JP2005328622A - Power supply system - Google Patents

Power supply system Download PDF

Info

Publication number
JP2005328622A
JP2005328622A JP2004143770A JP2004143770A JP2005328622A JP 2005328622 A JP2005328622 A JP 2005328622A JP 2004143770 A JP2004143770 A JP 2004143770A JP 2004143770 A JP2004143770 A JP 2004143770A JP 2005328622 A JP2005328622 A JP 2005328622A
Authority
JP
Japan
Prior art keywords
frequency
power
output
afc
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004143770A
Other languages
Japanese (ja)
Other versions
JP4616579B2 (en
Inventor
Kensuke Kawasaki
憲介 川崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shikoku Research Institute Inc
Original Assignee
Shikoku Research Institute Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shikoku Research Institute Inc filed Critical Shikoku Research Institute Inc
Priority to JP2004143770A priority Critical patent/JP4616579B2/en
Publication of JP2005328622A publication Critical patent/JP2005328622A/en
Application granted granted Critical
Publication of JP4616579B2 publication Critical patent/JP4616579B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a power supply system which is equipped with a distributed power unit where an autonomous distribution control system is applied. <P>SOLUTION: This power supply system performs autonomous distribution control for the balance between demand and supply and the economic operation of a system, by arranging an AFC controller capable of adjustment of the target frequency for each power generation facility, and adjusting the AFC setting frequency in the local by means of the controller provided in each generator, based on the system information or power generation information obtained in the local without using a communication circuit. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、分散型電源装置を備える発電システムに関し、特に、自律分散制御システムを適用した電力供給システムに関する。   The present invention relates to a power generation system including a distributed power supply device, and more particularly to a power supply system to which an autonomous distributed control system is applied.

一般に複数の発電装置が連系した電力系統で、周波数・電圧といった電力品質の維持や発電用燃料の節約と言った経済運用を達成するには、系統の需給バランスと発電単価に応じた出力分担(負荷分担)を行うことが求められており、連系する発電設備の運転状況を正確に把握する必要がある。   In order to achieve economic operations such as maintaining power quality such as frequency and voltage and saving fuel for power generation in a power system that generally connects multiple power generators, the output sharing according to the power supply / demand balance of the system and the unit price of power generation (Load sharing) is required, and it is necessary to accurately grasp the operating status of the power generation facilities that are connected.

このため、離島や開発途上国の独立した小規模系統などにおいても、大規模電力系統と同様に、発電設備の運転状況の把握と制御信号伝送のための通信回線を必要とすることから、より安価な制御方式が求められている。   For this reason, as with large-scale power systems, remote islands and independent small-scale systems in developing countries require a communication line for grasping the operating status of power generation facilities and transmitting control signals. An inexpensive control method is required.

また、負荷変動に対して安定した運転をするには、連系した電源が容量に応じた負荷分担を行う必要がある。ところが太陽光発電や蓄電池などインバータを用いた電源は一定周波数か一定出力で運転する方式しかなく、小規模系統を形成する他の分散型電源と協調して負荷分担を行える方式がない。   In addition, in order to perform stable operation against load fluctuations, it is necessary for the connected power supply to perform load sharing according to capacity. However, a power source using an inverter such as a photovoltaic power generation or a storage battery has only a method of operating at a constant frequency or a constant output, and there is no method capable of sharing a load in cooperation with other distributed power sources forming a small scale system.

そこで、本発明の目的は、停電のような不都合を生じることなく周波数変動が少なく安価に安定した電力の供給を可能とすべく、自律分散制御を行う電力供給システムを提供することにある。   SUMMARY OF THE INVENTION An object of the present invention is to provide a power supply system that performs autonomous distributed control in order to enable stable power supply with low frequency fluctuation and low cost without causing inconvenience such as a power failure.

請求項1に記載の発明は、各発電設備に目標周波数が調整可能なAFC制御装置を設け、各発電設備にそれぞれ設けた制御回路が自端で得られる情報および系統周波数から得られる系統の需給バランスの情報に基づいて、自端のAFC制御装置の目標周波数を調整することにより、経済運用および需給バランス制御を行うことを特徴とする。   According to the first aspect of the present invention, an AFC control device capable of adjusting the target frequency is provided in each power generation facility, and the supply and demand of the system obtained from the information obtained by the control circuit provided in each power generation facility and the system frequency. It is characterized in that economic operation and supply-demand balance control are performed by adjusting the target frequency of the self-end AFC control device based on the balance information.

請求項1に記載の発明によれば、AFC目標周波数を制御に用いることで、系統周波数の目標値からの逸脱量が若干増加するが、系統制御のための通信設備が不要となり、電力品質の維持と経済負担配分を両立させた小規模系統に適した安価な電力供給システムが提供できる。また、検出した系統周波数をAFC回路で平滑化することで小規模系統に特有な急峻な負荷変動に伴う周波数変動で発電設備が過剰に起動停止を繰り返したり出力変動することを防止することができる。   According to the first aspect of the present invention, by using the AFC target frequency for control, a deviation amount from the target value of the system frequency is slightly increased, but communication equipment for system control becomes unnecessary, and power quality is reduced. It is possible to provide an inexpensive power supply system suitable for a small-scale system that balances maintenance and economic burden distribution. Further, by smoothing the detected system frequency with an AFC circuit, it is possible to prevent the power generation equipment from repeatedly repeating start and stop and output fluctuation due to frequency fluctuations accompanying steep load fluctuations peculiar to small-scale systems. .

請求項2に記載の発明は、各発電設備にAFC制御装置を設け、それぞれの目標周波数を同一値に設定し、自端のAFC制御装置の制御ブロックの制御関数の時間応答を発電単価に応じて個々に設定することにより、自端で得られる情報および系統周波数から得られる需給バランスの情報に基づいて、経済運用および需給バランス制御を行うことを特徴とする。   According to the second aspect of the present invention, each power generation facility is provided with an AFC control device, each target frequency is set to the same value, and the time response of the control function of the control block of the own end AFC control device is determined according to the unit price of power generation. Thus, the economic operation and the supply-demand balance control are performed based on the information obtained on its own and the supply-demand balance information obtained from the system frequency.

請求項2に記載の発明によれば、制御対象の発電機の台数が多くなっても、各目標周波数が同一値に設定されることから、系統周波数の目標周波数からの逸脱が抑制でき、経済的に高品質の電力を供給することが可能となる。また、発電機の増設も当該発電機の制御関数を調整するだけで既存設備の調整や工事が不要のため、増設が容易である。   According to the second aspect of the present invention, even if the number of generators to be controlled increases, each target frequency is set to the same value, so that deviation of the system frequency from the target frequency can be suppressed, and the economy can be reduced. Therefore, it becomes possible to supply high quality power. In addition, the addition of the generator is easy because the adjustment and construction of existing equipment is not required just by adjusting the control function of the generator.

請求項3に記載の発明は、直流電力をスイッチング作用により交流電力に変換するインバータ回路が設けられ該インバータ回路の前記スイッチング作用により目標周波数の電力を系統連系に供給すべく動作する分散型電源装置を有する電力供給システムであって、前記インバータ回路は、前記連系系統の負荷の増大に応じて、前記分散電源装置の出力周波数を減少させるべく動作することを特徴とする。   According to a third aspect of the present invention, there is provided an inverter circuit for converting direct current power into alternating current power by a switching action, and a distributed power source that operates to supply power at a target frequency to the grid interconnection by the switching action of the inverter circuit. A power supply system having a device, wherein the inverter circuit operates to reduce an output frequency of the distributed power supply device in accordance with an increase in load of the interconnection system.

請求項3に記載の発電システムでは、前記分散型電源装置は目標周波数の電力を系統連系に供給すべく動作する分散電源装置であり、該分散電源装置のインバータ回路は連系系統の負荷の増大や減少に応じて、自律的に前記分散電源装置の出力周波数をそれぞれ減少や増大させるべく動作することから、例えばディーゼル発電のような分散電源装置を組み合わせた場合であっても、該分散電源装置と負荷の増大や減少を分担することができ、その協調運転によって系統連系の安定した電力供給が可能となる。   In the power generation system according to claim 3, the distributed power supply device is a distributed power supply device that operates to supply power of a target frequency to the grid interconnection, and the inverter circuit of the distributed power supply device has a load of the interconnection grid. Since it operates to decrease or increase the output frequency of the distributed power supply autonomously according to the increase or decrease, the distributed power supply can be used even when a distributed power supply such as diesel power generation is combined. It is possible to share the increase and decrease of the load with the device, and the coordinated operation enables stable power supply for grid interconnection.

