JP2005329617A - Method for producing thermoformed article of styrene resin, molding, and container - Google Patents

Method for producing thermoformed article of styrene resin, molding, and container Download PDF

Info

Publication number
JP2005329617A
JP2005329617A JP2004150022A JP2004150022A JP2005329617A JP 2005329617 A JP2005329617 A JP 2005329617A JP 2004150022 A JP2004150022 A JP 2004150022A JP 2004150022 A JP2004150022 A JP 2004150022A JP 2005329617 A JP2005329617 A JP 2005329617A
Authority
JP
Japan
Prior art keywords
sheet
styrene
thermoforming
resin
molded product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004150022A
Other languages
Japanese (ja)
Inventor
Masami Asanuma
正実 浅沼
Masafumi Hiura
雅文 日浦
Fumi Ogata
文 尾形
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP2004150022A priority Critical patent/JP2005329617A/en
Publication of JP2005329617A publication Critical patent/JP2005329617A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a thermoformed article of a styrene resin which is excellent in oil resistance and appearance and maintains a balance with strength, its molding, and its container. <P>SOLUTION: In the method for producing the molding obtained by thermoforming a sheet of the styrene resin, the molding after the thermoforming is radiation-heated by a heater of the maximum energy wavelength being in a range of a wavelength zone where the absorption wavelength of its used resin becomes maximum ±1 μm. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、優れた耐油性と外観を有し、かつ強度とのバランスの取れたスチレン系樹脂の熱成形品の製造方法及びその成形体及び容器に関する。   The present invention relates to a method for producing a thermoformed product of a styrenic resin having excellent oil resistance and appearance, and having a good balance between strength, and a molded body and container thereof.

スチレン系樹脂の熱成形容器は様々な用途に用いられており、透明性、剛性があり、かつ比較的安価であるため、成形品、特に食品包装用の軽量容器等として幅広く使用されており、特に二軸延伸シートを使用した熱成形品は剛性が高い。またこれらの容器はその用途から耐油性や耐熱性が要求されており、その機能を付与する方法としては、スチレンとアクリル酸やメタクリル酸または無水マレイン酸との共重合体を使用する方法が一般的である(例えば、特許文献1参照)。しかしこれらの共重合体を使用する方法はポリスチレン単体からなる成形品と比較して材料的にもろくなる為に、その分二軸延伸シート作成時に配向緩和応力を高くする必要性がある為、成形品に残留歪が残りやすく耐油性低下の一因となっている。この問題点等を解決する為に、シートを多層構造として、その表層にスチレンとアクリル酸やメタクリル酸または無水マレイン酸との共重合体を有し、中層にポリスチレン層を有する二軸延伸積層シートが提案されている(例えば、特許文献2,3参照)。しかしこの方法はシート製造時のフィードブロックTダイ多層共押出法の際、層界面でのメルトフラクチャーが発生しやすく、シート外観に問題があった。ここで言うメルトフラクチャーとは共押出の際にTダイ内で中層と表層の界面で起こるものである。Tダイでの温度が一定の為、同じ温度では中層のポリスチレン層の方が表層の共重合体層より粘度が低くなり、この粘度差の為に流動がスムーズにいかず、縞状の外観不良として現れるものである。   Styrenic resin thermoformed containers are used in a variety of applications, and are widely used as molded products, especially lightweight containers for food packaging, because they are transparent, rigid, and relatively inexpensive. In particular, a thermoformed product using a biaxially stretched sheet has high rigidity. In addition, these containers are required to have oil resistance and heat resistance due to their use, and as a method for imparting their functions, a method using a copolymer of styrene and acrylic acid, methacrylic acid or maleic anhydride is generally used. (For example, see Patent Document 1). However, since the methods using these copolymers are fragile in material compared to molded products made of polystyrene alone, it is necessary to increase the orientation relaxation stress when creating biaxially stretched sheets. Residual strain tends to remain in the product, which contributes to a decrease in oil resistance. In order to solve this problem and the like, a biaxially stretched laminated sheet having a sheet having a multilayer structure, a surface layer having a copolymer of styrene and acrylic acid, methacrylic acid or maleic anhydride, and a middle layer having a polystyrene layer Has been proposed (see, for example, Patent Documents 2 and 3). However, this method has a problem in the appearance of the sheet because the melt fracture at the layer interface tends to occur during the feed block T-die multilayer coextrusion method at the time of producing the sheet. The melt fracture referred to here occurs at the interface between the middle layer and the surface layer in the T-die during coextrusion. Because the temperature at the T-die is constant, the middle polystyrene layer has a lower viscosity than the surface copolymer layer at the same temperature, and due to this viscosity difference, the flow does not go smoothly and the striped appearance is poor. Appear as.

