JP2005334716A - Method for treating exhaust gas - Google Patents

Method for treating exhaust gas Download PDF

Info

Publication number
JP2005334716A
JP2005334716A JP2004154131A JP2004154131A JP2005334716A JP 2005334716 A JP2005334716 A JP 2005334716A JP 2004154131 A JP2004154131 A JP 2004154131A JP 2004154131 A JP2004154131 A JP 2004154131A JP 2005334716 A JP2005334716 A JP 2005334716A
Authority
JP
Japan
Prior art keywords
exhaust gas
treatment agent
bag filter
filter
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004154131A
Other languages
Japanese (ja)
Inventor
Yoshihiko Mochizuki
美彦 望月
Akio Yuki
明夫 結城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Plant Technologies Ltd
Original Assignee
Hitachi Plant Technologies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Plant Technologies Ltd filed Critical Hitachi Plant Technologies Ltd
Priority to JP2004154131A priority Critical patent/JP2005334716A/en
Publication of JP2005334716A publication Critical patent/JP2005334716A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for treating exhaust gas capable of stably maintaining the removal rate of harmful gas even just after dust removal operation with a bag filter. <P>SOLUTION: In this method for treating exhaust gas, a treating agent is injected from a treating tank 36 into exhaust gas containing harmful gas which passes through an inlet flue 12, thereafter, the exhaust gas is made to pass through the bag filter 10 of a poststage and a reactant between harmful gas and the treating agent is collected by the bag filter 10. Therein, the quantity of injection of the treating agent is temporarily increased by being linked with dust removal operation in the bag filter 10. The quantity of injection of the treating agent is controlled by increasing or decreasing the number of rotation of a rotary valve 38 disposed on the bottom part of the treating tank 36 by the use of a controller 34. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は排ガスの処理方法に係り、特に有害ガスを含む排ガスに処理剤を注入した後に、当該排ガスを後段のバグフィルタに通すようにした排ガスの処理方法に関する。   The present invention relates to an exhaust gas treatment method, and more particularly to an exhaust gas treatment method in which a treatment agent is injected into exhaust gas containing harmful gas, and then the exhaust gas is passed through a bag filter at a subsequent stage.

石炭や石油を燃料とするボイラや都市ごみ焼却炉から排出される燃焼排ガス中には硫黄酸化物(SOx)や塩酸(HCl)等の酸性ガスやダイオキシンなどが含まれている。これらの有害ガスを排ガスから除去する方法として、排ガスに消石灰や活性炭などの処理剤を注入した後、当該排ガスをバグフィルタに通す技術が知られている(例えば特許文献1又は特許文献2参照)。   Combustion exhaust gas discharged from boilers and municipal waste incinerators that use coal or petroleum as fuel contains acidic gases such as sulfur oxides (SOx) and hydrochloric acid (HCl), dioxins, and the like. As a method for removing these harmful gases from the exhaust gas, a technique is known in which a treatment agent such as slaked lime or activated carbon is injected into the exhaust gas, and then the exhaust gas is passed through a bag filter (see, for example, Patent Document 1 or Patent Document 2). .

処理剤の注入量は除去対象物である有害ガスに対して、通常反応当量以上とする。例えば処理剤として消石灰を使用する場合には、平均粒径が数μmの粉状の消石灰を硫黄酸化物や塩酸等の有害ガスに対して反応当量が2〜3倍程度となるように排ガスに注入する。排ガスの煙道等から注入された消石灰の一部は後段のバグフィルタに到達する前に排ガス中の有害ガスと反応する。この際の反応は主に粉状の消石灰の表面近傍で行われる。したがって、注入された粉状の消石灰は、その内部に未反応の消石灰が残存して反応余力を持った反応物としてバグフィルタに到達し、バグフィルタの濾布に捕捉される。このため、バグフィルタの濾布には反応余力を持った消石灰が次第に堆積して、残存する有害ガスとの反応が濾布に堆積した消石灰との間で進行することになり、有害ガスの除去性能が時間とともに徐々に向上する。
特開平7−204432号公報 特開平8−117549号公報
The amount of treatment agent injected is usually equal to or greater than the reaction equivalent with respect to the harmful gas that is the removal target. For example, when using slaked lime as a treatment agent, powdery slaked lime with an average particle size of several μm is used as an exhaust gas so that the reaction equivalent is about 2 to 3 times that of harmful gases such as sulfur oxide and hydrochloric acid. inject. A part of the slaked lime injected from the flue of the exhaust gas reacts with harmful gas in the exhaust gas before reaching the subsequent bag filter. The reaction at this time is mainly performed near the surface of the powdery slaked lime. Therefore, the injected powdered slaked lime reaches the bag filter as a reaction product having unreacted slaked lime remaining therein and having a reaction capacity, and is captured by the filter cloth of the bag filter. For this reason, slaked lime with reaction capacity gradually accumulates on the filter cloth of the bag filter, and the reaction with the remaining harmful gas proceeds with the slaked lime deposited on the filter cloth, thereby removing harmful gas. Performance gradually improves over time.
JP-A-7-204432 JP-A-8-117549

