JP2005330555A - Method for producing dielectric ceramic thick film - Google Patents

Method for producing dielectric ceramic thick film Download PDF

Info

Publication number
JP2005330555A
JP2005330555A JP2004151297A JP2004151297A JP2005330555A JP 2005330555 A JP2005330555 A JP 2005330555A JP 2004151297 A JP2004151297 A JP 2004151297A JP 2004151297 A JP2004151297 A JP 2004151297A JP 2005330555 A JP2005330555 A JP 2005330555A
Authority
JP
Japan
Prior art keywords
substrate
thick film
average particle
collided
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004151297A
Other languages
Japanese (ja)
Inventor
Yukio Nishinomiya
幸雄 西宮
Shuji Aizawa
周二 相澤
Yoshihiro Kawakami
祥広 川上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
NEC Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Tokin Corp filed Critical NEC Tokin Corp
Priority to JP2004151297A priority Critical patent/JP2005330555A/en
Publication of JP2005330555A publication Critical patent/JP2005330555A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a dielectric ceramic thick film having satisfactory dielectric properties without performing heat treatment at the time of forming a dielectric ceramic thick film on a substrate made of metal or the like by an aerosol gas deposition process. <P>SOLUTION: In the case where the particulates of a dielectric ceramic material are made into an aerosol, are jetted onto a metal substrate arranged inside a decompressed chamber through a nozzle, and are collided, so as to be deposited, the dielectric ceramic thick film is formed in such a manner that, compared with the average particle diameter of the particulates directly collided against the surface of the substrate in the initial stage, the average particle diameter of the particulates collided in the subsequent stage is made larger. Further, the average particle diameter in the initial film formation stage is 0.3 to 0.6 μm and the average particle diameter in the subsequent film formation stage is 0.4 to 8.0 μm. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、エアロゾルガスデポジション法による圧電セラミック厚膜の製造方法に関し、特に、堆積させる粒子径の制御により、基板の損傷を起こさず、熱処理なしに良好な圧電特性が得られる、圧電セラミック厚膜の製造方法に関する。   The present invention relates to a method for manufacturing a piezoelectric ceramic thick film by an aerosol gas deposition method, and in particular, by controlling the particle size to be deposited, the piezoelectric ceramic thickness can be obtained without causing damage to the substrate and without heat treatment. The present invention relates to a film manufacturing method.

ジルコン酸チタン酸鉛(Pb(Zr,Ti)O3、以下PZTと略す)は優れた圧電特性を有するため、従来からアクチュエータ、センサー、フィルター、発音素子などの電子デバイスに広く応用されている。 Lead zirconate titanate (Pb (Zr, Ti) O 3 , hereinafter abbreviated as PZT) has excellent piezoelectric properties, and has been widely applied to electronic devices such as actuators, sensors, filters, and sounding elements.

近年、以上のデバイスの小型化、低背化が顕著に進み、半導体製造プロセスとPZT膜とを組み合わせることにより、マイクロアクチュエータを開発する試みが活発に行われている。圧電セラミックを半導体プロセスと融合させるにはSi基板上へPZT膜を形成させる技術が必要になる。現在のところ、その形成方法としてはゾルゲル法、MO−CVD法、スパッタ法などが実用化されつつある。   In recent years, the above-mentioned device has been remarkably reduced in size and height, and attempts to develop a microactuator have been actively made by combining a semiconductor manufacturing process and a PZT film. In order to fuse the piezoelectric ceramic with the semiconductor process, a technique for forming a PZT film on the Si substrate is required. At present, the sol-gel method, MO-CVD method, sputtering method and the like are being put to practical use as the formation method.

しかし、PZT膜をアクチュエータとしたデバイスに応用するには、その膜厚は一般的に10μm以上が要求される。ゾルゲル法、MO−CVD法、スパッタ法などでは成膜速度が遅いために実際に膜形成する場合は1μm前後が限界とされており、アクチェエータヘの応用は困難であり、主にセンサーとして応用されることが多い。   However, in order to apply to a device using a PZT film as an actuator, the film thickness is generally required to be 10 μm or more. In the sol-gel method, the MO-CVD method, the sputtering method, etc., the film formation speed is slow. Therefore, when actually forming a film, the limit is around 1 μm, and the application to the actuator is difficult, and it is mainly applied as a sensor. There are many cases.

