JP2005334822A - Apparatus and method for treating wastewater - Google Patents

Apparatus and method for treating wastewater Download PDF

Info

Publication number
JP2005334822A
JP2005334822A JP2004160029A JP2004160029A JP2005334822A JP 2005334822 A JP2005334822 A JP 2005334822A JP 2004160029 A JP2004160029 A JP 2004160029A JP 2004160029 A JP2004160029 A JP 2004160029A JP 2005334822 A JP2005334822 A JP 2005334822A
Authority
JP
Japan
Prior art keywords
wastewater
concentration
concentrated
treatment
waste water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004160029A
Other languages
Japanese (ja)
Inventor
Takeshi Tachibana
武史 橘
Masahiko Miura
雅彦 三浦
Yasuko Yakou
靖子 矢古宇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2004160029A priority Critical patent/JP2005334822A/en
Publication of JP2005334822A publication Critical patent/JP2005334822A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a wastewater treatment apparatus capable of removing a treatment target substance contained in the wastewater efficiently and at a low cost, and a wastewater treatment method. <P>SOLUTION: First, in a concentration part 10, raw water 2 is concentrated and separated by a RO (reverse osmosis) membrane, and filtering-treated water 4a and concentrated wastewater 3 are obtained. The concentrated wastewater 3 is sent to an electrolytic treatment part 30 through a measuring part 20. Nextly, in the measuring part 20, a physicochemical amount of the concentrated wastewater 3 is measured and the measured result 5 is sent to the concentration part 10. Then, the degree of concentration in the concentration part 10 is adjusted so that the physicochemical amount of the concentrated wastewater 3 becomes constant based on the measured result 5. Next, in the electrolytic treatment part 30, the concentrated wastewater 3 is subjected to electrolytic treatment, thereby decomposing and removing the treatment target substance in the concentrated wastewater 3 to obtain electrolytically treated water 4b. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、生物処理を行わずに電気分解により排水を処理する排水処理装置及び排水処理方法に関し、特に、導電性ダイヤモンドを使用した排水処理装置及び排水処理方法に関する。   The present invention relates to a wastewater treatment apparatus and a wastewater treatment method for treating wastewater by electrolysis without performing biological treatment, and particularly relates to a wastewater treatment apparatus and a wastewater treatment method using conductive diamond.

従来、電気分解により排水を処理する方法が提案されている(特許文献1及び2参照)。特許文献1に記載の排水処理方法では、先ず、原水を活性汚泥等により生物学的に処理し、この生物学的処理水に含まれる懸濁物を精密濾過膜(MF膜)又は限外濾過膜(UF膜)等の分離膜により分離する。次に、分離膜を透過した塩分及び難分解性COD(Chemical Oxygen Demand:化学的酸素要求量)成分を含む膜透過水を、逆浸透膜(RO膜)に通し、RO膜を透過した膜透過水を処理水として取り出すと共に、RO膜を透過せず、塩分及び難分解性COD成分等が濃縮された濃縮排水を電気分解して、COD成分等を分解除去している。この電気分解法では、生物処理により除去しきれなかったBOD(Biochemical Oxygen Demand:生物化学的酸素要求量)成分、窒素、リン及び色素等も除去することができる。   Conventionally, methods for treating wastewater by electrolysis have been proposed (see Patent Documents 1 and 2). In the wastewater treatment method described in Patent Document 1, first, raw water is biologically treated with activated sludge or the like, and a suspension contained in the biologically treated water is subjected to a microfiltration membrane (MF membrane) or ultrafiltration. Separation is performed by a separation membrane such as a membrane (UF membrane). Next, the membrane permeate containing salt and permeabilized COD (Chemical Oxygen Demand) components that passed through the separation membrane was passed through the reverse osmosis membrane (RO membrane), and the membrane permeated through the RO membrane. Water is taken out as treated water, and concentrated wastewater that does not permeate the RO membrane and is enriched with salt and persistent COD components is electrolyzed to decompose and remove COD components and the like. This electrolysis method can also remove BOD (Biochemical Oxygen Demand) components, nitrogen, phosphorus, pigments, and the like that could not be removed by biological treatment.

また、特許文献2に記載の濃縮電気分解処理法においては、生物処理を行わずに、電気透析法、凍結濃縮法、逆浸透膜法及び蒸発法等によって排水を濃縮した後、電気分解処理を行うことにより、電気分解効率を向上させ、処理コストの低減を図っている。   Further, in the concentrated electrolysis method described in Patent Document 2, wastewater is concentrated by electrodialysis, freeze concentration, reverse osmosis membrane method, evaporation method, etc. without performing biological treatment, and then electrolysis is performed. By doing so, the electrolysis efficiency is improved and the processing cost is reduced.

一般に、電気分解により排水処理を行う場合、食塩等の電解質が必要であり、濃縮排水中の電解質の濃度は、電気分解処理の処理能力に影響する。排水中に含まれる成分の濃度を測定する方法としては、赤外線、可視光又は紫外線の吸光度計を使用する方法、液体クロマトグラフィを使用する方法及び全塩素分析計を使用する方法等がある(特許文献3参照)。   In general, when wastewater treatment is performed by electrolysis, an electrolyte such as sodium chloride is required, and the concentration of the electrolyte in the concentrated wastewater affects the treatment capacity of the electrolysis treatment. Methods for measuring the concentration of components contained in wastewater include a method using an infrared, visible or ultraviolet absorbance meter, a method using liquid chromatography, a method using a total chlorine analyzer, etc. (Patent Literature) 3).