しかしながら、バグフィルタでは濾布表面に捕集したダストの堆積量が多くなると通気抵抗が大きくなるので、付着したダストを定期的に払い落としている。このダストの払い落とし操作時に、反応余力を持った消石灰もダストとして濾布表面から払い落とされる。その結果、ダストの払い落とし操作の直後は、濾布表面での有害ガスと消石灰との反応が期待しにくくなり、バグフィルタ通過後の排ガスの有害ガス濃度が一時的に増大することが判明した。このような問題点は処理剤として粉状の消石灰を使用した場合に限らず、粉末活性炭などの粉状の処理剤を排ガスに注入するようにした処理方法では共通していた。   However, in the bag filter, since the ventilation resistance increases as the amount of accumulated dust collected on the filter cloth surface increases, the adhered dust is periodically removed. During the dust removal operation, slaked lime having a reaction capacity is also removed from the filter cloth surface as dust. As a result, immediately after the dust removal operation, it became difficult to expect a reaction between harmful gas and slaked lime on the filter cloth surface, and it was found that the harmful gas concentration of the exhaust gas after passing through the bag filter temporarily increased. . Such a problem is not limited to the case where powdered slaked lime is used as a treatment agent, but is common in treatment methods in which a powdery treatment agent such as powdered activated carbon is injected into exhaust gas.

本発明の目的は上記従来技術の問題点を改善し、バグフィルタでのダストの払い落とし操作の直後においても、有害ガスの除去率を安定に維持することが可能な排ガスの処理方法を提供することにある。   The object of the present invention is to improve the above-mentioned problems of the prior art and provide an exhaust gas treatment method capable of stably maintaining the harmful gas removal rate even immediately after the dust dusting operation with the bag filter. There is.

上記目的を達成するために、本発明に係る排ガスの処理方法は有害ガスを含む排ガスに処理剤を注入した後に、当該排ガスを後段のバグフィルタに通し、前記有害ガスと処理剤との反応物を前記バグフィルタによって捕集するようにした排ガスの処理方法において、前記バグフィルタにおけるダスト払い落とし操作に連動させて、前記処理剤の注入量を一時的に増加させることを特徴とする。この場合、一時的に増加させる際の処理剤の注入量を定常時の1.5〜2.5倍にすることが好ましい。また、一時的に増加させる時間帯はダスト払い落とし操作の開始前1分間から開始後2分間の間に設定することが望ましい。   In order to achieve the above object, the exhaust gas treatment method according to the present invention injects a treatment agent into exhaust gas containing harmful gas, and then passes the exhaust gas through a bag filter at a subsequent stage to react the harmful gas with the treatment agent. In the exhaust gas treatment method in which the bag filter is used to collect gas, the amount of the treatment agent injected is temporarily increased in conjunction with a dust removal operation in the bag filter. In this case, it is preferable that the amount of the treatment agent injected when temporarily increasing is 1.5 to 2.5 times the steady amount. Moreover, it is desirable to set the time zone to be temporarily increased between 1 minute before the start of the dust removal operation and 2 minutes after the start.

バグフィルタにおけるダスト払い落とし操作に連動させて、処理剤の注入量を一時的に増加させると、その時間帯では排ガスがバグフィルタに到達する以前での有害ガスと処理剤との反応が促進する。このため、ダスト払い落とし操作によって生起される有害ガス除去性能の低下をカバーし、ダストの払い落とし操作の直後においても、有害ガスの除去率を安定に維持することができる。   When the treatment agent injection amount is temporarily increased in conjunction with the dust removal operation in the bag filter, the reaction between the harmful gas and the treatment agent before the exhaust gas reaches the bag filter is accelerated during that time period. . For this reason, the deterioration of the harmful gas removal performance caused by the dust removal operation is covered, and the harmful gas removal rate can be stably maintained even immediately after the dust removal operation.

