JP2005330541A - Melting treatment method for wet particulate iron-containing substance in copper ps converter - Google Patents

Melting treatment method for wet particulate iron-containing substance in copper ps converter Download PDF

Info

Publication number
JP2005330541A
JP2005330541A JP2004150019A JP2004150019A JP2005330541A JP 2005330541 A JP2005330541 A JP 2005330541A JP 2004150019 A JP2004150019 A JP 2004150019A JP 2004150019 A JP2004150019 A JP 2004150019A JP 2005330541 A JP2005330541 A JP 2005330541A
Authority
JP
Japan
Prior art keywords
iron
copper
converter
containing material
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004150019A
Other languages
Japanese (ja)
Other versions
JP4112523B2 (en
Inventor
Toshihiro Nagato
敏博 永戸
Yuushiro Hirai
祐史郎 平井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Mining Holdings Inc
Eneos Corp
Original Assignee
Nippon Mining and Metals Co Ltd
Nippon Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining and Metals Co Ltd, Nippon Mining Co Ltd filed Critical Nippon Mining and Metals Co Ltd
Priority to JP2004150019A priority Critical patent/JP4112523B2/en
Priority to KR20040112681A priority patent/KR100642964B1/en
Publication of JP2005330541A publication Critical patent/JP2005330541A/en
Application granted granted Critical
Publication of JP4112523B2 publication Critical patent/JP4112523B2/en
Anticipated expiration legal-status Critical
Active legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B15/00Obtaining copper
    • C22B15/0026Pyrometallurgy
    • C22B15/0028Smelting or converting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B15/00Obtaining copper
    • C22B15/0002Preliminary treatment
    • C22B15/0004Preliminary treatment without modification of the copper constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B9/00General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals
    • C22B9/10General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals with refining or fluxing agents; Use of materials therefor, e.g. slagging or scorifying agents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for efficiently applying melting treatment in a copper PS converter to a wet particulate iron-containing substance of 1 to 10 mm average grain size and 1 to 15 mass% water content. <P>SOLUTION: The melting treatment method for the wet particulate iron-containing substance is provided, wherein the wet particulate iron-containing substance of 1 to 10 mm average grain size and 1 to 15 mass% water content is mixed with a silica ore of 3 to 50 mm grain size at a ratio of 1:(0.5 to 1) and the resultant mixture is charged into the copper PS converter after the discharge of crude copper and mixed with PS converter residues in an amount 5 to 15 times the amount of the mixture by weight ratio. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、非鉄金属製錬に用いられる銅PS転炉で、含水微粒子状鉄含有物を溶解処理する技術に関するものである。 The present invention relates to a technique for dissolving a hydrous particulate iron-containing material in a copper PS converter used for non-ferrous metal smelting.

自溶炉に代表される銅製錬炉では、硫化物精鉱を酸化し、硫化銅と硫化鉄を含むカワと、酸化鉄とSiO2を含むカラミとに溶融分離している。カワは、次工程の銅PS転炉で処理される。 In a copper smelting furnace typified by a flash smelting furnace, sulfide concentrate is oxidized and melted and separated into a river containing copper sulfide and iron sulfide and a calami containing iron oxide and SiO 2 . The river is processed in the copper PS converter in the next process.

溶融状態のカワを装入した銅PS転炉では、2段階の処理が行われる。第1段階では、溶剤として珪酸鉱を添加し、羽口から酸素富化空気を吹き込み、硫化鉄を酸化して溶融状態のカラミとして分離排出する段階で造カン期と呼ばれる。第2段階は、さらに酸化を行って、硫化銅を粗銅とする段階で造銅期と呼ばれる。生成した粗銅は、PS転炉から排出され、次工程に送られる。排出後の銅PS転炉には、新たにカワが装入され、上記の操業が繰り返される。 In a copper PS converter charged with a melted river, a two-stage process is performed. In the first stage, silicate ore is added as a solvent, oxygen-enriched air is blown from the tuyere, and the iron sulfide is oxidized and separated and discharged as molten calami. The second stage is called a copper making stage when further oxidation is performed to turn copper sulfide into crude copper. The produced crude copper is discharged from the PS converter and sent to the next process. After discharging, the copper PS converter is newly charged with the river, and the above operation is repeated.