特開平7−155759号公報JP-A-7-155759 特開2003−326263号公報JP 2003-326263 A 特開2003−279542号公報JP 2003-279542 A

しかしながら、前述の従来の技術には以下に示す問題点がある。即ち、特許文献1に記載の排水処理方法では、生物処理法と電気分解処理法とを組み合わせて処理しているため、生物処理ができない排水には適用できないという問題点がある。また、特許文献2に記載の濃縮電気分解処理法は、濃縮度を制御していないため、排水の濃度がばらついて、電気分解処理の効率が低下したり、処理対象物質が処理されずに排出されたりするという問題点がある。   However, the conventional techniques described above have the following problems. That is, the wastewater treatment method described in Patent Document 1 has a problem that it cannot be applied to wastewater that cannot be biologically treated because the treatment is performed by combining the biological treatment method and the electrolysis treatment method. In addition, since the concentration electrolysis method described in Patent Document 2 does not control the concentration, the concentration of the wastewater varies, and the efficiency of the electrolysis process decreases, or the substance to be processed is discharged without being processed. There is a problem of being.

更に、特許文献3に記載されているように、液体クロマトグラフィを使用して排水中の成分の濃度を測定する場合、測定時間が長いため、測定結果をフィードバックして、排水の濃度調節を行うことは難しい。一方、光吸光度計及び全塩素分析計は、測定時間が短く、オンライン的に活用することが可能であるが、測定結果と処理対象物質の濃度との間に相関関係がないことがあり、処理対象物質の濃度を測定することができないという問題点がある。   Furthermore, as described in Patent Document 3, when measuring the concentration of components in wastewater using liquid chromatography, the measurement time is long, so the measurement results are fed back to adjust the concentration of wastewater. Is difficult. On the other hand, photoabsorbance meters and total chlorine analyzers have a short measurement time and can be used online, but there may be no correlation between the measurement results and the concentration of the substance to be treated. There is a problem that the concentration of the target substance cannot be measured.

本発明はかかる問題点に鑑みてなされたものであって、排水中に含まれる処理対象物質を効率よく且つ低コストで除去することができる排水処理装置及び排水処理方法を提供することを目的とする。   The present invention has been made in view of such problems, and an object of the present invention is to provide a wastewater treatment apparatus and a wastewater treatment method capable of efficiently and inexpensively removing a target substance contained in wastewater. To do.

本願第1発明に係る排水処理装置は、排水を濃縮する濃縮部と、前記濃縮排水を電気分解処理する電解処理部と、前記濃縮部と前記電解処理部との間に設けられ前記濃縮排水の物理化学量を測定する測定部と、を有し、前記濃縮部は、前記濃縮排水の物理化学量が一定になるように、前記測定部の測定結果に基づいて前記排水の濃縮度を調節することを特徴とする。   A wastewater treatment apparatus according to the first invention of the present application is provided between a concentration unit for concentrating wastewater, an electrolytic treatment unit for electrolyzing the concentrated wastewater, and between the concentration unit and the electrolytic treatment unit. And a concentration unit that adjusts the concentration of the wastewater based on the measurement result of the measurement unit so that the physical chemical amount of the concentrated wastewater is constant. It is characterized by that.

本発明においては、排水を濃縮すると共に、その濃縮排水の物理化学量を測定して、その測定結果を基に濃縮排水に含まれる電解質及び処理対象物質の濃度が電気分解処理に最適になるように、濃縮部における濃縮度を調節しているため、電解質を添加しなくても、処理対象物質を極めて高効率で分解除去することができる。これにより、処理コストを低減することができる。   In the present invention, the wastewater is concentrated, and the physical chemical amount of the concentrated wastewater is measured. Based on the measurement result, the concentration of the electrolyte and the target substance contained in the concentrated wastewater is optimized for the electrolysis treatment. In addition, since the degree of concentration in the concentration part is adjusted, the substance to be treated can be decomposed and removed with extremely high efficiency without adding an electrolyte. Thereby, processing cost can be reduced.

この排水処理装置は、前記測定部において、導電率、イオン濃度及び光反射率からなる群から選択された少なくとも1種の物理化学量を測定することができる。これにより、電解質及び処理対象物質の濃度を容易に測定することができる。また、前記電解処理部には、導電性ダイヤモンド電極を設けることができる。これにより、電極表面に電解生成物が付着しにくくなり、また、付着した電解生成物の除去も容易になるため、メンテナンスコストを低減することができる。   In the wastewater treatment apparatus, the measurement unit can measure at least one physical chemical amount selected from the group consisting of conductivity, ion concentration, and light reflectance. Thereby, the density | concentration of electrolyte and a process target substance can be measured easily. Moreover, a conductive diamond electrode can be provided in the electrolytic treatment section. This makes it difficult for the electrolytic product to adhere to the electrode surface, and also facilitates the removal of the attached electrolytic product, thereby reducing the maintenance cost.

本願第2発明に係る排水処理方法は、排水を濃縮する工程と、前記濃縮排水の物理化学量を測定する工程と、前記濃縮排水を電気分解処理する工程と、を有し、前記物理化学量の測定結果に基づき、前記排水の濃縮度を調節して、電気分解処理する濃縮排水の物理化学量を一定にすることを特徴とする。   The waste water treatment method according to the second invention of the present application includes a step of concentrating waste water, a step of measuring a physical chemical amount of the concentrated waste water, and a step of electrolyzing the concentrated waste water, and the physical stoichiometry. Based on the measurement result, the concentration of the waste water is adjusted to make the physical chemical amount of the concentrated waste water to be electrolyzed constant.

また、前記物理化学量を測定する工程は、例えば、前記濃縮排水の導電率、イオン濃度及び光反射率からなる群から選択された少なくとも1種の物理化学量を測定する。更に、前記電解処理部において、導電性ダイヤモンド電極を使用して電気分解処理してもよい。   The step of measuring the physical stoichiometry measures, for example, at least one physical stoichiometry selected from the group consisting of conductivity, ion concentration and light reflectance of the concentrated waste water. Furthermore, in the electrolytic treatment section, electrolysis treatment may be performed using a conductive diamond electrode.