図1は本発明に係る排ガスの処理方法の実施形態を説明するための装置系統図である。バグフィルタ10は仕切板16を境として濾布室18と天井室20とに区分されている。濾布室18内には仕切板16から多数本の円筒状の濾布22が吊り下げられている。濾布室18の底部にはダスト排出機24が配置されている。濾布室18には排ガスの入口煙道12が接続し、天井室20には出口煙道14が接続している。天井室20内には濾布22を逆洗するための空気噴出器26が濾布毎に設けられている。これらの空気噴出器26は配管30を介してコンプレッサ28と接続しており、コンプレッサ28から送出された圧縮空気を濾布22の内部に向けて噴出する。各空気噴出器26を連結する配管30には開閉弁32が設けられ、開閉弁32は制御器34によってその開閉が制御される。   FIG. 1 is a system diagram for explaining an embodiment of an exhaust gas treatment method according to the present invention. The bag filter 10 is divided into a filter cloth chamber 18 and a ceiling chamber 20 with a partition plate 16 as a boundary. A large number of cylindrical filter cloths 22 are suspended from the partition plate 16 in the filter cloth chamber 18. A dust discharger 24 is disposed at the bottom of the filter cloth chamber 18. An exhaust flue inlet flue 12 is connected to the filter cloth chamber 18, and an outlet flue 14 is connected to the ceiling chamber 20. An air blower 26 for backwashing the filter cloth 22 is provided in the ceiling chamber 20 for each filter cloth. These air ejectors 26 are connected to a compressor 28 via a pipe 30 and eject compressed air sent from the compressor 28 toward the inside of the filter cloth 22. An opening / closing valve 32 is provided in the pipe 30 connecting the air ejectors 26, and the opening / closing of the opening / closing valve 32 is controlled by a controller 34.

入口煙道12には処理剤を充填した処理剤タンク36が接続しており、処理剤タンク36の下部に設けたロータリバルブ38の回転数を制御することによって、適量の処理剤が入口煙道12を通過する排ガスに注入される。なお、ロータリバルブ38の回転数の制御は制御器34によって行われる。   A treatment agent tank 36 filled with a treatment agent is connected to the inlet flue 12, and an appropriate amount of the treatment agent is introduced into the inlet flue by controlling the rotational speed of a rotary valve 38 provided at the lower part of the treatment agent tank 36. 12 is injected into the exhaust gas passing through. The rotational speed of the rotary valve 38 is controlled by the controller 34.

上記の構成において、塵埃と有害ガスを含む排ガスが入口煙道12からバグフィルタ10に向けて流入する。また、処理剤タンク36からは処理剤が排ガスに注入される。その結果、入口煙道12中では通過する排ガス中の有害ガスの一部が処理剤と反応してバグフィルタ10に流入する手前で反応物を生成する。バグフィルタ10では流入した排ガス中の塵埃と反応余力を残存した反応物がダストとして濾布22に捕捉される。ダストが除去されて浄化された排ガスは濾布22を通過して天井室20に至り、出口煙道14から排出される。   In the above configuration, exhaust gas containing dust and harmful gas flows from the inlet flue 12 toward the bag filter 10. A processing agent is injected into the exhaust gas from the processing agent tank 36. As a result, a part of the harmful gas in the exhaust gas passing through the inlet flue 12 reacts with the treatment agent to generate a reactant before flowing into the bag filter 10. In the bag filter 10, the dust in the exhaust gas that has flowed in and the reactant that has left the reaction capacity are trapped by the filter cloth 22 as dust. The exhaust gas purified by removing the dust passes through the filter cloth 22, reaches the ceiling chamber 20, and is discharged from the outlet flue 14.

処理剤の注入量は除去対象物である有害ガスに対して、反応当量以上とする。例えば処理剤として消石灰を使用する場合には、平均粒径が数μmの粉状の消石灰を硫黄酸化物や塩酸等の有害ガスに対して反応当量が2〜3倍程度となるように排ガスに注入する。この際の反応は主に粉状の消石灰の表面近傍で行われる。したがって、注入された粉状の消石灰は、その内部に未反応の消石灰が残存して反応余力を持った状態でバグフィルタ10に到達し、濾布22に捕捉される。このため、濾布22には反応余力を持った消石灰が次第に堆積して、残存する有害ガスとの反応が濾布22に堆積した消石灰との間で進行することになり、有害ガスの除去性能が時間とともに徐々に向上する。   The injection amount of the treatment agent is set to be equal to or greater than the reaction equivalent with respect to the harmful gas that is the removal target. For example, when using slaked lime as a treatment agent, powdery slaked lime with an average particle size of several μm is used as an exhaust gas so that the reaction equivalent is about 2 to 3 times that of harmful gases such as sulfur oxide and hydrochloric acid. inject. The reaction at this time is mainly performed near the surface of the powdery slaked lime. Therefore, the injected powdered slaked lime reaches the bag filter 10 in a state where unreacted slaked lime remains in the interior and has a reaction capacity, and is captured by the filter cloth 22. For this reason, slaked lime having a reaction capacity gradually accumulates on the filter cloth 22, and the reaction with the remaining harmful gas proceeds with the slaked lime deposited on the filter cloth 22, thereby removing harmful gas. Gradually improves over time.