上記の状況の中で、エアロゾルガスデポジション法(以下AD法と略す)が、比較的低温で厚膜形成出来るプロセスとして検討されてきた。AD法はセラミックや金属などの微粒子をガス中に混合しエアロゾル化し、真空状態のチャンバー内へ配置させた基板へノズルを通して衝突、堆積させ、前記基板上へ厚膜を作製する方法であり、その一例として特許文献1に開示された技術がある。また、AD法にてステンレス基板上へ10μm以上のPZT厚膜を形成させた報告として、非特許文献1がある。   In the above situation, the aerosol gas deposition method (hereinafter abbreviated as AD method) has been studied as a process capable of forming a thick film at a relatively low temperature. The AD method is a method in which fine particles such as ceramic and metal are mixed in a gas to be aerosolized, collide and deposit through a nozzle on a substrate placed in a vacuum chamber, and a thick film is formed on the substrate. As an example, there is a technique disclosed in Patent Document 1. Further, Non-Patent Document 1 is a report of forming a PZT thick film of 10 μm or more on a stainless steel substrate by the AD method.

特開2002−235181号公報JP 2002-235181 A マイクロアクチュエータ用PZT厚膜の形成:ULVAC TECHNICAL JOURNAL No.57, p.6,(2002)Formation of PZT thick film for micro actuator: ULVAC TECHNICAL JOURNAL No.57, p.6, (2002)

しかしながら、AD法によりPZT粉末をステンレス基板上へ形成する場合、衝突させるPZT粉末の粒径の選択を誤ると基板との密着性が確保出来無くなるという難しさがある。すなわち粒径が小さすぎると衝突エネルギーが得られず膜としての硬度が確保出来ず、成膜が不可能になる。一方、粒径が大きすぎると衝突エネルギーが大きすぎて基板を損傷させてしまい、成膜が不可能になってしまう。この点については、本発明に至る研究の結果、AD法において、1種類の平均粒径のPZT粉末を用いて製膜するときには、膜の硬度が確保され基板への損傷がない最適なPZTの平均粒径は0.3〜0.6μmであるということが判明している。   However, when the PZT powder is formed on the stainless steel substrate by the AD method, there is a difficulty that if the particle size of the PZT powder to be collided is wrongly selected, the adhesion with the substrate cannot be secured. That is, if the particle size is too small, collision energy cannot be obtained, the hardness as a film cannot be secured, and film formation becomes impossible. On the other hand, if the particle size is too large, the collision energy is too large and the substrate is damaged, and film formation becomes impossible. As for this point, as a result of research leading to the present invention, in the AD method, when forming a film using one type of PZT powder having an average particle diameter, the hardness of the film is ensured and there is no damage to the substrate. It has been found that the average particle size is 0.3-0.6 μm.

しかし、圧電特性に着目するとAD法を用いて、前記平均粒径のPZT粉末を衝突、堆積させた場合、亜音速まで加速された微粒子が基板に衝突することで、セラミック粒子がナノレベルに粉砕され、新生面が発現することで破壊された粒子が一体化するという原理に基づいているため、膜形成後のPZT厚膜の圧電特性は、粒子が細かくなり、通常の焼結セラミックに比べて非常に劣るという問題点がある。この問題点を解決するためには、AD法により膜形成した後に熱処理を加えることで粉砕されて細かくなった粒子を成長させることで圧電特性は向上し、850℃の熱処理で焼結セラミックと同等の圧電特性が得られることが報告されている。しかし、この方法によれば、ステンレスなどの安価な金属材料を基板とした場合、熱処理中に基板の酸化が生じたり、基板と鉛が反応して圧電特性が低下する。そのため、基板材料としては、Pt/Ti/SiO/Si基板やセラミック基板に限られるという問題があった。またさらに、熱処理を加えることで基板とPZT厚膜の熱膨張率の違いから剥離が生じてしまう問題点もある。 However, focusing on the piezoelectric characteristics, when the PZT powder having the average particle diameter collides and is deposited using the AD method, the ceramic particles are pulverized to the nano level by colliding with the fine particles accelerated to the subsonic speed on the substrate. In addition, the piezoelectric properties of the PZT thick film after film formation are very fine compared to ordinary sintered ceramics, because it is based on the principle that broken particles are integrated by the emergence of a new surface. There is a problem that it is inferior. In order to solve this problem, the film is formed by the AD method, and then heat treatment is applied to grow the finely pulverized particles. The piezoelectric properties are improved and the heat treatment at 850 ° C. is equivalent to the sintered ceramic. It has been reported that the following piezoelectric characteristics can be obtained. However, according to this method, when an inexpensive metal material such as stainless steel is used as the substrate, the substrate is oxidized during the heat treatment, or the substrate and lead react to deteriorate the piezoelectric characteristics. Therefore, there has been a problem that the substrate material is limited to a Pt / Ti / SiO 2 / Si substrate or a ceramic substrate. Furthermore, there is a problem that peeling occurs due to the difference in thermal expansion coefficient between the substrate and the PZT thick film by applying heat treatment.