請求項4に記載の発明は、直流電力をスイッチング作用により交流電力に変換するインバータ回路が設けられ該インバータ回路の前記スイッチング作用により連系系統周波数に応じた周波数の電力を該連系系統に供給すべく動作する分散型電源装置を有する電力供給システムであって、前記インバータ回路は、前記連系系統周波数の増大に応じて、前記分散型電源装置の出力電力を減少させるべく動作することを特徴とする。   According to a fourth aspect of the present invention, an inverter circuit for converting DC power into AC power by a switching action is provided, and power having a frequency corresponding to the grid frequency is supplied to the grid by the switching action of the inverter circuit. A power supply system having a distributed power supply device that operates as appropriate, wherein the inverter circuit operates to decrease the output power of the distributed power supply device in response to an increase in the interconnection system frequency. And

請求項4に記載の発明では、前記分散型電源装置は連系系統周波数に応じた周波数の電力を該連系系統に供給すべく動作する分散型電源装置であり、該分散電源装置のインバータ回路は連系系統周波数の増大や減少に応じて、自律的に前記分散型電源装置の出力電力をそれぞれ減少や増大させるべく動作することから、例えばディーゼル発電のような分散電源装置を組み合わせた場合であっても、該分散電源装置と系統周波数の変動抑制を分担することができ、その協調運転によって系統連系の安定した電力供給が可能となる。   According to a fourth aspect of the present invention, the distributed power supply device is a distributed power supply device that operates to supply electric power having a frequency corresponding to the interconnection system frequency to the interconnection system, and the inverter circuit of the distributed power supply device Is operated to autonomously reduce or increase the output power of the distributed power supply according to the increase or decrease of the grid power frequency, for example, when combined with a distributed power supply such as diesel power generation Even if it exists, it can share the fluctuation | variation suppression of a system frequency with this distributed power supply device, and the stable electric power supply of a grid connection is attained by the cooperative operation.

本発明によれば、既存電力系統のように高価な通信回線を設けることなく、各発電機の自端で得られる情報をもとに、系統の周波数調整と発電単価に応じた出力分担による経済運用を実現できる。また、インバータを用いた電源についても、系統周波数変動や出力変動に対し他の電源と協調運転できるようになる。   According to the present invention, without providing an expensive communication line as in the existing power system, based on the information obtained at the own end of each generator, the economy by the frequency sharing of the system and the output sharing according to the unit price of power generation Operation can be realized. In addition, a power source using an inverter can be operated in cooperation with other power sources for system frequency fluctuations and output fluctuations.

以下、本発明の特徴を図示の実施例に沿って詳細に説明する。   The features of the present invention will be described in detail below with reference to the illustrated embodiments.

〈実施例1〉独立型
図1は、本発明に係る発電システムを独立型インバータに適用した例を概略的に示すブロック図である。発電システム10は、図示の例では、蓄電装置から成る直流電力源11およびディーゼル発電機を有する交流電力源12を各分散電源とする分散電源システムである。この分散電源システムすなわち発電システム10の系統母線13には、負荷14が接続されている。
<Embodiment 1> Stand-alone type FIG. 1 is a block diagram schematically showing an example in which a power generation system according to the present invention is applied to a stand-alone inverter. In the illustrated example, the power generation system 10 is a distributed power system in which each of the DC power source 11 including a power storage device and the AC power source 12 including a diesel generator is a distributed power source. A load 14 is connected to the system bus 13 of this distributed power supply system, that is, the power generation system 10.

直流電力源11は、インバータ回路15を介して系統母線13に接続されており、インバータ回路15のスイッチング作用により直流電力源11の直流電力は、交流電力に変換され、系統母線13を経て負荷14に供給される。また、負荷14には、系統母線13を経て交流電力源12からの交流電力が供給される。   The DC power source 11 is connected to the system bus 13 via the inverter circuit 15, and the DC power of the DC power source 11 is converted into AC power by the switching action of the inverter circuit 15, and the load 14 passes through the system bus 13. To be supplied. The load 14 is supplied with AC power from the AC power source 12 via the system bus 13.

インバータ回路15は、制御回路16からの制御信号により、その作動の制御を受ける。制御回路16は、基本的には、加算器17を経て目標周波数f0の指示信号の入力を受けることにより、この目標周波数f0に一致した周波数で直流電力源11の直流電力を交流電力に切り替えるように作動する。 The inverter circuit 15 is controlled in operation by a control signal from the control circuit 16. The control circuit 16 basically receives an instruction signal of the target frequency f 0 via the adder 17, thereby converting the DC power of the DC power source 11 into AC power at a frequency that matches the target frequency f 0. Operates to switch.

インバータ回路15の出力電力に応じて、制御回路16への目標周波数f0の指示信号を補正するために、インバータ回路15の出力電圧から周波数を検出する周波数検出部18と、インバータ回路15の出力電流および出力電圧からインバータ回路15の出力電力を求める出力電力検出部19と、目標周波数f0からのずれを抑制するためのAFC(自動周波数制御)部20と、例えばPI(比例積分)回路からなる平均値回路部21とが設けられている。 In order to correct the instruction signal of the target frequency f 0 to the control circuit 16 according to the output power of the inverter circuit 15, the frequency detector 18 that detects the frequency from the output voltage of the inverter circuit 15, and the output of the inverter circuit 15 From the output power detection unit 19 for obtaining the output power of the inverter circuit 15 from the current and the output voltage, the AFC (automatic frequency control) unit 20 for suppressing the deviation from the target frequency f 0, and the PI (proportional integration) circuit, for example. The average value circuit unit 21 is provided.

周波数検出部18からの検出信号は比較器22に入力され、該比較器により求められた目標周波数f0との偏差がAFC部20に入力される。AFC部20は、基本的には、前述の偏差が零となるような制御信号を出力する。また、出力電力検出部19は、インバータ回路15から系統母線13への出力電力の増減に応じた制御信号を出力する。AFC部20からの制御信号と、出力電力検出部19からの制御信号との差分が比較器23により求められ、その差分が平均値回路部21を経ることにより、均等化された補正制御信号として前記加算器17により目標周波数f0 に加算されて、この補正制御信号により補正された目標値制御信号(f0)によってインバータ回路15の切り替え動作が制御される。 A detection signal from the frequency detector 18 is input to the comparator 22, and a deviation from the target frequency f 0 obtained by the comparator is input to the AFC unit 20. The AFC unit 20 basically outputs a control signal such that the aforementioned deviation becomes zero. Further, the output power detection unit 19 outputs a control signal corresponding to increase / decrease in output power from the inverter circuit 15 to the system bus 13. A difference between the control signal from the AFC unit 20 and the control signal from the output power detection unit 19 is obtained by the comparator 23, and the difference passes through the average value circuit unit 21, so that the equalized correction control signal is obtained. The switching operation of the inverter circuit 15 is controlled by the target value control signal (f 0 ) added to the target frequency f 0 by the adder 17 and corrected by the correction control signal.

前記出力電力検出部19から出力される制御信号は、系統母線13への出力電力が増大あるいは減少すると、インバータ回路15の切り替え周波数すなわち当該分散電源装置の出力周波数を減少あるいは増大させるように、作用する。系統周波数が減少あるいは増大すると、AFC部20による所定の出力遅れ時間後に、AFC部20の出力が増加あるいは減少し、出力周波数は目標周波数に回復する。   The control signal output from the output power detector 19 acts so as to decrease or increase the switching frequency of the inverter circuit 15, that is, the output frequency of the distributed power supply device, when the output power to the system bus 13 increases or decreases. To do. When the system frequency decreases or increases, the output of the AFC unit 20 increases or decreases after a predetermined output delay time by the AFC unit 20, and the output frequency recovers to the target frequency.

図2(a)および図2(b)は、発電機出力−周波数の垂下特性を示すグラフであり、それぞの横軸は負荷を示し、各グラフの左方縦軸は交流電力源12であるディーゼル発電機G1の出力周波数および各グラフの右方縦軸は直流電力源11およびインバータ回路15を備える蓄電装置G2の出力周波数をそれぞれ示す。図2(a)は、ある負荷でのディーゼル発電機G1および蓄電装置G2の垂下特性を示し、ディーゼル発電機G1の特性線g1と蓄電装置G2の特性線g2との交点で示される出力周波数(f0)および負荷分担割合(G1:G2)で動作している状態を示す。 FIG. 2A and FIG. 2B are graphs showing the drooping characteristics of the generator output-frequency. Each horizontal axis represents a load, and the left vertical axis of each graph represents the AC power source 12. The output frequency of a certain diesel generator G1 and the right vertical axis of each graph indicate the output frequency of a power storage device G2 including the DC power source 11 and the inverter circuit 15, respectively. FIG. 2A shows the drooping characteristics of the diesel generator G1 and the power storage device G2 at a certain load, and the output frequency indicated by the intersection of the characteristic line g1 of the diesel generator G1 and the characteristic line g2 of the power storage device G2 ( f 0 ) and the load sharing ratio (G1: G2).