しかしながら、バグフィルタ10では濾布22の表面に捕集したダストの堆積量が多くなると通気抵抗が大きくなるので、付着したダストを定期的に払い落とす。このダストの払い落とし操作について以下に説明する。図2は天井室20における濾布22の配列状態を例示した平面図であり、多数本の濾布22はA列,B列,C列にグループ分けされており、A列の濾布22に対応した各空気噴出器26は配管30Aから供給された圧縮空気を同時に噴出すことによって、それぞれ濾布22を同時に逆洗する。すなわち、制御器34からの信号によって配管30Aに設けた開閉弁32Aが開とされ、コンプレッサ28からの圧縮空気がA列に属する複数の空気噴出器26に供給され、各空気噴出器26に対応したA列に属する複数の濾布22が同時に逆洗される。このA列の逆洗時においても、バグフィルタ10には排ガスが流入し、B列,C列での濾布22によるろ過操作が継続して行われる。逆洗によってA列に属する複数の濾布22から払い落とされたダストは濾布室18の底部に落下し、ダスト排出機24によってバグフィルタ10外に排出される。   However, in the bag filter 10, if the amount of dust collected on the surface of the filter cloth 22 increases, the ventilation resistance increases. Therefore, the adhered dust is periodically removed. This dust removal operation will be described below. FIG. 2 is a plan view illustrating an arrangement state of the filter cloths 22 in the ceiling chamber 20. A large number of filter cloths 22 are grouped into A row, B row, and C row. Each corresponding air ejector 26 simultaneously backwashes the filter cloth 22 by simultaneously ejecting compressed air supplied from the pipe 30A. That is, the on-off valve 32A provided in the pipe 30A is opened by a signal from the controller 34, and the compressed air from the compressor 28 is supplied to the plurality of air ejectors 26 belonging to the A row, corresponding to each air ejector 26. The plurality of filter cloths 22 belonging to the row A are backwashed simultaneously. Even during the back washing of the A row, the exhaust gas flows into the bag filter 10 and the filtration operation by the filter cloths 22 in the B row and the C row is continuously performed. The dust removed from the plurality of filter cloths 22 belonging to row A by backwashing falls to the bottom of the filter cloth chamber 18 and is discharged out of the bag filter 10 by the dust discharger 24.

A列の濾布22の逆洗が終了すると制御器34は所定の時間が経過後に、B列の濾布22の逆洗を行う。すなわち、制御器34からの信号によって配管30Bに設けた開閉弁32Bが開とされ、B列に属する複数の濾布22が同時に逆洗される。B列の濾布22の逆洗が終了すると制御器34は所定の時間が経過後に、C列の濾布22の逆洗を行う。すなわち、制御器34からの信号によって配管30Cに設けた開閉弁32Cが開とされ、C列に属する複数の濾布22が同時に逆洗される。以下、同様の手順でA列,B列,C列の濾布22の逆洗によるダストの払い落とし操作が繰り返し行われる。   When the back washing of the row A filter cloths 22 is completed, the controller 34 performs the back washing of the B row filter cloths 22 after a predetermined time has elapsed. That is, the on-off valve 32B provided in the pipe 30B is opened by a signal from the controller 34, and the plurality of filter cloths 22 belonging to the B row are backwashed simultaneously. When the back washing of the row B filter cloths 22 is completed, the controller 34 performs the back washing of the row C filter cloths 22 after a predetermined time has elapsed. That is, the on-off valve 32C provided in the pipe 30C is opened by a signal from the controller 34, and the plurality of filter cloths 22 belonging to the C row are backwashed simultaneously. Thereafter, the dust removal operation by backwashing the filter cloths 22 in the A row, the B row, and the C row is repeatedly performed in the same procedure.