この状況において、本発明の課題は、エアロゾルガスデポジション法により、金属などの基板上へ圧電セラミック厚膜を形成し、熱処理なしに良好な圧電特性を有する圧電セラミック厚膜の製造方法を提供することにある。   In this situation, an object of the present invention is to form a piezoelectric ceramic thick film on a substrate such as metal by an aerosol gas deposition method, and to provide a method for manufacturing a piezoelectric ceramic thick film having good piezoelectric characteristics without heat treatment. There is.

本発明は、PZTなどの圧電セラミック材料の微粒子をエアロゾル化させ、減圧されたチャンバー内に配置した基板上ヘノズルを通して衝突、堆積させるエアロゾルガスデポジション法にて厚膜を形成する場合に、直接前記基板上に衝突させる微粒子の平均粒径より、その後に衝突させる微粒子の平均粒径を大きいものを使用することを特徴とし、圧電特性に有効に作用し、かつ金属などの基板への密着性が良好なセラミック厚膜の製造方法を提供するものである。   The present invention directly converts the fine particles of a piezoelectric ceramic material such as PZT into an aerosol, and directly forms the above-mentioned when forming a thick film by an aerosol gas deposition method in which the particles are collided and deposited through a nozzle on a substrate placed in a decompressed chamber. It is characterized in that the average particle size of the fine particles to be collided after that is larger than the average particle size of the fine particles to be collided on the substrate, which effectively acts on the piezoelectric characteristics and has an adhesion property to the substrate such as metal. A method for producing a good ceramic thick film is provided.

すなわち、第1の発明の圧電セラミック厚膜の製造方法は、圧電セラミック材料の微粒子をエアロゾル化させ、減圧されたチャンバー内に配置した基板上へ、ノズルを通して噴射し、衝突させ堆積させるエアロゾルガスデポジション法による圧電セラミック厚膜の製造方法において、堆積の初期段階で前記基板上へ直接に噴射し衝突させ堆積させる微粒子の平均粒径を、その後の段階で噴射し衝突させ堆積させる微粒子の平均粒径よりも小さくしたことを特徴とする。   That is, in the method for producing a piezoelectric ceramic thick film according to the first aspect of the present invention, aerosol gas particles are produced in which fine particles of a piezoelectric ceramic material are aerosolized, sprayed through a nozzle onto a substrate placed in a decompressed chamber, and collided to deposit. In the method of manufacturing a piezoelectric ceramic thick film by the position method, the average particle diameter of the fine particles to be directly injected and collided on the substrate in the initial stage of deposition is the average particle diameter of the fine particles to be injected and collided and deposited in the subsequent stage. It is characterized by being smaller than the diameter.

第2の発明の圧電セラミック厚膜の製造方法は、前記基板が金属基板であることを特徴とする、第1の発明の圧電セラミック厚膜の製造方法である。   A method for producing a piezoelectric ceramic thick film according to a second invention is the method for producing a piezoelectric ceramic thick film according to the first invention, wherein the substrate is a metal substrate.

第3の発明の圧電セラミック厚膜の製造方法は、前記初期段階で基板上へ直接に噴射し衝突させ堆積させる微粒子の平均粒径は0.3〜0.6μmであることを特徴とする、第1の発明の圧電セラミック厚膜の製造方法である。   The method for manufacturing a piezoelectric ceramic thick film according to a third aspect of the invention is characterized in that the average particle size of the fine particles deposited and collided directly on the substrate in the initial stage is 0.3 to 0.6 μm. It is a manufacturing method of the piezoelectric ceramic thick film of 1st invention.

第4の発明の圧電セラミック厚膜の製造方法は、前記後の段階で衝突させ堆積させる微粒子の平均粒径は0.4〜8.0μmであることを特徴とする、第3の発明の圧電セラミック厚膜の製造方法である。   The piezoelectric ceramic thick film manufacturing method of the fourth invention is characterized in that the average particle size of the fine particles to be collided and deposited in the subsequent stage is 0.4 to 8.0 μm. This is a method for producing a ceramic thick film.

