JP2005333125A - Radio wave absorber and its manufacturing method - Google Patents

Radio wave absorber and its manufacturing method Download PDF

Info

Publication number
JP2005333125A
JP2005333125A JP2005125861A JP2005125861A JP2005333125A JP 2005333125 A JP2005333125 A JP 2005333125A JP 2005125861 A JP2005125861 A JP 2005125861A JP 2005125861 A JP2005125861 A JP 2005125861A JP 2005333125 A JP2005333125 A JP 2005333125A
Authority
JP
Japan
Prior art keywords
radio wave
mass
wave absorber
microballoon
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005125861A
Other languages
Japanese (ja)
Other versions
JP4736517B2 (en
Inventor
Hideo Kikuchi
英雄 菊地
Satoru So
宗  哲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokohama Rubber Co Ltd
Original Assignee
Yokohama Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokohama Rubber Co Ltd filed Critical Yokohama Rubber Co Ltd
Priority to JP2005125861A priority Critical patent/JP4736517B2/en
Publication of JP2005333125A publication Critical patent/JP2005333125A/en
Application granted granted Critical
Publication of JP4736517B2 publication Critical patent/JP4736517B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Aerials With Secondary Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a radio wave absorber and its manufacturing method, which can absorb radio wave in a wide band, and which is lightweight, has flame retardance, and is durable in outdoor use. <P>SOLUTION: A radio wave absorbing layer 3 is comprised of a composition obtained by blending a flexible epoxy resin, a flame retardant, a micro balloon which makes specific gravity small, and a carbon-chopped-fiber 4 used as dielectrics. A first radio wave absorbing layer 3a, a second radio wave absorbing layer 3b, and a third radio wave absorbing layer 3c are laminated on the surface of a radio wave reflecting plate 2, in descending order of content density of the carbon-chopped-fiber 4. Thereby, the radio wave absorber absorbs radio wave in a wide band, and is lightweight, has flame retardance, and is durable in outdoor use. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、電波吸収体およびその製造方法に関し、さらに詳しくは、広帯域の電波を吸収でき、軽量で難燃性を有し、屋外使用に耐え得る電波吸収体およびその製造方法に関するものである。   The present invention relates to a radio wave absorber and a method for manufacturing the same, and more particularly to a radio wave absorber that can absorb broadband radio waves, is lightweight and flame retardant, and can withstand outdoor use, and a method for manufacturing the same.

従来の単層の電波吸収層からなる薄板状の電波吸収体は、ある周波数において電波吸収性能がピークとなり、このピーク周波数を外れるにつれ、電波の吸収性能が低下するものであった。また、吸収対象となる周波数帯域によっては磁性体としてフェライトなどの比重の大きな素材を用いるために重量が重くなっていた。   Conventional thin plate wave absorbers composed of a single wave absorber layer have a peak radio wave absorption performance at a certain frequency, and the radio wave absorption performance decreases as the peak frequency is deviated. In addition, depending on the frequency band to be absorbed, a material having a large specific gravity such as ferrite is used as a magnetic material, which increases the weight.

広帯域の電波吸収体としては、電波暗室などに用いられるピラミッド型のフォーム材からなるものがあるが、機械的強度が不十分であり、耐候性もないため屋外で使用することができない。   Some broadband wave absorbers are made of pyramidal foam materials used in anechoic chambers, but cannot be used outdoors due to insufficient mechanical strength and lack of weather resistance.

他の広帯域の電波吸収体としては、樹脂等のバインダーにカーボンブラックおよびマイクロバルーンを含有するシンタクチックフォーム材からなる電波吸収材が提案されている(例えば特許文献1)。しかしながら、この電波吸収材は難燃性について考慮されていなかった。
特許第2961171号公報
As another broadband wave absorber, a wave absorber made of a syntactic foam material containing carbon black and a microballoon in a binder such as a resin has been proposed (for example, Patent Document 1). However, this radio wave absorber has not been considered for flame retardancy.
Japanese Patent No. 2961171

本発明の目的は、広帯域の電波を吸収でき、軽量で難燃性を有し、屋外使用に耐え得る電波吸収体およびその製造方法を提供することにある。   An object of the present invention is to provide a radio wave absorber that can absorb wide-band radio waves, is lightweight and flame retardant, and can withstand outdoor use, and a method for manufacturing the same.

上記目的を達成する本発明の電波吸収体は、電波反射板の表面に電波吸収層を設けた電波吸収体において、前記電波吸収層は、可撓性エポキシ樹脂と、難燃剤と、マイクロバルーンと、カーボンチョップドファイバーとを配合した組成物から構成され、前記カーボンチョップドファイバーの含有密度を前記電波吸収層の厚み方向において前記電波反射板に近づくに連れて順次、大きくしたことを特徴とするものである。   The radio wave absorber of the present invention that achieves the above object is a radio wave absorber in which a radio wave absorber is provided on the surface of a radio wave reflector, wherein the radio wave absorber layer comprises a flexible epoxy resin, a flame retardant, a microballoon, The carbon chopped fiber is composed of a composition, and the density of the carbon chopped fiber is gradually increased as it approaches the radio wave reflector in the thickness direction of the radio wave absorption layer. is there.

また、本発明の電波吸収体の製造方法は、電波反射板の表面に電波吸収層を設けた電波吸収体の製造方法において、可撓性エポキシ樹脂と、粉体の難燃剤と、液体の難燃剤と、マイクロバルーンと、カーボンチョップドファイバーとを配合し、カーボンチョップドファイバーの含有密度が異なる複数の組成物を製造し、前記複数の組成物の中からカーボンチョップドファイバーの含有密度が大きい順に前記電波反射板の表面に積層させることを特徴とするものである。   The radio wave absorber manufacturing method of the present invention is a radio wave absorber manufacturing method in which a radio wave absorbing layer is provided on the surface of a radio wave reflector, and a flexible epoxy resin, a powder flame retardant, and a liquid Combining a flame retardant, a microballoon, and carbon chopped fibers to produce a plurality of compositions having different carbon chopped fiber content densities, and the radio waves in descending order of the carbon chopped fiber content density. It is characterized by being laminated on the surface of the reflector.