ところで上記のダストの払い落とし操作時に、反応余力を持った消石灰もダストとして濾布22の表面から払い落とされる。その結果、ダストの払い落とし操作の直後は、濾布22の表面での有害ガスと消石灰との反応が期待しにくくなり、バグフィルタ通過後の排ガスの有害ガス濃度が一時的に増大する。例えばA列でのダスト払い落とし操作直後には、A列に属する濾布22の通気抵抗が最も小さくなるので、B列,C列の濾布22よりも多くの排ガスが通過することになる。しかし、このA列に属する濾布22の表面での有害ガスと消石灰との反応が促進しないと、A列に属する濾布22を通過した排ガスの有害ガス濃度が上昇する。その結果、A列の濾布22を通過した排ガスとB列,C列の濾布22を通過した排ガスとが混合した出口煙道14の排ガスの有害ガス濃度が一時的に増大する。   By the way, at the time of the dust removal operation, slaked lime having a reaction capacity is also removed from the surface of the filter cloth 22 as dust. As a result, immediately after the dust removal operation, it becomes difficult to expect a reaction between the harmful gas and the slaked lime on the surface of the filter cloth 22, and the harmful gas concentration of the exhaust gas after passing through the bag filter temporarily increases. For example, immediately after the dust wiping operation in the A row, the ventilation resistance of the filter cloth 22 belonging to the A row becomes the smallest, so that more exhaust gas passes through the filter cloth 22 in the B row and C row. However, if the reaction between the harmful gas and the slaked lime on the surface of the filter cloth 22 belonging to the A row is not promoted, the harmful gas concentration of the exhaust gas that has passed through the filter cloth 22 belonging to the A row increases. As a result, the harmful gas concentration of the exhaust gas in the outlet flue 14 in which the exhaust gas that has passed through the filter cloth 22 in the A row and the exhaust gas that has passed through the filter cloth 22 in the B row and C row is mixed temporarily increases.

したがって、本実施形態ではバグフィルタ10におけるダスト払い落とし操作に連動させて、処理剤の注入量を一時的に増加させる。すなわち、制御器34では前記した逆洗操作と連動させて、処理剤タンク36の下部に設けたロータリバルブ38の回転数を一時的に大きくするように制御する。図3は逆洗操作とロータリバルブ38の回転数の関係を示すタイムチャートである。図3に示したように、制御器34ではA列,B列,C列の各逆洗開始と同時にロータリバルブの回転数を大きくし、逆洗終了後も一定時間はロータリバルブ38の回転数を大きくした運転を1分程度、継続させる。処理剤の注入量はロータリバルブ38の回転数にほぼ比例する。したがって、ロータリバルブ38の回転数を大きくした時間帯では排ガスに注入される処理剤が一時的に増加する。   Therefore, in the present embodiment, the injection amount of the processing agent is temporarily increased in conjunction with the dust removal operation in the bag filter 10. That is, the controller 34 controls the rotational speed of the rotary valve 38 provided below the processing agent tank 36 to be temporarily increased in conjunction with the above-described backwash operation. FIG. 3 is a time chart showing the relationship between the backwash operation and the rotational speed of the rotary valve 38. As shown in FIG. 3, the controller 34 increases the rotational speed of the rotary valve simultaneously with the start of backwashing of the A row, the B row, and the C row, and the rotational speed of the rotary valve 38 for a certain time after the backwashing is finished. Continue driving for about 1 minute. The amount of treatment agent injected is substantially proportional to the rotational speed of the rotary valve 38. Therefore, the treatment agent injected into the exhaust gas temporarily increases during the time period when the rotational speed of the rotary valve 38 is increased.

処理剤の注入量が増加すると、排ガス中の有害ガスと処理剤との接触機会が増大し、排ガスがバグフィルタ10の濾布22に到達する前での有害ガスの除去率が総体的に向上する。このため、前記したように逆洗直後の濾布22の表面での有害ガスと処理剤との反応が促進しない場合でも、バグフィルタ10から排出される排ガスの有害ガス濃度が上昇することを防止することができる。   As the amount of treatment agent injected increases, the chance of contact between the harmful gas in the exhaust gas and the treatment agent increases, and the overall removal rate of the harmful gas before the exhaust gas reaches the filter cloth 22 of the bag filter 10 is improved. To do. For this reason, even if the reaction between the harmful gas and the treatment agent on the surface of the filter cloth 22 immediately after the backwashing does not accelerate as described above, the concentration of the harmful gas in the exhaust gas discharged from the bag filter 10 is prevented from increasing. can do.

また、逆洗直後の濾布22は通気抵抗が小さくなるので、この濾布22にはより多くの排ガスが通過することになる。その結果、一時的に増加させた反応余力を有する処理剤の多くが逆洗直後の濾布22に捕捉され易くなり、この濾布22の表面は速やかに反応余力を有する処理剤でコーティングされ、有害ガスの除去性能が回復する。   Moreover, since the ventilation resistance of the filter cloth 22 immediately after backwashing becomes small, more exhaust gas passes through this filter cloth 22. As a result, most of the treatment agent having a temporarily increased reaction capacity is easily captured by the filter cloth 22 immediately after backwashing, and the surface of the filter cloth 22 is quickly coated with a treatment agent having a reaction capacity, Harmful gas removal performance is restored.

