JP2000107562A - Treating apparatus for exhaust combustion gas - Google Patents

Treating apparatus for exhaust combustion gas

Info

Publication number
JP2000107562A
JP2000107562A JP10284423A JP28442398A JP2000107562A JP 2000107562 A JP2000107562 A JP 2000107562A JP 10284423 A JP10284423 A JP 10284423A JP 28442398 A JP28442398 A JP 28442398A JP 2000107562 A JP2000107562 A JP 2000107562A
Authority
JP
Japan
Prior art keywords
bag filter
exhaust gas
amount
powder
cycle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10284423A
Other languages
Japanese (ja)
Inventor
Kazuki Kobayashi
和樹 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP10284423A priority Critical patent/JP2000107562A/en
Publication of JP2000107562A publication Critical patent/JP2000107562A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)

Abstract

PROBLEM TO BE SOLVED: To remove harmful substances at a high efficiency with the min. amt. of an exhaust gas treating agent by installing a measuring means concerning the back wash cycle of a bag filter and by controlling the amt. of an exhaust gas treating agent according to the measured back wash cycle of a bag filter. SOLUTION: An alkaline powder 4 for neutralizing HCl and SOx from an exhaust gas treating agent supply apparatus 3 and an adsorbent powder 5 (e.g. active carbon) for adsorbing org. chloride compds. and heavy metals are fed, in a flue 1a, to an exhaust gas 2 discharged from an incinerator 1. The exhaust gas 2 is caused to pass through a bag filter 8 and a pile thereof to be filtered and discharged as a cleaning gas 2" through a chimney 13. In back washing the pile of the bag filter 8, the pressure difference between the upper and the lower side of the bag filter 8 is measured with a pressure difference measuring device 9 and when the measured pressure difference reaches a certain value, a back washing air pulse jet 10 is started. The pressure difference measuring device 8 also measures the back wash cycle to control the amt. of the powder supplied.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、都市ごみ焼却炉等
の各種燃焼装置から発生する排ガス中の有害物質を処理
する燃焼排ガスの処理装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a flue gas treatment apparatus for treating harmful substances in flue gas generated from various combustion devices such as municipal waste incinerators.

【0002】[0002]

【従来の技術】都市ごみ焼却炉や各種焼却炉等の燃焼装
置から排出される排ガス中には、ばいじん、塩化水素、
イオウ酸化物、窒素酸化物、水銀を含む重金属類、それ
に有機塩化化合物等の有害物質が含まれており、これら
の有害物質を除去するために従来より各種の処理方法が
実用に供されている。
2. Description of the Related Art Exhaust gas emitted from combustion devices such as municipal waste incinerators and various incinerators contains soot, hydrogen chloride,
It contains heavy metals including sulfur oxides, nitrogen oxides, and mercury, and harmful substances such as organic chloride compounds. Various treatment methods have been conventionally used to remove these harmful substances. .

【0003】即ち、ばいじんの除去は、煙道に設けられ
たバグフィルタで行われ、塩化水素及びイオウ酸化物の
除去は、アルカリ性の粉体をバグフィルタより上流の煙
道中に投入し、煙道中及びバグフィルタの表面で中和反
応を起させることにより行われる。また、水銀等の重金
属や有機塩素化合物に関しては、吸着剤に吸着させて除
去する吸着法が主に用いられる。この場合も、例えば特
開平4−15692号公報等に記載されているように、
消石灰や活性炭等の吸着剤粉末をバグフィルタより上流
の煙道中に投入して煙道中及びバグフィルタの表面でこ
れらの有害物質を吸着剤粉末に吸着させ、バグフィルタ
にてばいじんと共に捕獲して除去する。なお、バグフィ
ルタの上流で粉体を吹き込む場合には、通常、中和剤や
吸着剤の他にフィルタからの粉体の剥離性を向上させる
ための反応助剤が添加される。
[0003] That is, soot and dust is removed by a bag filter provided in the flue, and hydrogen chloride and sulfur oxides are removed by pouring alkaline powder into the flue upstream of the bag filter. And a neutralization reaction is caused on the surface of the bag filter. As for heavy metals such as mercury and organic chlorine compounds, an adsorption method of adsorbing and removing them with an adsorbent is mainly used. Also in this case, for example, as described in JP-A-4-15692 and the like,
An adsorbent powder such as slaked lime or activated carbon is injected into the flue upstream of the bag filter, and these harmful substances are adsorbed to the adsorbent powder in the flue and on the surface of the bag filter. I do. When the powder is blown upstream of the bag filter, a reaction aid for improving the removability of the powder from the filter is usually added in addition to the neutralizing agent and the adsorbent.

【0004】アルカリ性粉体の投入量は、塩化水素等の
酸性物質量に対して1から3倍のモル等量を必要とする
が、従来においてはごみ質等の変化に対応して投入量を
変化させるという制御方法は採られておらず、予め設定
された比率のアルカリ性粉体が連続的に添加されてい
る。また、活性炭等の吸着剤は、排ガス量1Nm3 に対
して50〜300mg程度必要であるが、この場合にも
予め設定された一定量の吸着剤が連続的に吹き込まれて
いる。
The amount of the alkaline powder to be charged needs to be 1 to 3 times the molar equivalent of the amount of an acidic substance such as hydrogen chloride. No control method of changing is employed, and a predetermined ratio of alkaline powder is continuously added. Also, about 50 to 300 mg of an adsorbent such as activated carbon is required for 1 Nm 3 of exhaust gas amount, and in this case, a predetermined fixed amount of adsorbent is continuously blown.

【0005】なお、一定量のアルカリ性粉体や吸着剤を
煙道中に連続的に吹き込む方法に代えて、バグフィルタ
前後の差圧を検出し、その検知値に応じて吸収剤の供給
量を制御する方法も従来より提案されている(特開平5
−23530号公報)。
Instead of continuously blowing a certain amount of alkaline powder or adsorbent into the flue, a differential pressure across the bag filter is detected, and the supply of the absorbent is controlled according to the detected value. Conventionally, a method for performing the above-described method has been proposed (Japanese Patent Application Laid-Open
No. 23530).

【0006】[0006]

【発明が解決しようとする課題】上記従来技術のうち、
一定量のアルカリ性粉体や吸着剤を煙道中に連続的に吹
き込む方法には次のような問題点がある。
SUMMARY OF THE INVENTION Among the above prior arts,
The method of continuously blowing a certain amount of alkaline powder or adsorbent into a flue has the following problems.