特開昭55−56112号公報JP-A-55-56112 特開平2−239933号公報JP-A-2-239933 特開平7−156342号公報JP 7-156342 A

本発明はこのような事情に鑑みてなされたものであり、優れた耐油性と外観を有し、かつ耐熱性、強度とのバランスの取れたスチレン系樹脂の熱成形品の製造方法、成形体、容器を提供することを目的とするものである。   The present invention has been made in view of such circumstances, and has a method for producing a thermoformed product of a styrene-based resin having excellent oil resistance and appearance, and having a good balance between heat resistance and strength, and a molded body. The object is to provide a container.

即ち本発明は、スチレン系樹脂のシートを熱成形してなる成形品の製造方法において、熱成形後の成形品をその使用樹脂の吸収波長が最大となる波長帯域±1μmの範囲に入る最大エネルギー波長のヒーターにより加熱時間が10秒以下で輻射加熱し、かつ縦方向の配向緩和応力をσM、横方向の配向緩和応力をσTとした場合、下記数式2の条件を満たし平均肉厚が0.2mm以上であることを特徴とする単層熱成形品の製造方法である。   That is, the present invention relates to a method for producing a molded product obtained by thermoforming a sheet of a styrene resin, and the maximum energy within the wavelength band ± 1 μm in which the absorption wavelength of the resin used is maximized. When the heating time is 10 seconds or less by the heater of the wavelength and the longitudinal orientation relaxation stress is σM and the horizontal orientation relaxation stress is σT, the average thickness is 0. It is a manufacturing method of the single layer thermoformed product characterized by being 2 mm or more.

また、上記記載の製造方法において、熱成形に使用するスチレン系樹脂が、アクリル酸、メタクリル酸、無水マレイン酸のうち少なくとも一種の単量体とスチレンからなる共重合体であることを特徴とする単層熱成形品の製造方法。上記記載の製造方法で得られた成形品並びに容器である。   In the production method described above, the styrenic resin used for thermoforming is a copolymer of styrene and at least one monomer selected from acrylic acid, methacrylic acid, and maleic anhydride. A method for producing a single-layer thermoformed product. A molded product and a container obtained by the production method described above.

本発明は耐油性と強度のバランスの取れたスチレン系容器の製造方法および容器を提供するものであり、得られた容器は特に食品包装用の軽量容器などの用途に好適に用いられるものである。   The present invention provides a method and a container for producing a styrene-based container having a good balance between oil resistance and strength, and the container obtained is particularly suitable for applications such as lightweight containers for food packaging. .

以下に本発明を詳細に説明する。
まず、本発明におけるスチレン系樹脂の熱成形品の製造方法は熱成形後の成形品をその使用樹脂の吸収波長が±1μmの範囲に入る最大となる波長帯域と同じ最大エネルギー波長のヒーターにより輻射加熱しなければならない。ここで使用樹脂の吸収波長の強弱を測定する方法としては公知の赤外分光光度計により赤外吸収スペクトルを測定すれば良く、その方法はJIS−K0117に示されている。また、ヒーターの最大エネルギー波長はヒーターの発熱体の温度からウィーンの法則で求める事ができ(例えば、非特許文献1参照)、仮に使用樹脂の吸収波長が100%の波長が最大エネルギー波長であるヒーターにより成形品が輻射加熱されれば、成形品表面で大半のエネルギーが吸収されることになり、成形品のシート厚み方向で考えると中側よりも表面が選択的に加熱されることになる。加熱された部分はシート作成時および熱成形時の変形により生じる歪を緩和する事ができ、実際に食品等が接する成形品表面での耐油性が向上する。しかし両者の波長が±1μmの範囲を超える場合は成形品のシート厚み方向全体が均一に暖められる事となり、耐油性は向上するものの成形品の強度が低下してしまう。
The present invention is described in detail below.
First, in the method for producing a thermoformed product of a styrene resin in the present invention, a molded product after thermoforming is radiated by a heater having the same maximum energy wavelength as the maximum wavelength band in which the absorption wavelength of the resin used is within a range of ± 1 μm. Must be heated. Here, as a method for measuring the intensity of the absorption wavelength of the resin used, an infrared absorption spectrum may be measured by a known infrared spectrophotometer, and the method is shown in JIS-K0117. In addition, the maximum energy wavelength of the heater can be obtained from the temperature of the heating element of the heater according to Wien's law (for example, see Non-Patent Document 1), and the wavelength where the absorption wavelength of the resin used is 100% is the maximum energy wavelength. If the molded product is radiantly heated by the heater, most of the energy will be absorbed on the surface of the molded product, and the surface will be selectively heated rather than the middle side in the sheet thickness direction of the molded product. . The heated portion can relieve distortion caused by deformation during sheet preparation and thermoforming, and the oil resistance on the surface of the molded product that is actually in contact with food or the like is improved. However, when both wavelengths exceed the range of ± 1 μm, the entire sheet thickness direction of the molded product is uniformly heated, and although the oil resistance is improved, the strength of the molded product is lowered.