上記説明では、有害ガスの処理剤として主に粉状の消石灰を使用する場合について説明した。しかしながら、本発明に係る処理剤としては粉状の消石灰に限定されない。例えば粉状の消石灰を水と混合して消石灰の一部を溶解させ液状にしたものを処理剤として排ガス中に噴霧する場合や、酸性ガスを除去するための処理剤として水酸化ナトリウムの水溶液を排ガス中に噴霧する場合にも本発明を適用することができる。また、都市ごみの焼却排ガスのようにダイオキシンを含む排ガスに対してはダイオキシンの除去用に粉末活性炭を用いるが、このような場合にも本発明を適用することができる。本発明に係るダスト払い落とし操作は前記した圧縮空気による逆洗操作に限らず、濾布に振動を与えてダストを払い落とす操作をも含む。また、ダスト払い落とし操作と連動して処理剤の注入量を増加させるタイミングは、前記したようにダスト払い落とし操作の開始とほぼ同時でもよいが、ダスト払い落とし操作の開始より1分程度前から行うようにすればより一層安全である。   In the above description, the case where powdery slaked lime is mainly used as a treating agent for harmful gases has been described. However, the treatment agent according to the present invention is not limited to powdery slaked lime. For example, when powdered slaked lime is mixed with water and part of the slaked lime is dissolved and sprayed into the exhaust gas as a treating agent, or an aqueous solution of sodium hydroxide is used as a treating agent for removing acidic gas The present invention can also be applied when spraying into exhaust gas. Moreover, although powdered activated carbon is used for the removal of dioxin with respect to the exhaust gas containing dioxin like the incineration exhaust gas of municipal waste, the present invention can be applied to such a case. The dust removal operation according to the present invention is not limited to the above-described backwash operation using compressed air, but also includes an operation of applying vibration to the filter cloth to remove dust. In addition, the timing of increasing the amount of treatment agent injected in conjunction with the dust wiping operation may be almost the same as the start of the dust wiping operation as described above, but from about one minute before the start of the dust wiping operation. It is much safer if you do it.

第1の実験では、図1に示した装置と同様の実験装置を用いて排ガスを処理した。排ガスは石油を燃料とするボイラからの燃焼排ガスであり、SO濃度が約400ppm、ガス温度が約180℃であった。処理剤として粉状の消石灰を使用し、処理剤の注入量は排ガスのSO濃度に対して定常時は反応当量の3倍とした。ダスト払い落とし操作の頻度は10分に一回とし、本発明の実施例としてダスト払い落とし操作の開始の前後に1分間づつ、合計2分間は処理剤の注入量を定常時の2倍(すなわち、反応当量の6倍)とした。また、比較のためにダスト払い落とし操作においても処理剤の注入量を増加させず、定常時と同一とする運転も行った。 In the first experiment, exhaust gas was treated using an experimental apparatus similar to the apparatus shown in FIG. The exhaust gas was combustion exhaust gas from a boiler fueled with petroleum, the SO 2 concentration was about 400 ppm, and the gas temperature was about 180 ° C. Powdered slaked lime was used as the treating agent, and the amount of the treating agent injected was three times the reaction equivalent at the steady state with respect to the SO 2 concentration of the exhaust gas. The frequency of dust removal operation is once every 10 minutes, and as an embodiment of the present invention, the amount of treatment agent injected is twice as much as that in the steady state for 2 minutes in total, 1 minute before and after the start of the dust removal operation (that is, , 6 times the reaction equivalent). For comparison, an operation was performed in the same manner as in a steady state without increasing the amount of treatment agent injected in the dust removal operation.

実験結果を図4に示す。図4の横軸は経過時間であり、縦軸は処理ガスのSO濃度である。図中、実線は本発明の実施例であり、点線は比較例である。定常時の処理ガスのSO濃度は約80ppmであり、比較例ではダスト払い落とし操作の開始直後から処理ガスのSO濃度が上がり、最大で120ppm程度まで急上昇した。一方、本発明の実施例ではダスト払い落とし操作前に処理ガスのSO濃度が一旦低下し、払い落とし後に上昇するが定常時と同程度の80ppm程度に維持できた。 The experimental results are shown in FIG. The horizontal axis in FIG. 4 is the elapsed time, and the vertical axis is the SO 2 concentration of the processing gas. In the figure, the solid line is an example of the present invention, and the dotted line is a comparative example. The SO 2 concentration of the processing gas at regular time was about 80 ppm. In the comparative example, the SO 2 concentration of the processing gas increased immediately after the start of the dust removal operation, and rapidly increased to about 120 ppm at the maximum. On the other hand, in the example of the present invention, the SO 2 concentration of the treatment gas once decreased before the dust removal operation and increased after the removal, but it could be maintained at about 80 ppm, which is the same level as in the steady state.