本発明によれば、排水を濃縮すると共に、この濃縮排水の物理化学量を測定して、その測定結果を基に、濃縮排水に含まれる電解質及び処理対象物質の濃度が電気分解処理に最適になるように、濃縮部における濃縮度を調節しているため、電解質を添加しなくても、処理対象物質を極めて高効率で分解除去することができ、処理コストを低減することができる。   According to the present invention, the wastewater is concentrated, and the physical chemical amount of the concentrated wastewater is measured. Based on the measurement result, the concentration of the electrolyte and the substance to be treated contained in the concentrated wastewater is optimal for the electrolysis treatment. Thus, since the degree of concentration in the concentration unit is adjusted, the substance to be processed can be decomposed and removed with extremely high efficiency without adding an electrolyte, and the processing cost can be reduced.

以下、本発明の実施形態に係る排水処理装置について、添付の図面を参照して具体的に説明する。先ず、本発明の第1の実施形態に係る排水処理装置について説明する。図1は本実施形態の排水処理装置を模式的に示す断面図である。図1に示すように、本実施形態の本実施形態の排水処理装置1には、未処理の排水2(以下、原水2という)を濃縮する濃縮部10と、濃縮部10で濃縮された排水(以下、濃縮排水3という)の物理化学量を測定する測定部20と、濃縮排水3を電気分解することにより、濃縮排水中に含まれる処理対象物質を分解除去して電解処理水4bを得る電解処理部30とが設けられている。   Hereinafter, a wastewater treatment apparatus according to an embodiment of the present invention will be specifically described with reference to the accompanying drawings. First, the waste water treatment apparatus according to the first embodiment of the present invention will be described. FIG. 1 is a cross-sectional view schematically showing a wastewater treatment apparatus of this embodiment. As shown in FIG. 1, the wastewater treatment apparatus 1 of this embodiment includes a concentration unit 10 that concentrates untreated wastewater 2 (hereinafter referred to as raw water 2), and wastewater that is concentrated in the concentration unit 10. The electrolysis water 4b is obtained by decomposing and removing the target substance contained in the concentrated waste water by electrolyzing the concentrated waste water 3 with the measuring unit 20 that measures the physical chemical amount (hereinafter referred to as the concentrated waste water 3). An electrolytic treatment unit 30 is provided.

この排水処理装置1における濃縮部10は、イオン及び微粒子は透過させず水のみを透過させる逆浸透膜(RO膜)12が、濃縮槽11内に配置されている。濃縮槽11はRO膜12により投入部11a及び貯留部11bとに分離されており、原水2は投入部11aに投入される。そして、投入部11aに投入された原水2は、RO膜12により分離され、イオン及び微粒子を含まない膜透過水は貯留部11bに貯留してフィルタリング処理水4aとして取り出される。一方、投入部11aに残留している排水は水分が減少して濃縮排水3となる。   In the concentration unit 10 in the wastewater treatment apparatus 1, a reverse osmosis membrane (RO membrane) 12 that does not transmit ions and fine particles but transmits only water is disposed in the concentration tank 11. The concentration tank 11 is separated into an input part 11a and a storage part 11b by an RO membrane 12, and the raw water 2 is input to the input part 11a. And the raw | natural water 2 thrown into the injection | throwing-in part 11a is isolate | separated by RO membrane 12, The membrane permeated water which does not contain ion and microparticles | fine-particles is stored in the storage part 11b, and is taken out as filtering process water 4a. On the other hand, the wastewater remaining in the charging unit 11a is reduced in moisture to become concentrated wastewater 3.

また、測定部20は、濃縮部10と電解処理部30との間に設けられており、物理化学量測定槽21及び物理化学量測定器22を備えている。測定部20においては、物理化学量測定槽21に貯留している濃縮排水3の電解質及び処理対象物質の濃度に由来する物理化学量が、物理化学量測定器22により測定される。この物理化学量測定器22としては、例えば、導電率測定器、イオン検出器及び光反射率測定器等を使用することができ、これらを組み合わせて使用することもできる。   The measuring unit 20 is provided between the concentrating unit 10 and the electrolytic processing unit 30 and includes a physical stoichiometric measuring tank 21 and a physical stoichiometric measuring device 22. In the measurement unit 20, the physical stoichiometry derived from the concentration of the electrolyte in the concentrated waste water 3 stored in the physical stoichiometry tank 21 and the substance to be processed is measured by the physical stoichiometry meter 22. As the physical stoichiometry meter 22, for example, a conductivity meter, an ion detector, a light reflectance meter, and the like can be used, and these can be used in combination.

更に、電解処理部30には、濃縮排水3が貯留する電解処理槽31と、この濃縮排水3を電気分解処理するための1対の電極板32とが設けられている。電解処理部30における電極板32としては、例えば、モリブデン等からなる基材上に、導電性ダイヤモンド膜を形成した導電性ダイヤモンド電極板を使用することができる。一般に、処理対象物質の濃度が高くなると、電極表面に電解生成物等が付着するが、ダイヤモンド表面には、本質的にダイヤモンド以外の物質が堆積しにくい。また、導電性ダイヤモンドは、機械的な耐久性が極めて優れており、更に、酸化電位も高い。このため、電極板に導電性ダイヤモンドを使用すると、機械的研磨及び逆バイアスパルス等の電気的手法で、容易に表面の堆積物を除去することができる。その結果、従来の電極を使用した排水処理装置に比べて、処理装置のメンテナンス費用を低減することができる。   Further, the electrolytic treatment unit 30 is provided with an electrolytic treatment tank 31 in which the concentrated waste water 3 is stored, and a pair of electrode plates 32 for electrolyzing the concentrated waste water 3. As the electrode plate 32 in the electrolytic treatment unit 30, for example, a conductive diamond electrode plate in which a conductive diamond film is formed on a base material made of molybdenum or the like can be used. In general, when the concentration of the substance to be processed increases, electrolytic products and the like adhere to the electrode surface, but substances other than diamond are essentially difficult to deposit on the diamond surface. In addition, conductive diamond is extremely excellent in mechanical durability and has a high oxidation potential. Therefore, when conductive diamond is used for the electrode plate, surface deposits can be easily removed by an electrical method such as mechanical polishing and reverse bias pulse. As a result, the maintenance cost of the treatment apparatus can be reduced as compared with a wastewater treatment apparatus using a conventional electrode.