日本機械学会「機械工学便覧改訂第5版」(1968)P11−10Japan Society of Mechanical Engineers "Mechanical Engineering Handbook 5th revised edition" (1968) P11-10

ヒーターの最大エネルギー波長が使用樹脂の吸収波長が最大となる波長と一致していたとしても、ヒーターからは他の波長成分も出ている事、および表面からの熱伝導により、長時間成形品を加熱すると厚み方向全体がある程度均一に加熱されてしまう傾向にある。また成形品の肉厚が薄い場合も同様の理由で表面のみの選択的な加熱は難しい。発明者らが鋭意検討した結果、加熱時間は10秒以下、成形品の肉厚は0.2mm以上が好ましい。
また、使用ヒーターとしてはその波長特性がなるべくシャープなものが好ましく、加えて立ち上がり速度が速いものが良い。これらとポリスチレンの吸収波長等も考え合わせると、カーボンヒーターを使用するのが好ましい。
Even if the maximum energy wavelength of the heater matches the wavelength at which the absorption wavelength of the resin used is the maximum, other wavelength components are also emitted from the heater, and heat conduction from the surface makes it possible to produce molded products for a long time. When heated, the entire thickness direction tends to be heated to some extent uniformly. Even when the thickness of the molded product is thin, selective heating of only the surface is difficult for the same reason. As a result of intensive studies by the inventors, the heating time is preferably 10 seconds or less, and the thickness of the molded product is preferably 0.2 mm or more.
Further, the heater used is preferably one having a sharp wavelength characteristic as much as possible, and in addition, one having a fast rising speed is preferable. Considering these and the absorption wavelength of polystyrene, it is preferable to use a carbon heater.

熱成形に使用するスチレン系樹脂のシートは特に限定されないが、二軸延伸シートを使用するのが良い。一般にスチレン系樹脂を延伸する目的は、分子鎖を配向させ強度を増す事にある。しかし延伸すると強度が増すと同時に残留歪も増してしまい、これが耐油性低下の一因となっている。
本発明の製造方法を適用すれば、実際に食品等が接する成形品表面近傍の残留歪が選択的に減少する為、耐油性が向上すると同時に厚さ方向の中側で成形品としての強度を保つことができる。
The sheet of styrene resin used for thermoforming is not particularly limited, but a biaxially stretched sheet is preferably used. In general, the purpose of stretching a styrene resin is to align molecular chains and increase strength. However, when stretched, the strength increases and the residual strain also increases, which contributes to a decrease in oil resistance.
By applying the manufacturing method of the present invention, the residual strain in the vicinity of the surface of the molded product that is actually in contact with food or the like is selectively reduced, so that the oil resistance is improved and at the same time the strength as a molded product is increased in the thickness direction. Can keep.

また、本発明に使用するスチレン系シートにおいて、二軸延伸シートにする際、縦方向の配向緩和応力をσM、横方向の配向緩和応力をσTとした場合、|σM−σT|≦0.2[MPa]を満たす事が好ましい。ここでいう配向緩和応力とは、シート押出方向(縦方向)あるいはそれに垂直な方向(横方向)にそってシートより切り出した試験片を用いて測定するものであり、ASTM D1504に準じて測定できる。縦方向と横方向の配向緩和応力の差が大きいと、シートの方向性が強く存在するため一方向の裂けに対する強度が弱くなる傾向が見られる。これはクラックが、強度が低いつまり配向の低い方向に集中して成長しやすいため、破断しやすくなる。   In addition, in the styrene-based sheet used in the present invention, when a biaxially oriented sheet is used, assuming that the longitudinal orientation relaxation stress is σM and the lateral orientation relaxation stress is σT, | σM−σT | ≦ 0.2 It is preferable to satisfy [MPa]. The orientation relaxation stress here is measured using a test piece cut out from the sheet along the sheet extrusion direction (longitudinal direction) or the direction perpendicular to it (lateral direction), and can be measured according to ASTM D1504. . When the difference between the orientation relaxation stresses in the vertical direction and the horizontal direction is large, there is a tendency that the strength against tearing in one direction tends to be weak because the directionality of the sheet exists strongly. This is because the cracks tend to grow in a concentrated manner in a low strength, that is, low orientation direction, and therefore easily break.

また本発明の製造方法は、使用するスチレン系樹脂シートの原料として、スチレンとアクリル酸やメタクリル酸または無水マレイン酸との共重合体を使用したものにも適している。これらの共重合体を使用すると、その材料特性上ポリスチレン単体と比較してもろい為に、その分二軸延伸シート作成時に配向緩和応力を高くする必要性がある為、特に成形品に残留歪が残りやすく耐油性低下の一因となる。しかし本発明の製造方法を適用すれば、実際に食品等が接する成形品表面近傍の残留歪が選択的に減少する為、耐油性が向上すると同時に成形品としての強度も保つことができる。   The production method of the present invention is also suitable for a material using a copolymer of styrene and acrylic acid, methacrylic acid or maleic anhydride as a raw material for the styrene resin sheet to be used. When these copolymers are used, they are more fragile than polystyrene alone due to their material properties. Therefore, it is necessary to increase the orientation relaxation stress when creating a biaxially stretched sheet. It tends to remain and contributes to a decrease in oil resistance. However, if the production method of the present invention is applied, the residual strain in the vicinity of the surface of the molded product that is actually in contact with food or the like is selectively reduced, so that the oil resistance is improved and the strength of the molded product can be maintained.

