炉のサイクロン集塵機で補集した粒径45μm、比表面積2000cm2/gの焼却灰0.1質量%を添加し、ジャーテスターで3分間攪拌した後、30分静置した上澄み水を活性汚泥処理した処理水のCOD、色度、及びそれぞれのカット率を表1に記載した。
Example 1
After adding 0.1% by mass of incinerated ash having a particle diameter of 45 μm and a specific surface area of 2000 cm 2 / g collected to a mixed wastewater of the acidic wastewater and alkaline wastewater with a cyclone dust collector of a stalker furnace, the mixture was stirred for 3 minutes with a jar tester. Table 1 shows the COD, chromaticity, and respective cut rates of treated water obtained by treating the supernatant water that was allowed to stand for 30 minutes with activated sludge.

実施例2
焼却灰の添加量を0.05質量%とした以外は実施例1と同一に処理を行い、処理水のCOD、色度、及びそれぞれのカット率を表1に記載した。
Example 2
The treatment was performed in the same manner as in Example 1 except that the amount of incinerated ash added was 0.05% by mass, and the COD and chromaticity of the treated water and the respective cut rates are shown in Table 1.

実施例3
焼却灰の添加量を0.8質量%とした以外は実施例1と同一に処理を行い、処理水のCOD、色度、及びそれぞれのカット率を表1に記載した。
Example 3
The treatment was performed in the same manner as in Example 1 except that the amount of incinerated ash added was 0.8% by mass, and the COD and chromaticity of the treated water and the respective cut rates are shown in Table 1.

実施例4
焼却灰の添加量を2.0質量%とした以外は実施例1と同一に処理を行い、処理水のCOD、色度、及びそれぞれのカット率を表1に記載した。
Example 4
The treatment was performed in the same manner as in Example 1 except that the amount of incinerated ash added was 2.0% by mass, and the COD and chromaticity of the treated water and the respective cut rates are shown in Table 1.

実施例5
焼却灰の添加量を4.0質量%とした以外は実施例1と同一に処理を行い、処理水のCOD、色度、及びそれぞれのカット率を表1に記載した。
Example 5
The treatment was performed in the same manner as in Example 1 except that the amount of incinerated ash added was 4.0% by mass, and the COD and chromaticity of the treated water and the respective cut rates are shown in Table 1.

実施例6
前記酸性排水とアルカリ性排水の混合排水にストーカー炉の電気集塵機で補集した粒径2μm、比表面積4000cm2/gの焼却灰0.1質量%を添加し、ジャーテスターで3分間攪拌した後、30分静置した上澄み水を活性汚泥処理した処理水のCOD、色度、及びそれぞれのカット率を表1に記載した。
Example 6
After adding 0.1% by mass of incinerated ash having a particle size of 2 μm and a specific surface area of 4000 cm 2 / g collected in an electric dust collector of a stalker furnace to the mixed wastewater of the acidic wastewater and alkaline wastewater, and stirring for 3 minutes with a jar tester, Table 1 shows the COD, chromaticity, and respective cut rates of treated water obtained by treating the supernatant water that was allowed to stand for 30 minutes with activated sludge.

実施例7
前記酸性排水とアルカリ性排水の混合排水にストーカー炉のサイクロン集塵機で補集した粒径70μm、比表面積1200cm2/gの焼却灰5000ppmを添加し、ジャーテスターで3分間攪拌した後、30分静置した上澄み水を活性汚泥処理した処理水のCOD、色度、及びそれぞれのカット率を表1に記載した。
Example 7
After adding 5000 ppm incinerated ash with a particle size of 70 μm and a specific surface area of 1200 cm 2 / g collected by a cyclone dust collector in a stalker furnace to the mixed wastewater of the acidic wastewater and alkaline wastewater, the mixture is stirred for 3 minutes with a jar tester and left for 30 minutes. Table 1 shows the COD, chromaticity, and respective cut rates of treated water obtained by treating activated supernatant with the treated supernatant water.

比較例1
焼却灰による処理を省き、活性汚泥単独で処理した以外は実施例1と同一に処理を行い、処理水のCOD、色度、及びそれぞれのカット率を表1に記載した。
Comparative Example 1
The treatment with incinerated ash was omitted, and the treatment was performed in the same manner as in Example 1 except that the treatment was performed with activated sludge alone.

比較例2
前記酸性排水とアルカリ性排水の混合排水にストーカー炉の煤煙中から除去した粒径45μm、比表面積1800cm/gの焼却灰を0.1質量%添加し、ジャーテスターで3分間攪拌した後、30分間静置した処理水のCOD、色度、及びそれぞれのカット率を表1に記載した。
Comparative Example 2
0.1% by mass of incinerated ash having a particle size of 45 μm and a specific surface area of 1800 cm 2 / g removed from the smoke of the stalker furnace was added to the mixed wastewater of the acidic wastewater and alkaline wastewater, and stirred for 3 minutes with a jar tester. Table 1 shows the COD and chromaticity of the treated water that was allowed to stand for a minute, and the respective cut rates.

比較例3
灰の添加を活性汚泥処理後の排水に添加した以外は実施例5と同様にし、COD,色度及びそれぞれのカット率を表1に記載した。
Comparative Example 3
Table 1 shows the COD, the chromaticity, and the respective cut rates except that ash was added to the wastewater after the activated sludge treatment.