従来、AD法によるPZT厚膜を形成する方法においては、PZT厚膜の圧電特性を向上させるために熱処理を必要とする。そのため、基板材料としてはSi基板やセラミック基板などに限定されていたが、本発明によれば、安価な金属基板、特にステンレス基板や銅基板への圧電セラミック厚膜形成において、熱処理を加えなくても焼結セラミックと同等の圧電特性が得ることが可能である。故に、本発明の製造方法は安価なステンレス基板や銅基板が選択可能になり、また、熱処理も不要なことから大幅な製造コストの削減が図れ、工業的なメリットは大きい。   Conventionally, in a method of forming a PZT thick film by the AD method, heat treatment is required to improve the piezoelectric characteristics of the PZT thick film. Therefore, although the substrate material is limited to Si substrate or ceramic substrate, according to the present invention, heat treatment is not applied in the formation of piezoelectric ceramic thick film on an inexpensive metal substrate, particularly stainless steel substrate or copper substrate. Also, it is possible to obtain piezoelectric characteristics equivalent to those of sintered ceramics. Therefore, in the manufacturing method of the present invention, an inexpensive stainless steel substrate or copper substrate can be selected, and since no heat treatment is required, the manufacturing cost can be greatly reduced, and the industrial merit is great.

以下に本発明の実施の形態を詳細に示す。   Hereinafter, embodiments of the present invention will be described in detail.

図2は、本発明の実施の形態で使用するAD法による圧電セラミック厚膜の成膜装置を示す模式図である。成膜チャンバー1には、ノズル2が取り付けられ、ノズル2の先には基板3を固定するフレーム4が取り付けられている。成膜チャンバー1には真空配管5及び真空ポンプ6が接続される。ノズル2は成膜チャンバー1の外側にあるエアロゾル発生装置7に接続している。真空配管5及び真空ポンプ6は成膜チャンバー1内を減圧する。この減圧された成膜チャンバー1ヘエアロゾル化させた微粉末をノズル2を通して基板3へ衝突、堆積させることにより成膜する。   FIG. 2 is a schematic view showing an apparatus for forming a piezoelectric ceramic thick film by the AD method used in the embodiment of the present invention. A nozzle 2 is attached to the film forming chamber 1, and a frame 4 for fixing the substrate 3 is attached to the tip of the nozzle 2. A vacuum pipe 5 and a vacuum pump 6 are connected to the film forming chamber 1. The nozzle 2 is connected to an aerosol generator 7 outside the film forming chamber 1. The vacuum pipe 5 and the vacuum pump 6 depressurize the film forming chamber 1. Film formation is performed by colliding and depositing the fine powder, which has been aerosolized, into the film forming chamber 1, which has been reduced in pressure, onto the substrate 3 through the nozzle 2.

まず最初に基板3上へ成膜を行うために100μm厚みのステンレス基板をフレーム4へ取り付け、エアロゾル発生装置7に圧電セラミック粉末を投入した。使用する圧電セラミック粉末はPZT−Nb系の微粉末であり、平均粒径の調整はボールミル粉砕時間の長さを変えることによってコントロールし、D(平均粒径)=0.4μm、D=1.0μm、D=2.0μm、D=5.0μm、D=8.0μm、D=10.0μmの6種の粉末を用意した。   First, in order to form a film on the substrate 3, a stainless substrate having a thickness of 100 μm was attached to the frame 4, and the piezoelectric ceramic powder was put into the aerosol generator 7. The piezoelectric ceramic powder used is a PZT-Nb fine powder, and the adjustment of the average particle diameter is controlled by changing the length of the ball mill grinding time. D (average particle diameter) = 0.4 μm, D = 1. Six types of powders of 0 μm, D = 2.0 μm, D = 5.0 μm, D = 8.0 μm, and D = 10.0 μm were prepared.

まず、金属基板上への成膜は金属基板と密着性の良いD=0.4μmの粉末を使用した。成膜条件を表1に示す。表1の条件にて膜厚が2μmになるようにノズルの走査回数と走査スピードを調整した。   First, for the film formation on the metal substrate, a D = 0.4 μm powder having good adhesion to the metal substrate was used. The film forming conditions are shown in Table 1. The number of scans and the scanning speed of the nozzle were adjusted so that the film thickness was 2 μm under the conditions shown in Table 1.