自溶炉工程では、平均粒径50〜100μm 水分8〜11mass%の粉状の銅鉱石を水分0.5mass%以下に乾燥後、反応シャフトへ酸素富加空気とともに吹き込まれ、カワとカラミに溶融分離される。
銅製錬において、乾燥後の銅鉱石は、一般的に気流輸送されており、粒径3mm以上の粒状物は、この気流輸送により運搬できず、処理されていない。
In the flash smelting furnace process, powdered copper ore with an average particle size of 50 to 100 μm and moisture of 8 to 11 mass% is dried to a moisture of 0.5 mass% or less, and then blown into the reaction shaft together with oxygen-enriched air, and melted and separated into river and calami Is done.
In copper smelting, copper ore after drying is generally transported by air flow, and particulate matter having a particle size of 3 mm or more cannot be transported by this air flow transport and is not processed.

次工程の銅PS転炉では、温度約1200℃の溶融状態のカワを装入し、図1に示すように羽口から酸素富加空気を吹き込み、酸化処理を行う。また、珪酸鉱、レードルスカルなどは、一般的には、粒径3〜50mm、水分3mass%以下に調整され、酸素富加空気の吹き込み中に、シュートより、転炉内に装入される。 In the next step, a copper PS converter, a molten metal having a temperature of about 1200 ° C. is charged, and oxygen-enriched air is blown from the tuyere as shown in FIG. Silicate ore, ladle skull and the like are generally adjusted to a particle size of 3 to 50 mm and moisture of 3 mass% or less, and charged into the converter from the chute while blowing oxygen-enriched air.

平均粒径3mmより小さい微粒状物を図1に示す方法で、転炉内に装入すると、ガス流により炉外に吹き飛ばされる割合が多く、ガス道でのダスト堆積、電気集塵機での固着トラブルが発生していた。このため、銅PS転炉では、一般的に、平均粒径3mmより小さい微粒状物は処理されていなかった。
たとえば、粒径1〜10mmの粒状物が集まった原料は、自溶炉では3mm以上の粒状物を含むために処理が困難である。一方、PS転炉では3mmより小さい粒状物を含むために処理が困難であり、自溶炉、PS転炉のいずれでも処理されていないのが実情であった。
When a fine particle having an average particle size of less than 3 mm is charged into the converter by the method shown in FIG. 1, there is a large proportion of the gas flow blown out of the furnace, dust accumulation in the gas passage, and sticking troubles in the electric dust collector. Had occurred. For this reason, in the copper PS converter, in general, fine particles smaller than the average particle diameter of 3 mm have not been processed.
For example, a raw material in which particulate matter having a particle diameter of 1 to 10 mm is collected is difficult to process because it contains particulate matter of 3 mm or more in a flash furnace. On the other hand, PS converters are difficult to process because they contain particulates smaller than 3 mm, and the actual situation is that neither PS or PS converters were processed.

また、PS転炉では、平均粒径が3mm以上であっても水分が、3mass%以上のものを吹錬中に装入すると水蒸気爆発を起こしやすく好ましくない。
なお水分が、3mass%未満であっても平均粒径が3mm未満であれば同様な爆発現象が起る。
一方、平均粒形が3mm以上であっても、水分が3mass%以上であると、PS転炉内に装入すると水蒸気爆発が起こりやすい。
Moreover, in a PS converter, even if the average particle size is 3 mm or more, it is not preferable that a water vapor of 3 mass% or more is charged during blowing and a steam explosion is likely to occur.
Even if the moisture is less than 3 mass%, the same explosion phenomenon occurs if the average particle size is less than 3 mm.
On the other hand, even if the average particle shape is 3 mm or more, if the water content is 3 mass% or more, a steam explosion is likely to occur when charged into the PS converter.