実施例1〜7で使用した焼却灰は流動床炉で800〜850℃で燃焼させたことにより建材原料として有効利用が可能となった。 The incinerated ash used in Examples 1 to 7 was burned at 800 to 850 ° C. in a fluidized bed furnace, so that it could be effectively used as a building material material.

Figure 2005334873
Figure 2005334873

Claims (5)

紙パルプ製造工程の元素状塩素を使用しない(ECF)漂白工程から発生する排水にボイラーあるいは焼却炉より排出される灰を混合した後、活性汚泥処理することを特徴とするECF漂白工程排水の処理方法。 ECF bleaching process wastewater treatment characterized by mixing activated sewage after mixing ash discharged from boiler or incinerator with wastewater generated from bleaching process without using elemental chlorine in paper pulp manufacturing process (ECF) Method. 前記灰の比表面積が2000cm2/g以上であることを特徴とする請求項1記載のECF漂白排水の処理方法。 The method for treating ECF bleaching wastewater according to claim 1, wherein the specific surface area of the ash is 2000 cm 2 / g or more. 前記灰は0.05質量%〜5質量%の範囲で排水に混合することを特徴とする請求項1又は2記載のECF排水の処理方法。 The method for treating ECF wastewater according to claim 1 or 2, wherein the ash is mixed with wastewater in a range of 0.05 mass% to 5 mass%. 灰と排水の混合はpH8以上で行う事を特徴とする請求項1〜3のいずれか1項記載のECF漂白工程排水の処理方法。 The method for treating ECF bleaching process wastewater according to any one of claims 1 to 3, wherein the mixing of ash and wastewater is carried out at a pH of 8 or more. 排水と混合処理した後、灰は800℃以上で燃焼し、再利用することを特徴とする請求項1〜請求項4のいずれか1項記載のECF漂白工程排水の処理方法。


The method for treating ECF bleaching process wastewater according to any one of claims 1 to 4, wherein the ash is burned at 800 ° C or higher after being mixed with wastewater and reused.


JP2005127919A 2004-04-30 2005-04-26 Method for treating waste water from elemental chlorine free bleaching process Withdrawn JP2005334873A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005127919A JP2005334873A (en) 2004-04-30 2005-04-26 Method for treating waste water from elemental chlorine free bleaching process

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004135209 2004-04-30
JP2005127919A JP2005334873A (en) 2004-04-30 2005-04-26 Method for treating waste water from elemental chlorine free bleaching process

Publications (1)

Publication Number Publication Date
JP2005334873A true JP2005334873A (en) 2005-12-08

Family

ID=35489003

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005127919A Withdrawn JP2005334873A (en) 2004-04-30 2005-04-26 Method for treating waste water from elemental chlorine free bleaching process

Country Status (1)

Country Link
JP (1) JP2005334873A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010012406A (en) * 2008-07-03 2010-01-21 Oji Paper Co Ltd Ash treatment method
JP2011050910A (en) * 2009-09-03 2011-03-17 Sumitomo Heavy Industries Environment Co Ltd Method and apparatus for biological wastewater treatment
CZ303567B6 (en) * 2010-12-17 2012-12-12 Vysoká škola bánská - Technická univerzita Ostrava Agent with combined activity and process for purifying and treating wastewater by making use of this agent

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010012406A (en) * 2008-07-03 2010-01-21 Oji Paper Co Ltd Ash treatment method
JP2011050910A (en) * 2009-09-03 2011-03-17 Sumitomo Heavy Industries Environment Co Ltd Method and apparatus for biological wastewater treatment
CZ303567B6 (en) * 2010-12-17 2012-12-12 Vysoká škola bánská - Technická univerzita Ostrava Agent with combined activity and process for purifying and treating wastewater by making use of this agent

Similar Documents

Publication Publication Date Title
US7166227B2 (en) Method of treating digested sludge
JP5637713B2 (en) Wastewater treatment method and treatment apparatus
JP2011072940A (en) Treatment method of reducing selenium-containing waste water
US7713422B2 (en) Black liquor treatment method
JP2006102743A (en) Method for black liquor treatment
JP6611480B2 (en) Sewage treatment method, phosphorus resource production method
JP2011078971A (en) Treatment method of black liquor
JP2019089040A (en) Friedel&#39;s salt removal method and Friedel&#39;s salt removal system
JP2005334873A (en) Method for treating waste water from elemental chlorine free bleaching process
KR20010052194A (en) Method for treating process water
JP2007070784A (en) Method for treating black liquor
JP2007196153A (en) Ash treatment method and apparatus
JP2006281150A (en) Refuse incinerator equipped with incineration ash reforming apparatus
JP4670004B2 (en) Method for treating selenium-containing water
WO1990013518A1 (en) Water purification process
JP5748418B2 (en) How to improve dewaterability of incinerated ash
JP2000263065A (en) Removal of phosphorus in industrial waste solution
JP2016168545A (en) Heavy metal treatment material and treatment method of heavy metal-containing fly ash washing liquid
JP2014155912A (en) System and method for treating selenium-containing drainage
WO2011020949A1 (en) Method of producing sodium hydroxide from an effluent of fiber pulp production
Gavrilescu ON ENVIRONMENTAL EFFECTS OF THE PULP AND PAPER MILLS.
JPH10249327A (en) Treatment of pulp waste water using fly ash
WO2020157385A1 (en) Precipitating organic pollutants from aqueous liquids
JP2005219021A (en) Treatment method for waste water from ecf bleaching process
Bérubé et al. Pulp and paper mill effluents

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070727

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20100413