第2の実験では、ダスト払い落とし時における処理剤の注入量を変化させた。その他は第1の実験と同一の条件で行い、処理ガスのSO濃度の最大値を調べた。その結果を表1に示す。表1からダスト払い落とし時における処理剤の注入量には適量があり、それ以上に注入量を増加させても有害ガスの除去性能に大きな変化がないことが判る。

Figure 2005334716
In the second experiment, the amount of treatment agent injected at the time of dust removal was changed. The other conditions were the same as in the first experiment, and the maximum value of the SO 2 concentration of the processing gas was examined. The results are shown in Table 1. From Table 1, it can be seen that there is an appropriate amount of treatment agent injected at the time of dust removal, and that there is no significant change in the harmful gas removal performance even if the amount of injection is further increased.
Figure 2005334716

第3の実験では、ダスト払い落とし開始時の1分前から反応当量比を6倍として処理剤の注入量を増加させ、この処理剤の注入量の増加時間を変化させた。その他は第1の実験と同一の条件で行い、処理ガスのSO濃度の最大値を調べた。その結果を表2に示す。表2からダスト払い落とし時における処理剤の注入量の増加時間には適正値があり、それ以上に増加時間を長くしても有害ガスの除去性能に大きな変化がないことが判る。

Figure 2005334716
In the third experiment, the treatment equivalent injection ratio was increased 6 times from 1 minute before the start of dust removal, and the injection amount of the treatment agent was increased, and the increase time of the treatment agent injection amount was changed. The other conditions were the same as in the first experiment, and the maximum value of the SO 2 concentration of the processing gas was examined. The results are shown in Table 2. From Table 2, it can be seen that there is an appropriate value for the increase time of the treatment agent injection amount at the time of dust removal, and there is no significant change in the harmful gas removal performance even if the increase time is further increased.
Figure 2005334716

第4の実験では、処理剤の注入量増加時の反応当量比を12倍とし、かつダスト払い落とし開始後の処理剤の注入量増加時間を1分間にするとともに、ダスト払い落とし開始前の時間を変化させた。その他は第1の実験と同一の条件で行い、処理ガスのSO濃度の最大値を調べた。その結果を表3に示す。表3から処理剤の注入量をより一層増加させることによって、ダスト払い落とし開始前後の処理剤の注入量増加時間を短縮できることが判る。

Figure 2005334716
In the fourth experiment, the reaction equivalent ratio at the time when the treatment agent injection amount is increased is set to 12 times, and the treatment agent injection amount increase time after the dust removal start is set to 1 minute, and the time before the dust removal start is started. Changed. The other conditions were the same as in the first experiment, and the maximum value of the SO 2 concentration of the processing gas was examined. The results are shown in Table 3. From Table 3, it can be seen that the treatment agent injection amount increase time before and after the start of dust removal can be shortened by further increasing the treatment agent injection amount.
Figure 2005334716

本発明に係る排ガスの処理方法の実施形態を説明するための装置系統図である。It is an apparatus distribution diagram for explaining an embodiment of a processing method of exhaust gas concerning the present invention. バグフィルタ天井室における濾布の配列状態を例示した平面図である。It is the top view which illustrated the arrangement state of the filter cloth in a bag filter ceiling room. 逆洗操作とロータリバルブの回転数との関係を示すタイムチャートである。It is a time chart which shows the relationship between backwashing operation and the rotation speed of a rotary valve. 排ガス処理実験の実験結果を示すグラフである。It is a graph which shows the experimental result of exhaust gas treatment experiment.

符号の説明Explanation of symbols

10………バグフィルタ、12………入口煙道、14………出口煙道、16………仕切板、18………濾布室、20………天井室、22………濾布、24………ダスト排出機、26………空気噴出器、28………コンプレッサ、30………配管、32………開閉弁、34………制御器、36………処理剤タンク、38………ロータリバルブ。
10 ......... Bug filter, 12 ......... Inlet flue, 14 ......... Exit flue, 16 ......... Partition plate, 18 ......... Filter room, 20 ......... Ceiling room, 22 ......... Filter Cloth, 24 ......... Dust ejector, 26 ......... Air ejector, 28 ......... Compressor, 30 ......... Piping, 32 ......... Open / close valve, 34 ......... Controller, 36 ......... Processing agent Tank, 38 ... Rotary valve.