図2(b)は、負荷14が増大した状態のグラフを示す。発電システム10のインバータ回路15の出力周波数はインバータ回路15の出力電力の増大に伴い減少することから、図2(b)のグラフのディーゼル発電機G1の特性線g1および蓄電装置G2の特性線g2との交点で示されるように、蓄電装置G2の出力周波数は(f0′)に低減し、この低減に伴い、ディーゼル発電機G1の負荷分担量(G1)が増大する。 FIG. 2B shows a graph with the load 14 increased. Since the output frequency of the inverter circuit 15 of the power generation system 10 decreases as the output power of the inverter circuit 15 increases, the characteristic line g1 of the diesel generator G1 and the characteristic line g2 of the power storage device G2 in the graph of FIG. As shown by the intersection with, the output frequency of the power storage device G2 is reduced to (f 0 ′), and along with this reduction, the load sharing amount (G1) of the diesel generator G1 increases.

他方、図3(a)および図3(b)は従来の分散システムの発電機垂下特性についての図2(a)および図2(b)と同様なグラフを示す。図3(a)および図3(b)に示すように、従来では負荷14の変化に拘わらず、蓄電装置G2の出力周波数が変化しないことから、ディーゼル発電機G1の負荷分担量は変化せず、そのため、負荷の増大時に蓄電装置G2に大きな負担が掛かっていた。   On the other hand, FIG. 3A and FIG. 3B show graphs similar to FIG. 2A and FIG. 2B regarding the generator drooping characteristics of the conventional distributed system. As shown in FIGS. 3A and 3B, the load sharing amount of the diesel generator G1 does not change because the output frequency of the power storage device G2 does not change regardless of the change of the load 14 in the related art. Therefore, a large burden is placed on the power storage device G2 when the load increases.

これに対し、本発明に係る発電システム10によれば、図2(a)および図2(b)の各グラフに示したように、負荷14の増大に応じてディーゼル発電機G1の負荷分担量を増大させることができ、これにより蓄電装置G2の負荷分担量の軽減を図ることができるので、この蓄電装置G2の負担増による不具合を解消し、安定した電力供給が可能となる。   On the other hand, according to the power generation system 10 according to the present invention, as shown in the graphs of FIGS. 2A and 2B, the load sharing amount of the diesel generator G1 according to the increase in the load 14. As a result, the load sharing amount of the power storage device G2 can be reduced, so that the problem caused by the increased load on the power storage device G2 can be eliminated and stable power supply can be achieved.

平均値回路部21をPI制御回路に代えてPID(比例積分微分)制御回路あるいはローパスフィルタ等で構成することができる。また、図1の周波数検出部18が後述する実施例3についての図7に示すG1(S)回路に、図1のAFC部20が同実施例3についての図7のG2(s)回路に、図1のf0はいずれも図7のf0にそれぞれ対応することから、これらの周波数検出部18およびAFC部20を後述する実施例3および実施例4のG1(s)回路およびG2(s)回路にそれぞれ適用することができる。 The average value circuit unit 21 can be constituted by a PID (proportional integral derivative) control circuit or a low-pass filter instead of the PI control circuit. Further, the frequency detection unit 18 in FIG. 1 is used in the G1 (S) circuit shown in FIG. 7 for the third embodiment described later, and the AFC unit 20 in FIG. 1 is used in the G2 (s) circuit in FIG. , from the corresponding possible respectively to f 0 of f 0 any 7 in Figure 1, in examples 3 and 4 below these frequency detection unit 18 and the AFC portion 20 G1 (s) circuit and G2 ( s) Each can be applied to a circuit.

〈実施例2〉連系型
図4に示す発電システム50は、本発明に係る発電システムを蓄電連系型インバータに適応した例を示す。
<Embodiment 2> Interconnection Type A power generation system 50 shown in FIG. 4 shows an example in which the power generation system according to the present invention is applied to a power storage interconnection type inverter.

蓄電発電システム50では、インバータ回路15のための制御回路16は、基本的には、インバータ回路15の出力電圧からインバータ回路15の出力電圧の位相を検出し、位相調整信号を出力する位相調整部24と、出力指示値信号を出力する出力設定回路25とを有する。発電システム50の制御回路16では、位相調整部24からの出力信号および出力設定回路25からの出力信号が乗算器26で乗算された後、比較器27でインバータ回路15の出力電流信号との差分が求められ、この差分が平滑化回路部21で平滑化とゲイン調整を受けた後、これに加算器17で位相調整部24からの出力信号が加算されて形成された制御信号がインバータ回路15に供給される。この構成は、従来の発電システムと同様であり、系統母線13の周波数すなわち連系系統周波数に応じた周波数の電力を系統母線13に出力すべくインバータ回路15が切り替え制御を受ける。   In the storage power generation system 50, the control circuit 16 for the inverter circuit 15 basically detects the phase of the output voltage of the inverter circuit 15 from the output voltage of the inverter circuit 15 and outputs a phase adjustment signal. 24 and an output setting circuit 25 that outputs an output instruction value signal. In the control circuit 16 of the power generation system 50, the output signal from the phase adjustment unit 24 and the output signal from the output setting circuit 25 are multiplied by the multiplier 26, and then the difference from the output current signal of the inverter circuit 15 by the comparator 27. This difference is subjected to smoothing and gain adjustment by the smoothing circuit unit 21, and the control signal formed by adding the output signal from the phase adjustment unit 24 by the adder 17 to the inverter circuit 15. To be supplied. This configuration is the same as that of the conventional power generation system, and the inverter circuit 15 is subjected to switching control in order to output the power of the frequency corresponding to the frequency of the system bus 13, that is, the frequency of the grid system, to the system bus 13.

蓄電発電システム50では、この従来構成の制御回路16に、位相調整部24の出力を受け、該出力から目標周波数f0からの逸脱量に応じて変化する係数Kを示す補正信号を出力する補正係数回路28が設けられている。この補正係数回路28は、位相調整部24からの出力信号を用いて次式(1)で示される補正係数Kを算出する。 In the storage power generation system 50, the control circuit 16 having the conventional configuration receives the output of the phase adjustment unit 24, and outputs a correction signal indicating a coefficient K that changes according to the deviation from the target frequency f 0 from the output. A coefficient circuit 28 is provided. The correction coefficient circuit 28 calculates a correction coefficient K expressed by the following equation (1) using the output signal from the phase adjustment unit 24.

K=1−(f−f0)/(δf0) …(1)
ここで、fは、位相調整部24の出力信号から得られるインバータ回路15の出力電圧周波数を示す。
K = 1− (f−f 0 ) / (δf 0 ) (1)
Here, f indicates the output voltage frequency of the inverter circuit 15 obtained from the output signal of the phase adjustment unit 24.

補正係数回路28で求められた係数K信号は、乗算器26で、出力設定回路25および位相調整部24からの各出力と乗算されることにより、インバータ回路15への制御信号が補正される。   The coefficient K signal obtained by the correction coefficient circuit 28 is multiplied by each output from the output setting circuit 25 and the phase adjustment unit 24 by the multiplier 26, whereby the control signal to the inverter circuit 15 is corrected.

この補正係数回路28からの補正信号により、インバータ回路15は系統母線13の周波数の増大に応じて直流電力源11およびインバータ回路15を備える蓄電装置G2からの出力電力を減少させる。   By the correction signal from the correction coefficient circuit 28, the inverter circuit 15 decreases the output power from the power storage device G2 including the DC power source 11 and the inverter circuit 15 in accordance with the increase in the frequency of the system bus 13.

従来の分散システムの出力−周波数特性は、図5(a)および図5(b)のそれぞれのグラフに示すように、負荷電力の変化にも拘わらず、蓄電池発電装置G2の出力が変化しないことから、負荷の増大時にディーゼル発電装置G1に大きな負担がかかっていた。   As shown in the graphs of FIGS. 5 (a) and 5 (b), the output-frequency characteristics of the conventional distributed system are such that the output of the storage battery power generation device G2 does not change despite the change in load power. Therefore, a large burden was placed on the diesel power generator G1 when the load increased.