Figure 2005330555
Figure 2005330555

次に、衝突させる粉末の粒径を大きいものにするために、エアロゾル発生装置内の粉末を同じセラミック材料の平均粒径がD=1.0μmのものに置き換えて、再び同基板へ表1の条件にて成膜を行った。そして、セラミックの膜厚が12μmになるようにノズルの走査回数と走査スピードを調整した。また、同様に置き換える粉末をD=2.0μm、D=5.0μm、D=8.0μm、D=10.0μmのそれぞれの場合についても成膜を行った。さらに、比較のために置き換えない場合(D=0.4μmを継続して膜厚12μmになるまで成膜)を実施し、成膜を終えたステンレス基板上PZT厚膜の上面に電極膜を形成し、圧電定数d31を測定した。図1にその結果を示す。 Next, in order to increase the particle size of the powder to be collided, the powder in the aerosol generator is replaced with the same ceramic material having an average particle size of D = 1.0 μm, and the same substrate as shown in Table 1 is used again. Film formation was performed under conditions. Then, the number of scans and the scanning speed of the nozzle were adjusted so that the ceramic film thickness was 12 μm. In addition, film formation was performed in the same manner for each of the powders D = 2.0 μm, D = 5.0 μm, D = 8.0 μm, and D = 10.0 μm. Furthermore, for the sake of comparison, when not replaced (D = 0.4 μm is continued until the film thickness reaches 12 μm), an electrode film is formed on the upper surface of the PZT thick film on the stainless steel substrate after film formation. and measured the piezoelectric constant d 31. The result is shown in FIG.

本発明によるPZT厚膜において圧電特性が優れていることがわかる。ここでD=10.0μmの粉末の場合は形成された厚膜の表面が非常に粗くなり、厚膜としては品質にばらつきが生じやすいので、本発明により使用する平均粒径はD=0.4〜8.0μmが最適である。   It can be seen that the PZT thick film according to the present invention has excellent piezoelectric characteristics. Here, in the case of powder of D = 10.0 μm, the surface of the formed thick film becomes very rough, and the quality of the thick film is likely to vary. Therefore, the average particle size used according to the present invention is D = 0. 4 to 8.0 μm is optimal.

なお、AD法において、1種類の平均粒径のPZT粉末を用いた場合には、膜の硬度が確保され、基板への損傷がない最適なPZTの平均粒径は、すでに説明したように、0.3〜0.6μmであるということが判明している。本発明のように2種類の平均粒径のセラミック材料を用いる場合にも、初期段階の製膜で使用するセラミック材料の平均粒径については、この範囲が適している。   In the AD method, when one kind of PZT powder having an average particle diameter is used, the optimum average particle diameter of PZT that ensures the hardness of the film and does not damage the substrate is as described above. It has been found to be 0.3-0.6 μm. Even when two kinds of ceramic materials having an average particle diameter are used as in the present invention, this range is suitable for the average particle diameter of the ceramic material used in the initial film formation.

本発明によるPZT厚膜の圧電特性を示す図。The figure which shows the piezoelectric characteristic of the PZT thick film by this invention. 本発明の実施の形態でのAD法による成膜装置を示す模式図。The schematic diagram which shows the film-forming apparatus by AD method in embodiment of this invention.

符号の説明Explanation of symbols

1 成膜チャンバー
2 ノズル
3 基板
4 フレーム
5 真空配管
6 真空ポンプ
7 エアロゾル発生装置
DESCRIPTION OF SYMBOLS 1 Deposition chamber 2 Nozzle 3 Substrate 4 Frame 5 Vacuum piping 6 Vacuum pump 7 Aerosol generator

Claims (4)