次に、本発明の第1の実施形態に係る排水処理装置1の動作、即ち、排水処理装置1を使用した排水処理方法について説明する。図2は本実施形態の排水処理装置の動作を示すブロック図である。図2に示すように、先ず、濃縮部10において、RO膜12により原水2を分離濃縮する。具体的には、濃縮槽11の投入部11aに原水2を投入し、この原水2に浸透圧以上の圧力をかける。これにより、貯留部11bにイオン及び微粒子を含まない水分のみが移動し、投入部11aに残留している排水は濃縮される。一般に、RO膜により溶液の分離を行う場合、その溶液の溶質濃度によって定まる溶液自身がもつ化学ポテンシャル(浸透圧)以上の圧力をかけながら溶液をRO膜面に供給する。例えば、海水をRO膜により分離する場合は、少なくとも3×10Pa程度以上、実用性を考慮すると、5×10Pa程度以上の圧力が必要である。 Next, an operation of the waste water treatment apparatus 1 according to the first embodiment of the present invention, that is, a waste water treatment method using the waste water treatment apparatus 1 will be described. FIG. 2 is a block diagram showing the operation of the wastewater treatment apparatus of this embodiment. As shown in FIG. 2, first, the raw water 2 is separated and concentrated by the RO membrane 12 in the concentration unit 10. Specifically, the raw water 2 is charged into the charging part 11 a of the concentration tank 11, and a pressure equal to or higher than the osmotic pressure is applied to the raw water 2. Thereby, only the water | moisture content which does not contain ion and microparticles | fine-particles moves to the storage part 11b, and the waste_water | drain which remains in the injection | throwing-in part 11a is concentrated. In general, when a solution is separated by an RO membrane, the solution is supplied to the RO membrane surface while applying a pressure higher than the chemical potential (osmotic pressure) of the solution itself determined by the solute concentration of the solution. For example, when seawater is separated by an RO membrane, a pressure of at least about 3 × 10 6 Pa or more and about 5 × 10 6 Pa or more are necessary in consideration of practicality.

その後、RO膜12を透過して貯留部11bに貯留した膜透過水をフィルタリング処理水4aとして取り出すと共に、RO膜12を透過せず、投入部11a貯留している濃縮排水3を、測定部20を経由して電解処理部30に送る。このとき、測定部20において、濃縮排水3中の電解質及び処理対象物質の濃度に由来する物理化学量を測定し、その測定結果5を濃縮部10に送る。測定部20で測定される物理化学量としては、例えば、導電率、光反射率及び特定のイオンの濃度等がある。濃縮排水の導電率は、意図的に添加した電解質の濃度及び原水に含まれる処理対象物質以外の成分にも影響されるが、電気分解処理に直接関与するパラメータである。そして、導電率計を処理装置に組み込むことにより、測定結果を容易に濃縮工程にフィードバックすることができる。   Thereafter, the membrane permeated water that has permeated through the RO membrane 12 and stored in the storage portion 11b is taken out as filtered water 4a, and the concentrated wastewater 3 that does not pass through the RO membrane 12 and is stored in the input portion 11a Is sent to the electrolytic treatment unit 30. At this time, the measurement unit 20 measures the physical chemical amount derived from the concentration of the electrolyte in the concentrated waste water 3 and the substance to be treated, and sends the measurement result 5 to the concentration unit 10. Examples of the physicochemical quantity measured by the measurement unit 20 include conductivity, light reflectance, and the concentration of specific ions. The conductivity of the concentrated waste water is a parameter that is directly related to the electrolysis treatment, although it is affected by the concentration of the electrolyte added intentionally and components other than the target substance contained in the raw water. Then, by incorporating the conductivity meter into the processing device, the measurement result can be easily fed back to the concentration step.

また、光反射率の測定は、処理対象物質が粒子状になって原水中に存在していたり、着色又は発光したりする場合に適した手法である。この光反射率は、処理対象物質の濃度に直接関連する本質的な物理量と相関するため、濃度制御用パラメータに適している。更に、特定のイオンの濃度を検出する方法としては、イオン選択性電極又はイオン選択性デバイスを使用する方法がある。例えば、表面をダイヤモンドにより形成したイオン選択性センサは、そのセンシング部に吸着するイオン種の電気陰性度に依存して、ダイヤモンド表面の空乏層の厚さが変化し、抵抗率が変化する。このため、処理対象物質の濃度と相関関係があるイオン種がわかっている場合は、モニタする電位を変えることにより、種々の排水及び処理対象物質に適用することができる。なお、測定部20における濃縮排水3の物理化学量測定は、バッチ式及びフロー式のどちらで行ってもよい。   Further, the measurement of the light reflectance is a method suitable for the case where the substance to be treated is in the form of particles and is present in the raw water, or is colored or emits light. Since this light reflectance correlates with an essential physical quantity that is directly related to the concentration of the substance to be processed, it is suitable as a parameter for concentration control. Furthermore, as a method for detecting the concentration of specific ions, there is a method using an ion selective electrode or an ion selective device. For example, in an ion selective sensor whose surface is made of diamond, the thickness of the depletion layer on the diamond surface changes and the resistivity changes depending on the electronegativity of the ion species adsorbed on the sensing part. For this reason, when ionic species having a correlation with the concentration of the substance to be treated is known, it can be applied to various wastewaters and substances to be treated by changing the monitored potential. Note that the physical stoichiometry of the concentrated waste water 3 in the measurement unit 20 may be performed by either a batch method or a flow method.