本発明に使用するシートを得る為の装置としては、慣用のものでよく、例えば押出機により樹脂を溶融混練してTダイからフラット状に押出してロールを通すことによりシート化する押出成形法によりシート成形し、例えばテンター方式等の延伸法により、得られたシートを必要に応じて縦方向および横方向に延伸(二軸延伸)し、冷却する。
この際、温度調節の方法としては、縦延伸時では、ロールの内部に水や油の冷媒を循環させ熱交換により冷やす方法がある。温度センサーが実温度を感知することにより、設定温度との差によって電磁弁等でバルブが自動的に開閉するものを使用すると良い。また横延伸時では、テンター内にヒーターで熱せられた熱風を吹き付けることによってその雰囲気温度を上昇させ、熱電対等の温度センサーの実温度を感知することにより、設定温度との差によってそのヒーターをオンオフさせるものが一般的である。
また、配向緩和応力をコントロールする方法としては、この時の設定温度やラインスピードを変化させることにより、得られるシートの配向緩和応力を変化させることができる。
As an apparatus for obtaining the sheet used in the present invention, a conventional apparatus may be used. For example, by an extrusion molding method in which a resin is melt-kneaded by an extruder, extruded from a T-die in a flat shape, and passed through a roll. The sheet is formed, and the obtained sheet is stretched (biaxially stretched) in the longitudinal and lateral directions as necessary, for example, by a stretching method such as a tenter method, and cooled.
At this time, as a method for adjusting the temperature, there is a method in which water or oil refrigerant is circulated inside the roll and cooled by heat exchange during longitudinal stretching. It is preferable to use a sensor that automatically opens and closes a solenoid valve or the like depending on the difference from the set temperature when the temperature sensor senses the actual temperature. During transverse stretching, hot air heated by a heater is blown into the tenter to raise the ambient temperature, and by sensing the actual temperature of a temperature sensor such as a thermocouple, the heater is turned on / off depending on the difference from the set temperature. It is common to let them.
As a method for controlling the orientation relaxation stress, the orientation relaxation stress of the obtained sheet can be changed by changing the set temperature and the line speed at this time.

また熱成形の方法としては、市販の一般的な熱板圧空成形機を使用して得ることができる。使用する成形機は、熱板にシートが圧接している時間や圧空により成形する時間、シート圧接から圧空成形に切り替わるタイムラグ、成形サイクル等が設定できるタイプのものが望ましい(例えば、非特許文献2参照)。   Moreover, as a method of thermoforming, it can obtain using a commercially available general hot-plate pressure forming machine. The molding machine to be used is preferably of a type in which the time during which the sheet is pressed against the hot plate, the time during which the sheet is formed by compressed air, the time lag for switching from the sheet pressure welding to the pressure forming, the molding cycle, etc. can be set. reference).

高分子学会編「プラスチック加工技術ハンドブック」日刊工業新聞社(1995)The Society of Polymer Science “Plastic Processing Technology Handbook”, Nikkan Kogyo Shimbun (1995)

本発明の製造方法は、上記のようにして得られた熱成形品に対して適用されるものであり、シートの段階や熱成形時で適用するのは好ましくない。なぜならば表面のみ加熱された状態のものを熱成形すると、熱板に融着してしまったりレインドロップと呼ばれる水滴状の凹凸不良が発生しやすくなるからである。 The production method of the present invention is applied to the thermoformed product obtained as described above, and it is not preferable to apply it at the stage of the sheet or at the time of thermoforming. This is because if the surface of the surface heated is thermoformed, it will be fused to the hot plate or water drop-like irregularities called rain drops are likely to occur.

本発明に使用するシートは、シート化の為の溶融混練時あるいは原料製造時に、本発明の目的を損なわない範囲で必要に応じて、酸化防止剤、滑材、離型材、可塑剤、顔料、染料、発泡剤、発泡核材、無機フィラー、帯電防止剤、光拡散剤等公知の添加剤を含有することができる。   The sheet used in the present invention is an antioxidant, a lubricant, a mold release material, a plasticizer, a pigment, as necessary, as long as it does not impair the purpose of the present invention, at the time of melt kneading or raw material production for forming a sheet. Known additives such as dyes, foaming agents, foam core materials, inorganic fillers, antistatic agents, and light diffusing agents can be contained.

以下に実施例と比較例を用いて、本発明の実施の形態をさらに具体的に説明するが、本発明はこれによって何ら制限されるものではない。なお、用いた評価および試験機器を以下に示す。   Hereinafter, the embodiment of the present invention will be described more specifically with reference to examples and comparative examples, but the present invention is not limited thereto. The evaluation and test equipment used are shown below.

1.使用する各樹脂の赤外吸収スペクトルは、下記にて予め測定した。
装置名:日本分光工業社製 赤外分光光度計 IR−810
試験法:JIS−K0117に準ずる。試験片はプレス成形機にて230℃にてペレットを溶融させ厚さ約50μmのフィルムを得た後、23℃×50%の恒温恒湿室にて24時間放置し状態調整した。
1. The infrared absorption spectrum of each resin used was measured in advance below.
Apparatus name: IR spectrophotometer IR-810 manufactured by JASCO Corporation
Test method: According to JIS-K0117. The test piece was melted at 230 ° C. in a press molding machine to obtain a film having a thickness of about 50 μm, and then left in a constant temperature and humidity chamber of 23 ° C. × 50% for 24 hours to adjust the state.

2.2軸延伸シート作成に使用した押出、延伸装置は以下の通りである。
押出機:ナカタニ機械社製 PLASTIC EXTRUDER NVC65
縦延伸機:田辺プラスチックス機械社製 400型縦延伸ロールユニット
横延伸機:小林機械製作所社製 SK−WE A88−027
2.2 Extrusion / stretching equipment used for preparing the axially stretched sheet is as follows.
Extruder: PLASTIC EXTRUDER NVC65 manufactured by Nakatani Machinery Co., Ltd.
Longitudinal stretching machine: 400 type longitudinal stretching roll unit manufactured by Tanabe Plastics Machinery Co., Ltd. Horizontal stretching machine: SK-WE A88-027 manufactured by Kobayashi Machinery Co., Ltd.

3.得られた2軸延伸シートを用い、ASTM D1504に準じてシートの押出方向(縦方向)とそれに垂直な方向(横方向)での配向緩和応力の最大値であるσMおよびσTを測定した。試験片はシートより20mm×135mmに切り出したものを使用し、測定値には5回測定したその平均値をそれぞれ採用した。 3. Using the obtained biaxially stretched sheet, according to ASTM D1504, σM and σT, which are the maximum values of orientation relaxation stress in the sheet extrusion direction (longitudinal direction) and the direction perpendicular to the extrusion direction (transverse direction), were measured. The test piece was cut into 20 mm × 135 mm from the sheet, and the average value measured five times was adopted as the measurement value.

4.得られた2軸延伸シートを用い、下記の条件で熱板圧空成形を行い、容器成形品を得た。
(1)金型:
天面:90×170[mm]
高さ:50[mm]
底面:120×200[mm]
(2)成形条件:
成型機:関西自動成型機社製PK400
成形温度:使用樹脂により変更
圧接圧空遅れ:0.8[sec]
圧接真空遅れ:1[sec]
圧接時間:4[sec]
成型圧空時間3.5[sec]
4). Using the obtained biaxially stretched sheet, hot plate compression molding was performed under the following conditions to obtain a container molded product.
(1) Mold:
Top: 90 x 170 [mm]
Height: 50 [mm]
Bottom: 120 x 200 [mm]
(2) Molding conditions:
Molding machine: PK400 manufactured by Kansai Automatic Molding Machine
Molding temperature: Changed depending on the resin used Pressure welding pressure delay: 0.8 [sec]
Pressure welding vacuum delay: 1 [sec]
Pressure welding time: 4 [sec]
Molding pressure time 3.5 [sec]

5.得られた容器成形品の天面部で任意の位置4個所、側面部で任意の位置4個所の合計8個所においてミツトヨ製デジマティックマイクロメーターBMD−25DMを使用して厚さを測定し、8個所の平均値を成形品厚さとした。 5). Thickness was measured using Mitutoyo's Digimatic Micrometer BMD-25DM at 8 arbitrary positions on the top surface of the obtained container molded product and 4 arbitrary positions on the side surface. Was the thickness of the molded product.

6.得られた容器成形品をヘレウス社製中波長カーボンヒーターCZB4600/600Gを使用し、成形品表面より高さ10cmの位置より成形品を加熱した。この際、加熱時間を変化させた他、電流調整で発熱体の温度を変化させ、ウィーンの変位側より最大エネルギ波長を算出した。
ウィーンの変位側:λ=2897/T (λ:最大エネルギ波長[μm]、T:発熱体温度[℃])
6). The obtained container molded product was heated from a position 10 cm above the surface of the molded product using a medium wavelength carbon heater CZB4600 / 600G manufactured by Heraeus. At this time, in addition to changing the heating time, the temperature of the heating element was changed by adjusting the current, and the maximum energy wavelength was calculated from the displacement side of Vienna.
Vienna displacement side: λ = 2897 / T (λ: maximum energy wavelength [μm], T: heating element temperature [° C.])

7.耐油性の評価として、得られた容器成形品の天面部中央部より50×30[mm]の試験片を採取し、75℃の椰子油に5分間漬けた後に取り出し、白濁の有無を目視で観察した。
○:良好
△:やや白濁あり
×:白濁あり
7). As an evaluation of oil resistance, a 50 × 30 [mm] test piece was collected from the center of the top surface of the obtained container molded product, taken out after being immersed in coconut oil at 75 ° C. for 5 minutes, and visually checked for white turbidity. Observed.
○: Good △: Some cloudiness ×: Some cloudiness

8.強度の評価として、得られた容器成形品の天面中央に錘を落下させ、割れが発生するエネルギー([J]=錘高さ[m]×錘重さ[kg])を測定し、これを落錘強度とした。錘は成形品に接触する部分は同じで、重量を変化させることができ、接触する先端部は直径15[mm]の半球状である。割れが発生するまで高さを1cm刻みで高くしてシートが割れるまで予備テストを行う。シートに割れが発生すると落下高さを1cm低くし、また割れが発生しない場合は落下高さを1cm高くするというテストを繰返す。測定値には10回測定したその平均値を採用した。
○:30[J]以上
△:20[J]以上30[J]未満
×:20[J]未満
8). As an evaluation of strength, a weight is dropped on the center of the top surface of the obtained container molded product, and energy at which cracking occurs ([J] = weight height [m] × weight weight [kg]) is measured. Is the drop weight strength. The portion of the weight that contacts the molded product is the same, and the weight can be changed. The tip of the weight that is in contact with the weight is a hemisphere having a diameter of 15 mm. Increase the height in 1cm increments until cracks occur and conduct a preliminary test until the sheet breaks. If the sheet breaks, repeat the test to lower the drop height by 1 cm, and if it does not break, increase the drop height by 1 cm. The average value measured 10 times was adopted as the measurement value.
○: 30 [J] or more Δ: 20 [J] or more and less than 30 [J] ×: Less than 20 [J]

9.外観の評価として、得られた容器成形品を目視で外観を観察し、ほぼメルトフラクチャーのないものを○、ややメルトフラクチャーがあるものを△、はっきりとメルトフラクチャーが認められるものを×とし、外観性の評価とした。
10.耐熱性の評価として、得られた容器成形品を110℃に設定した熱風乾燥機に10分間入れた後の容器の変形を目視で観察した。
○:変形がわからないか微小である
△:変形があるが外寸はあまり変わらない
×:大きく変形し、寸法も変わっている
9. Appearance was evaluated by visually observing the appearance of the obtained container molded product, ○ indicating that there was almost no melt fracture, Δ indicating that there was a slight melt fracture, and × indicating that the melt fracture was clearly recognized. Evaluation of sex.
10. As evaluation of heat resistance, the deformation of the container was visually observed after putting the obtained container molded article into a hot air dryer set at 110 ° C. for 10 minutes.
○: Deformation is not known or is minute Δ: Deformation is present, but the outer dimensions are not significantly changed ×: Deformation is large and dimensions are also changing

本実施例と比較例に用いた樹脂を以下に示す。
樹脂A:東洋スチレン(株)製PSのHRM61C。
樹脂B:内容積210Lのオートクレーブに純水90Kgにポリビニルアルコール100gを添加し撹拌した。次にスチレン48.5kg、メタクリル酸1.5kg、重合開始材としてt−ブチルパーオキシ−2―エチルヘキサノエート55g、エチルー3,3−ジ(t−ブチルパーオキシ)ブチレート10g、連鎖移動剤としてα−メチルスチレンダイマー45gを仕込み、温度112℃に昇温して6時間、その後温度132℃で4.5時間保持し重合を行った。得られたビーズを洗浄、脱水、乾燥した後、押出してペレット形状の樹脂を得た。
樹脂C:スチレンの仕込量を46Kg、メタクリル酸の仕込量を4Kgとした。他は樹脂Bと同様にした。
各樹脂で赤外吸収スペクトルを測定した結果、いずれの樹脂でも3.43μmで100%吸収を示した。
The resins used in the examples and comparative examples are shown below.
Resin A: HRM61C manufactured by Toyo Styrene Co., Ltd.
Resin B: To an autoclave having an internal volume of 210 L, 100 g of polyvinyl alcohol was added to 90 kg of pure water and stirred. Next, 48.5 kg of styrene, 1.5 kg of methacrylic acid, 55 g of t-butylperoxy-2-ethylhexanoate as a polymerization initiator, 10 g of ethyl-3,3-di (t-butylperoxy) butyrate, a chain transfer agent Was charged with 45 g of α-methylstyrene dimer, and the temperature was raised to 112 ° C. for 6 hours, and then held at 132 ° C. for 4.5 hours for polymerization. The obtained beads were washed, dehydrated and dried, and then extruded to obtain a pellet-shaped resin.
Resin C: The amount of styrene charged was 46 kg, and the amount of methacrylic acid charged was 4 kg. Others were the same as Resin B.
As a result of measuring the infrared absorption spectrum of each resin, all resins showed 100% absorption at 3.43 μm.