Claims (2)

有害ガスを含む排ガスに処理剤を注入した後に、当該排ガスを後段のバグフィルタに通し、前記有害ガスと処理剤との反応物を前記バグフィルタによって捕集するようにした排ガスの処理方法において、前記バグフィルタにおけるダスト払い落とし操作に連動させて、前記処理剤の注入量を一時的に増加させることを特徴とする排ガスの処理方法。   In the exhaust gas treatment method, after injecting the treatment agent into the exhaust gas containing harmful gas, the exhaust gas is passed through a bag filter at a later stage, and the reaction product of the harmful gas and the treatment agent is collected by the bag filter. An exhaust gas treatment method characterized by temporarily increasing an injection amount of the treatment agent in conjunction with a dust removal operation in the bag filter. 前記一時的に増加させる処理剤の注入量を定常時の1.5〜2.5倍にすることを特徴とする排ガスの処理方法。
A method for treating exhaust gas, characterized in that the amount of the treatment agent to be temporarily increased is 1.5 to 2.5 times that in a steady state.
JP2004154131A 2004-05-25 2004-05-25 Method for treating exhaust gas Pending JP2005334716A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004154131A JP2005334716A (en) 2004-05-25 2004-05-25 Method for treating exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004154131A JP2005334716A (en) 2004-05-25 2004-05-25 Method for treating exhaust gas

Publications (1)

Publication Number Publication Date
JP2005334716A true JP2005334716A (en) 2005-12-08

Family

ID=35488852

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004154131A Pending JP2005334716A (en) 2004-05-25 2004-05-25 Method for treating exhaust gas

Country Status (1)

Country Link
JP (1) JP2005334716A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008086844A (en) * 2006-09-29 2008-04-17 Dowa Holdings Co Ltd Bag filter device and its controlling method
JP2012179593A (en) * 2011-03-01 2012-09-20 General Electric Co <Ge> Method and system for removing pollutant from fluid stream
JP2017154133A (en) * 2016-03-04 2017-09-07 ゼネラル・エレクトリック・カンパニイ Diverted pulse jet cleaning device and system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008086844A (en) * 2006-09-29 2008-04-17 Dowa Holdings Co Ltd Bag filter device and its controlling method
JP2012179593A (en) * 2011-03-01 2012-09-20 General Electric Co <Ge> Method and system for removing pollutant from fluid stream
JP2017154133A (en) * 2016-03-04 2017-09-07 ゼネラル・エレクトリック・カンパニイ Diverted pulse jet cleaning device and system

Similar Documents

Publication Publication Date Title
JP5665757B2 (en) Dry flue gas desulfurization system with liquid distributor for dual feed nebulizer
US5505766A (en) Method for removing pollutants from a combustor flue gas and system for same
US7766997B2 (en) Method of reducing an amount of mercury in a flue gas
JP2008119695A (en) Method of cleaning and/or regenerating wholly or partially deactivated catalyst of stack-gas nitrogen scrubbing
JP6567463B2 (en) Exhaust gas treatment method
US6511637B2 (en) Air pollution control assembly and method
US8337575B2 (en) Method and system for treating polluted gases
JP2005334716A (en) Method for treating exhaust gas
KR20080070608A (en) Dust filtering collector for removing smoke and method for filtering smoke using same
KR20080070517A (en) Dust filtering collector for removing smoke and method for filtering smoke using same
JP2001070753A (en) Method and apparatus for regenerating catalyst filter
JP2000107562A (en) Treating apparatus for exhaust combustion gas
JPH04118016A (en) Method for dust collection by bag filter
KR101975909B1 (en) Method for improving removal rate of dry type process
JPH1066816A (en) Dust removing apparatus and method using the same
JPH04219124A (en) Treatment of waste gas
JPH08192019A (en) Filter with backward washing mechanism
JPH08155257A (en) Formation of flue-gas purifying layer
KR102155942B1 (en) A scrubber provided with a demister for preventing the discharge of the cleaning liquid
WO2020084925A1 (en) Gas purification device, ship with same, and gas purification method
JPH09276649A (en) Exhaust gas treatment apparatus
JP2011041934A (en) Bag filter and system for removing gas using the same
JPH06319926A (en) Cleaning control method of bag dust collector
JP2003190726A (en) Bag filter apparatus and operation method therefor
JP2002001042A (en) Wet dust collecting method for exhaust gas

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060906

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081202

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090326