近年、一般廃棄物あるいは産業廃棄物の溶融炉が、日本各地で稼動を開始した。特に還元タイプの熔融炉からは、金属鉄、金属銅を主成分とするメタルが発生し、資源回収の観点から、銅製錬での溶融処理が期待されていた。(特開2002−180143)
しかし、一般的に、溶融炉から発生するメタルはスラグとともに水砕処理された後、磁力選別される。このため、粒径1〜10mmの粒状物の割合が多く、銅製錬では、篩別処理を行った場合を除き、自溶炉工程、銅転炉工程ともに処理されていなかった。また、水砕処理のために、含水分が1〜15mass%と高く、PS転炉処理は非常に困難であった。
特開2002−180143
In recent years, melting furnaces for general or industrial waste have begun operating in various parts of Japan. In particular, from a reduction type melting furnace, metal mainly composed of metallic iron and metallic copper was generated, and from the viewpoint of resource recovery, a melting process in copper smelting was expected. (JP 2002-180143 A)
However, generally, the metal generated from the melting furnace is subjected to a water granulation process together with slag and then subjected to magnetic selection. For this reason, there are many ratios of a granular material with a particle size of 1-10 mm, and in copper smelting, neither the flash smelting furnace process nor the copper converter process was processed except the case where the sieving process was performed. Moreover, the moisture content was as high as 1 to 15 mass% due to the water granulation treatment, and the PS converter treatment was very difficult.
JP 2002-180143 A

本発明は、平均粒径1〜10mm、水分1〜15mass%の含水微粒状鉄含有物を、銅PS転炉において、効率的に溶解処理する方法の提供を目的とするものである。   An object of the present invention is to provide a method for efficiently dissolving and treating a hydrous fine iron-containing material having an average particle diameter of 1 to 10 mm and a water content of 1 to 15 mass% in a copper PS converter.

そこで、以下の発明を提案する。
(1)平均粒径1〜10mm、水分1〜15mass%の含水微粒子状鉄含有物を、粒径3〜50mmの珪酸鉱と1:0.5〜1の割合で混合した混合物を、粗銅排出後の銅のPS転炉に装入し、混合物に対して重量比で5〜15倍のPS転炉残留物と混合する含水微粒子状鉄含有物の溶解処理方法。
(2)上記(1)記載の銅製錬に於けるPS転炉残留物の温度が、600〜1100℃である含水微粒子状鉄含有物の溶解処理方法。
Therefore, the following invention is proposed.
(1) Discharge of crude copper from a mixture of hydrated fine-particle iron-containing material having an average particle size of 1 to 10 mm and moisture of 1 to 15 mass% and a silicate ore having a particle size of 3 to 50 mm in a ratio of 1: 0.5 to 1 A method for dissolving a hydrous fine-particle iron-containing material, which is charged into a later PS converter of copper and mixed with a PS converter residue having a weight ratio of 5 to 15 times that of the mixture.
(2) A method for dissolving water-containing fine-particle iron-containing material in which the temperature of the PS converter residue in copper smelting as described in (1) is 600 to 1100 ° C.

(3)上記(1)〜(2)記載の含水微粒子状鉄含有物が金属鉄、金属銅を合計で15mass%以上を含む含水微粒子状鉄含有物である上記(1)〜(2)記載の含水微粒子状鉄含有物の溶解処理方法。
(4)上記(1)〜(3)記載の含水微粒子状鉄含有物が、一般廃棄物あるいは、産業廃棄物を溶融処理して得られる微粒状物である上記(1)〜(3)記載の含水微粒子状鉄含有物の溶解処理方法。
(3) The above-mentioned (1) to (2) description, wherein the hydrous fine-particle iron-containing material described in (1) to (2) is a hydrous fine-particle iron-containing material containing 15 mass% or more of metallic iron and metallic copper in total. A method for dissolving a water-containing particulate iron-containing material.
(4) The above-mentioned (1) to (3), wherein the water-containing fine-particle iron-containing material described in (1) to (3) is a fine particulate material obtained by melting general waste or industrial waste. A method for dissolving a water-containing particulate iron-containing material.