【0007】即ち、中和反応や吸着反応は煙道中でも若
干は進行するが、主にはバグフィルタの表面に堆積した
堆積層を排ガスが通過する際に進行すると考えられる。
したがって、バグフィルタの通気性を回復させるために
バグフィルタを逆洗して堆積物を払い落すと、有害物質
の除去効率が低下する。
That is, it is considered that the neutralization reaction and the adsorption reaction slightly proceed in the flue, but mainly proceed when the exhaust gas passes through the deposited layer deposited on the surface of the bag filter.
Therefore, if the bag filter is backwashed to remove the deposits in order to restore the air permeability of the bag filter, the efficiency of removing harmful substances is reduced.

【0008】図4に実機におけるバグフィルタの運転時
間と逆洗サイクルとの関係を示す。なお、本明細書にお
いて「逆洗サイクル」とは、一本のバグフィルタが逆洗
される周期のことである。この図から明らかなように、
バグフィルタの稼動を始めてから約700日までの逆洗
サイクルは80〜180分の間で推移しているが、その
後逆洗サイクルは急激に短くなり、1000日を過ぎた
あたりからは、十数分に一度とかなり短くなる。一般に
バグフィルタの逆洗は、バグフィルタ前後の差圧(Δ
P)によって制御され、例えば差圧が100mmH2
に達したら逆洗エアパルスによる堆積層の払い落としを
実行するという制御が行われる。逆洗サイクルが短くな
るということは、フィルタの目詰まりにより、払い落と
しが行われた後にもΔPが初期の値まで回復せずにΔP
が上昇していることを示しており、発生するばいじん量
及び添加する粉体量が一定である場合には、逆洗サイク
ルが短くなるほど、逆洗が実行される際のバグフィルタ
の表面に堆積する堆積層が初期よりも薄くなる。
FIG. 4 shows the relationship between the operation time of the bag filter and the backwash cycle in the actual machine. In the present specification, the “backwash cycle” refers to a cycle in which one bag filter is backwashed. As is clear from this figure,
The backwashing cycle from the start of the operation of the bag filter to about 700 days changes between 80 and 180 minutes. Thereafter, the backwashing cycle is sharply shortened. Once a minute it is quite short. Generally, the backwashing of the bag filter is performed using the differential pressure (Δ
P), for example, when the differential pressure is 100 mmH 2 O
Is reached, control is performed to execute the removal of the deposited layer by the backwash air pulse. Shorter backwash cycle means that clogging of the filter means that ΔP does not recover to the initial value even after the
When the amount of dust and the amount of powder to be added are constant, the shorter the backwash cycle, the more the deposit on the surface of the bag filter when the backwash is performed. The deposited layer becomes thinner than the initial one.

【0009】例えばバグフィルタ入口ガス量が3000
0m3N /h、添加粉体を含むダスト量が8.0g/m
3N、バグフィルタのろ過面積が900m2、逆洗サイク
ルが160分の場合、バグフィルタの表面に堆積するダ
スト量は4.6g/m2 /分となる。灰の密度を約0.
7とすると、堆積層の厚さは0.000066m3 /m
2 /分となり、1分間に0.066mm堆積することに
なる。160分間では10.56mm(736g/m
2 )となり、文献(三菱重工技報23(4)、pp90〜
96、1986−7)に記載された最大堆積量10.5
mm程度堆積した後に逆洗によるダストの払い落としが
行われたとの記述と一致する。一方、逆洗サイクルが1
5分の場合には、堆積層厚さはわずか1mmとなる。
For example, if the gas amount at the bag filter inlet is 3000
0 m 3 N / h, dust amount including added powder is 8.0 g / m
When 3 N, the filtration area of the bag filter is 900 m 2 , and the backwash cycle is 160 minutes, the amount of dust deposited on the surface of the bag filter is 4.6 g / m 2 / min. The density of the ash is about 0.
7, the thickness of the deposited layer is 0.000066 m 3 / m
2 / min, resulting in a deposition of 0.066 mm per minute. 10.56 mm (736 g / m
2 ) and the literature (Mitsubishi Heavy Industries Technical Report 23 (4), pp90-
96, 1986-7) 10.5
This is consistent with the statement that dust was removed by backwashing after depositing about mm. On the other hand, the backwash cycle is 1
In the case of 5 minutes, the thickness of the deposited layer is only 1 mm.

【0010】逆洗を制御するバグフィルタ前後の差圧Δ
P及び逆洗サイクルより粉体堆積量を求めると以下のよ
うになる。即ち、先の文献に記載されたろ過速度LV=
0.6m/分のときに差圧ΔP=13mmH2O で、Δ
P∝LV0.8 (0.8乗)なる関係が成り立つとの記述
から、ΔP=18.6LV0.8 (0.8乗)が求められ
る。ろ過速度LV=1.2m/分でガスを処理すると、
ダストの堆積がないブランクの場合、ΔP=23mmH
2O である。100mmH2O で逆洗が制御されている
とすると、ΔPの増加分は77mmH2O 、これは堆積
層厚さでは11mm程度に相当し、先に算出したダスト
量より求めた値とほぼ一致する。
Differential pressure Δ before and after the bag filter for controlling backwashing
The powder accumulation amount obtained from P and the backwash cycle is as follows. That is, the filtration speed LV =
At 0.6 m / min, the differential pressure ΔP = 13 mmH 2 O, Δ
From the description that the relationship of P∝LV 0.8 (0.8 power) holds, ΔP = 18.6LV 0.8 (0.8 power) is obtained. When the gas is processed at a filtration speed LV = 1.2 m / min,
ΔP = 23 mmH for a blank without dust accumulation
2 O. When 100mmH is backwashed with 2 O and is controlled, increase of ΔP is 77MmH 2 O, this is a deposition layer thickness corresponds to about 11 mm, substantially coincide with the values obtained from the dust amount calculated above .

【0011】堆積量が1mmでは、ΔPの増加はわずか
10mmH2O 程度に相当し、ダスト払い落とし後のΔ
Pは初期値には回復せず80〜90mmH2O 程度まで
しか下がらない。
When the deposition amount is 1 mm, the increase in ΔP is equivalent to only about 10 mmH 2 O, and the increase in ΔP after dust removal is obtained.
P does not decrease only to 80~90mmH 2 O about not recover to the initial value.