本発明の電波吸収体によれば、電波反射板の表面上の電波吸収層を可撓性エポキシ樹脂と、難燃剤と、マイクロバルーンと、カーボンチョップドファイバーとを配合した組成物から構成したので、優れた機械的強度、耐候性を発揮して屋外使用に耐え得るものとなり、誘電体となるカーボンチョップドファイバーの含有密度を厚み方向で電波反射板に近づくに連れて順次、大きくしたので、広帯域の電波を吸収でき、マイクロバルーンの添加により軽量化でき、難燃剤を添加したので難燃性を有するものにできる。   According to the radio wave absorber of the present invention, the radio wave absorption layer on the surface of the radio wave reflector is composed of a composition in which a flexible epoxy resin, a flame retardant, a microballoon, and a carbon chopped fiber are blended. Since it has excellent mechanical strength and weather resistance, it can withstand outdoor use, and the content density of carbon chopped fiber that becomes a dielectric is gradually increased as it approaches the radio wave reflector in the thickness direction. It can absorb radio waves, can be reduced in weight by the addition of microballoons, and can be made flame retardant since a flame retardant is added.

本発明の電波吸収体の製造方法では、可撓性エポキシ樹脂と、粉体の難燃剤と、液体の難燃剤と、マイクロバルーンと、カーボンチョップドファイバーとを配合し、カーボンチョップドファイバーの含有密度が異なる複数の組成物を製造し、前記複数の組成物の中からカーボンチョップドファイバーの含有密度が大きい順に前記電波反射板の表面に積層させるので、液体の難燃剤の配合により所定量の各材料を容易に混合可能となり、広帯域の電波を吸収できて軽量で難燃性を有し、屋外使用ができる電波吸収体を製造することができる。   In the manufacturing method of the radio wave absorber of the present invention, a flexible epoxy resin, a powder flame retardant, a liquid flame retardant, a microballoon, and carbon chopped fiber are blended, and the content density of the carbon chopped fiber is A plurality of different compositions are manufactured and laminated on the surface of the radio wave reflector from the plurality of compositions in descending order of the density of carbon chopped fibers, so that a predetermined amount of each material is added by blending a liquid flame retardant. A radio wave absorber that can be easily mixed, absorbs broadband radio waves, is lightweight and flame retardant, and can be used outdoors can be manufactured.

以下、本発明の電波吸収体を図の実施形態に基づいて説明する。図1に示す電波吸収体1は、可撓性エポキシ樹脂と、難燃剤と、マイクロバルーンと、カーボンチョップドファイバー4とを配合した組成物から構成される電波吸収層3を電波反射板2の表面に設けたものであり、電波吸収層3のカーボンチョップドファイバー4の含有密度が電波吸収層3の厚み方向において電波反射板2に近づくに連れて順次、大きくなっている。   Hereinafter, the radio wave absorber of the present invention will be described based on the embodiments shown in the drawings. A radio wave absorber 1 shown in FIG. 1 has a radio wave absorbing layer 3 composed of a composition in which a flexible epoxy resin, a flame retardant, a microballoon, and a carbon chopped fiber 4 are blended. The content density of the carbon chopped fiber 4 of the radio wave absorption layer 3 is gradually increased as it approaches the radio wave reflection plate 2 in the thickness direction of the radio wave absorption layer 3.

詳しくは、電波吸収層3を厚み方向に分割した分割層を積層した構造となっており、電波反射板2の表面にはカーボンチョップドファイバー4の含有密度が大きい順に分割層となる第1電波吸収層3a、第2電波吸収層3b、第3電波吸収層3cが積層した三層構造となっている。したがって、電波吸収層3の厚み方向の位置によって最もよく吸収できる電波の周波数(ピーク周波数)が異なることになる。電波吸収層3の積層数は三層に限定されない。   Specifically, the radio wave absorption layer 3 has a structure in which a division layer obtained by dividing the radio wave absorption layer 3 in the thickness direction is laminated. It has a three-layer structure in which the layer 3a, the second radio wave absorption layer 3b, and the third radio wave absorption layer 3c are laminated. Therefore, the frequency (peak frequency) of the radio wave that can be best absorbed depends on the position of the radio wave absorption layer 3 in the thickness direction. The number of radio wave absorption layers 3 stacked is not limited to three.

電波反射板2としては、電波を反射するものならば特に限定されないが、一般的に電波を反射する金属板が用いられる。   The radio wave reflection plate 2 is not particularly limited as long as it reflects radio waves, but a metal plate that reflects radio waves is generally used.

可撓性エポキシ樹脂としてはウレタン変成エポキシ樹脂、ダイマー酸変成エポキシ樹脂などを用いることができる。可撓性エポキシ樹脂の硬化剤としては、各種アミン系化合物、各種酸無水物、ジシアンジアミド、イミダゾールの各種誘導体、三フッ化ホウ素アミン塩などを用いることができる。可撓性エポキシ樹脂を用いることで、複雑な形状、細かい形状を形成することや様々な形状体に塗布することが可能となる。また、高い接着性、強度、耐候性を有し、屋外使用に耐え得るものとなる。   As the flexible epoxy resin, urethane modified epoxy resin, dimer acid modified epoxy resin, or the like can be used. As a curing agent for the flexible epoxy resin, various amine compounds, various acid anhydrides, dicyandiamide, various derivatives of imidazole, boron trifluoride amine salt, and the like can be used. By using a flexible epoxy resin, it becomes possible to form a complicated shape, a fine shape, and apply to various shapes. Moreover, it has high adhesiveness, strength, and weather resistance, and can withstand outdoor use.