本発明は以下の効果を有する。
(1)従来、銅製錬工程で処理することが困難であった 平均粒径1〜10mm、水分1〜15mass%の含水微粒子状鉄含有物を、銅のPS転炉で効率的に溶解処理することが可能となった。
The present invention has the following effects.
(1) Conventionally, it was difficult to treat in the copper smelting process. The water-containing fine-grained iron-containing material having an average particle diameter of 1 to 10 mm and a water content of 1 to 15 mass% is efficiently dissolved and processed in a copper PS converter. It became possible.

(2)一般廃棄物または産業廃棄物の溶融炉から発生した 平均粒径1〜10mm 水分1〜15mass%の含水微粒子状鉄含有物を銅のPS転炉で処理することにより、含有されるCuなどの再資源化を、より低コストで実現できる。 (2) Cu contained by processing water-containing fine-grained iron-containing material having an average particle diameter of 1 to 10 mm and moisture of 1 to 15 mass% generated from a melting furnace for general waste or industrial waste in a copper PS converter Recycling such as can be realized at a lower cost.

以下、本発明の構成を詳しく説明する。
本発明において、対象とする炉は、銅製錬における銅PS転炉である。
本発明の対象処理物は、平均粒径1〜10mm、水分1〜15mass%の含水微粒子状鉄含有物である。
対象処理物の組成は、Fe 1〜40mass%、Cu 0.5〜50mass%である。
又更に通常のものは、金属鉄、金属銅を合計で15mass%以上含有する。
該対象処理物を粒径3〜50mmの珪酸鉱と1:0.5〜1の割合で予め混合する。該処理は、600〜1100℃のPS転炉内における水蒸気爆発の防止のためである。経験的に、前記の割合より含水微粒子状鉄含有物が多くなると、水蒸気爆発が起こりやすく、少なくなると、含水微粒子状鉄含有物溶融処理の生産性が低下する。
Hereinafter, the configuration of the present invention will be described in detail.
In the present invention, the target furnace is a copper PS converter in copper smelting.
The target processed product of the present invention is a hydrous fine particle iron-containing material having an average particle diameter of 1 to 10 mm and a water content of 1 to 15 mass%.
The composition of the object treatment object is Fe 1-40 mass%, Cu 0.5-50 mass%.
Furthermore, a normal thing contains 15 mass% or more of metal iron and metal copper in total.
The target object is previously mixed with silicate ore having a particle diameter of 3 to 50 mm at a ratio of 1: 0.5 to 1. The treatment is for preventing a steam explosion in a PS converter at 600 to 1100 ° C. Empirically, when the amount of the water-containing fine particle-like iron-containing material increases from the above ratio, the steam explosion easily occurs.

この混合物を、粗銅排出後の銅PS転炉に装入する。粗銅排出後の銅PS転炉内には、Fe3O4,Cu2Oを主成分とする600〜1100℃の半凝固状態の残留物があり、図2に示すように、珪酸鉱と含水微粒子状鉄含有物の混合物と半凝固状態の残留物を、炉を傾転することにより混合する。該目的は、珪酸鉱と含水微粒子状鉄含有物との混合物中の水分の蒸発と、酸素富加空気吹き込み中の含水微粒子状鉄含有物の飛散防止である。経験的に、珪酸鉱と含水微粒子状鉄含有物の混合物と残留物を炉の傾転により混合することにより、飛散を防止できることが見出されている。
600〜1100℃の銅のPS転炉残留物は、混合物に対して重量比で5〜15倍が適当である。5倍より少ないと、水分の蒸発が不十分になりやすく、水蒸気爆発のおそれが増大する。15倍より大きいと、含水微粒子状物の溶解処理の生産性が低下する。
This mixture is charged into a copper PS converter after discharge of crude copper. In the copper PS converter after the discharge of the crude copper, there is a residue in a semi-solid state at 600 to 1100 ° C. mainly composed of Fe 3 O 4 and Cu 2 O. As shown in FIG. The mixture of particulate iron-containing material and the semi-solidified residue are mixed by tilting the furnace. The purpose is to evaporate water in the mixture of the silicate ore and the hydrous fine particulate iron-containing material, and to prevent the hydrous fine particulate iron-containing material from being scattered during the oxygen-enriched air blowing. Empirically, it has been found that scattering can be prevented by mixing a mixture of silicate ore and hydrous fine iron-containing material and the residue by tilting the furnace.
The suitable PS converter residue of copper at 600 to 1100 ° C. is 5 to 15 times by weight with respect to the mixture. If it is less than 5 times, the evaporation of water tends to be insufficient, and the risk of steam explosion increases. When it is larger than 15 times, the productivity of the water-containing fine particle dissolution treatment is lowered.

