JP2005332192A - Steering support system - Google Patents

Steering support system Download PDF

Info

Publication number
JP2005332192A
JP2005332192A JP2004149658A JP2004149658A JP2005332192A JP 2005332192 A JP2005332192 A JP 2005332192A JP 2004149658 A JP2004149658 A JP 2004149658A JP 2004149658 A JP2004149658 A JP 2004149658A JP 2005332192 A JP2005332192 A JP 2005332192A
Authority
JP
Japan
Prior art keywords
vehicle
preceding vehicle
target
gazing point
traveling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004149658A
Other languages
Japanese (ja)
Inventor
Akira Hattori
彰 服部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2004149658A priority Critical patent/JP2005332192A/en
Publication of JP2005332192A publication Critical patent/JP2005332192A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Traffic Control Systems (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a steering support system capable of accurately performing steering support. <P>SOLUTION: The steering support system sets up a running target point, determines a target running track so as to pass through the running target point, and performs the steering support so that an actual yaw rate is coincided with a target yaw rate when a vehicle runs on the target running track. When a preceding vehicle is in the distance, running road observation points are set up from running road information because the running road is clearly seen. When the preceding vehicle is near, the position of the preceding vehicle is set up as preceding vehicle observation points because there are lots of unseen zones on the running road. Based on selected observation points, the target running track can be set up. Further, observation points can be set up as the target points to be scheduled to run, and the target running track can be set up for passing through the target points as well as minor compensation on the target points. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、操舵支援システムに関する。   The present invention relates to a steering assist system.

従来の操舵支援システムは、下記特許文献1、特許文献2に記載されている。これらの特許文献では、走行目標点を設定し、この走行目標点上を通るように目標走行軌跡を決定し、この目標走行軌跡上を車両が走行した場合における目標ヨーレートに、実ヨーレートが一致するように操舵制御を行っている。   Conventional steering assist systems are described in Patent Literature 1 and Patent Literature 2 below. In these patent documents, a travel target point is set, a target travel locus is determined so as to pass over the travel target point, and the actual yaw rate matches the target yaw rate when the vehicle travels on the target travel locus. Steering control is performed.

特開平2−27688号公報JP-A-2-27688

特開平5−197423号公報JP-A-5-197423

しかしながら、従来の操舵支援システムにおいて、ビデオカメラの出力から走行路情報を取得し、走行路上に走行目標点を設定しようとする場合、先行車両が非常に近くにいる場合には前方の走行情報を取得不能で画像処理ができず、したがって、正確な操舵支援が行えないという問題がある。   However, in the conventional steering assist system, when the travel path information is obtained from the output of the video camera and the travel target point is set on the travel path, the forward travel information is displayed when the preceding vehicle is very close. There is a problem that image processing cannot be performed because the image cannot be acquired, and therefore accurate steering assistance cannot be performed.

本発明は、このような問題に鑑みてなされたものであり、正確な操舵支援を行うことが可能な操舵支援システムを提供することを目的とする。   The present invention has been made in view of such a problem, and an object thereof is to provide a steering support system capable of performing accurate steering support.

上述の課題を解決するため、請求項1に記載の操舵支援システムは、目標走行軌跡上に沿って自車両を操舵する操舵支援システムにおいて、自車両の前方に位置する先行車両の位置を検出する車両位置検出手段と、先行車両の位置を先行車注視点として設定する先行車注視点設定手段と、自車両から所定の走行路注視点までの距離が、自車両から先行車注視点までの距離よりも小さい場合には、走行路注視点に基づき目標走行軌跡を設定し、大きい場合には先行車注視点に基づき目標走行軌跡を設定することを特徴とする注視点選択手段とを備えることを特徴とする。   In order to solve the above-described problem, the steering support system according to claim 1 detects the position of a preceding vehicle positioned in front of the host vehicle in the steering support system that steers the host vehicle along the target travel locus. The vehicle position detection means, the preceding vehicle gazing point setting means for setting the position of the preceding vehicle as the preceding vehicle gazing point, and the distance from the own vehicle to the predetermined traveling path gazing point is the distance from the own vehicle to the preceding vehicle gazing point. A gazing point selecting means characterized in that a target driving locus is set based on the driving path gazing point when the driving angle is smaller than the gazing point, and a target driving locus is set based on the preceding vehicle gazing point when it is larger. Features.

この場合、先行車両が十分遠くにいる場合には、走行路を遮ることがないため、走行路情報から得られる走行路注視点を用い、近くにいる場合には、走行路検知を遮る領域が多いため、先行車両位置を先行車注視点を用い、選択された注視点に基づいて目標走行軌跡を設定する。なお、注視点を、車両走行予定となる目標点とし、この目標点を通る目標走行軌跡を設定することもできる。   In this case, if the preceding vehicle is sufficiently far away, the road will not be blocked, so the road gaze point obtained from the road information will be used. Because there are many, the target vehicle locus is set based on the selected vehicle gazing point using the vehicle gazing point for the preceding vehicle. Note that the gazing point can be set as a target point to be traveled by the vehicle, and a target travel locus passing through the target point can be set.

また、請求項2に記載の操舵支援システムは、走行路を撮影する撮像手段と、撮像手段によって撮影された走行路の画像から走行路上に走行路注視点を設定する走行路注視点設定手段とを更に備えることを特徴とする。すなわち、撮像手段によって、走行路を撮影すれば、画像処理によって走行路上に走行路注視点を設定することができる。   Further, the steering assist system according to claim 2 includes an imaging unit that captures an image of the traveling road, and a traveling road gazing point setting unit that sets a traveling road gazing point on the traveling road from an image of the traveling road photographed by the imaging unit. Is further provided. That is, if a travel route is imaged by the imaging means, a travel route gazing point can be set on the travel route by image processing.