これに対し、本発明に係る発電システム50を適用することで、図2に示したと同様な垂下特性を得ることができ、これにより蓄電装置G2(11、15、16)の負荷分担量を増大させることができるので、ディーゼル発電機G1の負荷分担量の軽減を図ることができ、このディーゼル発電機G1の負担増による不具合を解消し、安定した電力供給が可能となる。   On the other hand, by applying the power generation system 50 according to the present invention, the drooping characteristic similar to that shown in FIG. 2 can be obtained, thereby increasing the load sharing amount of the power storage device G2 (11, 15, 16). Therefore, the load sharing amount of the diesel generator G1 can be reduced, and problems due to the increased load on the diesel generator G1 can be eliminated, and stable power supply can be achieved.

なお出力設定回路25は、外部制御回路から入力される出力設定信号に応じた出力指示値を出力する場合や、太陽光発電システムのように直流電圧一定制御や最大出力制御となるような出力指示値を出力する場合などがある。   The output setting circuit 25 outputs an output instruction value corresponding to an output setting signal input from an external control circuit, or an output instruction for a constant DC voltage control or maximum output control as in a solar power generation system. There are cases where a value is output.

図4に示すように、補正係数回路28によって異常周波数を検出可能とし、補正係数回路28がこの異常周波数を検出したとき、出力設定回路25が最大出力制御等を行っている場合はこれを停止させるべく出力設定回路25に作動ロック信号を出力させることができる。   As shown in FIG. 4, the abnormal frequency can be detected by the correction coefficient circuit 28. When the correction coefficient circuit 28 detects this abnormal frequency, the output setting circuit 25 stops the maximum output control or the like. It is possible to cause the output setting circuit 25 to output an operation lock signal.

この出力設定回路25の出力指示値から、後述する実施例3のAFC回路(図12参照)または実施例4のAFC回路(図15参照)の出力信号を差し引き、図4の乗算器26に入力することで実施例3および4を適用することができる。   The output instruction value of the output setting circuit 25 is subtracted from the output signal of the AFC circuit of the third embodiment (see FIG. 12) or the AFC circuit of the fourth embodiment (see FIG. 15), which will be described later, and input to the multiplier 26 in FIG. Thus, Embodiments 3 and 4 can be applied.

〈実施例3〉
複数の発電機の燃料消費が最小となる負担分担は、等増分燃料費となるように配分する。太陽光発電(PV)または風力発電、ディーゼル発電機(DG)、蓄電装置(Batt)で構成される電力系統では、太陽電池などの再生可能エネルギーによる発電出力を第一に用い、ディーゼル発電機(DG)で充電する電力を最後に使用するのが最も効率的である。
<Example 3>
The burden sharing that minimizes the fuel consumption of the plurality of generators is distributed so as to be equal incremental fuel costs. In an electric power system composed of photovoltaic power generation (PV) or wind power generation, a diesel generator (DG), and a power storage device (Batt), a diesel generator ( It is most efficient to use the power charged at DG) last.

太陽光発電(PV)、ディーゼル発電機(DG)、蓄電装置(Batt)のエネルギー源別エネルギーコストの関係を図6に示す。   The relationship of the energy cost according to the energy source of photovoltaic power generation (PV), a diesel generator (DG), and an electrical storage device (Batt) is shown in FIG.

このようなディーゼル発電機(DG)と、太陽光発電(PV)と、蓄電装置(Batt)とで構成される小規模電力系統で、各発電設備にAFC制御機能と自端情報をもとに該AFC設定周波数を調整する図7に示す制御回路を設け、発電出力や蓄電装置の残存容量などの自端情報と、系統周波数から得られる需給バランスの情報とを基に、それぞれの発電機(DG、PV、Batt)の各制御回路が当該発電機の起動停止を行ったり、自端のAFCの設定周波数を自動調整し、必要な発電設備の起動停止、出力調整を行うことにより、協調して、系統の需給バランス調整や、燃料消費量の低減と最大供給可能電力の確保とを図ることができる。   A small-scale power system composed of such a diesel generator (DG), photovoltaic power generation (PV), and power storage device (Batt). Each power generation facility is based on AFC control functions and own information. The control circuit shown in FIG. 7 for adjusting the AFC set frequency is provided, and each generator (based on self-end information such as the power generation output and the remaining capacity of the power storage device) and the supply and demand balance information obtained from the system frequency is provided. Each control circuit (DG, PV, Batt) cooperates by starting and stopping the relevant generator, automatically adjusting the set frequency of its own AFC, and starting and stopping the necessary power generation equipment and adjusting the output. Therefore, it is possible to adjust the supply and demand balance of the system, reduce the fuel consumption, and secure the maximum power supply.

AFC制御は、一定時間内の系統周波数の平均値または系統周波数をローパスフィルタで平滑化した値が設定周波数になるように当該発電機の出力を制御する。   The AFC control controls the output of the generator so that the average value of the system frequency within a certain time or the value obtained by smoothing the system frequency with a low-pass filter becomes the set frequency.

図7にAFC制御対象発電機のAFC回路の一例を示す。   FIG. 7 shows an example of the AFC circuit of the AFC controlled generator.

図7に示すG1(s)は前記平均値を求める平均値算出回路または系統周波数を通すローパスフィルタ等の伝達関数を示し、平均値算出回路が用いられるとき、一定時間(Δt×n)の周波数平均値faveは、図7に示す式(1)で表示される。また1次遅れローパスフィルタ等が用いられるとき、伝達関数G1(s)は図7に示す式(2)で示される。積分回路あるいは比例積分回路等の伝達関数G2(s)は、積分回路が用いられるとき図7に示す式(3)で示され、比例積分回路が用いられるとき図7に示す式(4)で示される。 G1 (s) shown in FIG. 7 indicates a transfer function such as an average value calculation circuit for obtaining the average value or a low-pass filter that passes the system frequency, and when the average value calculation circuit is used, a frequency for a certain time (Δt × n). The average value f ave is displayed by equation (1) shown in FIG. When a first-order lag low-pass filter or the like is used, the transfer function G1 (s) is expressed by the equation (2) shown in FIG. The transfer function G2 (s) such as an integration circuit or a proportional integration circuit is expressed by the equation (3) shown in FIG. 7 when the integration circuit is used, and by the equation (4) shown in FIG. 7 when the proportional integration circuit is used. Indicated.

図7に示す出力指示値は、出力配分のための制御信号である。実施例3ではAFC回路出力の平均値で代用できるため0とする。   The output instruction value shown in FIG. 7 is a control signal for output distribution. In the third embodiment, the average value of the AFC circuit output can be substituted, and is set to 0.

前記したように、実施例3についての図7に示すG1(S)回路およびG2(s)回路は、実施例1についての図1に示した周波数検出部18およびAFC部20にそれぞれ対応する。   As described above, the G1 (S) circuit and the G2 (s) circuit shown in FIG. 7 for the third embodiment correspond to the frequency detection unit 18 and the AFC unit 20 shown in FIG.

(ディーゼル発電機低出力時の効率低下対応)
太陽光発電(PV)の出力が大きい場合および深夜のように負荷が軽くディーゼル発電機(DG)の発電効率が低下する場合、事前にディーゼル発電機(DG)の発電効率の高い出力で蓄電装置(Batt)を充電し、該ディーゼル発電機(DG)の代わりに蓄電装置(Batt)から電力を供給し、これにより燃料消費量を節約することができる。
(Responding to reduced efficiency at low output of diesel generators)
When the output of photovoltaic power generation (PV) is large, or when the load is light and the power generation efficiency of the diesel generator (DG) is reduced, such as at midnight, the power storage device with the output of high power generation efficiency of the diesel generator (DG) in advance (Batt) is charged and electric power is supplied from the power storage device (Batt) instead of the diesel generator (DG), thereby saving fuel consumption.

蓄電装置(Batt)やディーゼル発電機(DG)の出力調整および起動停止をそれぞれの発電機の状態に基づいて該発電機の各制御回路がAFCの設定周波数を調整することで協調した制御が可能になる。   Coordinated control is possible by adjusting the AFC set frequency by each control circuit of the generator based on the state of each generator for output adjustment and start / stop of the power storage device (Batt) and diesel generator (DG) become.

図8乃至図10は、ディーゼル発電機(DG)の低出力対応を示す出力−周波数の垂下特性のグラフを示す。   FIGS. 8 to 10 show graphs of output-frequency drooping characteristics showing the low output correspondence of a diesel generator (DG).