圧電セラミック材料の微粒子をエアロゾル化させ、減圧されたチャンバー内に配置した基板上へ、ノズルを通して噴射し、衝突させ堆積させるエアロゾルガスデポジション法による圧電セラミック厚膜の製造方法において、堆積の初期段階で前記基板上へ直接に噴射し衝突させ堆積させる微粒子の平均粒径を、その後の段階で噴射し衝突させ堆積させる微粒子の平均粒径よりも小さくしたことを特徴とする圧電セラミック厚膜の製造方法。   In the method for producing a piezoelectric ceramic thick film by the aerosol gas deposition method, fine particles of a piezoelectric ceramic material are aerosolized, sprayed through a nozzle onto a substrate placed in a decompressed chamber, and collided by deposition. In the production of a piezoelectric ceramic thick film, the average particle size of the fine particles sprayed and collided directly on the substrate is made smaller than the average particle size of the fine particles ejected and collided in the subsequent stage Method. 前記基板は金属基板であることを特徴とする、請求項1記載の圧電セラミック厚膜の製造方法。   The method of manufacturing a piezoelectric ceramic thick film according to claim 1, wherein the substrate is a metal substrate. 前記初期段階で基板上へ直接に噴射し衝突させ堆積させる微粒子の平均粒径は0.3〜0.6μmであることを特徴とする、請求項1記載の圧電セラミック厚膜の製造方法。   2. The method of manufacturing a piezoelectric ceramic thick film according to claim 1, wherein the average particle size of the fine particles to be jetted, collided and deposited directly on the substrate in the initial stage is 0.3 to 0.6 [mu] m. 前記後の段階で衝突させ堆積させる微粒子の平均粒径は0.4〜8.0μmであることを特徴とする、請求項3記載の圧電セラミック厚膜の製造方法。   4. The method of manufacturing a piezoelectric ceramic thick film according to claim 3, wherein the average particle size of the fine particles to be collided and deposited in the subsequent step is 0.4 to 8.0 [mu] m.
JP2004151297A 2004-05-21 2004-05-21 Method for producing dielectric ceramic thick film Pending JP2005330555A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004151297A JP2005330555A (en) 2004-05-21 2004-05-21 Method for producing dielectric ceramic thick film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004151297A JP2005330555A (en) 2004-05-21 2004-05-21 Method for producing dielectric ceramic thick film

Publications (1)

Publication Number Publication Date
JP2005330555A true JP2005330555A (en) 2005-12-02

Family

ID=35485422

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004151297A Pending JP2005330555A (en) 2004-05-21 2004-05-21 Method for producing dielectric ceramic thick film

Country Status (1)

Country Link
JP (1) JP2005330555A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101079249B1 (en) 2009-04-14 2011-11-03 한국기계연구원 Preparation method of porous ceramic film with nano-sized pores using low temperature process and porous ceramic film having nano-sized pores prepared thereby

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101079249B1 (en) 2009-04-14 2011-11-03 한국기계연구원 Preparation method of porous ceramic film with nano-sized pores using low temperature process and porous ceramic film having nano-sized pores prepared thereby

Similar Documents

Publication Publication Date Title
US6531187B2 (en) Method of forming a shaped body of brittle ultra fine particles with mechanical impact force and without heating
Akedo Aerosol deposition method for fabrication of nano crystal ceramic layer
Lee et al. Effects of starting powder on the growth of Al2O3 films on Cu substrates using the aerosol deposition method
JP2007023379A (en) Film formation method, and structure
JP2007288063A (en) Dielectric device
JP2005344171A (en) Raw material powder for film deposition, and film deposition method using the same
JP2005330555A (en) Method for producing dielectric ceramic thick film
JP2007320797A (en) Composite structure and its manufacturing method
JP2008258516A (en) Piezoelectric element and film formation method for crystalline ceramics
KR101006958B1 (en) Piezoelectric thick flim for sensor containing oragnic materials and method for preparing the same
JP4882553B2 (en) Method for forming ceramic capacitor
JP2008111154A (en) Method for forming coating film
JP2005279953A (en) Ceramic structure and its manufacturing method
JP5246632B2 (en) Film forming method and film forming apparatus
JP2009013472A (en) Sputtering target, and production method and regeneration method therefor
JP7339538B2 (en) Metal-ceramic laminate
JP5066682B2 (en) Low temperature molding method for brittle material fine particle film
JP2005089826A (en) Composite structure production device
KR100890006B1 (en) PZT based piezoelectric thick film containing organic materials and nano pore, and preparation method thereof
JP5649023B2 (en) Method for forming zirconia film
Malyavanatham et al. Thick films fabricated by laser ablation of PZT microparticles
JP2009132945A (en) Method for forming film-formed body by aerosol deposition process
JP5561743B2 (en) Brittle material fine particle film
US7179718B2 (en) Structure and method of manufacturing the same
KR101543891B1 (en) Coating Method For Nano-structured Metallic Thin Films Using Supersonic Vacuum-Flow Deposition