また、請求項3に記載の操舵支援システムは、先行車注視点の時間的変化から先行車両の旋回半径を演算し、この旋回半径に沿って先行車注視点を通る目標走行軌跡を設定する先行車追従用の目標走行軌跡設定手段を更に備えることを特徴とする。   The steering assist system according to claim 3 calculates a turning radius of the preceding vehicle from a temporal change of the preceding vehicle gazing point, and sets a target traveling locus passing through the preceding vehicle gazing point along the turning radius. It further comprises a target travel locus setting means for following the vehicle.

時間的に変化する先行車注視点は、ある円上に近似させて載せることができる。すなわち、この円の方程式を満たす半径が、走行路の近似的な旋回半径となる。目標走行軌跡は、当該旋回半径に沿って先行車注視点を通るものとすることができ、この場合には、目標走行軌跡を自車両が通ると、先行車に追従することになる。   The preceding vehicle gazing point that changes with time can be approximated on a certain circle. That is, the radius that satisfies this circle equation is the approximate turning radius of the travel path. The target travel locus can pass through the preceding vehicle gazing point along the turning radius. In this case, when the host vehicle passes through the target travel locus, the target vehicle will follow the preceding vehicle.

本発明の操舵支援システムによれば、接近した先行車に応じて走行路認識を行い、的確な正確な操舵支援を行うことができる。   According to the steering assist system of the present invention, it is possible to recognize the traveling path according to the approaching preceding vehicle and to perform accurate and accurate steering support.

以下、実施の形態に係る走行支援システムについて説明する。同一要素には、同一符号を用いることとし、重複する説明は省略する。   Hereinafter, the driving support system according to the embodiment will be described. The same reference numerals are used for the same elements, and duplicate descriptions are omitted.

図1は、走行支援システムのブロック図である。   FIG. 1 is a block diagram of the driving support system.

車体BDYには、車輪Wが設けられており、車輪Wのうちの前輪は操舵装置1によって操舵される。車輪Wは動力機関2によって駆動され、その回転数は車輪速センサ3によって検出される。車輪Wの回転は、制動装置4によって制動される。この車両には、ビデオカメラなどの撮像装置5が搭載されており、車両前方走行路を撮影する。また、この車両には、ミリ波レーダなどのレーダ6が搭載されており、車両前方の物体からの反射波から、物体の位置や相対速度を検出する。   The vehicle body BDY is provided with wheels W, and the front wheels of the wheels W are steered by the steering device 1. The wheel W is driven by the power engine 2, and the rotation speed is detected by the wheel speed sensor 3. The rotation of the wheel W is braked by the braking device 4. This vehicle is equipped with an imaging device 5 such as a video camera, and images the road ahead of the vehicle. Further, the vehicle is equipped with a radar 6 such as a millimeter wave radar, and detects the position and relative velocity of the object from the reflected wave from the object in front of the vehicle.

撮像装置5の出力は、画像処理装置7に入力され、画像処理装置7は走行路の白線(車線)をエッジ処理(近似曲線処理)し、画像上の白線の曲率を実際の走行路の旋回半径R(road)に変換して出力する。すなわち、撮像装置5への入力画像は、水平方向に描かれた白線を、鉛直方向に延びる画像処理装置7の撮像面に投影した画像であるから、この得られた垂直画像を水平面上に逆投影変換し、逆変換されてできる白線の円弧の中の少なくとも3点の位置を満たす円の方程式を演算し、2つの白線がある場合には双方の円の半径の平均をとれば、この平均半径が走行路の旋回半径R(road)となる。また、走行路の白線が検知できない場合は、路肩をエッジ処理して白線と見なせばよい。 The output of the imaging device 5 is input to the image processing device 7, which performs edge processing (approximate curve processing) on the white line (lane) of the traveling road, and turns the curvature of the white line on the image into the actual traveling road. Convert to radius R (load) and output. That is, the input image to the imaging device 5 is an image obtained by projecting a white line drawn in the horizontal direction onto the imaging surface of the image processing device 7 extending in the vertical direction. Therefore, the obtained vertical image is inverted on the horizontal plane. Calculate the equation of the circle that satisfies the position of at least three points in the arc of the white line that is formed by projective transformation and reverse transformation, and if there are two white lines, take the average of the radii of both circles and calculate this average The radius is the turning radius R (load) of the travel path. If a white line on the road cannot be detected, the road shoulder may be regarded as a white line by edge processing.

すなわち、撮像装置5は走行路を撮影するが、画像処理装置7は制御装置9と共に、撮像装置5によって撮影された走行路の画像から走行路上に、後述の走行路注視点を設定する走行路注視点設定手段としても機能する。撮像装置5によって、走行路を撮影すれば、画像処理によって走行路上に走行路注視点を設定することができる構成とした。   That is, the imaging device 5 captures the travel road, but the image processing device 7 together with the control device 9 sets a travel route gazing point, which will be described later, on the travel road from the image of the travel path captured by the imaging device 5. It also functions as a gaze point setting means. If the travel route is photographed by the imaging device 5, the travel route gazing point can be set on the travel route by image processing.

この車両には、ヨーレートセンサ8が搭載されており、車両のヨーレートγを出力する。また、操舵角センサ10は、前輪の操舵角θを出力する。   This vehicle is equipped with a yaw rate sensor 8 and outputs the yaw rate γ of the vehicle. Further, the steering angle sensor 10 outputs the steering angle θ of the front wheels.

制御装置9には、少なくとも車輪速センサ3の出力(車速Vs)、レーダ6の出力(先行車位置、相対距離:L、相対速度等)、画像処理装置7の出力(R(road))、ヨーレートセンサ8の出力(ヨーレートγ)、操舵角センサ10の出力(操舵角θ)が入力される。制御装置9は、入力されたデータに基づいて、動力機関2の制御信号E、制動装置4への制御信号B、操舵装置1への制御信号を出力する。 The control device 9 includes at least the output of the wheel speed sensor 3 (vehicle speed Vs), the output of the radar 6 (preceding vehicle position, relative distance: L, relative speed, etc.), the output of the image processing device 7 (R (load) ), The output of the yaw rate sensor 8 (yaw rate γ) and the output of the steering angle sensor 10 (steering angle θ) are input. The control device 9 outputs a control signal E for the power engine 2, a control signal B for the braking device 4, and a control signal for the steering device 1 based on the input data.

図2は、制御装置9における制御のフローチャートである。   FIG. 2 is a flowchart of control in the control device 9.

操舵支援モードが実行されると、まず、注視点距離Pαnと旋回半径Rを演算し(S1)、次に、これらの演算値に実際のパラメータが合うように車両を制御するためのパラメータを演算する(S2)。車両を制御するためのパラメータとしては、操舵角θのほか、動力機関2への制御信号Eに含まれる動力回転数、制動装置4への制御信号Bに含まれる制動力が挙げられる。 When the steering assist mode is executed, first, the gaze point distance P αn and the turning radius R n are calculated (S1), and then parameters for controlling the vehicle so that the actual parameters match these calculated values. Is calculated (S2). The parameters for controlling the vehicle include, in addition to the steering angle θ, the power rotational speed included in the control signal E to the power engine 2 and the braking force included in the control signal B to the braking device 4.

すなわち、ステップS2では、注視点Pαnを目標点として、これを通る旋回半径Rの目標走行軌跡を設定し、この目標走行軌跡を車両が速度Vsで走行した場合の目標ヨーレートγを求め、実ヨーレートγが目標ヨーレートγよりも小さい場合には、基本的には、操舵角θが増加するように操舵装置1を制御し、大きい場合には、操舵角θが減少するように操舵装置1を制御する。このような制御において、動力回転数や制動力の制御によって、目標走行軌跡を走行する車両の走行経路を制御しても良い。なお、速度Vで旋回半径Rである場合の目標ヨーレートγは単純式であれば一意的に決定することができる。これによって、目標走行軌跡に沿って車両が走行することとなる。 That is, in step S2, a target point to the fixation point P .alpha.n, sets a target travel trajectory of the turning radius R n therethrough, obtains a target yaw rate gamma t when the target running locus vehicle travels at a speed Vs , if the actual yaw rate gamma is smaller than the target yaw rate gamma t is basically to control the steering apparatus 1 as the steering angle θ increases, the greater the steering as the steering angle θ is reduced The apparatus 1 is controlled. In such control, the travel route of the vehicle traveling along the target travel locus may be controlled by controlling the power rotational speed and the braking force. Note that the target yaw rate γ t in the case of the speed V s and the turning radius R n can be uniquely determined as long as it is a simple expression. As a result, the vehicle travels along the target travel locus.

操舵支援の制御実行モード中であれば、ステップS1に戻って演算を継続し、そうでない場合には制御を終了する(S3)。   If it is in the steering assist control execution mode, the process returns to step S1 to continue the calculation, and if not, the control is terminated (S3).

次に、ステップS1を実行するためのサブルーチンについて説明する。   Next, a subroutine for executing step S1 will be described.

図3は、制御装置9におけるサブルーチン制御のフローチャートである。データサンプリングのカウント数をnとし、n=0,1,2,3,4・・・であるものとし、これを添え字で示す。   FIG. 3 is a flowchart of subroutine control in the control device 9. It is assumed that the count number of data sampling is n, and n = 0, 1, 2, 3, 4...

なお、図4は車両の走行軌跡を説明するための図である。自車両sの位置を原点Onとし、自車両sの前方をy軸、幅方向をx軸とする。   FIG. 4 is a diagram for explaining the traveling locus of the vehicle. The position of the host vehicle s is the origin On, the front of the host vehicle s is the y axis, and the width direction is the x axis.

サブルーチン制御では、まず、データサンプリングのカウント数n(初期値n=0)に、n+1を代入し(S11)、検出データの読み込みを行う(S12)。検出データであるレーダ出力Lは、先行車位置(Ax,Ay)、自車両sから先行車両bまでの相対速度(ΔV)を有し、車輪速センサ出力Vsは自車速Vs、画像処理装置7の出力である走行路旋回半径Rn(road)を有している。 In the subroutine control, first, n + 1 is substituted for the data sampling count number n (initial value n = 0) (S11), and the detection data is read (S12). The radar output L as detection data has a preceding vehicle position (Ax n , Ay n ), a relative speed (ΔV n ) from the own vehicle s to the preceding vehicle b, and the wheel speed sensor output Vs is the own vehicle speed Vs n , A traveling path turning radius R n (load) which is an output of the image processing device 7 is provided.

次に、カウント数が2以上であるかどうかを判定し(S13)、nが1の場合は、後段ステップで微分値を求めるため、ステップS11に戻ってnにn+1を代入し、もう一度、検出データの読み込みを行い(S12)、nが2以上の場合には次のステップへと進む。   Next, it is determined whether or not the count number is 2 or more (S13). If n is 1, in order to obtain a differential value in a subsequent step, the process returns to step S11 and n + 1 is substituted for n, and the detection is performed again. Data is read (S12). If n is 2 or more, the process proceeds to the next step.

次のステップでは、先行車両の旋回半径Rn(vehicle)を演算する(S14)。n=1のデータに加え、時間的に後のサンプリングタイミングであるn=2のデータが得られた時点で、先行車ベースの旋回半径Rn(vehicle)を演算する。先行車両の速度をVとし、データサンプリングのタイミングをdt、この期間dtの間に変位した先行車両の角度をθとすると、旋回半径Rn(vehicle)は以下の式で与えられる。 In the next step, the turning radius Rn (vehicle) of the preceding vehicle is calculated (S14). In addition to the data of n = 1, when the data of n = 2, which is a sampling timing later in time, is obtained, the turning radius R n (vehicle) of the preceding vehicle base is calculated. When the speed of the preceding vehicle is V n , the timing of data sampling is dt, and the angle of the preceding vehicle displaced during this period dt is θ n , the turning radius R n (vehicle) is given by the following equation.

旋回半径Rn(vehicle)=V・dt/θ Turning radius R n (vehicle) = V n · dt / θ n

なお、先行車両の速度V=自車速Vs+相対速度ΔVである。角度θは、サンプリング時刻n−1におけるVn−1の速度ベクトルをVn−1 、サンプリング時刻nにおけるVの速度ベクトルをV とすると、以下の式で与えられる。なお、これらのベクトルは、先行車両の相対速度と位置が判明していれば、各位置における微小期間微分値から求めることができる。 It should be noted that the speed of the preceding vehicle V n = the vehicle speed Vs n + the relative speed ΔV n . Angle theta n is the sampling time of the velocity vector of V n-1 of n-1 V n-1 *, when the velocity vector of V n at the sampling time n and V n *, is given by the following equation. Note that these vectors can be obtained from a minute period differential value at each position if the relative speed and position of the preceding vehicle are known.

角度θ=cos−1(Vn−1 ×V )/(|Vn−1 ||V |) Angle θ n = cos −1 (V n−1 * × V n * ) / (| V n−1 * || V n * |)

すなわち、この操舵支援システムは、先行車注視点Anの時間的変化から先行車の旋回半径Rn(vehicle)を演算し、この旋回半径Rn(vehicle)に沿って先行車注視点Anを通る目標走行軌跡を設定し、先行車追従用の目標走行軌跡設定手段を備えている。時間的に変化する先行車注視点An(微小期間では速度ベクトルとなる)は、ある円上に載せることができる。すなわち、この円の方程式を満たす半径が、先行車両の旋回半径となる。目標走行軌跡は、当該旋回半径に沿って先行車注視点を通るものとすることができ、この場合には、目標走行軌跡を自車両が通ると、先行車に追従することになる。 That is, the steering assist system calculates a turning radius R n (vehicle) of the preceding vehicle from the temporal change of the preceding vehicle gazing point An, and passes through the preceding vehicle gazing point An along the turning radius R n (vehicle). A target travel locus is set, and a target travel locus setting means for following the preceding vehicle is provided. The preceding vehicle gazing point An that changes with time (which becomes a speed vector in a minute period) can be placed on a certain circle. That is, the radius that satisfies this circle equation is the turning radius of the preceding vehicle. The target travel locus can pass through the preceding vehicle gazing point along the turning radius. In this case, when the host vehicle passes through the target travel locus, the target vehicle will follow the preceding vehicle.

ちなみに、旋回半径Rn(vehicle)を与える回転中心をAOnで図4中に示す。 Incidentally, the center of rotation that gives the turning radius R n (vehicle) is indicated by AOn in FIG.

次に、走行路注視点距離Lαnを読み込む(S15)。この走行路注視点距離Lαnは、操舵支援制御ロジックによって決定される値であり、簡単な例として、A、Bを定数としてLαn=A+B×Vsで与えられる。なお、例えば、走行路注視点距離Lαnは、自車速Vsが50km/hであれば、50mに設定することができる。自車両sから走行路画像ベースの旋回半径Rn(road)に沿って走行路注視点距離Lαnだけ離れた位置α(dαn,Lαn)を走行路注視点とする。なお、先行車両bの位置An(Ax,Ay)を先行車注視点とする。 Next, the travel path gazing point distance L αn is read (S15). The travel path gazing point distance L αn is a value determined by the steering assist control logic, and as a simple example, is given by L αn = A + B × Vs n where A and B are constants. For example, the traveling road gazing point distance L αn can be set to 50 m if the host vehicle speed Vs is 50 km / h. A position α (d αn , L αn ) that is separated from the host vehicle s by the travel path gazing point distance L αn along the turning radius R n (load) based on the travel path image is set as the travel path gazing point. The position An (Ax n , Ay n ) of the preceding vehicle b is set as the preceding vehicle gazing point.

次に、走行路注視点距離Lαnと先行車注視点距離Ayを比較し(S16)、Lαn>Ayの場合は、先行車両bが近くにいるため、先行車の動きに従い、先行車両追従モード制御を行い(S17)、Lαn≦Ayの場合は、走行路検知情報に従い、走行路追従モード制御を行う(S18)。 Next, the traveling path gazing point distance L αn and the preceding vehicle gazing point distance Ay n are compared (S16). If L αn > Ay n , the preceding vehicle b is close, so that the preceding vehicle follows the movement of the preceding vehicle. performs vehicle following mode control (S17), in the case of L αn ≦ Ay n, in accordance with the travel path detection information, the travel path following mode control (S18).

先行車両追従モード制御では、注視点距離Pαnを先行車注視点距離Ayとし、旋回半径Rは先行車ベースの旋回半径Rn(vehicle)を採用する。 In the preceding vehicle follow-up mode control, the gazing point distance P αn is set as the preceding vehicle gazing point distance Ay n , and the turning radius R n is a turning radius R n (vehicle) based on the preceding vehicle.

走行路追従モード制御では、注視点距離Pαnを走行路注視点距離Lαnとし、旋回半径Rは走行路ベースの旋回半径Rn(road)を採用する。 In the traveling path follow-up mode control, the gazing point distance P αn is set as the traveling path gazing point distance L αn , and the turning radius R n is a turning radius R n (load) based on the traveling path.

このようにして、注視点距離Pαnに応じて選択された旋回半径Rを出力する(S19)。 In this way, the turning radius R n selected according to the gazing point distance P αn is output (S19).

上述のように、ステップS2では、注視点Pαnを目標点として、これを通る旋回半径Rの目標走行軌跡を設定し、この目標走行軌跡を車両が速度Vsで走行した場合の目標ヨーレートγを求め、実ヨーレートγが目標ヨーレートγよりも小さい場合には、操舵角θ(またはトルク)が増加するように操舵装置1を制御し、大きい場合には、操舵角θが減少するように操舵装置1を制御している。 As described above, in step S2, a target point to the fixation point P .alpha.n, sets a target travel trajectory of the turning radius R n therethrough, target yaw rate γ when the target running locus vehicle travels at a speed Vs When the actual yaw rate γ is smaller than the target yaw rate γ t , the steering device 1 is controlled so that the steering angle θ (or torque) increases, and when it is larger, the steering angle θ decreases. The steering device 1 is controlled.

すなわち、上述の操舵支援システムは、目標走行軌跡上に沿って自車両sを操舵する操舵支援システムにおいて、自車両sの前方に位置する先行車両bの位置An(Ax、Ay)を検出するレーダ(車両位置検出手段)6と、先行車両bの位置を先行車注視点Anとして設定する先行車注視点設定手段(ステップS12)と、自車両sから所定の走行路注視点αまでの距離Lαnが、自車両sから先行車注視点Anまでの距離Ayよりも小さい場合には、走行路注視点Anに基づき目標走行軌跡を設定し(旋回半径Rn(road)と車速Vsから目標ヨーレートγを求める)、大きい場合には先行車注視点に基づき目標走行軌跡を設定する(旋回半径Rn(vehicle)と車速Vsから目標ヨーレートγを求める)ことを特徴とする注視点選択手段(ステップS16〜S19)とを備えている。 That is, the steering assist system described above detects the position An (Ax n , Ay n ) of the preceding vehicle b located in front of the host vehicle s in the steering support system that steers the host vehicle s along the target travel locus. Radar (vehicle position detecting means) 6, leading vehicle gazing point setting means (step S 12) for setting the position of the preceding vehicle b as the preceding vehicle gazing point An, and a distance from the host vehicle s to a predetermined traveling path gazing point α. When the distance L αn is smaller than the distance Ay n from the host vehicle s to the preceding vehicle gazing point An, a target traveling locus is set based on the traveling path gazing point An (turning radius R n (load) and vehicle speed Vs ). determine a target yaw rate γ from n), obtains a target yaw rate γ to set a target travel trajectory based on the preceding vehicle fixation point (the turning radius R n (vehicle) from the vehicle speed Vs n is greater) that And a fixation point selecting means, wherein (step S16 to S19).

図5は、操舵支援について説明するための図である。   FIG. 5 is a diagram for explaining steering assistance.

自車両sには撮像装置5が設けられており、前方に向けたある画角内の画像を得ることができる。先行車両bが存在し、先行車両aが存在しない場合、先行車両bは遠くにいるので、走行路ROADが撮像装置5によって正確に撮像できるため、走行路情報から得られる走行路注視点αを目標となる注視点Pαnをとする。 The own vehicle s is provided with an imaging device 5, and an image within a certain angle of view directed forward can be obtained. When the preceding vehicle b exists and the preceding vehicle a does not exist, the preceding vehicle b is far away, so that the traveling road ROAD can be accurately imaged by the imaging device 5. A target gaze point P αn is assumed.

図6、図7及び図8は、自車両sの撮像装置5から撮影される画像例を示す。   6, 7 and 8 show examples of images taken from the imaging device 5 of the host vehicle s.

図5に示すように、先行車両aは自車両sの近くにいる場合、図6〜図8に示す様々な走行路の形状によっても走行路(白線WT)が完全には撮影できない領域が多くなる。走行軌跡は平行な白線の幅方向の中央に設定すればよいのだが、カメラで取得可能な範囲で走行路に基づく旋回半径Rn(road)の演算は困難である。 As shown in FIG. 5, when the preceding vehicle a is close to the host vehicle s, there are many areas in which the travel road (white line WT) cannot be completely photographed due to the various travel road shapes shown in FIGS. 6 to 8. Become. The travel locus may be set at the center in the width direction of the parallel white lines, but it is difficult to calculate the turning radius R n (load) based on the travel path within the range that can be acquired by the camera.

このように、近くに先行車両aが存在する場合、走行路ROADは撮像装置5によって正確には撮像できない領域が多い。この場合には、先行車両位置aを先行車注視点(An)とする。いずれかの選択された注視点Pαn(α又はAn)に基づいて、旋回半径Rn(road)又はRn(vehicle)を選択することで、目標走行軌跡を設定する。 As described above, when the preceding vehicle “a” exists nearby, the traveling road ROAD has many areas that cannot be accurately imaged by the imaging device 5. In this case, the preceding vehicle position a is set as the preceding vehicle gazing point (An). Based on any selected gazing point P αn (α or An), a turning radius R n ( load ) or R n (vehicle) is selected to set a target travel locus.

なお、注視点を、車両走行予定となる目標点とし、この目標点を通る目標走行軌跡を設定することもできる。   Note that the gazing point can be set as a target point to be traveled by the vehicle, and a target travel locus passing through the target point can be set.

以上の操舵支援システムでは、追従先行車両の動きを検知し、その情報に基づき推定演算された旋回半径から先行車両より先の走行路情報を獲得することもできる。先行車両が接近したことで、前方の白線が車両に隠れて検知できない場合でも、先行車両の旋回半径に基づいて目標走行軌跡を設定でき、白線検知可能な範囲から推定した走路形状よりも、精度良く先行車両前方の走路形状(先行車走行経路)を推定できる。   In the above steering assistance system, it is also possible to detect the movement of the following vehicle and obtain travel path information ahead of the preceding vehicle from the turning radius estimated based on the information. Even if the preceding white line is approaching and the front white line is hidden behind the vehicle and cannot be detected, the target travel locus can be set based on the turning radius of the preceding vehicle and is more accurate than the path shape estimated from the range where the white line can be detected. The road shape ahead of the preceding vehicle (the preceding vehicle traveling route) can be estimated well.

操舵支援時の前方の注視点距離が、先行車両までの車間距離より遠方ならば、注視点距離を先行車までの距離とし、走行路の旋回半径等の走行路情報を制御情報に用いたことにより、前方白線が先行車両に隠れて検知できない場合でも、実走行路に沿った操舵支援制御が可能となる。操舵支援時の前方注視点距離が、先行車までの車間距離より近方ならば、画像処理等で獲得した白線情報から演算された曲率半径等の走行路情報を制御情報に用いたことにより、白線が前方車両の影響により断片的にしか検出できない場合であっても正確なカーブ情報を得ることができ、これにより実走行絽にあった操舵支援が可能となる。   If the gazing distance in front of the steering assist is farther than the inter-vehicle distance to the preceding vehicle, the gazing distance is the distance to the preceding vehicle, and the road information such as the turning radius of the road is used as control information. Thus, even when the front white line is hidden behind the preceding vehicle and cannot be detected, the steering assist control along the actual travel path can be performed. If the forward gazing distance at the time of steering support is closer than the inter-vehicle distance to the preceding vehicle, by using the road information such as the curvature radius calculated from the white line information obtained by image processing etc. as control information, Even when the white line can be detected only in a fragmentary manner due to the influence of the preceding vehicle, accurate curve information can be obtained, thereby enabling steering assistance suited to the actual traveling rod.

追従先行車の移動ベクトルの時間変化から、先行車両の旋回半径を算出したことにより、車両の進行方向を考慮(タイヤスリップ角等含)した上の演算が可能となるため、より実走行路半径に近似した値が算出できるようになる。また、常に前方の注視点距離を先行車位置とすることにより、白線検知を行わずに先行車に追従しながら操舵制御させることも可能となる。この場合、環境変化などで急に白線検知できなくなった場合のフェールセーフ対応にも利用できる。   By calculating the turning radius of the preceding vehicle from the time change of the movement vector of the following vehicle, it is possible to perform calculations after taking into account the direction of travel of the vehicle (including tire slip angle). A value approximated to can be calculated. Further, by always setting the front gazing point distance as the preceding vehicle position, it is possible to perform the steering control while following the preceding vehicle without detecting the white line. In this case, it can also be used for fail-safe handling when the white line cannot be detected suddenly due to environmental changes.

本発明は、操舵支援システムに利用することができる。   The present invention can be used in a steering assist system.

走行支援システムのブロック図である。It is a block diagram of a driving support system. 制御装置9における制御のフローチャートである。5 is a flowchart of control in the control device 9. 制御装置9におけるサブルーチン制御のフローチャートである。7 is a flowchart of subroutine control in the control device 9; 走行軌跡を説明するための図である。It is a figure for explaining a run locus. 操舵支援について説明するための図である。It is a figure for demonstrating steering assistance. 自車両sの撮像装置5から撮影される画像を示す。The image image | photographed from the imaging device 5 of the own vehicle s is shown. 自車両sの撮像装置5から撮影される画像を示す。The image image | photographed from the imaging device 5 of the own vehicle s is shown. 自車両sの撮像装置5から撮影される画像を示す。The image image | photographed from the imaging device 5 of the own vehicle s is shown.

符号の説明Explanation of symbols

1・・・操舵装置、2・・・動力機関、3・・・車輪速センサ、4・・・制動装置、5・・・撮像装置、6・・・レーダ、7・・・画像処理装置、8・・・ヨーレートセンサ、9・・・制御装置、10・・・操舵角センサ、a・・・先行車両、BDY・・・車体、ROAD・・・走行路、s・・・自車両、W・・・車輪、WT・・・白線。   DESCRIPTION OF SYMBOLS 1 ... Steering device, 2 ... Power engine, 3 ... Wheel speed sensor, 4 ... Braking device, 5 ... Imaging device, 6 ... Radar, 7 ... Image processing device, DESCRIPTION OF SYMBOLS 8 ... Yaw rate sensor, 9 ... Control apparatus, 10 ... Steering angle sensor, a ... A preceding vehicle, BDY ... Vehicle body, ROAD ... Running road, s ... Own vehicle, W ... wheels, WT ... white lines.

Claims (3)

目標走行軌跡上に沿って自車両を操舵する操舵支援システムにおいて、
自車両の前方に位置する先行車両の位置を検出する車両位置検出手段と、
前記先行車両の位置を先行車注視点として設定する先行車注視点設定手段と、
前記自車両から所定の走行路注視点までの距離が、前記自車両から前記先行車注視点までの距離よりも小さい場合には、前記走行路注視点に基づき目標走行軌跡を設定し、大きい場合には前記先行車注視点に基づき目標走行軌跡を設定することを特徴とする注視点選択手段と、
を備えることを特徴とする操舵支援システム。
In a steering support system that steers the vehicle along a target travel locus,
Vehicle position detection means for detecting the position of a preceding vehicle located in front of the host vehicle;
Preceding vehicle gazing point setting means for setting the position of the preceding vehicle as a preceding vehicle gazing point;
When the distance from the host vehicle to a predetermined traveling path gazing point is smaller than the distance from the host vehicle to the preceding vehicle gazing point, a target traveling locus is set based on the traveling path gazing point. , A gazing point selection means for setting a target travel locus based on the preceding vehicle gazing point,
A steering assist system comprising:
走行路を撮影する撮像手段と、
前記撮像手段によって撮影された走行路の画像から走行路上に前記走行路注視点を設定する走行路注視点設定手段と、
を更に備えることを特徴とする請求項1に記載の操舵支援システム。
Imaging means for photographing the travel path;
A traveling road gazing point setting means for setting the traveling road gazing point on a traveling road from an image of the traveling road photographed by the imaging means;
The steering assist system according to claim 1, further comprising:
前記先行車注視点の時間的変化から先行車両の旋回半径を演算し、この旋回半径に沿って前記先行車注視点を通る目標走行軌跡を設定する先行車追従用の目標走行軌跡設定手段を更に備えることを特徴とする請求項1又は2に記載の操舵支援システム。

A target travel locus setting means for following the preceding vehicle that calculates a turning radius of the preceding vehicle from the temporal change of the preceding vehicle gazing point and sets a target traveling locus that passes through the preceding vehicle gazing point along the turning radius; The steering support system according to claim 1 or 2, further comprising:

JP2004149658A 2004-05-19 2004-05-19 Steering support system Pending JP2005332192A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004149658A JP2005332192A (en) 2004-05-19 2004-05-19 Steering support system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004149658A JP2005332192A (en) 2004-05-19 2004-05-19 Steering support system

Publications (1)

Publication Number Publication Date
JP2005332192A true JP2005332192A (en) 2005-12-02

Family

ID=35486814

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004149658A Pending JP2005332192A (en) 2004-05-19 2004-05-19 Steering support system

Country Status (1)

Country Link
JP (1) JP2005332192A (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009010018A1 (en) 2008-02-27 2009-10-15 Fuji Jukogyo Kabushiki Kaisha Steering system
JP2010036757A (en) * 2008-08-06 2010-02-18 Fuji Heavy Ind Ltd Lane deviation prevention controller
JP2010036756A (en) * 2008-08-06 2010-02-18 Fuji Heavy Ind Ltd Lane deviation prevention controller
JP2010036777A (en) * 2008-08-06 2010-02-18 Denso Corp Travel support device
WO2012001896A1 (en) * 2010-06-29 2012-01-05 本田技研工業株式会社 Device for estimating vehicle travel path
JP2014044141A (en) * 2012-08-28 2014-03-13 Nissan Motor Co Ltd Vehicle travel control device and method thereof
JP2014127936A (en) * 2012-12-27 2014-07-07 Denso Corp Sound image localization device and program
JP2014127935A (en) * 2012-12-27 2014-07-07 Denso Corp Sound image localization device and program
JP2015077908A (en) * 2013-10-17 2015-04-23 トヨタ自動車株式会社 Automatic steering control device
DE102016205188A1 (en) 2015-03-31 2016-10-06 Honda Motor Co., Ltd. Driving support device
WO2017002650A1 (en) * 2015-07-01 2017-01-05 株式会社デンソー In-lane driving control device and in-lane driving control method
US9555802B2 (en) 2015-03-25 2017-01-31 Honda Motor Co., Ltd. Driving support device
JP2017052412A (en) * 2015-09-09 2017-03-16 株式会社デンソー Driving support device, and driving support method
JP2017065473A (en) * 2015-09-30 2017-04-06 富士重工業株式会社 Steering assist control device
US9937955B2 (en) 2015-03-02 2018-04-10 Denso Corporation Vehicle controller
WO2018110402A1 (en) * 2016-12-14 2018-06-21 日立オートモティブシステムズ株式会社 Device for predicting travel trajectory of preceding vehicle, and vehicle equipped with same
JP2018177148A (en) * 2017-04-20 2018-11-15 マツダ株式会社 Drive support apparatus for vehicle
JP2019067303A (en) * 2017-10-04 2019-04-25 株式会社Soken Driving support device
JP2022039469A (en) * 2020-08-28 2022-03-10 本田技研工業株式会社 Vehicle travel control device
DE102008051922B4 (en) 2007-10-18 2022-10-27 Subaru Corporation Driving support system for vehicles

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05197423A (en) * 1992-01-17 1993-08-06 Honda Motor Co Ltd Controller for mobile body
JPH07296291A (en) * 1994-04-22 1995-11-10 Nippon Soken Inc Traveling lane detector for vehicle
JPH0933651A (en) * 1995-07-20 1997-02-07 Mazda Motor Corp Advancing passage estimation device of automobile
JP2001022444A (en) * 1999-07-05 2001-01-26 Honda Motor Co Ltd Steering control unit for vehicle
JP2004102421A (en) * 2002-09-05 2004-04-02 Mitsubishi Electric Corp Road curvature computing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05197423A (en) * 1992-01-17 1993-08-06 Honda Motor Co Ltd Controller for mobile body
JPH07296291A (en) * 1994-04-22 1995-11-10 Nippon Soken Inc Traveling lane detector for vehicle
JPH0933651A (en) * 1995-07-20 1997-02-07 Mazda Motor Corp Advancing passage estimation device of automobile
JP2001022444A (en) * 1999-07-05 2001-01-26 Honda Motor Co Ltd Steering control unit for vehicle
JP2004102421A (en) * 2002-09-05 2004-04-02 Mitsubishi Electric Corp Road curvature computing method

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008051922B4 (en) 2007-10-18 2022-10-27 Subaru Corporation Driving support system for vehicles
DE102009010018A1 (en) 2008-02-27 2009-10-15 Fuji Jukogyo Kabushiki Kaisha Steering system
US8224550B2 (en) 2008-02-27 2012-07-17 Fuji Jukogyo Kabushiki Kaisha Steering assist system
JP2010036757A (en) * 2008-08-06 2010-02-18 Fuji Heavy Ind Ltd Lane deviation prevention controller
JP2010036756A (en) * 2008-08-06 2010-02-18 Fuji Heavy Ind Ltd Lane deviation prevention controller
JP2010036777A (en) * 2008-08-06 2010-02-18 Denso Corp Travel support device
JP4735676B2 (en) * 2008-08-06 2011-07-27 株式会社デンソー Driving support device
US8280588B2 (en) 2008-08-06 2012-10-02 Denso Corporation Apparatus for travel support
US9043132B2 (en) 2010-06-29 2015-05-26 Honda Motor Co., Ltd. Apparatus for estimating travel path of a vehicle
JP5746695B2 (en) * 2010-06-29 2015-07-08 本田技研工業株式会社 Vehicle traveling path estimation device
WO2012001896A1 (en) * 2010-06-29 2012-01-05 本田技研工業株式会社 Device for estimating vehicle travel path
JP2014044141A (en) * 2012-08-28 2014-03-13 Nissan Motor Co Ltd Vehicle travel control device and method thereof
JP2014127936A (en) * 2012-12-27 2014-07-07 Denso Corp Sound image localization device and program
JP2014127935A (en) * 2012-12-27 2014-07-07 Denso Corp Sound image localization device and program
JP2015077908A (en) * 2013-10-17 2015-04-23 トヨタ自動車株式会社 Automatic steering control device
US9937955B2 (en) 2015-03-02 2018-04-10 Denso Corporation Vehicle controller
US9555802B2 (en) 2015-03-25 2017-01-31 Honda Motor Co., Ltd. Driving support device
US9783197B2 (en) 2015-03-31 2017-10-10 Honda Motor Co., Ltd. Driving support device
DE102016205188A1 (en) 2015-03-31 2016-10-06 Honda Motor Co., Ltd. Driving support device
JP2017016403A (en) * 2015-07-01 2017-01-19 株式会社デンソー Intra-lane travel control device, and method for controlling intra-lane travel
WO2017002650A1 (en) * 2015-07-01 2017-01-05 株式会社デンソー In-lane driving control device and in-lane driving control method
JP2017052412A (en) * 2015-09-09 2017-03-16 株式会社デンソー Driving support device, and driving support method
JP2017065473A (en) * 2015-09-30 2017-04-06 富士重工業株式会社 Steering assist control device
WO2018110402A1 (en) * 2016-12-14 2018-06-21 日立オートモティブシステムズ株式会社 Device for predicting travel trajectory of preceding vehicle, and vehicle equipped with same
JP2018097644A (en) * 2016-12-14 2018-06-21 日立オートモティブシステムズ株式会社 Travel trajectory-of-preceding vehicle prediction device and vehicle mounted with the same
JP2018177148A (en) * 2017-04-20 2018-11-15 マツダ株式会社 Drive support apparatus for vehicle
JP2019067303A (en) * 2017-10-04 2019-04-25 株式会社Soken Driving support device
JP7053211B2 (en) 2017-10-04 2022-04-12 株式会社Soken Driving support device
JP2022039469A (en) * 2020-08-28 2022-03-10 本田技研工業株式会社 Vehicle travel control device
CN114194186A (en) * 2020-08-28 2022-03-18 本田技研工业株式会社 Vehicle travel control device
CN114194186B (en) * 2020-08-28 2023-12-05 本田技研工业株式会社 Vehicle travel control device
US12036984B2 (en) 2020-08-28 2024-07-16 Honda Motor Co., Ltd. Vehicle travel control apparatus

Similar Documents

Publication Publication Date Title
US9235767B2 (en) Detection region modification for driving assistance apparatus and driving assistance method
US10875530B2 (en) Travel control method and travel control device for drive-assisted vehicle
JP2005332192A (en) Steering support system
US10311618B2 (en) Virtual viewpoint position control device and virtual viewpoint position control method
CN110361013B (en) Path planning system and method for vehicle model
JP6403221B2 (en) Method for determining braking operation standard and vehicle emergency braking system
EP3608635A1 (en) Positioning system
JP5310745B2 (en) Driving support device
JP6369061B2 (en) Lane change support device
JP6485328B2 (en) Vehicle driving support device
US20190071094A1 (en) Vehicle control system, vehicle control method, and storage medium
JP6363516B2 (en) Vehicle travel control device
CA2987079A1 (en) Vehicle stop position setting apparatus and method
WO2017123233A1 (en) Assessing u-turn feasibility
JP6961964B2 (en) Collision avoidance device
US20180118264A1 (en) Narrow-Passage Assistance System in a Motor Vehicle
JP2010092416A (en) Device for preventing lane deviation
JP6304011B2 (en) Vehicle travel control device
JP2004322916A (en) Driving support system
JP2017140857A (en) Vehicle control system
JP4843880B2 (en) Road environment detection device
JP2005182186A (en) Vehicular travel track setting system
JP6011522B2 (en) Driving assistance device
WO2016110731A1 (en) Forward fixation point distance setting device and travel control device
JP2019202642A (en) Travel control device for vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070511

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080710

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080805

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081003

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090406

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091104

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100309