[実施例1]
樹脂Aを押出機において230℃でTダイにより共押出された樹脂を、縦延伸機にて設定温度105℃で流れ方向に2.2倍、ついで横延伸機にて設定温度105℃で幅方向に2.2倍に延伸して2軸延伸シートを得た。この時のラインスピードは8m/minである。得られた2軸延伸シートを上記3の方法で配向緩和応力の最大値であるσMおよびσTを測定したところ、σM=0.57MPa、σT=0.50MPaであった。
得られた2軸延伸シートを上記4の方法で125℃にて容器に熱板成形した。得られた容器成形品において上記5の方法で成形品厚さを測定した後、上記6の方法で成形品を10秒加熱した。その時の発熱体温度は570℃に調整し、ウィーンの変位則から最大エネルギ波長は約3.4μmとなる。その後、上記7の方法で耐油性試験を、上記8の方法で落錘強度を評価した。
以上の各結果を表1に示す。耐油性試験と落錘強度において良好でバランスが取れていることがわかる。
[Example 1]
Resin A is coextruded with a T-die at 230 ° C in an extruder at a set temperature of 105 ° C at a set temperature of 105 ° C in the flow direction 2.2 times, and then at a set temperature of 105 ° C at a set temperature of 105 ° C in the width direction. To 2.2 times to obtain a biaxially stretched sheet. The line speed at this time is 8 m / min. When the obtained biaxially stretched sheet was measured for σM and σT, which are the maximum values of orientation relaxation stress, by the above method 3, σM = 0.57 MPa and σT = 0.50 MPa.
The obtained biaxially stretched sheet was hot-plate molded into a container at 125 ° C. by the method 4 described above. After the thickness of the molded product was measured by the method 5 in the obtained container molded product, the molded product was heated for 10 seconds by the method 6 above. The heating element temperature at that time is adjusted to 570 ° C., and the maximum energy wavelength is about 3.4 μm according to the Wien's displacement law. Thereafter, the oil resistance test was evaluated by the above method 7, and the falling weight strength was evaluated by the above method 8.
Table 1 shows the above results. It can be seen that the oil resistance test and drop weight strength are good and balanced.

[実施例2〜7]及び[比較例1〜5]
使用樹脂、縦延伸時の設定温度、横延伸時の設定温度、熱板成形温度、成形品加熱条件のうち一部を適宜表2に示すように変更した他は、実施例1と同様に実施した。なお比較例4においては容器成形品の加熱はおこなっていない。以上の結果を表1にまとめて示した。実施例はいずれも耐油性、落錘強度、外観、耐熱性において良好でバランスが取れていることがわかる。
[比較例6]
上記のナカタニ機械社製PLASTIC EXTRUDER NVC65を中層用押出機として使用し、加えてナカタニ機械社製 PLASTIC EXTRUDER VSK40を表層用押出機として使用した他は同様に実施した。結果を表1に示す。多層では外観が悪い事がわかる。
[Examples 2 to 7] and [Comparative Examples 1 to 5]
Implemented in the same manner as in Example 1 except that the resin used, the set temperature during longitudinal stretching, the set temperature during transverse stretching, the hot plate molding temperature, and the part heating conditions were appropriately changed as shown in Table 2. did. In Comparative Example 4, the container molded product is not heated. The above results are summarized in Table 1. It can be seen that all the examples are good and balanced in oil resistance, drop weight strength, appearance, and heat resistance.
[Comparative Example 6]
The above procedure was carried out in the same manner except that PLASTIC EXTRUDER NVC65 manufactured by Nakatani Machinery Co., Ltd. was used as the middle layer extruder, and PLASTIC EXTRUDER VSK40 manufactured by Nakatani Machinery Co., Ltd. was used as the surface layer extruder. The results are shown in Table 1. It can be seen that the appearance is poor in multiple layers.

メルトフラクチャーが発生したシートSheet with melt fracture

Claims (5)

スチレン系樹脂のシートを熱成形してなる成形品の製造方法において、熱成形後の成形品をその使用樹脂の吸収波長が最大となる波長帯域±1μmの範囲に入る最大エネルギー波長のヒーターにより加熱時間が10秒以下で輻射加熱し、かつ縦方向の配向緩和応力をσM、横方向の配向緩和応力をσTとした場合、下記数式1の条件を満たし平均肉厚が0.2mm以上であることを特徴とする単層熱成形品の製造方法。
In the manufacturing method of a molded product formed by thermoforming a sheet of styrene resin, the molded product after thermoforming is heated by a heater having a maximum energy wavelength that falls within a wavelength band ± 1 μm in which the absorption wavelength of the resin used is maximum. When the time is 10 seconds or less and radiation heating is performed, and the longitudinal orientation relaxation stress is σM and the horizontal orientation relaxation stress is σT, the following equation 1 is satisfied and the average thickness is 0.2 mm or more. A method for producing a single-layer thermoformed product.
熱成形に使用するスチレン系樹脂のシートが二軸延伸シートであることを特徴とする請求項1記載の単層熱成形品の製造方法。 2. The method for producing a single-layer thermoformed product according to claim 1, wherein the styrenic resin sheet used for thermoforming is a biaxially stretched sheet. 熱成形に使用するスチレン系樹脂が、アクリル酸、メタクリル酸、無水マレイン酸のうち少なくとも一種の単量体とスチレンからなる共重合体であることを特徴とする請求項1または請求項2記載の単層熱成形品の製造方法。 The styrenic resin used for thermoforming is a copolymer composed of at least one monomer out of acrylic acid, methacrylic acid, and maleic anhydride and styrene. A method for producing a single-layer thermoformed product. 請求項1〜請求項3のいずれか一項記載の製造方法で得られたスチレン系樹脂成形体。 A styrene-based resin molded article obtained by the production method according to any one of claims 1 to 3. 請求項1〜請求項3のいずれか一項記載の製造方法で得られたスチレン系樹脂容器。 A styrene-based resin container obtained by the production method according to any one of claims 1 to 3.
JP2004150022A 2004-05-20 2004-05-20 Method for producing thermoformed article of styrene resin, molding, and container Pending JP2005329617A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004150022A JP2005329617A (en) 2004-05-20 2004-05-20 Method for producing thermoformed article of styrene resin, molding, and container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004150022A JP2005329617A (en) 2004-05-20 2004-05-20 Method for producing thermoformed article of styrene resin, molding, and container

Publications (1)

Publication Number Publication Date
JP2005329617A true JP2005329617A (en) 2005-12-02

Family

ID=35484583

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004150022A Pending JP2005329617A (en) 2004-05-20 2004-05-20 Method for producing thermoformed article of styrene resin, molding, and container

Country Status (1)

Country Link
JP (1) JP2005329617A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9850052B2 (en) 2009-05-12 2017-12-26 Asahi Kasei Chemicals Corporation Press-through pack package

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9850052B2 (en) 2009-05-12 2017-12-26 Asahi Kasei Chemicals Corporation Press-through pack package

Similar Documents

Publication Publication Date Title
CN108943929B (en) Polyolefin heat shrinkable film and preparation method and application thereof
EP2646248B1 (en) Systems and method for direct embossment of a polymer melt sheet
JP5363111B2 (en) Method for forming thermoplastic composite material
TW201618934A (en) Biaxially stretched sheet and container for packaging
JP4761936B2 (en) Polystyrene-based resin laminated foam sheet with excellent deep drawability
JP2005329617A (en) Method for producing thermoformed article of styrene resin, molding, and container
JP4938392B2 (en) Polystyrene resin laminated foam sheet and method for producing the same
JP4059823B2 (en) Method for producing styrenic biaxially stretched laminated sheet
JP7329153B2 (en) Polypropylene multilayer sheet
JP6206552B2 (en) Foamed laminate, foamed paper, and heat insulating container using the same
JP4709533B2 (en) Polystyrene-based resin laminated foam sheet that excels in deep drawing
JP2003276080A (en) Thermoforming material of polyethylene terephthalate resin and method for producing thermoformed molding of polyethylene terephthalate resin
JP4769205B2 (en) Impact-resistant polystyrene biaxially stretched sheet, and molded product of this sheet
JPS6225031A (en) Heat-resistive sheet of biaxially oriented styrene base
JP2007112456A (en) Polypropylene resin foamed container
JP4053022B2 (en) Polystyrene-based biaxially stretched laminated sheet, molded body and container
JP6969176B2 (en) Decorative film and decorative molded body using it
JP2003342388A (en) Acrylic resin film for injection molding co-lamination and laminated injection molded article using the same
NO177181B (en) Thermoformable laminates of polyacrylic ether ketone / polyvinyl fluoride
JP6561859B2 (en) FOAMING LAMINATE, PROCESS FOR PRODUCING THE SAME, FOAMED PAPER AND INSULATION CONTAINER
JP2005307024A (en) Polypropylene resin foamed sheet and molded product
JPH03110125A (en) Manufacture of laminated biaxially oriented film
KR102275884B1 (en) Nylon Film for Cold Forming with Excellent Humidity Stability
JP2008055695A (en) Laminated foamed polypropylene resin sheet
JP2001205696A (en) Method for thermally molding thermoplastic resin sheet