図8はディーゼル発電機(DG)が一定の出力PDGL以上で一定の周波数fDG0でAFC運転中の状態を示す。一定出力PDGL以下になると該ディーゼル発電機(DG)の制御回路によりガバナー運転(GOV)に移行し、あるいはディーゼル発電機(DG)のAFC設定周波数が増大され、系統周波数が増加する。ここで、fDGAFCおよびfDGoはそれぞれディーゼル発電機(DG)のAFC設定周波数および目標周波数を示す。fDGonおよびfDGoffはそれぞれディーゼル発電機(DG)の運転開始周波数および運転停止周波数を示す。f′DGonは、ディーゼル発電機(DG)の起動を促すための蓄電装置(Batt)のAFC設定周波数を示す。また、PDGはディーゼル発電機(DG)の有効電力を示し、PLは負荷を示す。 FIG. 8 shows a state in which the diesel generator (DG) is operating in AFC at a constant output P DGL and at a constant frequency f DG0 . When the output is lower than the constant output P DGL, the control circuit of the diesel generator (DG) shifts to governor operation (GOV), or the AFC set frequency of the diesel generator (DG) is increased, and the system frequency is increased. Here, f DG · AFC and f DG · o represent the AFC set frequency and the target frequency of the diesel generator (DG), respectively. f DG · on and f DG · off indicate the operation start frequency and operation stop frequency of the diesel generator (DG), respectively. f ′ DG · on indicates the AFC set frequency of the power storage device (Batt) for prompting the start of the diesel generator (DG). Further, P DG represents the active power of the diesel generator (DG), and P L represents the load.

図9および図10は、低出力対応状態を示す垂下特性のグラフである。fBAFCは蓄電装置(Batt)のAFC設定周波数を示し、fBon、fBLおよびfBHは、それぞれ蓄電装置(Batt)の運転開始周波数、蓄電池充電のためにディーゼル発電機(DG)の出力増加を促すための蓄電装置AFC設定周波数、ディーゼル発電機(DG)の解列を促すための蓄電装置AFC設定周波数を示す。また、fPVmaxは、蓄電池が満充電となり、太陽光の余剰電力を充電できなくなった時の系統周波数の上昇を抑制するための太陽光発電AFC設定周波数を示す。 FIG. 9 and FIG. 10 are graphs of drooping characteristics showing a low output correspondence state. f B · AFC indicates the AFC set frequency of the power storage device (Batt), f B · on , f B · L and f B · H are the operation start frequency of the power storage device (Batt) and diesel for charging the storage battery, respectively. The power storage device AFC set frequency for prompting an increase in the output of the generator (DG) and the power storage device AFC set frequency for prompting the disconnection of the diesel generator (DG) are shown. Further, f PV · max indicates a photovoltaic power generation AFC set frequency for suppressing an increase in system frequency when the storage battery is fully charged and surplus solar power cannot be charged.

図9および図10に示すように、蓄電装置(Batt)の制御回路は系統周波数の増加によって負荷が軽くなっていることを把握すると、蓄電装置(Batt)を起動する。また蓄電装置(Batt)の残存容量が予め設定した値下の場合、該蓄電装置(Batt)の制御回路は、充電が必要なことを自端のAFC設定周波数fBAFCをfBLに低下させることでディーゼル発電機(DG)に通知し、該ディーゼル発電機(DG)に最大出力運転を促す。蓄電装置(Batt)の制御回路は、その必要量の充電が完了すると、該蓄電装置(Batt)のAFC設定周波数fBAFCをfBHまで上昇させる。この蓄電装置(Batt)のAFC設定周波数の上昇により、系統周波数がディーゼル発電機(DG)の解列のための設定周波数fDGOFF以上となり、ディーゼル発電機(DG)が解列される。 As shown in FIGS. 9 and 10, when the control circuit of the power storage device (Batt) grasps that the load is lightened by the increase in the system frequency, the power storage device (Batt) is activated. When the remaining capacity of the power storage device (Batt) is lower than a preset value, the control circuit of the power storage device (Batt) sets the AFC set frequency f B · AFC at its end to f B · L that charging is required. To the diesel generator (DG), and urge the diesel generator (DG) to operate at maximum output. When the required amount of charging is completed, the control circuit of the power storage device (Batt) increases the AFC set frequency f B · AFC of the power storage device (Batt) to f B · H. Due to the increase in the AFC set frequency of the power storage device (Batt), the system frequency becomes equal to or higher than the set frequency f DG · OFF for disconnecting the diesel generator (DG), and the diesel generator (DG) is disconnected.

負荷が大きくなり、ディーゼル発電機(DG)が直接供給する方が燃料消費量を小さくすることができる場合は、fBAFCを下げ、ディーゼル発電機(DG)を起動させ、蓄電装置(Batt)からの電力供給を止める。 When the load increases and the fuel consumption can be reduced by direct supply from the diesel generator (DG), f B · AFC is lowered, the diesel generator (DG) is started, and the power storage device (Batt ) Stop power supply from.

なお、太陽光発電(PV)の発電電力量が多く、ディーゼル発電機(DG)を停止しているにも拘わらず蓄電装置(Batt)が満充電状態になった場合、蓄電装置(Batt)のAFC周波数を上昇させることにより、太陽光発電(PV)のAFCで系統周波数をfPDmaxに維持することができる。 In addition, when the power generation amount of photovoltaic power generation (PV) is large and the power storage device (Batt) is in a fully charged state although the diesel generator (DG) is stopped, the power storage device (Batt) By increasing the AFC frequency, the system frequency can be maintained at f PD · max in the AFC of photovoltaic power generation (PV).

(ピーク負荷対応)
事前に与えた負荷カーブから、ディーゼル発電機(DG)による発電容量が不足するのを予見できる場合、予め必要電力量を蓄電装置(Batt)に充電し、ピーク負荷時にディーゼル発電機(DG)の定格運転と蓄電装置(Batt)の放電で必要電力を供給することができる。
(For peak load)
When it can be predicted from the load curve given in advance that the power generation capacity of the diesel generator (DG) will be insufficient, the required amount of power is charged in the power storage device (Batt) in advance, and the diesel generator (DG) is Necessary power can be supplied by rated operation and discharging of the power storage device (Batt).

図11はピーク負荷対応の状態を示す出力−周波数の垂下特性のグラフである。蓄電装置(Batt)の制御回路が、負荷カーブから、ピーク負荷対応の蓄電装置(Batt)の蓄電容量の不足を予想すると、蓄電装置(Batt)のAFC設定周数をディーゼル発電機(DG)の起動周波数fDGONよりも下げることにより、ディーゼル発電機(DG)を起動させ、さらにディーゼル発電機(DG)のAFC設定周波数fDGONより下げることで、その最大効率の出力での運転を促し、所要電力の充電を行う。所要電力量が充電できれば、蓄電装置(Batt)の制御回路は、AFC設定周波数は変化させずに充電を停止し、ディーゼル発電機(DG)と並列運転を継続する。負荷が増加し、ディーゼル発電機(DG)の定格容量を超える負荷がかかると、ディーゼル発電機(DG)のAFCでは周波数を維持できず、系統周波数は低下してくる。周波数が蓄電装置(Batt)のAFC設定周波数以下になると、発電力の不足を蓄電装置(Batt)から供給し、系統周波数を蓄電装置(Batt)のAFC設定値に維持する。この状況が、図11の発電機垂下特性グラフに示されている。なお、ピーク負荷から深夜低負荷へは、図11の12の状態で待機の上、負荷低下を見極めて蓄電装置(Batt)を停止し、図8の(1)状態へ移行する。 FIG. 11 is a graph of output-frequency drooping characteristics showing a state corresponding to a peak load. When the control circuit of the power storage device (Batt) predicts that the storage capacity of the power storage device (Batt) corresponding to the peak load is insufficient from the load curve, the AFC set frequency of the power storage device (Batt) is set to the diesel generator (DG). The diesel generator (DG) is started by lowering the starting frequency f DG · ON , and the diesel generator (DG) is operated at its maximum efficiency output by lowering it from the AFC set frequency f DG · ON. To charge the required power. If the required amount of power can be charged, the control circuit of the power storage device (Batt) stops charging without changing the AFC set frequency, and continues parallel operation with the diesel generator (DG). When the load increases and a load exceeding the rated capacity of the diesel generator (DG) is applied, the frequency cannot be maintained by the AFC of the diesel generator (DG), and the system frequency decreases. When the frequency is equal to or lower than the AFC set frequency of the power storage device (Batt), the shortage of power generation is supplied from the power storage device (Batt), and the system frequency is maintained at the AFC set value of the power storage device (Batt). This situation is shown in the generator drooping characteristic graph of FIG. From the peak load to the midnight low load, the power storage device (Batt) is stopped after waiting in the state of 12 in FIG. 11 to detect the load drop, and the state shifts to the state (1) of FIG.