難燃剤としては粉体の無機質難燃剤の水酸化アルミニウム、三酸化アンチモンなどや液体難燃剤のたとえば、リン酸系のTIBP(トリイソブチルホスフェート)、CDP(クレジルジフェニルホスフェート)、TCP(トリクレジルホスフェート)などを用いることができる。   Examples of flame retardants include powdered inorganic flame retardants such as aluminum hydroxide and antimony trioxide, and liquid flame retardants such as phosphoric acid TIBP (triisobutyl phosphate), CDP (cresyl diphenyl phosphate), and TCP (tricresyl). Phosphate) and the like can be used.

難燃剤の配合量は、可撓性エポキシ樹脂100質量部に対して40〜90質量部とするのが好ましい。この可撓性エポキシ樹脂100質量部とは、硬化剤を含んだ可撓性エポキシ樹脂の質量部を意味するものである(以下、同様)。難燃剤の配合量を可撓性エポキシ樹脂100質量部に対して40質量部未満とすると十分な難燃性を得ることができず、90質量部を超えると粉体難燃剤の場合は混合困難となり、液体難燃剤の場合は硬化後表面にブルームする危険性がある。   The blending amount of the flame retardant is preferably 40 to 90 parts by mass with respect to 100 parts by mass of the flexible epoxy resin. The 100 parts by mass of the flexible epoxy resin means a part by mass of the flexible epoxy resin containing a curing agent (hereinafter the same). When the blending amount of the flame retardant is less than 40 parts by mass with respect to 100 parts by mass of the flexible epoxy resin, sufficient flame retardancy cannot be obtained, and when it exceeds 90 parts by mass, mixing is difficult in the case of a powder flame retardant. In the case of a liquid flame retardant, there is a risk of blooming on the surface after curing.

粉体(固体)の難燃剤だけを用いると各材料を混合してゆくに連れて、混合体の粘度が上がりすぎ、マイクロバルーンなど他の粉体の配合量が制限されることになる。そのため粉体(固体)と液体の難燃剤を併用するのが好ましく、混合体を適度な粘度に保って混合し易く、また所定の量の各材料を混合することができる。その際には、粉体の難燃剤を可撓性エポキシ樹脂100質量部に対して20〜50質量部、液体の難燃剤を20〜40質量部とするのが好適である。   When only the powder (solid) flame retardant is used, as the materials are mixed, the viscosity of the mixture increases too much, and the amount of other powders such as microballoons is limited. Therefore, it is preferable to use a powder (solid) and a liquid flame retardant in combination, and the mixture can be easily mixed while maintaining an appropriate viscosity, and a predetermined amount of each material can be mixed. In that case, it is preferable that the powder flame retardant is 20 to 50 parts by mass with respect to 100 parts by mass of the flexible epoxy resin, and the liquid flame retardant is 20 to 40 parts by mass.

マイクロバルーンとしては有機質または無機質からなるものを使用できるが、たとえば無機質のガラスやシリカのマイクロバルーンは耐圧性があって好ましい。マイクロバルーンの配合量は、可撓性エポキシ樹脂100質量部に対して40〜60質量部とするのが好適であり、40質量部未満であると、混合体の比重が十分に小さくならずに電波吸収体の軽量化を図ることができず、60質量部を超えると軟化しすぎて組成物の機械的強度が不足する。   As the microballoon, an organic or inorganic material can be used. For example, an inorganic glass or silica microballoon is preferable because of its pressure resistance. The blending amount of the microballoon is preferably 40 to 60 parts by mass with respect to 100 parts by mass of the flexible epoxy resin, and if it is less than 40 parts by mass, the specific gravity of the mixture is not sufficiently reduced. The wave absorber cannot be reduced in weight, and if it exceeds 60 parts by mass, the composition becomes too soft and the mechanical strength of the composition is insufficient.

また、マイクロバルーンの真密度は0.20〜0.40g/cmが好ましく、0.20g/cm未満であるとカサ(体積)が増えて混合粘度が大きくなり、組成物をシート化しにくくなるため組成物の塗布等の作業効率が低下し、一方で、0.40g/cmを超えると全体の比重に大きく影響する。粒径についても混合粘度、比重等の観点から25〜120μmが好ましい。 Also, the true density of microballoons preferably 0.20~0.40g / cm 3, mix viscosity increases with increasing is less than 0.20 g / cm 3 bulk (volume), hardly sheeted composition Therefore, the working efficiency such as application of the composition is lowered, and on the other hand, when it exceeds 0.40 g / cm 3 , the specific gravity of the whole is greatly affected. The particle size is preferably 25 to 120 μm from the viewpoint of mixing viscosity, specific gravity and the like.

電波吸収体の軽量化を重視する場合は、マイクロバルーンとして樹脂マイクロバルーンを用いる。樹脂マイクロバルーンの真密度は0.020〜0.030g/cm、粒径は25〜120μm程度とし、配合量は真密度が小さくなるので可撓性エポキシ樹脂100質量部に対して3〜6質量部程度として、カサが増えすぎないようにすることが好ましい。 When importance is attached to the weight reduction of the radio wave absorber, a resin microballoon is used as the microballoon. The true density of the resin microballoon is 0.020 to 0.030 g / cm 3 , the particle size is about 25 to 120 μm, and the blending amount is 3-6 with respect to 100 parts by mass of the flexible epoxy resin because the true density is small. It is preferable that the mass does not increase excessively as the mass part.