そして、濃縮部10は、測定部20から送られた測定結果5を基に、原水2の濃縮度を調節する。濃縮部10における濃縮度調節方法としては、原水2にかける圧力を調節する方法等がある。例えば、濃縮部10における濃縮度を示す指標に水の濃縮率を使用し、デフォルトの状態における水の濃縮率を50%に設定する。そして、測定部20から適切な濃縮度であることを示す信号が送られている間は、原水2にかける圧力はデフォルトの状態を保持し、測定部20から濃縮し過ぎであることを示す信号が送られた場合は、原水2にかける圧力を下げる。一方、測定部20から濃縮不足であることを示す信号が送られた場合は、原水2にかける圧力を上げる。   Then, the concentration unit 10 adjusts the concentration of the raw water 2 based on the measurement result 5 sent from the measurement unit 20. As a method for adjusting the degree of concentration in the concentration unit 10, there is a method for adjusting the pressure applied to the raw water 2. For example, the concentration rate of water is used as an index indicating the degree of concentration in the concentration unit 10, and the concentration rate of water in the default state is set to 50%. And while the signal which shows that it is an appropriate enrichment is sent from the measurement part 20, the pressure applied to the raw | natural water 2 maintains a default state, and the signal which shows that it is concentrating too much from the measurement part 20 Is sent, the pressure applied to the raw water 2 is reduced. On the other hand, when a signal indicating that the concentration is insufficient is sent from the measurement unit 20, the pressure applied to the raw water 2 is increased.

次に、電解処理部30において、濃縮排水3を電気分解処理する。具体的には、先ず、濃縮排水3を電解処理槽31に貯留する。次に、この貯留された濃縮排水3中に1対の電極板32を挿入して電気分解処理を行い、濃縮排水3中の処理対象物質を分解除去する。その際、電気分解用の電極板としては、導電性ダイヤモンド電極板を使用することが好ましい。導電性ダイヤモンド電極の表面は、一般に使用されている金属製電極の表面よりも電解生成物が付着しにくく、また、付着した電解生成物の除去も容易であるため、メンテナンスコストを低減することができる。その後、電解処理槽31において電気分解処理を行った電解処理水4bを取り出して、処理を完了する。   Next, in the electrolytic treatment unit 30, the concentrated drainage 3 is electrolyzed. Specifically, first, the concentrated drainage 3 is stored in the electrolytic treatment tank 31. Next, a pair of electrode plates 32 is inserted into the stored concentrated waste water 3 to perform electrolysis, and the target substance in the concentrated waste water 3 is decomposed and removed. In that case, it is preferable to use a conductive diamond electrode plate as an electrode plate for electrolysis. The surface of the conductive diamond electrode is less likely to deposit electrolytic products than the surface of commonly used metal electrodes, and it is easier to remove the deposited electrolytic products, which can reduce maintenance costs. it can. Thereafter, the electrolytically treated water 4b that has been electrolyzed in the electrolytic treatment tank 31 is taken out to complete the treatment.

本発明の排水処理装置1においては、濃縮排水中の物理化学量を測定し、その結果を基に、濃縮排水中に含まれる電解質及び被処理物質の濃度が電気分解処理に最適な範囲になるように、濃縮度を調節しているため、処理対象物質を極めて高効率で分解除去することができる。また、原水をRO膜等により濃縮し、電解質成分濃度を高めた濃縮排水を電気分解処理しているため、電解質を投入する必要がない。その結果、従来の排水処理装置に比べて、処理コストを低減することができる。   In the wastewater treatment apparatus 1 of the present invention, the physical chemical amount in the concentrated wastewater is measured, and based on the result, the concentration of the electrolyte and the substance to be treated contained in the concentrated wastewater falls within the optimum range for the electrolysis treatment. Thus, since the degree of concentration is adjusted, the target substance can be decomposed and removed with extremely high efficiency. In addition, since the concentrated drainage water is concentrated by using an RO membrane or the like and the concentration of the electrolyte component is increased, it is not necessary to supply an electrolyte. As a result, the processing cost can be reduced as compared with the conventional waste water treatment apparatus.

なお、本実施形態の排水処理装置1においては、RO膜12により原水を濃縮しているが、本発明はこれに限定されるものではなく、蒸発法等の逆浸透膜法以外の濃縮方法を適用することもできる。   In the wastewater treatment apparatus 1 of this embodiment, the raw water is concentrated by the RO membrane 12, but the present invention is not limited to this, and a concentration method other than the reverse osmosis membrane method such as an evaporation method is used. It can also be applied.

また、本実施形態の排水処理装置1においては、例えば、測定部20と電解処理部30との間の配管にバルブを設け、物理化学量が所定の値以上である濃縮排水のみを電解処理部30に送り、物理化学量が所定の値未満で濃縮不足の排水は濃縮部10に戻して、再濃縮することにより、濃縮排水3中の電解質及び被処理物質の濃度が電気分解処理に最適な範囲になるように調節することもできる。   Further, in the wastewater treatment apparatus 1 of the present embodiment, for example, a valve is provided in a pipe between the measurement unit 20 and the electrolytic treatment unit 30, and only the concentrated wastewater whose physical chemical amount is a predetermined value or more is electrolytically treated. 30, the waste water that is less than the predetermined value in physical and chemical quantity is returned to the concentration unit 10 and is re-concentrated, so that the concentration of the electrolyte and the substance to be treated in the concentrated waste water 3 is optimal for the electrolysis treatment. It can also be adjusted to be in range.