【0012】有機塩素化合物や重金属の吸着剤として粉
末活性炭が排ガス量1Nm3 に対して50mg吹き込ま
れた場合、逆洗サイクル160分では1平米あたり4.
4gの吸着剤層で有害物質を吸着することになるが,1
5分の場合は0.4g/m2となり、50mgでは初期
と同様の除去性能を得ることはできない。しかし、現実
には、バグフィルタのΔPが上昇し、逆洗サイクルが短
くなってもフィルタを交換することなく使用が継続され
るので、有機塩素化合物や重金属など、供給した粉体を
利用してバグフィルタ表面の堆積層で除去される有害物
質の除去性能は低下する。
When 50 mg of powdered activated carbon is blown as an adsorbent for organochlorine compounds and heavy metals per 1 Nm 3 of exhaust gas, a backwashing cycle of 160 min.
Toxic substances will be adsorbed by the 4 g adsorbent layer.
In the case of 5 minutes, it is 0.4 g / m 2 , and with 50 mg, the same removal performance as in the initial stage cannot be obtained. However, in reality, even if the ΔP of the bag filter increases and the backwash cycle is shortened, the use continues without replacing the filter, so that the supplied powder such as an organic chlorine compound or heavy metal is used. The performance of removing harmful substances removed by the deposited layer on the bag filter surface is reduced.

【0013】即ち、図5(a)に示すようにバグフィル
タの逆洗サイクルが短縮化したにも拘らず、図5(b)
に示すように吸収剤である活性炭の投入量を一定に保持
すると、図5(c),(d)に示すようにダイオキシン
類の濃度及び重金属の濃度が上昇する。
That is, as shown in FIG. 5A, the backwash cycle of the bag filter is shortened, but FIG.
When the input amount of the activated carbon as the absorbent is kept constant as shown in FIG. 5, the concentrations of dioxins and heavy metals increase as shown in FIGS. 5 (c) and 5 (d).

【0014】一方、吸収剤の供給量をバグフィルタ前後
の差圧によって制御する方法では、差圧上昇に応じて吸
収剤の投入量を増加させるので、差圧制御が行われる逆
洗時には必ず投入量が増加し、不要な吸収剤が投入され
ることになる。
On the other hand, in the method in which the supply amount of the absorbent is controlled by the differential pressure before and after the bag filter, the supply amount of the absorbent is increased in accordance with the increase in the differential pressure. The amount will increase and unnecessary absorbent will be charged.

【0015】本発明の課題は、このような従来技術の不
備を解消し、最小限の排ガス処理剤で高効率の有害物質
の除去効果が得られる燃焼排ガスの処理装置を提供する
ことにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide an apparatus for treating combustion exhaust gas which can eliminate such deficiencies of the prior art and can obtain a highly efficient harmful substance removing effect with a minimum amount of an exhaust gas treating agent.

【0016】[0016]

【課題を解決するための手段】本発明は、前記の目的を
達成するため、燃焼装置とバグフィルタとを連結する煙
道内に1乃至複数種の排ガス処理剤を吹き込んで燃焼排
ガス中の有害物質を除去する燃焼排ガスの処理装置にお
いて、前記バグフィルタの逆洗サイクルの測定手段を備
え、当該測定手段によって検出された前記バグフィルタ
の逆洗サイクルに応じて、前記1乃至複数種の排ガス処
理剤の供給量を制御するという構成にした。
According to the present invention, in order to achieve the above-mentioned object, one or more kinds of exhaust gas treating agents are blown into a flue connecting a combustion device and a bag filter, thereby causing harmful substances in flue gas. A flue gas treatment apparatus for removing flue gas, comprising: means for measuring a backwash cycle of the bag filter, wherein the one or more kinds of exhaust gas treating agents are provided in accordance with the backwash cycle of the bag filter detected by the measurement means. The supply amount is controlled.

【0017】このように、バグフィルタの逆洗サイクル
に応じて排ガス処理剤の添加量を制御すると、逆洗サイ
クルが短くなってバグフィルタ表面の堆積層が薄くなっ
た後にも、バグフィルタの表面に形成される反応層の厚
さを確保するすることができるので、有害物質を高効率
で除去することができる。また、1乃至複数種の排ガス
処理剤を必要に応じて供給するので、酸性物質、重金属
及びダイオキシン類などの各種の有害物質を同時に処理
することができる。さらに、バグフィルタとして触媒バ
グフィルタを用いれば脱硝も可能となる。
As described above, when the addition amount of the exhaust gas treating agent is controlled in accordance with the backwash cycle of the bag filter, even after the backwash cycle is shortened and the deposited layer on the bag filter surface becomes thin, the surface of the bag filter becomes thin. Since the thickness of the reaction layer formed on the substrate can be ensured, harmful substances can be removed with high efficiency. In addition, since one or more kinds of exhaust gas treating agents are supplied as needed, various harmful substances such as acidic substances, heavy metals and dioxins can be treated at the same time. Further, if a catalytic bag filter is used as a bag filter, denitration becomes possible.

【0018】なお、排ガス処理剤の供給量制御は、バグ
フィルタの逆洗サイクルが短くなるに従って排ガス処理
剤の供給量を増加することによって行うことができる。
The supply amount of the exhaust gas treating agent can be controlled by increasing the supply amount of the exhaust gas treating agent as the backwash cycle of the bag filter becomes shorter.

【0019】また、バグフィルタの逆洗を差圧制御する
際の基準差圧は、30mmH2O 〜150mmH2O の
範囲で任意に設定することができる。
Further, the reference pressure difference for controlling the pressure difference in the backwashing of the bag filter can be arbitrarily set in the range of 30 mmH 2 O to 150 mmH 2 O.

【0020】[0020]

【発明の実施の形態】以下、本発明に係る燃焼排ガス処
理装置の一実施形態例を、図1及び図2に基づいて説明
する。図1は本例に係る燃焼排ガス処理装置の構成図、
図2は本例に係る燃焼排ガス処理装置で行われる排ガス
処理剤の供給制御方法とその効果を示すグラフ図であ
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a flue gas treatment apparatus according to the present invention will be described below with reference to FIGS. FIG. 1 is a configuration diagram of a combustion exhaust gas treatment apparatus according to the present embodiment,
FIG. 2 is a graph showing a method for controlling the supply of an exhaust gas treating agent performed by the combustion exhaust gas treating apparatus according to the present embodiment and its effect.