残留物の保有熱を利用した水分の蒸発後、溶融状態のカワを装入する。溶剤として珪酸鉱を添加し、羽口から酸素富化空気を吹き込み、硫化鉄を酸化してカラミとして分離する段階である造カン期操業が行われる。この時、PS転炉内は、1280〜1320℃に達し、含水微粒子状鉄含有物の溶融処理が完了する。
Cuなどの有価物はカワ中に回収され、Fe,SiO2などはカラミ中に移行する。
After evaporating the water using the retained heat of the residue, the molten river is charged. Silicate ore is added as a solvent, oxygen-enriched air is blown from the tuyere, and iron sulfide is oxidized to separate it as calami. At this time, the inside of the PS converter reaches 1280 to 1320 ° C., and the melting treatment of the hydrous fine particulate iron-containing material is completed.
Valuables such as Cu are collected in the river, and Fe, SiO 2, etc. are transferred into the calami.

本発明により、平均粒径1〜10mm、水分1〜15mass%の含水微粒子状鉄含有物を、銅のPS転炉で効率的に溶解処理することが可能となる。含水微粒子状鉄含有物に含まれるCuなどの有価物はPS転炉内で粗銅中に移行し、回収される。 According to the present invention, it becomes possible to efficiently dissolve and dissolve a water-containing fine particle-like iron-containing material having an average particle diameter of 1 to 10 mm and a water content of 1 to 15 mass% in a copper PS converter. Valuables such as Cu contained in the hydrous fine iron-containing material are transferred to the crude copper in the PS converter and recovered.

本実施例は、レンガ内径3.4m胴体長さ10.7mの銅のPS転炉において実施した。 This example was implemented in a copper PS converter with a brick inner diameter of 3.4 m and a fuselage length of 10.7 m.

まず、組成 Cu 26mass%、Fe 30mass%、SiO2 21mass%を含有し、平均粒径6.3mm 水分7mass%の 産業廃棄物ガス化溶融炉から発生した含水微粒子状鉄含有物54tと粒径3〜50mmの珪酸鉱45tをペイローダーにより混合した。 First, a composition containing 26 mass% Cu, 30 mass% Fe, 21 mass% SiO 2 , an average particle size of 6.3 mm, a moisture content of 7 mass%, and a hydrous fine particle-like iron-containing material 54 t generated from an industrial waste gasification melting furnace and a particle size of 3 ˜45 mm of silicate ore 45t was mixed with a pay loader.

Fe3O4,Cu2Oを主成分とする約1000℃の残留物が約20t存在するPS転炉内に、珪酸鉱と含水微粒子状鉄含有物の混合物3tを装入した。この直後、PS転炉を図2に示すように、傾転角約80°にしてローリングを5回行い、充分に混合を行った。 A PS converter having about 1000 tons of Fe 3 O 4 and Cu 2 O as main components and about 20 tons was charged with 3 t of a mixture of silicate ore and hydrous fine iron-containing material. Immediately after this, as shown in FIG. 2, the PS converter was rolled at a tilt angle of about 80 ° five times and mixed thoroughly.