更に、本実施形態の排水処理装置1は、下水分離排水、半導体デバイス製造工程から排出される現像廃液、酒造工場から排出される有機物含有排水等の他、生物処理することができないフェノール含有排水、洗濯工場から出る有機リン及び窒素含有排水、織物工場から流される着色排水、食品工業事業所から排出される難分離性有機物含有排水及びパルプ工場から排出される塩素含有排水等にも適用することができる。   Furthermore, the wastewater treatment apparatus 1 of the present embodiment includes sewage separation wastewater, development waste liquid discharged from a semiconductor device manufacturing process, organic substance-containing wastewater discharged from a brewery factory, etc., phenol-containing wastewater that cannot be biologically treated, It can be applied to organic phosphorus and nitrogen-containing wastewater from laundry factories, colored wastewater from textile factories, difficult-to-separate organic matter-containing wastewater from food industry, and chlorine-containing wastewater from pulp factories. it can.

以下、本発明の実施例の効果について、本発明の範囲から外れる比較例と比較して説明する。本発明の実施例1として、図1に示す排水処理装置1を使用し、NH−N濃度が2g/リットルである下水分離排水40リットルを処理した。先ず、濃縮部10においてRO膜(日東電工社製 NTR759)を使用して、下水分離排水を5倍に濃縮した。このとき、測定部20において導電率計により濃縮排水の導電率を測定し、電解質及び被処理物質の濃度が原水の5倍になるように濃縮度を調節した。次に、電解処理部30において、この濃縮排水中に、直径が約50mmの円板状のモリブデン基材の表面に導電性ダイヤモンド膜を気相合成した1対のダイヤモンド電極板を、導電性ダイヤモンド膜が形成されている面が相互に対向するようにして配置し、この1対のダイヤモンド電極板を夫々陰極及び陽極にして電気分解処理した。このとき、電極間の距離は5mmに保持し、電気分解処理時の通電量は2.0Aになるように調節した。また、電気分解処理を行っている間は、濃縮排水を常時撹拌し、電極間を約0.03リットル/分の通水速度で循環させた。そして、1時間毎に電解処理槽31の出口で処理水を採取し、その水質を分析した。 Hereinafter, the effect of the Example of this invention is demonstrated compared with the comparative example which remove | deviates from the scope of the present invention. As Example 1 of the present invention, the wastewater treatment apparatus 1 shown in FIG. 1 was used, and 40 liters of sewage separation wastewater having an NH 4 —N concentration of 2 g / liter was treated. First, the RO membrane (NTR759, manufactured by Nitto Denko Corporation) was used in the concentration unit 10 to concentrate the sewage separation wastewater five times. At this time, the conductivity of the concentrated wastewater was measured with a conductivity meter in the measuring unit 20, and the concentration was adjusted so that the concentration of the electrolyte and the material to be treated was five times that of the raw water. Next, in the electrolytic treatment unit 30, a pair of diamond electrode plates, in which a conductive diamond film is vapor-phase synthesized on the surface of a disk-shaped molybdenum substrate having a diameter of about 50 mm, is formed in the concentrated waste water. The film-formed surfaces were arranged so as to face each other, and this pair of diamond electrode plates was subjected to electrolysis treatment using a cathode and an anode, respectively. At this time, the distance between the electrodes was maintained at 5 mm, and the amount of energization during the electrolysis treatment was adjusted to 2.0A. Further, during the electrolysis treatment, the concentrated waste water was constantly stirred and circulated between the electrodes at a water flow rate of about 0.03 liter / min. And the treated water was extract | collected at the exit of the electrolytic treatment tank 31 every hour, and the water quality was analyzed.

また、比較例1として、NH−N濃度が2g/リットルである下水分離排水を、濃縮せずに原水のまま、実施例1と同様の方法及び条件で電気分解処理を行い、1時間毎に電解処理槽出口で処理水を採取し、その水質を分析した。図3は横軸に電気分解処理時間をとり、縦軸にNH−N濃度をとって、実施例1及び比較例1において電気分解処理した排水の残留NH−N濃度を示すグラフ図である。 Further, as Comparative Example 1, sewage separation wastewater having an NH 4 —N concentration of 2 g / liter is subjected to an electrolysis treatment in the same manner and under the same conditions as in Example 1 while keeping the raw water without concentrating. The treated water was collected at the outlet of the electrolytic treatment tank and the water quality was analyzed. Figure 3 takes the electrolysis treatment time on the horizontal axis and the vertical axis represents the NH 4 -N concentration, a graph showing the residual NH 4 -N concentration of the electrolysis treated effluent in Example 1 and Comparative Example 1 is there.

図3に示すように、原水を5倍に濃縮した後で電気分解処理した実施例1の処理水は、5時間の処理で、NH−N濃度が200mg/リットル以下に減少した。一方、濃縮せずに原水のまま電気分解処理した比較例1の処理水は、NH−N濃度を200mg/リットル以下にするために、4時間の処理が必要であった。この結果を、原水で比較すると、実施例1の方法では40Lの排水中を5時間で処理することができるのに対し、比較例1の方法では20時間を要することになる。よって、実施例1の方法では、原水を濃縮せずに電気分解処理する場合に比べて、処理時間を1/4程度に短縮することができた。 As shown in FIG. 3, the treated water of Example 1, which was electrolyzed after concentrating the raw water 5 times, the NH 4 —N concentration decreased to 200 mg / liter or less after 5 hours of treatment. On the other hand, the treated water of Comparative Example 1, which was electrolyzed without concentrating the raw water, had to be treated for 4 hours in order to make the NH 4 —N concentration 200 mg / liter or less. Comparing this result with raw water, the method of Example 1 can treat 40 L of waste water in 5 hours, whereas the method of Comparative Example 1 requires 20 hours. Therefore, in the method of Example 1, the treatment time could be shortened to about ¼ compared to the case of performing the electrolysis treatment without concentrating the raw water.