〈実施例4〉
前記したところでは、制御対象毎に目標周波数の設定が必要となり、制御対象の発電機台数が多くなると、系統周波数の仕上がりが悪くなる、すなわち、系統周波数に変動が生じ易く一定値への迅速な収束が望めなくなる。
<Example 4>
As described above, it is necessary to set a target frequency for each control target, and when the number of generators to be controlled increases, the finish of the system frequency deteriorates. Convergence cannot be expected.

この点を改善するために、全ての発電機にAFCを設け、それらの目標周波数を同一値に設定し、各発電機のAFC制御ブロックの制御関数G1(s)およびG2(s)の何れか一方またはその双方の時間応答を発電単価に応じて個々に設定することにより経済的な出力分担と電力品質の維持との両立を図ることができる。   In order to improve this point, all generators are provided with AFC, their target frequencies are set to the same value, and one of the control functions G1 (s) and G2 (s) of the AFC control block of each generator By setting the time response of one or both individually according to the unit price of power generation, it is possible to achieve both economical output sharing and maintenance of power quality.

その原理は、次ぎのとおりである。すなわち、周波数低下が生じたときは、発電単価の安い発電機ほど短時間で出力設定値を増加させるように、AFCの応答時間を短くし、逆に周波数上昇が生じたときは、発電単価の高い発電機ほど短時間で出力設定値を減少させるように、AFCの応答を早くする。これにより、周波数上昇時と低下時では、異なった応答速度が設定される。   The principle is as follows. That is, when the frequency drop occurs, the AFC response time is shortened so that the output set value is increased in a shorter time for a generator with a lower unit price, and conversely, when the frequency rise occurs, The higher the generator, the faster the AFC response so that the output set value can be reduced in a shorter time. Thereby, different response speeds are set when the frequency is increased and when the frequency is decreased.

図12は制御ブロックの例を示す。ここで、G1(s)は、図7に示した実施例3におけると同様に、前記系統周波数を入力として均値を求める平均値算出回路または系統周波数を通すローパスフィルタ等の伝達関数を示し、faveは、G1(s)の出力を示し、G2(s)は積分回路あるいは比例積分回路等の伝達関数である。また、前記したように、図12に示すG1(S)回路およびG2(s)回路は、実施例1に適用する場合は図1に示した周波数検出部18およびAFC部20にそれぞれ対応する。Hiはゲイン回路であり、ei1およびei2は、それぞれゲイン回路Hiへの入力信号および出力信号を示す。ゲイン回路Hiへの入力信号ei1は、G1(S)の出力faveと目標周波数f0との偏差である。 FIG. 12 shows an example of the control block. Here, G1 (s) indicates a transfer function such as an average value calculation circuit for obtaining an average value with the system frequency as an input or a low-pass filter that passes the system frequency, as in the third embodiment shown in FIG. f ave indicates the output of G1 (s), and G2 (s) is a transfer function such as an integration circuit or a proportional integration circuit. Further, as described above, the G1 (S) circuit and the G2 (s) circuit shown in FIG. 12 correspond to the frequency detection unit 18 and the AFC unit 20 shown in FIG. 1 when applied to the first embodiment. H i is a gain circuit, and e i1 and e i2 indicate an input signal and an output signal to the gain circuit H i , respectively. The input signal e i1 to the gain circuit H i is a deviation between the output f ave of G1 (S) and the target frequency f 0 .

図13は、前記Hiの特性図を示し、giGおよびgiLは、それぞれei1が正の場合のゲイン(比例係数)およびei1が負の場合のゲイン(比例係数)を示す。 FIG. 13 is a characteristic diagram of the Hi, and g iG and g iL indicate a gain (proportional coefficient) when e i1 is positive and a gain (proportional coefficient) when e i1 is negative, respectively.

発電単価の安い発電機ほどgiLを大きく、またgiGを小さくする。周波数が増加したとき発電単価の高い発電機ほどei2が大きくなり、発電機出力の指示値PGi0を早く減少させ、系統周波数上昇を低減する。逆に、系統周波数が低下したときは、発電単価の安い発電機ほどei2が小さくなり、発電機出力指示値PGi0を早く増加させ、系統周波数を回復させる。系統周波数の変動がある毎にこの調整を行うことから、発電単価の安い発電機ほど多くの出力分担をすることになり、電力品質の維持と経済負荷分配との両立が図られる。 The generator with lower unit price of power generation increases g iL and decreases g iG . When the frequency increases, the generator with the higher unit price of power generation increases ei2 , and the generator output instruction value P Gi0 is decreased more quickly to reduce the system frequency rise. On the other hand, when the system frequency is lowered, e i2 becomes smaller as the generator has a lower unit price, and the generator output instruction value P Gi0 is increased earlier to restore the system frequency. Since this adjustment is performed every time there is a fluctuation in the system frequency, a generator with a lower unit price of power generation shares more output, thereby achieving both maintenance of power quality and economic load distribution.

なお、発電機の発電単価は発電状況で変化する。定格出力付近では効率が高くなり、低出力時は効率が低下する。この状況に応じて、giLやgiGを調整することで、より細かな経済運用が可能となる。 The unit price of the generator varies depending on the power generation situation. Efficiency increases near the rated output, and efficiency decreases at low output. By adjusting g iL and g iG according to this situation, more detailed economic operation becomes possible.

(特性値設定の簡略化方法と発電機運転の平準化対策)
前記したように時間特性を調整し、発電機の発電単価毎に細かくAFCの応答時間を設ければ、きめ細かな制御が可能になる反面、設定が煩雑化する。この煩雑化の低減のために、系統連系する発電機を発電単価毎に複数の群に分類し、それぞれの群に応じて特性値を設定することができる。
(Characteristic value setting simplification method and generator operation leveling measures)
If the time characteristics are adjusted as described above and the AFC response time is finely set for each power generation unit price of the generator, fine control is possible, but the setting becomes complicated. In order to reduce this complication, the generators connected to the grid can be classified into a plurality of groups for each unit price of power generation, and characteristic values can be set according to each group.

しかしながら、同一群として相互に同一値が設定されたとしても、計測誤差や設定誤差等のために特定の発電機が常時優先されたり、これとは逆に常に最後に使用されるようなことが生じる。これを防止するため、日単位または月単位等で特性値を計測誤差や設定誤差が無視できる大きさでランダムに変化させ、同一群では平等に運転されるようにする。   However, even if the same value is set as the same group, a specific generator is always prioritized due to measurement error, setting error, etc., or conversely, it is always used last. Arise. In order to prevent this, the characteristic values are randomly changed in such a way that the measurement error and the setting error can be ignored in units of days or months, and the same group is operated equally.

図14は、発電機群と特性設定例を示す。図14に示す表の各設定特性値giGmおよびgiLmは、日単位または月単位等で次式を用いて微調整される。 FIG. 14 shows a generator group and a characteristic setting example. Each set characteristic value g iGm and g iLm in the table shown in FIG. 14 is finely adjusted using the following equation in units of days or months.

iGm=giGm0+εG×rnd
iLm=giLm0+εL×rnd
ここで、giGm0およびgiLm0は、giGmおよびgiLmのそれぞれの中心値であり、rndは−1〜+1の乱数である。また、εGおよびεLは、それぞれ調整幅であり、計測誤差や設定誤差よりも充分に大きく、調整後のgiGmやgiLmが他の群と並が逆転しない値である。
g iGm = g iGm0 + ε G × rnd
g iLm = g iLm0 + ε L × rnd
Here, g iGm0 and g iLm0 are the central values of g iGm and g iLm , and rnd is a random number from −1 to +1. Further, ε G and ε L are adjustment ranges , which are sufficiently larger than the measurement error and the setting error, and are values where the adjusted g iGm and g iLm do not reverse the order of other groups.

(AFCの競合防止対策)
各発電機のAFCに計測誤差や設定誤差があれば、その誤差によって、ある発電機が周波数低下を検出したときに他の発電機が周波数の増加を検出することがある。このような状況が生じると、一方の発電機が出力を増加させ、他の発電機が出力を減少させるような逆作用の制御による競合が発生する。この競合を防止するために、AFCの周波数計測誤差や設定値の誤差を考慮した不感帯を設けることができる。
(AFC competition prevention measures)
If there is a measurement error or a setting error in the AFC of each generator, the other generator may detect an increase in frequency when one generator detects a decrease in frequency due to the error. When such a situation occurs, contention occurs due to the reverse action control in which one generator increases the output and the other generator decreases the output. In order to prevent this competition, it is possible to provide a dead zone in consideration of AFC frequency measurement error and set value error.