その後、Cu65.3mass% 約1200℃のカワを162t装入し、羽口より酸素濃度30.5vol%の送風を平均655Nm3/minで吹込み、42分で送風を完了した。
この一連の操業により、組成 Cu 26mass%、Fe 30mass%、SiO2 21mass%、平均粒径6.3mm、 水分7mass%の含水微粒子状鉄含有物
1.6tの溶融処理を完了し、水蒸気爆発、送風による飛散などの支障は見られなかった。
(比較例1)
Thereafter, 162 tons of Cu 65.3 mass% of about 1200 ° C. was introduced, and 30.5 vol% of oxygen was blown from the tuyere at an average of 655 Nm 3 / min, and the blowing was completed in 42 minutes.
Through this series of operations, the melting treatment of 1.6 tons of hydrous particulate iron-containing material with a composition of Cu 26 mass%, Fe 30 mass%, SiO 2 21 mass%, average particle size 6.3 mm, and moisture 7 mass% was completed. There were no obstacles such as air scatter.
(Comparative Example 1)

本比較例1は、実施例と同じ、レンガ内径3.4m胴体長さ10.7mの銅PS転炉において実施した。  This Comparative Example 1 was carried out in a copper PS converter having a brick inner diameter of 3.4 m and a fuselage length of 10.7 m, which was the same as the example.

実施例と同じく、組成 Cu 26mass%、Fe 30mass%、SiO2 21mass%、を同様に含有し、平均粒径6.3mm、水分7mass%の産業廃棄物ガス化溶融炉から発生した含水微粒子状鉄含有物54tと 粒径3〜50mmの珪酸鉱45tをペイローダーにより混合した。この混合物3tを、図1に示すように、Cu65.1mass%約1200℃のカワを165t装入し、羽口より酸素濃度30.5VOl%の送風を平均648Nm3/minで吹込みを行っているPS転炉に、シュートにより装入した。 In the same manner as in the examples, the composition containing Cu 26 mass%, Fe 30 mass%, SiO 2 21 mass%, similarly containing hydrous fine particulate iron generated from an industrial waste gasification and melting furnace having an average particle size of 6.3 mm and moisture of 7 mass%. The inclusion 54t and 45t of silicate ore having a particle diameter of 3 to 50 mm were mixed by a pay loader. As shown in FIG. 1, this mixture 3t was charged with 165t of Cu 65.1 mass% about 1200 ° C, and blown with air at an average oxygen concentration of 30.5 Vol% from the tuyere at 648 Nm 3 / min. The PS converter was charged with a chute.

その結果、微粒状物の飛散が確認され、電気集塵機で微粒状物が固着した 径50〜150mmの塊状物が約30個発生し、電気集塵機での集塵ダスト排出に支障をきたした。 As a result, scattering of fine particles was confirmed, and about 30 lumps with a diameter of 50 to 150 mm with fine particles fixed by the electric dust collector were generated, which hindered dust collection by the electric dust collector.

(比較例2)
本比較例2は、実施例と同じ、レンガ内径3.4m、胴体長さ10.7mの銅PS転炉において実施した。
(Comparative Example 2)
The present comparative example 2 was carried out in the same copper PS converter having a brick inner diameter of 3.4 m and a body length of 10.7 m as in the example.

対象処理物は、組成 Cu 26mass%、Fe 30mass%、SiO2 21mass%、からなり、平均粒径6.3mm、水分7mass%の産業廃棄物ガス化溶融炉から発生した含水微粒子状鉄含有物1.5tを単独で、Fe3O4,Cu2Oを主成分とする約1000℃の残留物が約20t存在するPS転炉内に装入した。
傾転角約80°にして、ローリングを開始したところ、PS転炉内で水蒸気の小爆発が確認され、好ましい現象ではなかった。
The target processed material is composed of 26 mass% Cu, 30 mass% Fe, 21 mass% SiO 2, 21 wt% SiO 2 mass average particle size 6.3 mm, water content 7 mass% water-containing particulate iron-containing material 1 generated from an industrial waste gasification melting furnace 1 0.5 t alone was charged into a PS converter having about 1000 tons of Fe 3 O 4 , Cu 2 O as main components and about 20 t remaining.
When rolling was started at an inclination angle of about 80 °, a small explosion of water vapor was confirmed in the PS converter, which was not a preferable phenomenon.