【0021】図1に示すように、焼却炉1から排出され
た排ガス2は、煙道1a中で排ガス処理剤供給装置3よ
りHCl及びSOxを中和するためのアルカリ性粉体4
及び有機塩素化合物や重金属類を吸着するための活性炭
等の吸着剤粉末5が供給される。なお、吸着剤粉末5中
には、バグフィルタ8からのばいじんの剥離性を向上さ
せるための反応助剤を添加することができる。これら中
和剤、吸着剤、反応助剤が投入された排ガス2´はバグ
ハウス7内に導入され、バグフィルタ8を通過する。こ
のバグフィルタ8の表面にはダストと供給した粉末との
混合体からなる堆積層が形成されるので、排ガス2´は
バグフィルタ8及びこの堆積層を通過することによって
ろ過され、洗浄ガス2″となる。この洗浄ガス2″は、
煙突13より排出される。
As shown in FIG. 1, an exhaust gas 2 discharged from an incinerator 1 is converted into an alkaline powder 4 for neutralizing HCl and SOx from an exhaust gas treating agent supply device 3 in a flue 1a.
And an adsorbent powder 5 such as activated carbon for adsorbing organic chlorine compounds and heavy metals. In addition, in the adsorbent powder 5, a reaction aid for improving the removability of dust from the bag filter 8 can be added. The exhaust gas 2 ′ into which the neutralizing agent, the adsorbent, and the reaction aid have been introduced is introduced into the bag house 7 and passes through the bag filter 8. Since a deposited layer composed of a mixture of dust and the supplied powder is formed on the surface of the bag filter 8, the exhaust gas 2 'is filtered by passing through the bag filter 8 and the deposited layer, and the cleaning gas 2 " The cleaning gas 2 ″ is
It is discharged from the chimney 13.

【0022】バグフィルタ8の表面に堆積した堆積層の
払い落とし(逆洗)は、タイマ又はバグフィルタ8の上
流及び下流の圧力差を差圧測定器9によって測定し、そ
の値が予め設定された所定値になったときに、逆洗用エ
アパルスジェット10を起動することによって行われ
る。この差圧測定器9は、逆洗のサイクルも計測し、そ
の値に応じて粉体供給量を制御する。
To remove the backing layer deposited on the surface of the bag filter 8 (backwashing), a timer or a pressure difference between upstream and downstream of the bag filter 8 is measured by a differential pressure measuring device 9 and the value is set in advance. It is performed by activating the backwash air pulse jet 10 when the predetermined value is reached. The differential pressure measuring device 9 also measures the backwash cycle, and controls the amount of powder supply according to the value.

【0023】重金属及びダイオキシン類を吸着するため
の吸着剤の一つとして、細孔径20オングストローム程
度、粒径300メッシュ程度の活性炭粉末がある。他
に、活性コークス、反応助剤として用いたケイソウ土も
利用できる。
One of the adsorbents for adsorbing heavy metals and dioxins is activated carbon powder having a pore diameter of about 20 angstroms and a particle diameter of about 300 mesh. In addition, activated coke and diatomaceous earth used as a reaction aid can be used.

【0024】バグフィルタ8からのばいじんの剥離性を
向上させるための反応助剤としてはアルミナ、ケイソウ
土、活性白土等の無機物質が有効である。さらに、この
ケイソウ土はハロゲン化金属との混合により、その効果
が高くなり、反応助剤兼吸着剤として有効に利用でき
る。
Inorganic substances such as alumina, diatomaceous earth and activated clay are effective as a reaction aid for improving the removability of dust from the bag filter 8. Furthermore, the diatomaceous earth is more effective when mixed with a metal halide, and can be effectively used as a reaction aid and an adsorbent.

【0025】塩化水素等の酸性物質とアルカリ性粉体と
の中和反応は固気反応である。そのため反応効率を上げ
るためには両者の接触頻度が重要になる。アルカリ性粉
体としては、JISで規定され従来より用いられている
特号消石灰(粒径約6μm)を用いることもできるが、
これよりも比表面積の大きなもの(例えば、奥多摩工業
製の「タマカルク」)を用いる方が有利である。比表面
積は、特号消石灰が約15m2/gであるのに対して、
タマカルクは35〜40m2/gであり、後者のほうが
2.5倍以上も大きい。そのため、煙道1aに投入した
場合、酸性物質との接触頻度が増し、高温領域に於いて
も発熱反応である中和反応は進行し、高い除去率が得ら
れることになる。また、粒子の形状が偏平で花弁状にな
った消石灰(上田石灰製造製の「エスライムGC」;粒
径5〜6μm)も比表面積が約35m2/gで反応面積
が大きいのでHCl除去には有効である。
The neutralization reaction between an acidic substance such as hydrogen chloride and an alkaline powder is a solid-gas reaction. Therefore, in order to increase the reaction efficiency, the frequency of contact between the two is important. As the alkaline powder, special lime slaked lime (particle size: about 6 μm) which is specified by JIS and used conventionally can be used.
It is more advantageous to use a material having a larger specific surface area (for example, “Tamacalc” manufactured by Okutama Kogyo). The specific surface area is about 15 m 2 / g for the special name slaked lime,
Tamacalc is 35-40 m 2 / g, and the latter is more than 2.5 times larger. Therefore, when it is put into the flue 1a, the contact frequency with the acidic substance increases, and even in a high temperature region, the neutralization reaction, which is an exothermic reaction, proceeds, and a high removal rate is obtained. In addition, slaked lime ("Eslime GC" manufactured by Ueda Lime Manufacturing Co., Ltd .; particle size of 5 to 6 μm) having a flat and petal-like particle shape has a specific surface area of about 35 m 2 / g and a large reaction area. It is valid.

【0026】図2(a)から明らかなように、焼却炉1
の運転が進むと逆洗サイクルは急激に減少する。この場
合、吸着剤である活性炭を初期と同じ量で投入したので
は、バグフィルタ8の表面に堆積される粉体層の厚みが
薄くなって排ガスと活性炭の接触時間が短くなるため、
活性炭の効果が薄れてダイオキシン類及び重金属の両者
とも初期の値を維持することができなくなる。
As apparent from FIG. 2A, the incinerator 1
As the operation proceeds, the backwash cycle sharply decreases. In this case, if the activated carbon as the adsorbent is introduced in the same amount as the initial amount, the thickness of the powder layer deposited on the surface of the bag filter 8 is reduced, and the contact time between the exhaust gas and the activated carbon is shortened.
The effect of activated carbon is weakened, and both dioxins and heavy metals cannot maintain their initial values.

【0027】そこで、本実施形態例では、図2(b)に
示すように、吸着剤である活性炭の投入量をバグフィル
タ8の逆洗サイクルの短縮化に合わせて増加する。即
ち、差圧測定器9にてバグフィルタ8の逆洗サイクルを
計測し、図2(a)のA点において逆洗サイクルが短く
なり始めたことが検出されたとき、当該差圧測定器9か
らの信号によって図2(b)のB点において活性炭の投
入量を増加する。これにより、図2(c),(d)に示
すように、ダイオキシン類及び重金属の両者とも初期の
値を維持することができる。
Therefore, in this embodiment, as shown in FIG. 2B, the amount of activated carbon as an adsorbent is increased in accordance with the shortening of the backwash cycle of the bag filter 8. That is, the backwash cycle of the bag filter 8 is measured by the differential pressure measuring device 9, and when it is detected at the point A in FIG. The input amount of activated carbon is increased at the point B in FIG. Thereby, as shown in FIGS. 2C and 2D, both the dioxins and the heavy metals can maintain the initial values.

【0028】なお、この制御方法は、既設のごみ焼却プ
ラントに何等問題なく適用できるほか、新設のごみ焼却
プラントにも従来と同様に使用することができる。
This control method can be applied to an existing refuse incineration plant without any problem, and can also be used for a newly installed refuse incineration plant in the same manner as before.

【0029】以下、より具体的な実施例を掲げ、本発明
の効果を明らかにする。
Hereinafter, the effects of the present invention will be clarified with reference to more specific examples.

【0030】(第1実施例)バグ入口ガス量が3000
0〜40000m3N/h、ダスト量が5〜15g/m3
N,HCl濃度が200〜400ppm、水銀濃度が
0.1〜0.5mg/m3N、排ガス中の水分量が18
〜20%、NOx濃度が150〜200ppm、CO濃
度が250〜300ppm、ダイオキシン類濃度が10
ngTEQ/Nm3の排ガスを、フィルタ透過速度が
1.2m/分、中和剤添加量であるCa(OH)2/H
Clモル比が2.7、反応助剤兼吸着剤の添加量が中和
剤に対して20wt%、フィルタ温度が160℃の条件
で、HCl、水銀及びダイオキシン類の除去率を、逆洗
サイクルが90分のときと15分のときについて求め
た。逆洗サイクルが90分の時は吸着剤として粉末活性
炭が50mg/Nm3で添加されたが、逆洗サイクルが
短くなり1/6の15分となったときには粉末活性炭の
添加量を6倍の300mgNm3とした。なお、酸性物
質の中和剤であるCa(OH)2については、添加量の
制御は行わなかった。
(First Embodiment) The gas amount at the bag entrance is 3000
0~40000m 3 N / h, the amount of dust is 5~15g / m 3
N, HCl concentration is 200 to 400 ppm, mercury concentration is 0.1 to 0.5 mg / m 3 N, water content in exhaust gas is 18
-20%, NOx concentration 150-200 ppm, CO concentration 250-300 ppm, dioxin concentration 10
ngTEQ / Nm 3 of exhaust gas having a filter permeation speed of 1.2 m / min and a neutralizing agent addition amount of Ca (OH) 2 / H
Under the conditions of a Cl molar ratio of 2.7, an addition amount of a reaction assistant and an adsorbent of 20 wt% with respect to a neutralizing agent, and a filter temperature of 160 ° C., the removal rates of HCl, mercury and dioxins were determined by a backwash cycle Were obtained for 90 minutes and 15 minutes. When the backwashing cycle was 90 minutes, powdered activated carbon was added as an adsorbent at 50 mg / Nm 3 , but when the backwashing cycle was shortened to 1/6 of 15 minutes, the amount of powdered activated carbon added was increased six times. It was 300 mgNm 3 . The amount of Ca (OH) 2 , which is a neutralizer for acidic substances, was not controlled.

【0031】逆洗サイクルが90分のときには、HCl
濃度が10〜20ppmでHCl除去率が95%以上、
水銀濃度が0.005〜0.025mg/m3Nで水銀
除去率が95%、ダイオキシン濃度は厚生省の新しいガ
イドラインを満足する0.1ngTEQ/Nm3の以下
の値となった。一方、逆洗サイクルが15分の時には、
中和剤であるCa(OH)2の制御を行っていないので
HCl濃度は10〜40ppmとなり除去率は90%以
上となったものの、吸着剤の添加量が300mg/Nm
3に増加したために、水銀及びダイオキシン類は高効率
な除去が可能になり、それぞれ水銀が除去率95%、ダ
イオキシン類が0.1ngTEQ/Nm3の以下の値と
なった。
When the backwash cycle is 90 minutes, HCl
HCl removal rate of 95% or more at a concentration of 10 to 20 ppm,
The mercury concentration was 0.005 to 0.025 mg / m 3 N, the mercury removal rate was 95%, and the dioxin concentration was 0.1 ng TEQ / Nm 3 , which satisfied the new guidelines of the Ministry of Health and Welfare. On the other hand, when the backwash cycle is 15 minutes,
Since Ca (OH) 2 as a neutralizing agent was not controlled, the HCl concentration was 10 to 40 ppm and the removal rate was 90% or more, but the amount of the adsorbent added was 300 mg / Nm.
Because of the increase to 3 , mercury and dioxins can be efficiently removed, and the mercury removal rate is 95% and the dioxins are 0.1 ng TEQ / Nm 3 or less, respectively.

【0032】この結果より、逆洗サイクルに応じた吸着
剤の添加量制御を行うことで、逆洗サイクルが短くなり
フィルタ表面の堆積層が薄くなった後にも、高効率での
酸性物質、水銀及びダイオキシン類の同時処理が可能に
なったことが判る。脱塵に関しても脱塵性能になんら影
響しなかった。本実施例では吸着剤のみの制御を行って
いるが、中和剤の添加量についても制御できることは勿
論である。
From these results, by controlling the addition amount of the adsorbent in accordance with the backwashing cycle, even after the backwashing cycle becomes short and the deposited layer on the filter surface becomes thin, the acidic substance and mercury can be efficiently obtained. It can be seen that simultaneous treatment of dioxins and dioxins has become possible. The dust removal did not affect the dust removal performance at all. In this embodiment, only the adsorbent is controlled, but it is needless to say that the addition amount of the neutralizing agent can also be controlled.

【0033】(比較例)逆洗サイクルによる粉体供給量
の制御を行わず、逆洗サイクルが90分のときにも、ま
た15分になったときにも、吸着剤として50mg/N
3の粉末活性炭を添加し、第1実施例と同一条件の排
ガスを処理した。その他の条件は、第1実施例と同じに
した。
(Comparative Example) The control of the amount of powder supplied by the backwashing cycle was not performed. When the backwashing cycle was 90 minutes or 15 minutes, 50 mg / N was used as the adsorbent.
m 3 powdered activated carbon was added to treat the exhaust gas under the same conditions as in the first example. Other conditions were the same as in the first embodiment.

【0034】逆洗サイクルが90分のときには、HCl
濃度が10〜20ppmでHCl除去率が95%以上、
水銀濃度が0.005〜0.025mg/m3Nで水銀
除去率が95%、ダイオキシン濃度は厚生省の新しいガ
イドラインをクリアする0.1ngTEQ/Nm3の以
下の値となった。これに対して、逆洗サイクルが15分
のときには、中和剤であるCa(OH)2の制御を行っ
ていないのでHCl濃度が10〜40ppmで除去率が
90%以上となったものの、水銀及びダイオキシン類に
ついては除去性能が低下し、それぞれ水銀除去率が60
%、ダイオキシン類の濃度が0.5ngTEQ/Nm3
となった。
When the backwash cycle is 90 minutes, HCl
HCl removal rate of 95% or more at a concentration of 10 to 20 ppm,
The mercury concentration was 0.005 to 0.025 mg / m 3 N, the mercury removal rate was 95%, and the dioxin concentration was 0.1 ng TEQ / Nm 3 , which satisfies the new guidelines of the Ministry of Health and Welfare. On the other hand, when the backwash cycle was 15 minutes, the neutralization agent Ca (OH) 2 was not controlled, so that the HCl concentration was 10 to 40 ppm and the removal rate was 90% or more. And dioxins have reduced removal performance, each having a mercury removal rate of 60
%, The concentration of dioxins is 0.5 ng TEQ / Nm 3
It became.

【0035】(第2実施例)図3に、第2実施例に係る
燃焼排ガス処理装置が備えられた燃焼装置の構成を示
す。この図から明らかなように、本例の燃焼排ガス処理
装置は、バグフィルタとして触媒バグフィルタ11を用
いると共に、煙道中に還元剤を添加するための還元剤添
加装置6を追加したことを特徴とする。
(Second Embodiment) FIG. 3 shows a configuration of a combustion apparatus provided with a combustion exhaust gas treatment apparatus according to a second embodiment. As is clear from this figure, the flue gas treatment apparatus of this example is characterized in that a catalyst bag filter 11 is used as a bag filter and a reducing agent adding device 6 for adding a reducing agent into the flue is added. I do.

【0036】触媒バグフィルタ11は、脱硝用の酸化チ
タン五酸化バナジウム系触媒をスラリとし、これに内径
15cm、長さ1.2mのテファイヤ製のバグフィルタ
に担持し、乾燥させてフィルタ面積1m2当たり480
gの触媒が担持されたものを用いた。一方、還元剤の添
加量はNH3/NOモル比1とし、フィルタ温度は20
0℃とした。また、フィルタ温度を200℃としたこと
から、中和剤である消石灰(Ca(OH)2)として、
比表面積が40m2/gと大きなものを用いた。その他
の条件については、第1実施例と同じにした。
The catalyst bag filter 11 is a slurry of a titanium oxide vanadium pentoxide-based catalyst for denitration, carried on a bag filter made of Tefair having an inner diameter of 15 cm and a length of 1.2 m, and dried to obtain a filter area of 1 m 2. 480 per
A catalyst supporting g catalyst was used. On the other hand, the amount of the reducing agent added was an NH 3 / NO molar ratio of 1 and the filter temperature was 20
0 ° C. Further, since the filter temperature was set to 200 ° C., slaked lime (Ca (OH) 2 ) as a neutralizing agent was
Those having a specific surface area as large as 40 m 2 / g were used. Other conditions were the same as in the first embodiment.

【0037】逆洗サイクルが90分のときは吸着剤とし
て粉末活性炭が50mg/Nm3で添加されたが、逆洗
サイクルが短くなり1/6の15分となったときには粉
末活性炭の添加量を6倍の300mg/Nm3とした。
本例の場合にも、酸性物質の中和剤であるCa(OH)
2の添加量の制御は行わなかった。逆洗サイクルが90
分の時のHCl濃度は10〜20ppmとなり、HCI
除去率は95%以上、水銀濃度は0.005〜0.02
5mg/m3Nで除去率95%、ダイオキシン濃度は厚
生省ガイドラインをクリアし、かつ欧州なみ規準を満足
する0.1ngTEQ/Nm3の以下の値となった。一
方、逆洗サイクルが15分の時には、中和剤であるCa
(OH)2の制御を行っていないのでHCl濃度は10
〜40ppmとなり除去率は90%以上となったもの
の、吸着剤の添加量は300mg/Nm3に増加したた
めに水銀及びダイオキシン類は高効率な除去が可能にな
り、それぞれ水銀が除去率95%、ダイオキシン類が
0.1ngTEQ/Nm3の以下の値となった。触媒バ
グフィルタ11による脱硝効果は逆洗のサイクルには影
響されず、いずれも80%前後の高い脱硝性能を示し
た。ばいじんの除去性能も逆洗サイクルには影響されな
かった。
When the backwashing cycle was 90 minutes, powdered activated carbon was added as an adsorbent at 50 mg / Nm 3 , but when the backwashing cycle was shortened to 1/6 of 15 minutes, the amount of powdered activated carbon added was reduced. Six times, 300 mg / Nm 3 .
Also in the case of this example, Ca (OH) which is a neutralizer for acidic substances
The control of the addition amount of No. 2 was not performed. 90 backwash cycles
Minute, the HCl concentration becomes 10 to 20 ppm,
The removal rate is 95% or more, and the mercury concentration is 0.005 to 0.02.
At 5 mg / m 3 N, the removal rate was 95%, and the dioxin concentration was 0.1 ng TEQ / Nm 3 , which satisfies the Ministry of Health and Welfare guidelines and satisfies the European standards. On the other hand, when the backwash cycle is 15 minutes, the neutralizer Ca
Since the control of (OH) 2 is not performed, the HCl concentration is 10
Although the removal rate was 4040 ppm and the removal rate was 90% or more, the amount of the adsorbent added was increased to 300 mg / Nm 3 , so that mercury and dioxins could be removed with high efficiency. Dioxins had a value of 0.1 ng TEQ / Nm 3 or less. The denitration effect of the catalyst bag filter 11 was not affected by the backwash cycle, and all exhibited high denitration performance of about 80%. Soot removal performance was also unaffected by the backwash cycle.

【0038】このように逆洗サイクルに応じた吸着剤の
添加量制御を行うことで、逆洗サイクルが短くなりフィ
ルタ表面の堆積層が薄くなった後にも、高効率での酸性
物質、水銀及びダイオキシン類さらには触媒バグフィル
タにより脱硝も可能となり、排ガス中有害成分の同時処
理が可能になった。
By controlling the addition amount of the adsorbent in accordance with the backwashing cycle in this manner, even after the backwashing cycle is shortened and the deposited layer on the filter surface becomes thin, the acidic substance, mercury and mercury can be efficiently treated. The use of dioxins and a catalyst bag filter also enabled denitration, enabling simultaneous processing of harmful components in exhaust gas.

【0039】[0039]

【発明の効果】本発明によれば、バグフィルタの逆洗サ
イクルより堆積層の厚みを把握して添加する排ガス処理
剤の投入量を制御するので、バグフィルタの逆洗サイク
ルが短くなったときにも好ましい反応層の厚さを確保す
ることができると共に、排ガス処理剤の供給量をバグフ
ィルタ前後の差圧で制御する場合のように逆洗時に不要
な排ガス処理剤が投入されることもない。よって、排ガ
ス処理剤の投入量を最小限に押えつつ、有害物質の除去
効率を高めることができる。
According to the present invention, since the amount of the exhaust gas treating agent to be added is controlled by grasping the thickness of the deposited layer from the bag filter backwash cycle, the bag filter backwash cycle is shortened. In addition to ensuring a preferable thickness of the reaction layer, unnecessary exhaust gas treating agents may be introduced at the time of back washing as in the case where the supply amount of the exhaust gas treating agent is controlled by the differential pressure before and after the bag filter. Absent. Therefore, the efficiency of removing harmful substances can be increased while the amount of the exhaust gas treating agent charged is kept to a minimum.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施形態例に係る燃焼排ガス処理装置の構成図
である。
FIG. 1 is a configuration diagram of a combustion exhaust gas treatment apparatus according to an embodiment.

【図2】実施形態例に係る燃焼排ガス処理装置で行われ
る排ガス処理剤の供給制御方法とその効果を示すグラフ
図である。
FIG. 2 is a graph illustrating a method of controlling the supply of an exhaust gas treating agent performed by the combustion exhaust gas treating apparatus according to the embodiment and the effect thereof.

【図3】実施形態例に係る燃焼排ガス処理装置の他の例
を示す構成図である。
FIG. 3 is a configuration diagram illustrating another example of the combustion exhaust gas treatment apparatus according to the embodiment.

【図4】運転時間とバグフィルタの逆洗サイクルとの関
係を示すグラフ図である。
FIG. 4 is a graph illustrating a relationship between an operation time and a bag filter backwash cycle.

【図5】従来技術とその問題点とを示すグラフ図であ
る。
FIG. 5 is a graph showing a conventional technique and its problems.

【符号の説明】[Explanation of symbols]

1 焼却炉 1a 煙道 2 排ガス 2′ 中和剤、反応助剤、還元剤が混合された排ガス 2″ 処理ガス 3 粉体供給装置 4 アルカリ性粉体(中和剤) 5 反応助剤または吸着剤、またはその両者 6 還元剤 7 バグハウス 8 バグフィルタ 9 差圧および逆洗サイクル測定器 10 逆洗装置 11 触媒バグフィルタ 12 排風機 13 煙突 DESCRIPTION OF SYMBOLS 1 Incinerator 1a Flue 2 Exhaust gas 2 'Exhaust gas which mixed neutralizer, reaction aid, reducing agent 2 "Processing gas 3 Powder supply device 4 Alkaline powder (neutralizer) 5 Reaction aid or adsorbent Or both 6 reducing agent 7 baghouse 8 bag filter 9 differential pressure and backwash cycle measuring device 10 backwash device 11 catalytic bag filter 12 exhaust fan 13 chimney

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) B01D 53/50 B01D 53/34 124Z 53/81 134A 53/68 136A 53/64 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) B01D 53/50 B01D 53/34 124Z 53/81 134A 53/68 136A 53/64

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 燃焼装置とバグフィルタとを連結する煙
道内に1乃至複数種の排ガス処理剤を吹き込んで燃焼排
ガス中の有害物質を除去する燃焼排ガスの処理装置にお
いて、前記バグフィルタの逆洗サイクルの測定手段を備
え、当該測定手段によって検出された前記バグフィルタ
の逆洗サイクルに応じて、前記1乃至複数種の排ガス処
理剤の供給量を制御することを特徴とする燃焼排ガスの
処理装置。
1. A flue gas treatment apparatus for removing one or more harmful substances from flue gas by blowing one or more kinds of flue gas treating agents into a flue connecting a combustion device and a bag filter, wherein the bag filter is backwashed. A flue gas treatment apparatus, comprising: a cycle measuring means, wherein the supply amount of the one or more kinds of exhaust gas treating agents is controlled in accordance with a backwash cycle of the bag filter detected by the measuring means. .
【請求項2】 請求項1に記載の処理装置において、前
記バグフィルタの逆洗サイクルが短くなるに従って、前
記1乃至複数種の処理剤の供給量を増加することを特徴
とする燃焼排ガスの処理装置。
2. The processing apparatus according to claim 1, wherein a supply amount of the one or more kinds of processing agents is increased as a backwash cycle of the bag filter is shortened. apparatus.
【請求項3】 請求項1に記載の処理装置において、前
記バグフィルタの逆洗を差圧制御する際の基準差圧を、
30mmH2O 〜150mmH2O の範囲に設定するこ
とを特徴とする燃焼排ガスの処理装置。
3. The processing apparatus according to claim 1, wherein a reference differential pressure at the time of performing differential pressure control on the backwashing of the bag filter is:
30mmH 2 O ~150mmH 2 O processor of flue gas and setting the range of.
JP10284423A 1998-10-06 1998-10-06 Treating apparatus for exhaust combustion gas Pending JP2000107562A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10284423A JP2000107562A (en) 1998-10-06 1998-10-06 Treating apparatus for exhaust combustion gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10284423A JP2000107562A (en) 1998-10-06 1998-10-06 Treating apparatus for exhaust combustion gas

Publications (1)

Publication Number Publication Date
JP2000107562A true JP2000107562A (en) 2000-04-18

Family

ID=17678372

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10284423A Pending JP2000107562A (en) 1998-10-06 1998-10-06 Treating apparatus for exhaust combustion gas

Country Status (1)

Country Link
JP (1) JP2000107562A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006306627A (en) * 2006-08-18 2006-11-09 Yms:Kk Pneumatic transporting method of powder material
US7857889B2 (en) 2007-03-02 2010-12-28 Von Roll Umwelttechnik Ag Method for purifying exhaust gases from a waste incineration plant
JP2011251250A (en) * 2010-06-02 2011-12-15 Ryuki Engineering:Kk Deodorizing apparatus and deodorizing method
GB2488655A (en) * 2011-03-01 2012-09-05 Gen Electric Methods and systems for removing pollutants from fluid stream
WO2014129332A1 (en) * 2013-02-19 2014-08-28 三菱重工環境・化学エンジニアリング株式会社 Exhaust gas treatment method, exhaust gas treatment device, and exhaust gas treatment system
CN104492221A (en) * 2014-11-28 2015-04-08 浙江菲达科技发展有限公司 Treatment process for flue gas from waste incineration
JP2016007572A (en) * 2014-06-24 2016-01-18 株式会社タクマ Mercury removal method using bag filter
JP2017213499A (en) * 2016-05-31 2017-12-07 株式会社タクマ Exhaust gas treatment facility and exhaust gas treatment method
JP2020040026A (en) * 2018-09-12 2020-03-19 クボタ環境サ−ビス株式会社 Exhaust gas treatment method and exhaust gas treatment equipment

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006306627A (en) * 2006-08-18 2006-11-09 Yms:Kk Pneumatic transporting method of powder material
JP4759471B2 (en) * 2006-08-18 2011-08-31 株式会社 ワイ・エム・エス Pneumatic transportation method of powder
US7857889B2 (en) 2007-03-02 2010-12-28 Von Roll Umwelttechnik Ag Method for purifying exhaust gases from a waste incineration plant
JP2011251250A (en) * 2010-06-02 2011-12-15 Ryuki Engineering:Kk Deodorizing apparatus and deodorizing method
GB2488655A (en) * 2011-03-01 2012-09-05 Gen Electric Methods and systems for removing pollutants from fluid stream
CN102679380A (en) * 2011-03-01 2012-09-19 通用电气公司 Methods and systems for removing pollutants from fluid stream
US8562724B2 (en) 2011-03-01 2013-10-22 General Electric Company Methods and systems for removing pollutants from fluid stream
JP2014184423A (en) * 2013-02-19 2014-10-02 Mitsubishi Heavy Industries Environmental & Chemical Engineering Co Ltd Exhaust gas treatment method and exhaust gas treatment system
WO2014129332A1 (en) * 2013-02-19 2014-08-28 三菱重工環境・化学エンジニアリング株式会社 Exhaust gas treatment method, exhaust gas treatment device, and exhaust gas treatment system
CN104994935A (en) * 2013-02-19 2015-10-21 三菱重工环境·化学工程株式会社 Exhaust gas treatment method, exhaust gas treatment device, and exhaust gas treatment system
AU2014220033B2 (en) * 2013-02-19 2016-08-04 Mitsubishi Heavy Industries Environmental & Chemical Engineering Co., Ltd. Exhaust gas treatment method, exhaust gas treatment device, and exhaust gas treatment system
JP2016007572A (en) * 2014-06-24 2016-01-18 株式会社タクマ Mercury removal method using bag filter
CN104492221A (en) * 2014-11-28 2015-04-08 浙江菲达科技发展有限公司 Treatment process for flue gas from waste incineration
JP2017213499A (en) * 2016-05-31 2017-12-07 株式会社タクマ Exhaust gas treatment facility and exhaust gas treatment method
JP2020040026A (en) * 2018-09-12 2020-03-19 クボタ環境サ−ビス株式会社 Exhaust gas treatment method and exhaust gas treatment equipment
JP7258492B2 (en) 2018-09-12 2023-04-17 クボタ環境エンジニアリング株式会社 Exhaust gas treatment method and exhaust gas treatment device

Similar Documents

Publication Publication Date Title
JP5035722B2 (en) Regeneration of NT-SCR-catalyst
TWI412400B (en) Removal device of trace and harmful substances in exhaust gas and its operation method
WO2008012878A1 (en) Apparatus for removing of trace of toxic substance from exhaust gas and method of operating the same
KR20050004807A (en) Method and apparatus for removing mercury species from hot flue gas
JP2000107562A (en) Treating apparatus for exhaust combustion gas
CN112638504A (en) Selective catalytic reduction process and process for regenerating deactivated catalyst of process
JPS6136969B2 (en)
US10722844B2 (en) Selective catalytic reduction process and method of regenerating deactivated SCR catalyst of a parallel flue gas treating system
JP2002219335A (en) Exhaust gas treating device
JP2540587B2 (en) Catalyst filter and method for producing the same
JPH04219124A (en) Treatment of waste gas
JP3411482B2 (en) Operating method of exhaust gas treatment device in garbage incinerator
JP2008030017A (en) Removal apparatus of trace harmful substance in exhaust gas and its operation method
JPH067638A (en) Filter for treating waste combustion gas and method for treating the same
JP2003284918A (en) Exhaust gas treatment apparatus
JP3491141B2 (en) Exhaust gas treatment method and apparatus
JP3858137B2 (en) Apparatus and method for decomposing and treating harmful substances in exhaust gas
JPH08155257A (en) Formation of flue-gas purifying layer
JPH0773650B2 (en) Manufacturing method of catalyst filter
JP4429404B2 (en) Dry exhaust gas treatment method and treatment apparatus
JP2742847B2 (en) High-performance comprehensive exhaust gas treatment method
JP3966485B2 (en) Method and apparatus for treating exhaust gas generated during incineration of waste containing chlorine compounds
JPH0326095B2 (en)
JPH10128069A (en) Treatment of waste gas
JPH11165043A (en) Treatment of waste gas of waste incinerator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040518

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061031

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070306