次に、実施例2として、図1に示す排水処理装置を使用し、半導体デバイス製造工程から排出されたフォトレジスト及びTMAH(Tetramethylammonium hydroxide:水酸化テトラメチルアンモニウム)を含む現像廃液を処理した。処理前の現像廃液の分析したところ、TMAH濃度が1.3質量%、フォトレジストに由来する波長が550nmの光の反射率が70%、Na濃度が23ppm、Fe濃度が6ppm、Al濃度が5ppmであった。先ず、測定部20において550nmの波長の光の反射率を測定しながら、濃縮部10おいて現像廃液を、実施例1と同じRO膜により550nmの波長の光の反射率が81%以上になるまで濃縮した。その後、電解処理部30において、200リットルの濃縮排水を、通電量を5A、電極間電位を30Vとして、5時間電気分解処理した。そして、回収した処理水のTMAH濃度をイオンクロマトグラフィにより分析したところ、検出限界以下に減少していた。   Next, as Example 2, the wastewater treatment apparatus shown in FIG. 1 was used to treat the development waste solution containing photoresist and TMAH (Tetramethylammonium hydroxide) discharged from the semiconductor device manufacturing process. Analysis of the development waste before processing revealed that the TMAH concentration was 1.3% by mass, the reflectance of light having a wavelength of 550 nm derived from the photoresist was 70%, the Na concentration was 23 ppm, the Fe concentration was 6 ppm, and the Al concentration was 5 ppm. Met. First, while measuring the reflectance of light having a wavelength of 550 nm in the measurement unit 20, the developer waste solution in the concentration unit 10 has a reflectance of light having a wavelength of 550 nm of 81% or more by the same RO film as in Example 1. Until concentrated. Thereafter, in the electrolytic treatment unit 30, 200 liters of concentrated waste water was electrolyzed for 5 hours with an energization amount of 5A and an interelectrode potential of 30V. And when the TMAH density | concentration of collect | recovered treated water was analyzed by the ion chromatography, it was reducing below the detection limit.

次に、実施例3として、図1に示す排水処理装置を使用し、酒造工場から排出される有機物含有排水を処理した。この排水中に含まれる有機物は種々雑多であるが、その濃度は、TOC(Total Organic Carbon:全有機炭素量)換算で平均800mg/リットルであった。先ず、この排水に電気分解処理を促進する塩酸を添加した後、実施例1と同じRO膜が設置された濃縮部10で3倍に濃縮した。このとき、測定部20には塩素イオン感応型センサを設置し、電解処理部30に送られる濃縮排水中の塩酸濃度が0.001mol/リットルになるように調節した。その後、電解処理部30において、前述の実施例1と同じ条件で、平均滞留時間を50分にして電気分解処理を行った。その結果、電解処理槽31の出口における処理水のTOC換算濃度は4mg/リットルとなり、排水中の有機物はほとんど除去されていた。   Next, as Example 3, the wastewater treatment apparatus shown in FIG. 1 was used to treat the organic matter-containing wastewater discharged from the brewery factory. The organic matter contained in the wastewater is various, but its concentration was an average of 800 mg / liter in terms of TOC (Total Organic Carbon). First, hydrochloric acid that promotes electrolysis was added to the wastewater, and then concentrated three times in the concentration unit 10 where the same RO membrane as in Example 1 was installed. At this time, a chlorine ion sensitive sensor was installed in the measurement unit 20 and the hydrochloric acid concentration in the concentrated waste water sent to the electrolytic treatment unit 30 was adjusted to 0.001 mol / liter. Thereafter, in the electrolytic treatment unit 30, electrolysis treatment was performed under the same conditions as in Example 1 described above with an average residence time of 50 minutes. As a result, the TOC equivalent concentration of the treated water at the outlet of the electrolytic treatment tank 31 was 4 mg / liter, and organic substances in the waste water were almost removed.

本発明の第1の実施形態の排水処理装置を模式的に示す断面図である。It is sectional drawing which shows typically the waste water treatment apparatus of the 1st Embodiment of this invention. 本発明の第1の実施形態の排水処理装置の動作を示すブロック図である。It is a block diagram which shows operation | movement of the waste water treatment equipment of the 1st Embodiment of this invention. 横軸に電気分解処理時間をとり、縦軸にNH−N濃度をとって、実施例1及び比較例1において電気分解処理した排水の残留NH−N濃度を示すグラフ図である。Take the electrolysis treatment time on the horizontal axis and the vertical axis represents the NH 4 -N concentration is a graph showing the residual NH 4 -N concentration of the electrolysis treated effluent in Example 1 and Comparative Example 1.

符号の説明Explanation of symbols

1、;排水処理装置
2;原水
3;濃縮排水
4a、4b;処理水
5;測定結果
10;濃縮部
11;濃縮槽
11a;投入部
11b;貯留部
12;RO膜
20;測定部
21;物理化学量測定槽
22;物理化学量測定器
30;電解処理部
31;電解処理槽
32;電極板
DESCRIPTION OF SYMBOLS 1,; Waste water treatment apparatus 2; Raw water 3; Concentrated waste water 4a, 4b; Treated water 5; Measurement result 10; Concentration part 11; Concentration tank 11a; Input part 11b; Storage part 12; RO membrane 20; Stoichiometric measuring tank 22; Physical stoichiometric measuring instrument 30; Electrolytic processing part 31; Electrolytic processing tank 32; Electrode plate

Claims (6)