銅のPS転炉における酸素富加空気吹き込み中の珪酸鉱などの装入状況Charged state of silicate ore during oxygen-enriched air blowing in a copper PS converter 粗銅排出後のPS転炉内残留物と含水微粒子状鉄含有物の混合状況Mixing status of PS converter residue and hydrous fine iron content after discharge of crude copper

Claims (4)

平均粒径1〜10mm、水分1〜15mass%の含水微粒子状鉄含有物を、粒径3〜50mmの珪酸鉱と1:0.5〜1の割合で混合した混合物を、粗銅排出後の銅PS転炉に装入し、混合物に対して重量比で5〜15倍のPS転炉残留物と混合することを特徴とする含水微粒子状鉄含有物の溶解処理方法。 Copper after discharge of crude copper is obtained by mixing a mixture of hydrated fine iron-containing material having an average particle size of 1 to 10 mm and moisture of 1 to 15 mass% with a silicate ore having a particle size of 3 to 50 mm in a ratio of 1: 0.5 to 1. A method for dissolving a hydrous fine-particle iron-containing material, which is charged into a PS converter and mixed with a PS converter residue having a weight ratio of 5 to 15 times that of the mixture. 請求項1記載のPS転炉残留物の温度が、600〜1100℃であることを特徴とする含水微粒子状鉄含有物の溶解処理方法。 The temperature of the PS converter residue of Claim 1 is 600-1100 degreeC, The melt | dissolution processing method of the hydrous fine particle-like iron containing material characterized by the above-mentioned. 請求項1〜2記載の含水微粒子状鉄含有物が金属鉄、金属銅を合計で15mass%以上を含む含水微粒子状鉄含有物であることを特徴とする請求項1〜2記載の含水微粒子状鉄含有物の溶解処理方法。 The water-containing fine particle-like iron-containing material according to claim 1 or 2, wherein the water-containing fine particle-like iron-containing material is a water-containing fine particle-like iron-containing material containing a total of 15 mass% or more of metal iron and metal copper. Method for dissolving iron-containing material. 請求項1〜3記載の含水微粒子状鉄含有物が、一般廃棄物あるいは、産業廃棄物を溶融処理して得られる微粒子状物であることを特徴とする請求項1〜3記載の含水微粒子状鉄含有物の溶解処理方法。
The water-containing fine particle-like iron-containing material according to any one of claims 1 to 3, wherein the water-containing fine particle-like iron-containing material is a fine particle material obtained by melting or treating general waste or industrial waste. Method for dissolving iron-containing material.
JP2004150019A 2004-05-20 2004-05-20 Dissolution treatment method of hydrous fine iron-containing material in copper PS converter Active JP4112523B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004150019A JP4112523B2 (en) 2004-05-20 2004-05-20 Dissolution treatment method of hydrous fine iron-containing material in copper PS converter
KR20040112681A KR100642964B1 (en) 2004-05-20 2004-12-27 Method for smelting treatment of fine granular material containing water and iron in copper ps converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004150019A JP4112523B2 (en) 2004-05-20 2004-05-20 Dissolution treatment method of hydrous fine iron-containing material in copper PS converter

Publications (2)

Publication Number Publication Date
JP2005330541A true JP2005330541A (en) 2005-12-02
JP4112523B2 JP4112523B2 (en) 2008-07-02

Family

ID=35485409

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004150019A Active JP4112523B2 (en) 2004-05-20 2004-05-20 Dissolution treatment method of hydrous fine iron-containing material in copper PS converter

Country Status (2)