図15は、このような不感帯が設けられたAFC回路の一例を示すブロック図であり、図16(a)および図16(b)はそれぞれ不感帯の例を示すグラフである。   FIG. 15 is a block diagram showing an example of an AFC circuit provided with such a dead zone, and FIGS. 16A and 16B are graphs showing examples of the dead zone, respectively.

図16(a)は、ei0が±ε以内のときに出力を零とし、それを超えるときに入力に比例した出力が出る例を示す。また、図16(b)は、ei0が±ε以内のときに出力を零とし、ε以上のときはei1=ei0−εを出力し、−ε以下のときはei1=ei0+εを出力する例を示す。何れの例も、ei0が±ε以内のときに出力が零であることから、εの値を各発電機AFCの周波数計測誤差や設定誤差から決まる裕度以上に設定しておくことで、各発電機のAFCが競合することを防止できる。 FIG. 16A shows an example in which the output is zero when e i0 is within ± ε, and an output proportional to the input is output when the output exceeds it. Further, FIG. 16 (b), e i0 is set to zero output when within ± epsilon, when more than epsilon outputs e i1 = e i0 -ε, when the following -ε e i1 = e i0 An example of outputting + ε is shown. In any case, since the output is zero when e i0 is within ± ε, by setting the value of ε to be more than the tolerance determined from the frequency measurement error and setting error of each generator AFC, The AFC of each generator can be prevented from competing.

前記したように、全ての発電機のAFCの目標周波数を同一値に設定し、各発電機のAFC制御ブロックの制御関数G1(s)およびG2(s)の何れか一方またはその双方の時間応答を発電単価に応じて個々に設定することにより、通常の系統周波数の変化から優先順位の高い発電機を起動・停止しあるいは負荷分担を調整することができ、これにより応答時間が若干長くなるが、多数の発電機が並列に設けられても系統周波数の仕上がりが良くなる。また、発電機の増設が行われても、発電機群を選定すれば、特段の調整が不要となるので、拡張性が高まる。また、計測誤差や設定誤差に伴う運転発電機の偏りや発電機間の競合も定期的な設定値の微調整や不感帯を設けることで防止することができる。   As described above, the AFC target frequency of all the generators is set to the same value, and the time response of one or both of the control functions G1 (s) and G2 (s) of the AFC control block of each generator is set. Can be started and stopped or the load sharing can be adjusted due to changes in the normal system frequency, which can slightly increase the response time. Even if a large number of generators are provided in parallel, the system frequency is improved. Even if the generators are added, if a generator group is selected, no special adjustment is required, so that expandability is enhanced. In addition, it is possible to prevent the bias of the operating generator and the competition between the generators due to the measurement error and the setting error by providing a fine adjustment of the set value periodically and a dead zone.

本発明に係る発電システムの実施例1を示すブロック図である。It is a block diagram which shows Example 1 of the electric power generation system which concerns on this invention. 図2(a)および図2(b)は図1に示した発電システムの負荷の増大に伴う負荷分担量の変化を示すグラフである。2 (a) and 2 (b) are graphs showing changes in the load sharing amount accompanying an increase in the load of the power generation system shown in FIG. 図3(a)および図3(b)は従来の発電システムの負荷の増大に伴う負荷分担量の変化を示すグラフである。FIG. 3A and FIG. 3B are graphs showing changes in the load sharing amount accompanying an increase in the load of the conventional power generation system. 本発明に係る発電システムの実施例2を示すブロック図である。It is a block diagram which shows Example 2 of the electric power generation system which concerns on this invention. 図3(a)および図3(b)は従来の他の発電システムの負荷の増大に伴う負荷分担量の変化を示すグラフである。3 (a) and 3 (b) are graphs showing changes in the load sharing amount accompanying an increase in the load of another conventional power generation system. エネルギー源別のエネルギーコストを示すグラフである。It is a graph which shows the energy cost according to energy source. 本発明に係るAFC回路の一例を示すブロック図である。It is a block diagram which shows an example of the AFC circuit which concerns on this invention. 本発明に係る発電機の垂下特性のグラフ(その1)を示す。The graph (the 1) of the drooping characteristic of the generator which concerns on this invention is shown. 本発明に係る発電機の垂下特性のグラフ(その2)を示す。The graph (the 2) of the drooping characteristic of the generator which concerns on this invention is shown. 本発明に係る発電機の垂下特性のグラフ(その3)を示す。The graph (the 3) of the drooping characteristic of the generator which concerns on this invention is shown. 本発明に係る発電機の垂下特性のグラフ(その4)を示す。The graph (the 4) of the drooping characteristic of the generator which concerns on this invention is shown. 本発明に係るAFC回路の他の一例を示すブロック図である。It is a block diagram which shows another example of the AFC circuit which concerns on this invention. 図12に示したAFC回路のHi特性を示すグラフである。13 is a graph showing Hi characteristics of the AFC circuit shown in FIG. 12. AFC回路の時間特性の特性設定例を示す説明図である。It is explanatory drawing which shows the example of a characteristic setting of the time characteristic of an AFC circuit. 本発明に係るAFC回路のさらに他の一例を示すブロック図である。It is a block diagram which shows another example of the AFC circuit which concerns on this invention. 図16(a)および図16(b)は、図15に示すAFCの不感帯の例1および例2をそれぞれ示すグラフである。FIG. 16A and FIG. 16B are graphs showing Example 1 and Example 2 of the AFC dead zone shown in FIG. 15, respectively.

符号の説明Explanation of symbols

10、50 発電システム
11 直流電力源
12 交流電力源
13 系統母線
14 負荷
15 インバータ回路
16 制御回路
10, 50 Power generation system 11 DC power source 12 AC power source 13 System bus 14 Load 15 Inverter circuit 16 Control circuit

Claims (4)

各発電設備に目標周波数が調整可能なAFC制御装置を設け、自端で得られる情報および系統周波数から得られる系統の需給バランスの情報に基づいて、自端のAFC制御装置の目標周波数を調整することにより、経済運用および需給バランス制御を行うことを特徴とする電力供給システム。   Each power generation facility is provided with an AFC control device capable of adjusting the target frequency, and the target frequency of the AFC control device at its own end is adjusted based on information obtained at its own end and information on the supply and demand balance of the system obtained from the system frequency A power supply system that performs economic operation and supply-demand balance control. 各発電設備にAFC制御装置を設け、それぞれの目標周波数を同一値に設定し、自端のAFC制御装置の制御ブロックの制御関数の時間応答を発電単価に応じて個々に設定することにより、自端で得られる情報および系統周波数から得られる需給バランスの情報に基づいて、経済運用および需給バランス制御を行うことを特徴とする電力供給システム。   Each power generation facility is equipped with an AFC control device, each target frequency is set to the same value, and the time response of the control function of the control block of its own AFC control device is individually set according to the unit price of power generation. An electric power supply system that performs economic operation and supply-demand balance control based on information obtained at the end and supply-demand balance information obtained from system frequency. 直流電力をスイッチング作用により交流電力に変換するインバータ回路が設けられ該インバータ回路の前記スイッチング作用により目標周波数の電力を連系系統に供給すべく動作する分散型電源装置を有する電力供給システムであって、前記インバータ回路は、前記連系系統の負荷の増大に応じて、前記分散電源装置の出力周波数を減少させるべく動作することを特徴とする電力供給システム。   An electric power supply system having a distributed power supply device that is provided with an inverter circuit that converts DC power into AC power by a switching action, and that operates to supply power at a target frequency to an interconnection system by the switching action of the inverter circuit. The inverter circuit operates to reduce the output frequency of the distributed power supply device in accordance with an increase in the load of the interconnection system. 直流電力をスイッチング作用により交流電力に変換するインバータ回路が設けられ該インバータ回路の前記スイッチング作用により連系系統周波数に応じた周波数の電力を該連系系統に供給すべく動作する分散型電源装置を有する電力供給システムであって、前記インバータ回路は、前記連系系統周波数の増大に応じて、前記分散型電源装置の出力電力を減少させるべく動作することを特徴とする電力供給システム。   An inverter circuit that converts direct current power into alternating current power by a switching action is provided, and a distributed power supply device that operates to supply power of a frequency corresponding to the interconnection system frequency to the interconnection system by the switching action of the inverter circuit The power supply system according to claim 1, wherein the inverter circuit operates to reduce output power of the distributed power supply device in accordance with an increase in the interconnection system frequency.
JP2004143770A 2004-05-13 2004-05-13 Power supply system Expired - Fee Related JP4616579B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004143770A JP4616579B2 (en) 2004-05-13 2004-05-13 Power supply system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004143770A JP4616579B2 (en) 2004-05-13 2004-05-13 Power supply system