この3〜6質量部の配合であれば、可撓性エポキシ樹脂100質量部に対して40〜60質量部で配合する真密度0.20〜0.40g/cmのガラスマイクロバルーン等と体積割合がほぼ同じとなる。マイクロバルーンの誘電率は、その種類によらずに空気に非常に近いので、体積割合を同じにしておけば電気的特性は変化せず、軽量化を図りつつ同じ電波吸収性能を得ることができる。 If it is 3 to 6 parts by mass, the glass microballoon and the like having a true density of 0.20 to 0.40 g / cm 3 blended at 40 to 60 parts by mass with respect to 100 parts by mass of the flexible epoxy resin and the volume. The ratio is almost the same. The dielectric constant of microballoons is very close to air regardless of the type, so if the volume ratio is the same, the electrical characteristics will not change, and the same radio wave absorption performance can be obtained while achieving weight reduction. .

誘電体としては少量で所定の誘電率を得ることができるカーボンチョップドファイバー4を添加する。カーボン粒子を用いると粒子が小さいほど体積当たりの表面積が大きくなるのでカーボン粒子にマイクロバルーンや難燃剤の粉体が吸着し、粉体の添加量が制限されるがカーボンチョップドファイバー4では、この点を改善することができる。   Carbon chopped fiber 4 that can obtain a predetermined dielectric constant in a small amount is added as a dielectric. When carbon particles are used, the smaller the particles, the larger the surface area per volume, so that the microballoon and the flame retardant powder are adsorbed on the carbon particles, and the amount of powder added is limited. Can be improved.

カーボンチョップドファイバー4の繊維長は1.0〜3.5mm、繊維径は10〜20μmとすると優れた電波吸収性能を得ることができて好ましい。繊維長が短く、繊維径が小さいと適切な誘電率とするためにより多くの量を添加する必要があり、繊維長が長く、繊維径が大きいと混合体の中に分散させにくくなる。   It is preferable that the carbon chopped fiber 4 has a fiber length of 1.0 to 3.5 mm and a fiber diameter of 10 to 20 μm because excellent radio wave absorption performance can be obtained. If the fiber length is short and the fiber diameter is small, it is necessary to add a larger amount in order to obtain an appropriate dielectric constant. If the fiber length is long and the fiber diameter is large, it is difficult to disperse in the mixture.

電波吸収層3におけるカーボンチョップドファイバー4の含有密度は、電波吸収層3の厚み方向において、電波反射板2に近づくに連れて順次、大きくする。   The density of the carbon chopped fibers 4 in the radio wave absorption layer 3 is gradually increased as it approaches the radio wave reflection plate 2 in the thickness direction of the radio wave absorption layer 3.

電波吸収層3が三層構造の場合は、電波反射板2に最も近い第1電波吸収層3aのカーボンチョップドファイバー4の配合量は可撓性エポキシ樹脂100質量部に対して3〜15質量部とし、第2電波吸収層3b、第3電波吸収層3cにおけるカーボンチョップドファイバーの配合量は順次、少ない質量部とする。たとえば、第2電波吸収層3bでは1〜3質量部、第3電波吸収層3cでは1質量部未満とする。この時、電波吸収層3の表面となる第3電波吸収層3cでは、カーボンチョップドファイバー4を含有しない状態にすることもできる。   When the radio wave absorption layer 3 has a three-layer structure, the compounding amount of the carbon chopped fiber 4 of the first radio wave absorption layer 3a closest to the radio wave reflector 2 is 3 to 15 parts by mass with respect to 100 parts by mass of the flexible epoxy resin. In addition, the blending amount of the carbon chopped fibers in the second radio wave absorption layer 3b and the third radio wave absorption layer 3c is sequentially set to a smaller mass part. For example, it is 1 to 3 parts by mass for the second radio wave absorption layer 3b and less than 1 part by mass for the third radio wave absorption layer 3c. At this time, the third radio wave absorption layer 3 c which is the surface of the radio wave absorption layer 3 can be made to contain no carbon chopped fiber 4.

つぎに本発明の電波吸収体1の製造方法について説明する。まず、可撓性エポキシ樹脂と、難燃剤と、マイクロバルーンと、カーボンチョップドファイバー4とを所定量ずつ混合して電波吸収層3を構成する組成物を製造するが、この際にカーボンチョップドファイバー4の含有密度が異なる複数の組成物を製造する。難燃剤は粉体(固体)と液体とを併用すると適度の粘度で所定量の各材料を容易に混合できる。   Next, a method for producing the radio wave absorber 1 of the present invention will be described. First, a flexible epoxy resin, a flame retardant, a microballoon, and a carbon chopped fiber 4 are mixed in predetermined amounts to produce a composition that constitutes the radio wave absorption layer 3. At this time, the carbon chopped fiber 4 is produced. A plurality of compositions having different content densities are produced. When a flame retardant is used in combination with a powder (solid) and a liquid, a predetermined amount of each material can be easily mixed with an appropriate viscosity.

その後、製造した複数の組成物の中からカーボンチョップドファイバー4の含有密度が最も大きい組成物(第1電波吸収層3a)を電波反射板2の表面に塗布などをして接着させる。   Thereafter, a composition (first radio wave absorption layer 3 a) having the highest density of the carbon chopped fibers 4 is applied to the surface of the radio wave reflection plate 2 and adhered from among the plurality of produced compositions.