Country Link
JP (1) JP4112523B2 (en)
KR (1) KR100642964B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101831539A (en) * 2010-05-20 2010-09-15 牛庆君 Method for producing artificial rich iron ore from copper smelting waste slag by using new sintering technology
CN101831549A (en) * 2010-05-20 2010-09-15 牛庆君 Method for producing artificial rich iron ore from nickel, copper and cobalt smelting waste slag by utilizing new sintering process
CN101831555A (en) * 2010-05-20 2010-09-15 牛庆君 Method for producing artificial rich iron ore from nickel smelting waste slag by utilizing new sintering process
CN110453089A (en) * 2019-08-30 2019-11-15 楚雄滇中有色金属有限责任公司 A method of it reducing PS converter blister copper and carries slag secretly

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3698044B2 (en) * 2000-10-04 2005-09-21 住友金属鉱山株式会社 Method for smelting copper sulfide concentrate
JP3747155B2 (en) * 2000-12-19 2006-02-22 日鉱金属株式会社 How to operate a wrought copper furnace

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101831539A (en) * 2010-05-20 2010-09-15 牛庆君 Method for producing artificial rich iron ore from copper smelting waste slag by using new sintering technology
CN101831549A (en) * 2010-05-20 2010-09-15 牛庆君 Method for producing artificial rich iron ore from nickel, copper and cobalt smelting waste slag by utilizing new sintering process
CN101831555A (en) * 2010-05-20 2010-09-15 牛庆君 Method for producing artificial rich iron ore from nickel smelting waste slag by utilizing new sintering process
CN110453089A (en) * 2019-08-30 2019-11-15 楚雄滇中有色金属有限责任公司 A method of it reducing PS converter blister copper and carries slag secretly

Also Published As

Publication number Publication date
KR100642964B1 (en) 2006-11-10
KR20050111524A (en) 2005-11-25
JP4112523B2 (en) 2008-07-02

Similar Documents

Publication Publication Date Title
KR20150094609A (en) Processing method of electric and electronic parts scraps
AU2006290461A1 (en) Processing metallurgical slag
JP4909747B2 (en) Method for producing regenerated desulfurizing agent, method for producing low sulfur hot metal, method for transporting regenerated desulfurizing agent, and method for sieving regenerated desulfurizing agent
TW201215682A (en) Process for producing molten steel using particulate metallic iron
EA025530B1 (en) Process for producing hardened granules from iron-containing particles
JP6228843B2 (en) Disposal of electrical and electronic parts waste in copper smelting
TWI760476B (en) Improved process for the production of crude solder
JP4112523B2 (en) Dissolution treatment method of hydrous fine iron-containing material in copper PS converter
JP2001192741A (en) Method for utilizing steel making slag
JP2000510528A (en) Processing method of fine separation material containing metal base component
JP4867406B2 (en) Steel recovery method and recycling method for steelmaking slag
CN106661667B (en) The smelting process of nickel oxide ore, the charging method of particle
JP2003213312A (en) Method for manufacturing metallic iron
JP5332806B2 (en) Electric furnace dust recycling method
JP4355334B2 (en) Operation method of copper smelting
JP2017190529A (en) Method of processing electric/electronic parts scrap in copper smelting
CN109371251B (en) Treatment method of dust containing chromium and nickel
JP3817601B2 (en) Calami treatment method of wrought copper furnace in copper smelting
JP5614056B2 (en) Method of operating copper smelting furnace and copper smelting furnace
JP2010196148A (en) Iron raw material and manufacturing method therefor
JP2009041107A (en) Method for manufacturing granular metal
JP2016191120A (en) Non-ferrous smelting slag treatment method
JP5910542B2 (en) Hot metal manufacturing method using vertical melting furnace
JP2001262217A (en) Method and device for treating reduced slag in electric furnace
JP5488098B2 (en) Treatment method for acid-resistant waste bricks

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060310

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060510

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080307

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080401

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080409

R150 Certificate of patent or registration of utility model

Ref document number: 4112523

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110418

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110418

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110418

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110418

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120418

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120418

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130418

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250