排水を濃縮する濃縮部と、前記濃縮排水を電気分解処理する電解処理部と、前記濃縮部と前記電解処理部との間に設けられ前記濃縮排水の物理化学量を測定する測定部と、を有し、前記濃縮部は、前記濃縮排水の物理化学量が一定になるように、前記測定部の測定結果に基づいて前記排水の濃縮度を調節することを特徴とする排水処理装置。 A concentration unit for concentrating waste water, an electrolytic treatment unit for electrolyzing the concentrated waste water, and a measurement unit for measuring a physical stoichiometry of the concentrated waste water provided between the concentration unit and the electrolytic treatment unit. And the concentration unit adjusts the concentration of the wastewater based on the measurement result of the measurement unit so that the physical chemical amount of the concentrated wastewater is constant. 前記測定部において、導電率、イオン濃度及び光反射率からなる群から選択された少なくとも1種の物理化学量が測定されることを特徴とする請求項1に記載の排水処理装置。 The wastewater treatment apparatus according to claim 1, wherein the measurement unit measures at least one physical chemical amount selected from the group consisting of conductivity, ion concentration, and light reflectance. 前記電解処理部には、導電性ダイヤモンド電極が設けられていることを特徴とする請求項1又は2に記載の排水処理装置。 The wastewater treatment apparatus according to claim 1, wherein the electrolytic treatment part is provided with a conductive diamond electrode. 排水を濃縮する工程と、前記濃縮排水の物理化学量を測定する工程と、前記濃縮排水を電気分解処理する工程と、を有し、前記物理化学量の測定結果に基づき、前記排水の濃縮度を調節して、電気分解処理する濃縮排水の物理化学量を一定にすることを特徴とする排水処理方法。 A step of concentrating the wastewater, a step of measuring the physical chemical amount of the concentrated wastewater, and a step of electrolyzing the concentrated wastewater, and based on the measurement result of the physical chemical amount, the concentration of the wastewater The waste water treatment method characterized by adjusting the physical chemical amount of the concentrated waste water to be electrolyzed by adjusting the amount of water. 前記物理化学量を測定する工程は、前記濃縮排水の導電率、イオン濃度及び光反射率からなる群から選択された少なくとも1種の物理化学量を測定することを特徴とする請求項4に記載の排水処理方法。 5. The step of measuring the physical stoichiometry measures at least one kind of physical stoichiometry selected from the group consisting of conductivity, ion concentration and light reflectance of the concentrated waste water. Wastewater treatment method. 導電性ダイヤモンド電極を使用して電気分解処理することを特徴とする請求項4又は5に記載の排水処理方法。 The wastewater treatment method according to claim 4 or 5, wherein the electrolysis treatment is performed using a conductive diamond electrode.
JP2004160029A 2004-05-28 2004-05-28 Apparatus and method for treating wastewater Pending JP2005334822A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004160029A JP2005334822A (en) 2004-05-28 2004-05-28 Apparatus and method for treating wastewater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004160029A JP2005334822A (en) 2004-05-28 2004-05-28 Apparatus and method for treating wastewater

Publications (1)

Publication Number Publication Date
JP2005334822A true JP2005334822A (en) 2005-12-08

Family

ID=35488954

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004160029A Pending JP2005334822A (en) 2004-05-28 2004-05-28 Apparatus and method for treating wastewater

Country Status (1)

Country Link
JP (1) JP2005334822A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008212816A (en) * 2007-03-02 2008-09-18 West Japan Railway Technos Corp Wastewater treatment apparatus and method
KR20190016731A (en) 2017-08-09 2019-02-19 인더스트리아 가부시키가이샤 Apparatus, method and system for treating water

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008212816A (en) * 2007-03-02 2008-09-18 West Japan Railway Technos Corp Wastewater treatment apparatus and method
KR20190016731A (en) 2017-08-09 2019-02-19 인더스트리아 가부시키가이샤 Apparatus, method and system for treating water

Similar Documents

Publication Publication Date Title
Lee et al. Ozone and biofiltration as an alternative to reverse osmosis for removing PPCPs and micropollutants from treated wastewater
Galambos et al. High organic content industrial wastewater treatment by membrane filtration
KR101904507B1 (en) Method of membrane-coupled electrochemical advanced oxidation and its application device for water purification and water purification system using of the same
Kappel et al. Impacts of NF concentrate recirculation on membrane performance in an integrated MBR and NF membrane process for wastewater treatment
Liikanen et al. Selection of NF membrane to improve quality of chemically treated surface water
KR101641083B1 (en) High quality industrial reuse water supply system using UF/RO membrane for sewage/wastewater effluent water
Ma et al. Evaluation of a submerged membrane bioreactor (SMBR) coupled with chlorine disinfection for municipal wastewater treatment and reuse
Yen et al. Performance of electrodialysis reversal and reverse osmosis for reclaiming wastewater from high-tech industrial parks in Taiwan: A pilot-scale study
CN106564990A (en) Low energy reverse osmosis process
US9611160B2 (en) Wastewater treatment apparatus and method
Lipp et al. Improved elimination of organic micropollutants by a process combination of membrane bioreactor (MBR) and powdered activated carbon (PAC)
Ratnaweera et al. Comparison of the coagulation behavior of different Norwegian aquatic NOM sources
CA2879774A1 (en) Water treatment device
Unal et al. Combined electrocoagulation and electrooxidation process in electro membrane bioreactor to improve membrane filtration effectiveness
CN104529018A (en) Process for treating and recycling printing and dyeing wastewater by virtue of electro-coagulation
KR20190088180A (en) Seawater Desalination Plant and Control Method for the same
JP3800449B2 (en) Method and apparatus for treating organic wastewater containing high concentrations of salts
Son et al. Combination of electrolysis technology with membrane for wastewater treatment in rural communities
Kumar et al. Membrane-integrated hybrid bioremediation of industrial wastewater: a continuous treatment and recycling approach
Lee Effects of operating parameters on the removal performance of electrodialysis for treating wastewater containing cadmium
Yeon et al. Integrating electrochemical processes with electrodialysis reversal and electro-oxidation to minimize COD and TN at wastewater treatment facilities of power plants
Yim et al. Pilot-scale evaluation of an integrated membrane system for domestic wastewater reuse on islands
JP2005334822A (en) Apparatus and method for treating wastewater
Garnier et al. Toward the reduction of water consumption in the vegetable-processing industry through membrane technology: case study of a carrot-processing plant
JP2006281174A (en) Method, apparatus and system for recycling wastewater