その後、硬化した第1電波吸収層3a上に、カーボンチョップドファイバー4の含有密度が次に大きい組成物(第2電波吸収層3b)を積層する。以後、同様にカーボンチョップドファイバー4の含有密度の大きい順に順次、組成物を積層し、第2電波吸収層3b上に第3電波吸収層3cを積層する。このように多層構造の電波吸収層3を有する電波吸収体1が製造でされるが、積層数は三層に限られない。   Thereafter, a composition (second radio wave absorption layer 3b) having the next highest density of carbon chopped fibers 4 is laminated on the cured first radio wave absorption layer 3a. Thereafter, similarly, the compositions are sequentially laminated in descending order of the density of the carbon chopped fibers 4, and the third radio wave absorption layer 3c is laminated on the second radio wave absorption layer 3b. Thus, although the radio wave absorber 1 having the radio wave absorption layer 3 having a multilayer structure is manufactured, the number of stacked layers is not limited to three.

この製造方法では、接着剤を用いることなくエポキシ樹脂の優れた接着性で電波吸収板2および各電波吸収層3が接着されるので、層間の剥がれや、剥がれに起因する不具合を軽減させることができ、十分な機械的強度を発揮し、耐候性も優れたものになる。また、層間に特別に接着手段を設ける必要がなく、電波吸収性能が影響を受けることもない。   In this manufacturing method, since the radio wave absorbing plate 2 and each radio wave absorbing layer 3 are bonded with excellent adhesiveness of epoxy resin without using an adhesive, it is possible to reduce peeling between layers and problems caused by peeling. And exhibit sufficient mechanical strength and excellent weather resistance. In addition, it is not necessary to provide an adhesive means between the layers, and the radio wave absorption performance is not affected.

別の製造方法として、既述した第1電波吸収層3a、第2電波吸収層3bおよび第3電波吸収層3cをそれぞれ個別に製造、硬化させ、カーボンチョップドファイバー4の含有密度が大きい順となるように第1電波吸収層3a、第2電波吸収層3b、第3電波吸収層3cの順に電波吸収板2の表面に接着剤などで接着して積層することで多層の電波吸収体1を製造することもできる。   As another manufacturing method, the first radio wave absorption layer 3a, the second radio wave absorption layer 3b and the third radio wave absorption layer 3c described above are individually manufactured and cured, and the density of the carbon chopped fibers 4 is increased in order. As described above, the first wave absorbing layer 3a, the second wave absorbing layer 3b, and the third wave absorbing layer 3c are laminated on the surface of the wave absorbing plate 2 by bonding them with an adhesive or the like in this order. You can also

以下、本発明の電波吸収体の作用について説明する。図1において三層構造の電波吸収体1の表面側となる第3電波吸収層3cから電波が入射してくる。第3電波吸収層3cのカーボンチョップドファイバー4の含有密度は小さいので、より多くの電波を入射させることができ、厚み方向の位置で電波吸収特性の異なる電波吸収層3を通過するに連れて入射した電波は徐々に減衰してゆく。また、第1電波吸収層3aまで透過した電波は電波反射板2で反射し、再び電波吸収層3で減衰する。さらに、入射する電波と反射する電波が相殺されて電波が減衰する。これにより、広帯域の電波を減衰させ、吸収することができる。   Hereinafter, the operation of the radio wave absorber of the present invention will be described. In FIG. 1, a radio wave enters from a third radio wave absorption layer 3c which is the surface side of the radio wave absorber 1 having a three-layer structure. Since the content density of the carbon chopped fibers 4 in the third radio wave absorption layer 3c is small, more radio waves can be made incident and incident as it passes through the radio wave absorption layer 3 having different radio wave absorption characteristics at the position in the thickness direction. The received radio wave gradually attenuates. The radio wave transmitted to the first radio wave absorption layer 3 a is reflected by the radio wave reflection plate 2 and attenuates again by the radio wave absorption layer 3. Further, the incident radio wave and the reflected radio wave are offset, and the radio wave attenuates. As a result, broadband radio waves can be attenuated and absorbed.

ウレタン変成エポキシ樹脂(アルプス化学産業(株)製:アルボンEX−320(ビスフェノール型エポキシ樹脂とウレタン樹脂の混合物))とアミン系硬化剤(三和化学工業(株)製:サンマイドX−963(変性脂肪族ポリアミン))の混合物からなる可撓性エポキシ樹脂に液体難燃剤(旭電化工業(株)製:アデカスタブPFR(1,3ジヒドロキシベンゼン・トリクロロホスフィンオキシド重縮合物))、粉体難燃剤(日本化学工業(株)製:ヒシガートN−3C(ニトリロトリスチレンホスホン酸カルシウム))、ガラスマイクロバルーン(住友スリーエム(株)製:スコッチライトグラスバブルス K−25)、カーボンチョップドファイバー((株)ドナック製:ドナカーボンチョップ S−331)を[表1]に示す割合で配合して攪拌、混合して第1〜3層電波吸収層を構成する組成物を製造した。   Urethane modified epoxy resin (Alps Chemical Industries Co., Ltd .: Albon EX-320 (mixture of bisphenol type epoxy resin and urethane resin)) and amine curing agent (Sanwa Chemical Industry Co., Ltd .: Sanmide X-963 (modified) A liquid epoxy flame retardant (manufactured by Asahi Denka Kogyo Co., Ltd .: ADK STAB PFR (1,3 dihydroxybenzene / trichlorophosphine oxide polycondensate))), powder flame retardant ( Nippon Chemical Industry Co., Ltd .: Hishigato N-3C (nitrilotristyrene phosphonate calcium)), glass microballoon (Sumitomo 3M Co., Ltd .: Scotchlite Glass Bubbles K-25), carbon chopped fiber (Donac Co., Ltd.) : Donna carbon chop S-331) blended in the ratio shown in [Table 1] Stirring Te, the composition constituting the first to third layer radio wave absorbing layer were mixed was prepared.