Publications (2)

Publication Number Publication Date
JP2005328622A true JP2005328622A (en) 2005-11-24
JP4616579B2 JP4616579B2 (en) 2011-01-19

Family

ID=35474522

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004143770A Expired - Fee Related JP4616579B2 (en) 2004-05-13 2004-05-13 Power supply system

Country Status (1)

Country Link
JP (1) JP4616579B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007060742A (en) * 2005-08-22 2007-03-08 Toshiba Corp Control system for electric power network
WO2007052349A1 (en) * 2005-11-02 2007-05-10 Shikoku Research Institute Incorporated Electric power supply system and autonomous type distributed control system for electric power supply network and control method
JP2008067544A (en) * 2006-09-08 2008-03-21 Shimizu Corp Micro-grid system construction method
DE102007048624A1 (en) 2007-02-28 2008-09-11 Mitsubishi Electric Corp. Vehicle fuel property detection device
JP2009081942A (en) * 2007-09-26 2009-04-16 Yanmar Co Ltd Distributed power system
JP2010178468A (en) * 2009-01-28 2010-08-12 Toshiba Corp Distributed and coordinated type supply/demand control node, and distributed and coordinated type supply/demand control system for local power system and distributed and coordinated type supply/demand control method for the same
WO2010103650A1 (en) * 2009-03-12 2010-09-16 Vpec株式会社 Autonomous distributed ac power system
WO2012176771A1 (en) * 2011-06-22 2012-12-27 川崎重工業株式会社 Control method and control system for parallel operation of different types of power generation apparatuses
WO2013132814A1 (en) * 2012-03-09 2013-09-12 日本電気株式会社 Supply-demand control system, supply-demand control method, and supply-demand control program
WO2014057788A1 (en) * 2012-10-10 2014-04-17 株式会社日立製作所 Storage cell system and power plant control system
JP2014072929A (en) * 2012-09-27 2014-04-21 Kyocera Corp Energy management system, control apparatus and control method
JP2015208217A (en) * 2014-04-11 2015-11-19 清水建設株式会社 Power controller and power control method
JP2017135859A (en) * 2016-01-27 2017-08-03 京セラ株式会社 Power generation system, power generation control method, and power generator
KR101809514B1 (en) * 2010-11-26 2017-12-15 지멘스 악티엔게젤샤프트 Method and system for controlling an electric device of a wind turbine
JP2019097380A (en) * 2017-11-21 2019-06-20 シュネーデル、エレクトリック、インダストリーズ、エスアーエスSchneider Electric Industries Sas Method for controlling micro grid

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59123431A (en) * 1982-12-28 1984-07-17 株式会社東芝 Frequency controller
JPS63299780A (en) * 1987-05-27 1988-12-07 Hitachi Ltd Inverter device
JP2001037088A (en) * 1999-07-22 2001-02-09 Meidensha Corp Power controller for plural generating facilities
JP2001086649A (en) * 1999-09-09 2001-03-30 Kansai Electric Power Co Inc:The Load frequency controlling method in power system
JP2002165365A (en) * 2000-11-21 2002-06-07 Osaka Gas Co Ltd Power system control method
JP2004048841A (en) * 2002-07-09 2004-02-12 Meidensha Corp System interconnection power supply system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59123431A (en) * 1982-12-28 1984-07-17 株式会社東芝 Frequency controller
JPS63299780A (en) * 1987-05-27 1988-12-07 Hitachi Ltd Inverter device
JP2001037088A (en) * 1999-07-22 2001-02-09 Meidensha Corp Power controller for plural generating facilities
JP2001086649A (en) * 1999-09-09 2001-03-30 Kansai Electric Power Co Inc:The Load frequency controlling method in power system
JP2002165365A (en) * 2000-11-21 2002-06-07 Osaka Gas Co Ltd Power system control method
JP2004048841A (en) * 2002-07-09 2004-02-12 Meidensha Corp System interconnection power supply system

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007060742A (en) * 2005-08-22 2007-03-08 Toshiba Corp Control system for electric power network
WO2007052349A1 (en) * 2005-11-02 2007-05-10 Shikoku Research Institute Incorporated Electric power supply system and autonomous type distributed control system for electric power supply network and control method
JP2008067544A (en) * 2006-09-08 2008-03-21 Shimizu Corp Micro-grid system construction method
DE102007048624A1 (en) 2007-02-28 2008-09-11 Mitsubishi Electric Corp. Vehicle fuel property detection device
JP2009081942A (en) * 2007-09-26 2009-04-16 Yanmar Co Ltd Distributed power system
US8140194B2 (en) 2009-01-28 2012-03-20 Kabushiki Kaisha Toshiba Supply-and-demand control system of distributed and coordinated type, for use in power systems
JP2010178468A (en) * 2009-01-28 2010-08-12 Toshiba Corp Distributed and coordinated type supply/demand control node, and distributed and coordinated type supply/demand control system for local power system and distributed and coordinated type supply/demand control method for the same
CN102246383B (en) * 2009-03-12 2014-05-14 Vpec株式会社 Autonomous distributed AC power system
CN102246383A (en) * 2009-03-12 2011-11-16 Vpec株式会社 Autonomous distributed AC power system
WO2010103650A1 (en) * 2009-03-12 2010-09-16 Vpec株式会社 Autonomous distributed ac power system
JP5553390B2 (en) * 2009-03-12 2014-07-16 株式会社風技術センター AC autonomous decentralized power system
AP3916A (en) * 2009-03-12 2016-11-30 Vpec Inc Autonomous distributed AC power system.
KR101809514B1 (en) * 2010-11-26 2017-12-15 지멘스 악티엔게젤샤프트 Method and system for controlling an electric device of a wind turbine
US9391458B2 (en) 2011-06-22 2016-07-12 Kawasaki Jukogyo Kabushiki Kaisha Control method and control system for parallel operation of different types of power generation apparatuses
WO2012176771A1 (en) * 2011-06-22 2012-12-27 川崎重工業株式会社 Control method and control system for parallel operation of different types of power generation apparatuses
JPWO2012176771A1 (en) * 2011-06-22 2015-02-23 川崎重工業株式会社 Parallel operation control method and control system between different types of power generators
KR101545933B1 (en) 2011-06-22 2015-08-20 가와사키 쥬코교 가부시키가이샤 (디/비/에이 가와사키 헤비 인더스트리즈, 리미티드) Control method and control system for parallel operation of different types of power generation apparatuses
WO2013132814A1 (en) * 2012-03-09 2013-09-12 日本電気株式会社 Supply-demand control system, supply-demand control method, and supply-demand control program
JP2014072929A (en) * 2012-09-27 2014-04-21 Kyocera Corp Energy management system, control apparatus and control method
JP2014079094A (en) * 2012-10-10 2014-05-01 Hitachi Ltd Storage cell system and power generating plant control system
CN104662767A (en) * 2012-10-10 2015-05-27 株式会社日立制作所 Storage cell system and power plant control system
CN104662767B (en) * 2012-10-10 2017-07-14 株式会社日立制作所 Battery system and generating equipment control system
US9740195B2 (en) 2012-10-10 2017-08-22 Hitachi, Ltd. Storage cell system and power plant control system
WO2014057788A1 (en) * 2012-10-10 2014-04-17 株式会社日立製作所 Storage cell system and power plant control system
JP2015208217A (en) * 2014-04-11 2015-11-19 清水建設株式会社 Power controller and power control method
JP2017135859A (en) * 2016-01-27 2017-08-03 京セラ株式会社 Power generation system, power generation control method, and power generator
JP2019097380A (en) * 2017-11-21 2019-06-20 シュネーデル、エレクトリック、インダストリーズ、エスアーエスSchneider Electric Industries Sas Method for controlling micro grid
JP7161922B2 (en) 2017-11-21 2022-10-27 シュネーデル、エレクトリック、インダストリーズ、エスアーエス How to control microgrids

Also Published As

Publication number Publication date
JP4616579B2 (en) 2011-01-19

Similar Documents

Publication Publication Date Title
JP6809753B2 (en) Combined cycle system
US8901893B2 (en) Electricity storage device and hybrid distributed power supply system
EP1047179B1 (en) Method of operating a power supply system having parallel-connected inverters, and power converting system
JP4616579B2 (en) Power supply system
WO2011114422A1 (en) