JP2005333773A - Generator operation control method - Google Patents

Generator operation control method Download PDF

Info

Publication number
JP2005333773A
JP2005333773A JP2004151837A JP2004151837A JP2005333773A JP 2005333773 A JP2005333773 A JP 2005333773A JP 2004151837 A JP2004151837 A JP 2004151837A JP 2004151837 A JP2004151837 A JP 2004151837A JP 2005333773 A JP2005333773 A JP 2005333773A
Authority
JP
Japan
Prior art keywords
generator
power
constant
control method
generators
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004151837A
Other languages
Japanese (ja)
Inventor
Shigeto Watanabe
茂人 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nishishiba Electric Co Ltd
Original Assignee
Nishishiba Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nishishiba Electric Co Ltd filed Critical Nishishiba Electric Co Ltd
Priority to JP2004151837A priority Critical patent/JP2005333773A/en
Publication of JP2005333773A publication Critical patent/JP2005333773A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/70Smart grids as climate change mitigation technology in the energy generation sector

Abstract

<P>PROBLEM TO BE SOLVED: To provide a generator operation control method which can reduce errors in a constant operation of receiving electric power, and allows generators to be operated as much as possible in an effective region. <P>SOLUTION: In the generator operation control method for a power generation system for systematically linking a power receiving system to a plurality of power generators, only one scheduled stop generator performs a constant control of receiving electric power, and the other remaining power generators in operation performs a constant operation at a rated output, allowing the number of insensitive bodies as a whole to be confined to one power generator to effectively operate the power generators. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、受電系統と接続された複数の発電機からなる発電システムにおける発電機運転制御方法に関する。   The present invention relates to a generator operation control method in a power generation system including a plurality of generators connected to a power receiving system.

受電系統に接続される発電機は、例えば特許文献1に開示されているように、契約電力を超えないように負荷が増加すると運転を開始し、複数の発電機による並列運転を行うが、このとき運転している発電機は受電電力を一定に制御しながらお互いの出力も等しくなるように負荷を分担するように制御するのが一般的な発電機運転制御方法であった。この場合、目標とする出力に対して各々の発電機は数%の制御不感帯を持っており、実際の目標出力よりも少なめに発電する場合がある。運転している全ての発電機が少なめに出力した場合、受電電力を一定にするための設定値よりも受電電力が大きくなってしまい、また、発電機を運転する台数が増えれば増えるほど受電電力が大きくなってしまい、発電機を運転するメリットが減少してしまう。   For example, as disclosed in Patent Document 1, the generator connected to the power receiving system starts operation when the load increases so as not to exceed the contract power, and performs parallel operation with a plurality of generators. It has been a common generator operation control method to control the generator that is operating occasionally to share the load so that the output of each generator is equal while controlling the received power to be constant. In this case, each generator has a control dead zone of several percent with respect to the target output, and the power may be generated slightly less than the actual target output. If all the generators in operation output a small amount, the received power becomes larger than the set value for keeping the received power constant, and the received power increases as the number of generators operating increases. Becomes larger, and the merit of operating the generator decreases.

また、発電機を何台運転するかは設定で決められており、余裕を考慮して早めに運転することも考えられる。この場合、発電機が負荷を分担すると負荷量によっては、どの発電機も効率の良い領域での運転をできない場合がある。
特開2000−166100
In addition, how many generators are to be operated is determined by setting, and it is conceivable to operate earlier considering allowances. In this case, if the generator shares the load, any generator may not be able to operate in an efficient region depending on the load.
JP 2000-166100 A

上述したように、従来の発電機運転制御方法では発電機の運転台数が増えるほど不感帯による受電電力量が設定量よりも大きくなってしまい、発電機を運転するメリットが減少し、電力料金にも大きく影響することになる。また、効率の良い領域で発電機を運転できない場合には、ランニングコストも増え、発電システム導入のメリットが得られない、という問題があった。   As described above, in the conventional generator operation control method, as the number of operating generators increases, the amount of received power due to the dead zone becomes larger than the set amount, and the merit of operating the generator is reduced, and the electricity charge is also reduced. It will have a big impact. In addition, when the generator cannot be operated in an efficient area, there is a problem that the running cost increases and the merit of introducing the power generation system cannot be obtained.

本発明は、上記情況に対処するためになされたもので、その課題は、受電電力の一定運転時の誤差を小さくし、かつ、効率の良い領域での運転をできるだけ多くの発電機で行うことが可能な発電機運転制御方法を提供することにある。   The present invention has been made to cope with the above situation, and its problem is to reduce the error during constant operation of the received power and to perform operation in an efficient region with as many generators as possible. It is an object of the present invention to provide a generator operation control method capable of performing the above.

上記課題を解決するために、請求項1記載の発明は、受電系統と複数の発電機を系統連系する発電システムにおける発電機運転制御方法において、停止予定の発電機一台のみが受電電力一定制御を行い、残りの運転中の発電機は定格出力での一定運転を行って、全体としての制御不感体を発電機1台分に抑えるように運転することを特徴とする。   In order to solve the above problems, the invention described in claim 1 is a generator operation control method in a power generation system interconnecting a power receiving system and a plurality of generators, wherein only one generator scheduled to be stopped has a constant received power. The control is performed, and the remaining generators are operated so as to perform a constant operation at the rated output so as to suppress the control dead body as a whole to one generator.

請求項1記載の発明によると、総負荷(受電電力+運転発電機出力合計)が供給可能電力(受電電力設定値+運転機定格電力合計)よりも小さい場合に、停止予定の発電機1台のみで受電電力一定制御を行い、残りの運転中の発電機は定格出力一定運転を行い、全体としての制御不感帯を発電機1台分に抑えているので、発電機を効率良く運転することができる。   According to the first aspect of the present invention, when the total load (received power + operating generator output total) is smaller than the suppliable power (received power set value + operator rated power total), one generator to be stopped The remaining power generator is operated at a constant rated output and the control dead zone as a whole is limited to one generator so that the generator can be operated efficiently. it can.

請求項2記載の発明は、請求項1記載の発電機運転制御方法において、停止予定の発電機とその次の停止予定発電機の2台で受電電力一定制御を行い、残りの運転中の発電機は定格出力での一定運転を行って、エンジンの低負荷運転を避けることを特徴とする。   The invention according to claim 2 is the generator operation control method according to claim 1, wherein the received power constant control is performed by the two generators to be stopped and the next generator to be stopped, and the remaining power generation during operation is performed. The machine is characterized by performing constant operation at rated power and avoiding low-load operation of the engine.

請求項2記載の発明によると、エンジンの低負荷運転を避けるため、停止予定の発電機の1台だけでは受電電力一定制御ができない場合に、その次の停止予定の発電機にも受電電力一定制御を行わせるようにしたもので、2台の発電機で受電電力一定制御を行うものである。   According to the second aspect of the present invention, in order to avoid low-load operation of the engine, when the received power constant control cannot be performed with only one of the generators scheduled to be stopped, the received power is also constant for the next scheduled generator to be stopped. Control is performed, and received power constant control is performed by two generators.

請求項3記載の発明は、請求項1記載の発電機の運転制御方法において、定格出力での一定運転を行う発電機を定格出力で運転させるのではなく、最も効率の良い発電機出力で一定運転を行うことを特徴とする。   According to a third aspect of the present invention, in the generator operation control method according to the first aspect, the generator that performs constant operation at the rated output is not operated at the rated output, but is constant at the most efficient generator output. It is characterized by performing driving.

請求項3記載の発明によると、定格出力で一定運転を行う発電機を定格出力ではなく、最も効率が良くなる発電機出力で一定運転を行うものである。   According to the third aspect of the invention, the generator that performs constant operation at the rated output is not operated at the rated output, but is operated at the generator output that provides the highest efficiency.

本発明によると、昼間の受電電力料金の高い時間帯における制御不感帯を小さくでき、また、定格出力機を効率の良い出力値で制御することで発電機の運転コストも抑えることが可能となる。特に、発電機の運転台数が多くなればなるほどコストメリットに大きな効果を発揮することができる。   According to the present invention, it is possible to reduce a control dead zone in a time zone in which the received power charge is high during the daytime, and it is possible to reduce the operating cost of the generator by controlling the rated output machine with an efficient output value. In particular, the greater the number of generators that can be operated, the greater the cost advantage.

以下、本発明を実施するための最良の形態を図を参照して説明する。
図1は本発明の第1実施形態の停止予定機のみで受電電力一定制御を行うアルゴリズムフロー図である。
The best mode for carrying out the present invention will be described below with reference to the drawings.
FIG. 1 is an algorithm flow diagram for performing constant control of received power only by a scheduled stop machine according to the first embodiment of the present invention.

同図において、本実施形態の高効率運転制御アルゴリズムの機能を動作させるためには、総負荷(受電電力値+運転機出力合計)が供給可能電力(受電電力設定値+運転機定格出力合計)よりも小さいことが条件(ステップ1)となる。当然のことながら総負荷が大きい場合は、全運転機は定格出力での一定運転となる(ステップ5)。総負荷が供給可能電力よりも小さい場合に、自号機が停止予定機でなければ(ステップ2)、目標電力を定格出力として制御する(ステップ4)。自号機が停止予定機であれば、目標電力を再演算する。その演算式は、
目標電力=受電電力+自号機出力電力−受電電力設定値
となる(ステップ3)。
In this figure, in order to operate the function of the high-efficiency operation control algorithm of this embodiment, the total load (received power value + total operating machine output) can be supplied (received power set value + operating machine rated output total). Is smaller than the condition (step 1). As a matter of course, when the total load is large, all the operating machines are operated at a constant output (step 5). When the total load is smaller than the suppliable power and the own machine is not a scheduled stop machine (step 2), the target power is controlled as the rated output (step 4). If the own aircraft is scheduled to stop, the target power is recalculated. The arithmetic expression is
Target power = received power + own machine output power−received power set value (step 3).

図2は本発明の第2実施形態の停止予定機2台で受電電力一定制御を行うアルゴリズムフロー図である。
同図において、本実施形態の高効率運転制御アルゴリズムの機能を動作させる基本条件は、図1の第1実施形態と同様である(ステップ1〜5)が、本実施形態では更に停止予定機1台で受電電力一定制御ができるかどうかの条件(ステップ6)が追加されている。つまり、発電機1台で受電電力一定制御を行った場合、最低負荷運転以下の出力になってしまうような場合、もともとの停止予定機(ステップ7)の目標電力は最低出力(ステップ8)となり、その次の停止予定機(ステップ9)が本来の受電電力一定運転を行うことになり、目標電力を再演算する。その演算式は図1の第1実施形態の場合と同様で、目標電力=受電電力+自号機出力電力−受電電力設定値となる(ステップ10)。
FIG. 2 is an algorithm flow diagram for performing constant received power control with two scheduled stop machines according to the second embodiment of the present invention.
In this figure, the basic conditions for operating the function of the high-efficiency operation control algorithm of this embodiment are the same as in the first embodiment of FIG. 1 (steps 1 to 5), but in this embodiment, the scheduled stop machine 1 is further reduced. A condition (step 6) as to whether or not the received power constant control can be performed at the stand is added. In other words, when the received power constant control is performed with one generator, if the output is below the minimum load operation, the target power of the original scheduled stop machine (step 7) is the minimum output (step 8). Then, the next scheduled stop machine (step 9) performs the original operation of receiving power constant, and recalculates the target power. The calculation formula is the same as in the case of the first embodiment of FIG. 1, and the target power = received power + own machine output power-received power set value is obtained (step 10).

図3は本発明の第3実施形態の定格出力機が最も効率の良い出力で制御を行う場合のアルゴリズムフロー図である。
同図に示すように、本実施形態の高効率制御アルゴリズムが図2のアルゴリズムと異なっている点は、各発電機の最も効率が良い出力を予め設定しておき、目標電力が定格出力での一定運転を行う発電機が、この設定電力で一定運転を行うように制御する(ステップ5)ようにした点のみであり、その他のアルゴリズムは図2のアルゴリズムと同じであるので、同一ステップには同一ステップ符号を付している。
FIG. 3 is an algorithm flow diagram when the rated output machine of the third embodiment of the present invention performs control with the most efficient output.
As shown in the figure, the high efficiency control algorithm of this embodiment is different from the algorithm of FIG. 2 in that the most efficient output of each generator is set in advance, and the target power is the rated output. The generator that performs a constant operation is only controlled to perform a constant operation with this set power (step 5), and the other algorithms are the same as the algorithm of FIG. The same step code is attached.

本実施形態によると、最も効率が良い発電機で運転を行うことができる。   According to this embodiment, it is possible to operate with the most efficient generator.

本発明の第1実施形態の停止予定機1台のみで受電電力一定制御を行うアルゴリズムフロー図。The algorithm flow figure which performs receiving power constant control only by the one stop plan machine of 1st Embodiment of this invention. 本発明の第2実施形態の停止予定機2台で受電電力一定制御を行うアルゴリズムフロー図。The algorithm flow figure which performs received power constant control with the two scheduled stop machines of 2nd Embodiment of this invention. 本発明の第3実施形態の定格出力機が最も効率の良い出力で制御を行うアルゴリズムフロー図。The algorithm flowchart which the rated output machine of 3rd Embodiment of this invention performs control with the most efficient output.

符号の説明Explanation of symbols

1…高効率運転制御条件、2…停止予定機1台で受電電力一定制御を行う場合の目標電力演算処理、3…次の停止予定機で受電電力一定制御を行う場合の目標電力演算処理、4…2台で受電電力一定制御を行う場合の停止予定機の目標電力、5…定格出力機を最も効率の良い出力で制御するための目標電力、6…1台で受電電力一定制御が可能かどうかの判断。   DESCRIPTION OF SYMBOLS 1 ... High-efficiency operation control condition, 2 ... Target electric power calculation process in case receiving power constant control is carried out by one stop planned machine, 3 ... Target electric power calculation process in case receiving electric power constant control is carried out by the next scheduled machine to stop, 4 ... Target power of the machine scheduled to stop when 2 units of received power constant control is performed, 5 ... Target power for controlling the rated output machine with the most efficient output, 6 ... 1 unit of received power constant control is possible Judgment whether or not.

Claims (3)

受電系統と複数の発電機を系統連系する発電システムにおける発電機運転制御方法において、停止予定の発電機一台のみが受電電力一定制御を行い、残りの運転中の発電機は定格出力での一定運転を行って、全体としての制御不感体を発電機1台分に抑えるように運転することを特徴とする発電機運転制御方法。   In a generator operation control method in a power generation system that interconnects a power receiving system and a plurality of generators, only one generator scheduled to be stopped performs constant control of received power, and the remaining operating generators at the rated output A generator operation control method, characterized in that a constant operation is performed so as to suppress the control dead body as a whole to one generator. 請求項1記載の発電機運転制御方法において、停止予定の発電機とその次の停止予定発電機の2台で受電電力一定制御を行い、残りの運転中の発電機は定格出力での一定運転を行って、エンジンの低負荷運転を避けることを特徴とする発電機の運転制御方法。   2. The generator operation control method according to claim 1, wherein received power constant control is performed by a generator to be stopped and a next generator to be stopped, and the remaining generators are operated at a rated output at a constant output. And a generator operation control method characterized by avoiding low-load operation of the engine. 請求項1記載の発電機運転制御方法において、定格出力での一定運転を行う発電機を定格出力で運転させるのではなく、最も効率の良い発電機出力で一定運転を行うことを特徴とする発電機の運転制御方法。

2. The generator operation control method according to claim 1, wherein the generator that performs constant operation at the rated output is not operated at the rated output, but is operated at the most efficient generator output. Machine operation control method.

JP2004151837A 2004-05-21 2004-05-21 Generator operation control method Pending JP2005333773A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004151837A JP2005333773A (en) 2004-05-21 2004-05-21 Generator operation control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004151837A JP2005333773A (en) 2004-05-21 2004-05-21 Generator operation control method

Publications (1)

Publication Number Publication Date
JP2005333773A true JP2005333773A (en) 2005-12-02

Family

ID=35488017

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004151837A Pending JP2005333773A (en) 2004-05-21 2004-05-21 Generator operation control method

Country Status (1)

Country Link
JP (1) JP2005333773A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013055839A (en) * 2011-09-06 2013-03-21 Mitsubishi Electric Corp Power supply system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013055839A (en) * 2011-09-06 2013-03-21 Mitsubishi Electric Corp Power supply system

Similar Documents

Publication Publication Date Title
CN102474207B (en) Control device
WO2011024769A1 (en) Power system demand control equipment, demand control program and recording medium
JP4495001B2 (en) Power generation system
US8263276B1 (en) Startup power control in a fuel cell system
JP2006274868A (en) Operation control device for gas turbine generator
JP5963147B2 (en) Charge / discharge control device, charge / discharge control method, and power storage system
RU2644415C1 (en) Method and device for controlling hybrid energy storage system
KR101766260B1 (en) Method for Ship Energy Efficiency Optimization
CN104659858A (en) Distribution power supply system and method
JP5978292B2 (en) Power converter
JPWO2019003407A1 (en) Power generation system, energy management device, and power generation control method
CN105281359A (en) Power assist unit and power assist system
CN104662767B (en) Battery system and generating equipment control system
EP3097638B1 (en) Control apparatus for a vehicle alternator
CN104704700A (en) Method and controller for continuously operating a plurality of electric energy generating machines during a high voltage condition
JP2017118721A (en) Power generation system
JP4824380B2 (en) Autonomous distributed control system and control method for power system
JP2005333773A (en) Generator operation control method
JP5500370B2 (en) Operation control apparatus and operation control method using multivariable model prediction
JP4796957B2 (en) Constant IDC operation of fuel cell generator
EP3459154B1 (en) Power supply for an isolated network
CN116014714A (en) Multi-stage dynamic planning method and device for electric power system under carbon constraint
CN104201940A (en) Motor control system and method
WO2017183200A1 (en) System with common positive and negative bus bars, regenerative control device, and regenerative control method
CN115697752A (en) Method and apparatus in an electric mining machine

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060509

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060926

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070403