Figure 2005333125
Figure 2005333125

金属板からなる電波反射板の表面にカーボンチョップドファイバーの配合質量部(含有密度)が最も大きい第1電波吸収層となる組成物を塗布して硬化させ、厚みが[表1]の値になった後、同様に第2、第3電波吸収層の順に塗布して硬化させて積層し、電波吸収層が三層構造の電波吸収体を製造した。この時、ガラスマイクロバルーンの真密度は0.25g/cm、粒径は95μmであり、カーボンチョップドファイバーの繊維長は3.3mm、繊維径は18μmであった。 A composition that becomes the first radio wave absorption layer having the largest blended mass part (content density) of carbon chopped fiber is applied to the surface of the radio wave reflector made of a metal plate and cured, and the thickness becomes the value of [Table 1]. After that, similarly, the second and third radio wave absorption layers were applied and cured in this order and laminated to produce a radio wave absorber having a three-layer radio wave absorption layer. At this time, the true density of the glass microballoon was 0.25 g / cm 3 , the particle diameter was 95 μm, the fiber length of the carbon chopped fiber was 3.3 mm, and the fiber diameter was 18 μm.

電波吸収体がオリジナルの状態(C1)、第3電波吸収層の表面にウレタン系塗料を塗布して電波吸収層の総厚が12.335mmとなった状態(C2)、オリジナルの状態の電波吸収体全体を水に浸漬して250時間後の3つの状態(C3)について第3電波吸収層の表面側から周波数4〜18GHzの周波数帯における電波吸収性を評価した。その結果は図2に示すとおりである。   Radio wave absorber is in the original state (C1), urethane coating is applied to the surface of the third radio wave absorption layer, and the total thickness of the radio wave absorption layer is 12.335 mm (C2). The whole body was immersed in water, and three states (C3) 250 hours later were evaluated for radio wave absorptivity in a frequency band of 4 to 18 GHz from the surface side of the third radio wave absorption layer. The result is as shown in FIG.

以上(C1)〜(C3)いずれの状態においても、広い範囲の周波数で優れた吸収性能があることが確認され、特にXバンド(周波数8〜12.5GHz)およびKuバンド(周波数12.5〜18GHz)の広帯域において優れた電波吸収性能を有することが判明した。
また、第3電波吸収層の表面にウレタン系塗料を塗布することで全体的な電波吸収性能を維持したまま、15GHz近傍の吸収性能を著しく向上させることが確認できた。
In any of the above states (C1) to (C3), it was confirmed that there was excellent absorption performance in a wide range of frequencies, and in particular, X band (frequency 8 to 12.5 GHz) and Ku band (frequency 12.5 to It has been found that it has excellent radio wave absorption performance in a wide band of 18 GHz).
It was also confirmed that the absorption performance in the vicinity of 15 GHz was remarkably improved by applying urethane-based paint on the surface of the third radio wave absorption layer while maintaining the overall radio wave absorption performance.

さらに、水に浸漬した後も優れた電波吸収性能が維持できることが確認でき、屋外使用でも十分に使用できることが判明した。   Furthermore, it has been confirmed that excellent radio wave absorption performance can be maintained even after being immersed in water, and it has been found that it can be used even outdoors.

樹脂マイクロバルーンを用いることによる電波吸収体の軽量化効果を確認するために、実施例1の電波吸収体の原材料のガラスマイクロバルーンを体積を同一として樹脂マイクロバルーン(松本樹脂製薬(株)製:F80ED、真密度0.020〜0.030g/cm、粒径90〜110μm)に代替した場合の電波吸収体の平均密度を算出した。 In order to confirm the effect of reducing the weight of the wave absorber by using the resin microballoon, the volume of the glass microballoon, which is the raw material of the wave absorber of Example 1, is the same, and the volume is the same. F80ED, true density 0.020 to 0.030 g / cm 3 , particle size 90 to 110 μm), the average density of the wave absorber was calculated.

算出条件は、樹脂マイクロバルーンの真密度を0.023g/cm、ウレタン変成エポキシ樹脂および難燃剤の密度を1.2g/cmとし、カーボンチョップドファイバーの質量は微量なので無視し、その算出結果を表2に示す。 Calculation conditions, the true density of the resin microballoons 0.023 g / cm 3, the density of the urethane modified epoxy resin and a flame retardant and 1.2 g / cm 3, the mass of the carbon chopped fibers is ignored because trace, the calculation result Is shown in Table 2.

Figure 2005333125
Figure 2005333125

この結果からガラスマイクロバルーンと同一体積にした場合の樹脂マイクロバルーンの配合は、ウレタン変成エポキシ樹脂100質量部に対して4.6質量部であり、電波吸収体の平均密度は0.66g/cmから0.53g/cmに低減する。即ち、軽量化効果は(0.66−0.53)/0.66=19.7%となり、大幅な軽量化が可能であることが分かる。 From this result, the compounding of the resin microballoon in the same volume as the glass microballoon is 4.6 parts by mass with respect to 100 parts by mass of the urethane-modified epoxy resin, and the average density of the radio wave absorber is 0.66 g / cm. Reduced from 3 to 0.53 g / cm 3 . In other words, the weight reduction effect is (0.66-0.53) /0.66=19.7%, and it can be seen that significant weight reduction is possible.

本発明の実施形態の電波吸収体の構造概要を示す説明図である。It is explanatory drawing which shows the structure outline | summary of the electromagnetic wave absorber of embodiment of this invention. 本発明の実施形態の電波吸収体の電波吸収性能評価結果を示すグラフ説明図である。It is graph explanatory drawing which shows the electromagnetic wave absorption performance evaluation result of the electromagnetic wave absorber of embodiment of this invention.

符号の説明Explanation of symbols

1 電波吸収体
2 電波反射板
3(3a、3b、3c) 電波吸収層
4 カーボンチョップドファイバー
1 Radio wave absorber
2 radio wave reflector
3 (3a, 3b, 3c) radio wave absorption layer
4 Carbon chopped fiber

Claims (8)

電波反射板の表面に電波吸収層を設けた電波吸収体において、前記電波吸収層は、可撓性エポキシ樹脂と、難燃剤と、マイクロバルーンと、カーボンチョップドファイバーとを配合した組成物から構成され、前記カーボンチョップドファイバーの含有密度を前記電波吸収層の厚み方向において前記電波反射板に近づくに連れて順次、大きくしたことを特徴とする電波吸収体。   In the radio wave absorber having a radio wave absorption layer provided on the surface of the radio wave reflector, the radio wave absorption layer is composed of a composition in which a flexible epoxy resin, a flame retardant, a microballoon, and a carbon chopped fiber are blended. The radio wave absorber, wherein the content density of the carbon chopped fibers is gradually increased toward the radio wave reflector in the thickness direction of the radio wave absorption layer. 前記電波吸収層を厚み方向に分割した分割層を積層した請求項1に記載の電波吸収体。   The radio wave absorber according to claim 1, wherein division layers obtained by dividing the radio wave absorption layer in the thickness direction are stacked. 前記分割層が三層であり、前記電波反射板に最も近い分割層が可撓性エポキシ樹脂100質量部に対して難燃剤40〜90質量部と、マイクロバルーン40〜60質量部と、カーボンチョップドファイバー3〜15質量部とを配合した組成物から構成される請求項2に記載の電波吸収体。   The divided layers are three layers, and the divided layer closest to the radio wave reflector is 40 to 90 parts by mass of a flame retardant, 40 to 60 parts by mass of a microballoon, and carbon chopped with respect to 100 parts by mass of the flexible epoxy resin. The radio wave absorber according to claim 2, comprising a composition in which 3 to 15 parts by mass of a fiber is blended. 前記マイクロバルーンを、無機質マイクロバルーンとし、真密度を0.20〜0.4g/cm、粒径を25〜120μmとした請求項1〜3のいずれかに記載の電波吸収体。 The radio wave absorber according to any one of claims 1 to 3 , wherein the microballoon is an inorganic microballoon having a true density of 0.20 to 0.4 g / cm 3 and a particle size of 25 to 120 µm. 前記マイクロバルーンを、樹脂マイクロバルーンとし、真密度を0.020〜0.030g/cm、粒径を25〜120μmとした請求項1または2に記載の電波吸収体。 The radio wave absorber according to claim 1 or 2, wherein the microballoon is a resin microballoon having a true density of 0.020 to 0.030 g / cm 3 and a particle size of 25 to 120 µm. 前記分割層が三層であり、前記電波反射板に最も近い分割層が可撓性エポキシ樹脂100質量部に対して難燃剤40〜90質量部と、樹脂マイクロバルーン3〜6質量部と、カーボンチョップドファイバー3〜15質量部とを配合した組成物から構成される請求項2を引用した請求項5に記載の電波吸収体。   The divided layers are three layers, and the divided layer closest to the radio wave reflector is 40 to 90 parts by mass of a flame retardant, 3 to 6 parts by mass of a resin microballoon, and 100 parts by mass of a flexible epoxy resin. 6. The radio wave absorber according to claim 5, wherein the wave absorber is composed of a composition in which 3 to 15 parts by mass of chopped fibers are blended. 前記カーボンチョップドファイバーの繊維長を、1.0〜3.5mm、繊維径を10〜20μmとした請求項1〜6のいずれかに記載の電波吸収体。   The radio wave absorber according to any one of claims 1 to 6, wherein the carbon chopped fiber has a fiber length of 1.0 to 3.5 mm and a fiber diameter of 10 to 20 µm. 電波反射板の表面に電波吸収層を設けた電波吸収体の製造方法において、可撓性エポキシ樹脂と、粉体の難燃剤と、液体の難燃剤と、マイクロバルーンと、カーボンチョップドファイバーとを配合し、カーボンチョップドファイバーの含有密度が異なる複数の組成物を製造し、前記複数の組成物の中からカーボンチョップドファイバーの含有密度が大きい順に前記電波反射板の表面に積層させる電波吸収体の製造方法。   In a method for manufacturing a radio wave absorber having a radio wave absorption layer on the surface of a radio wave reflector, a flexible epoxy resin, a powder flame retardant, a liquid flame retardant, a microballoon, and carbon chopped fiber are blended. And manufacturing a plurality of compositions having different carbon chopped fiber content densities, and laminating the plurality of compositions on the surface of the radio wave reflector in descending order of the carbon chopped fiber content density. .
JP2005125861A 2004-04-23 2005-04-25 Radio wave absorber Active JP4736517B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005125861A JP4736517B2 (en) 2004-04-23 2005-04-25 Radio wave absorber

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004127491 2004-04-23
JP2004127491 2004-04-23
JP2005125861A JP4736517B2 (en) 2004-04-23 2005-04-25 Radio wave absorber

Publications (2)

Publication Number Publication Date
JP2005333125A true JP2005333125A (en) 2005-12-02
JP4736517B2 JP4736517B2 (en) 2011-07-27

Family

ID=35487531

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005125861A Active JP4736517B2 (en) 2004-04-23 2005-04-25 Radio wave absorber

Country Status (1)

Country Link
JP (1) JP4736517B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012169604A (en) * 2011-01-25 2012-09-06 Mitsubishi Electric Corp Electromagnetic shielding door
CN109546351A (en) * 2018-11-27 2019-03-29 中国科学院金属研究所 A kind of foam medium base Meta Materials of broadband electro-magnetic wave absorption
CN110797666A (en) * 2019-11-05 2020-02-14 南京邮电大学 Wave absorber regulated and controlled by gravity field and frequency selection function reconfigurable device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63208300A (en) * 1987-02-25 1988-08-29 株式会社ブリヂストン Wave absorber
JPH0867544A (en) * 1994-06-23 1996-03-12 Takenaka Komuten Co Ltd Composition for wave absorber, member for wave absorber and production of wave absorber and member for wave absorber
JP2961171B1 (en) * 1998-06-05 1999-10-12 防衛庁技術研究本部長 Broadband syntactic foam radio wave absorbing material
JP2000082893A (en) * 1998-09-04 2000-03-21 Tdk Corp Radio wave absorbing body
JP2000269681A (en) * 1999-03-18 2000-09-29 Nitto Boseki Co Ltd Incombustible radio wave-absorbing felt and composite panel and felt clad with metal foil
JP2001313489A (en) * 2000-05-01 2001-11-09 Takenaka Komuten Co Ltd Granular material having electromagnetic wave absorbing characteristic and method for manufacturing the same and method for manufacturing structure using the same
JP2004119450A (en) * 2002-09-24 2004-04-15 Toray Ind Inc Radio wave absorber and its manufacturing method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63208300A (en) * 1987-02-25 1988-08-29 株式会社ブリヂストン Wave absorber
JPH0867544A (en) * 1994-06-23 1996-03-12 Takenaka Komuten Co Ltd Composition for wave absorber, member for wave absorber and production of wave absorber and member for wave absorber
JP2961171B1 (en) * 1998-06-05 1999-10-12 防衛庁技術研究本部長 Broadband syntactic foam radio wave absorbing material
JP2000082893A (en) * 1998-09-04 2000-03-21 Tdk Corp Radio wave absorbing body
JP2000269681A (en) * 1999-03-18 2000-09-29 Nitto Boseki Co Ltd Incombustible radio wave-absorbing felt and composite panel and felt clad with metal foil
JP2001313489A (en) * 2000-05-01 2001-11-09 Takenaka Komuten Co Ltd Granular material having electromagnetic wave absorbing characteristic and method for manufacturing the same and method for manufacturing structure using the same
JP2004119450A (en) * 2002-09-24 2004-04-15 Toray Ind Inc Radio wave absorber and its manufacturing method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012169604A (en) * 2011-01-25 2012-09-06 Mitsubishi Electric Corp Electromagnetic shielding door
CN109546351A (en) * 2018-11-27 2019-03-29 中国科学院金属研究所 A kind of foam medium base Meta Materials of broadband electro-magnetic wave absorption
CN109546351B (en) * 2018-11-27 2020-12-22 中国科学院金属研究所 Foam medium-based metamaterial with broadband electromagnetic wave absorption function
CN110797666A (en) * 2019-11-05 2020-02-14 南京邮电大学 Wave absorber regulated and controlled by gravity field and frequency selection function reconfigurable device
CN110797666B (en) * 2019-11-05 2021-03-16 南京邮电大学 Wave absorber regulated and controlled by gravity field and frequency selection function reconfigurable device

Also Published As

Publication number Publication date
JP4736517B2 (en) 2011-07-27

Similar Documents

Publication Publication Date Title
KR100597555B1 (en) Electromagnetic wave absorber
KR101249479B1 (en) Resin composition and copper foil with resin obtained by using the resin composition
CN110177769B (en) Building material mixture for shielding electromagnetic radiation
CN1929731B (en) Broad band multilayer foam wave-suction material and method for making same
KR100946407B1 (en) A composition for an composite sheet with enhanced heat-releasing and electromagnetic wave shielding/absorbing properties, and a composite sheet with enhanced heat-releasing and electromagnetic wave shielding/absorbing properties and a method for preparation thereof
JP2003229694A (en) Electromagnetic wave absorbent and its manufacturing method
KR101866426B1 (en) Aluminum Composite Panel Using Incombustible Plastic And Method for Manufacturing the Same
KR20090033586A (en) A roll-type composite sheet with enhanced heat-releasing, electromagnetic wave- and impact-absorbing properties, and a method for preparation of the same
JP4736517B2 (en) Radio wave absorber
KR20040055678A (en) Electromagnetic Wave-Absorbing, Thermal- Conductive Sheet
JP3394848B2 (en) Radio wave absorber member, radio wave absorber, and method of manufacturing radio wave absorber member
JPH0883994A (en) Wideband electromagnetic-wave-absorbing material
JP2000244167A (en) Electromagnetic-wave-disturbance preventive material
JP2000196281A (en) Electromagnetic wave absorber and its manufacture and electronic apparatus
JP2012129352A (en) Electromagnetic wave suppression sheet, manufacturing method of the electromagnetic wave suppression sheet, sheet laminate, and flexible material
JPH0951190A (en) Wideband electromagnetic wave absorbing material
JP7425435B2 (en) laminate
JP2002076683A (en) Electromagnetic wave absorbing radiating sheet
JP2005167179A (en) Wave absorption wood board and wave absorber using the board
JP2002180568A (en) Electromagnetic wave absorptive object and its execution method
KR20090027379A (en) Prepreg structure for shielding electromagnetic wave and antenna including the same
JP2007033899A (en) Acoustic material
JP2021086865A (en) Carbon fiber-containing radio wave absorber and manufacturing method thereof
CN205566978U (en) Flexible paster of electromagnetic shield
JP4441237B2 (en) Electromagnetic wave absorbing sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080404

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100622

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100716

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110304

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110418

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4736517

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250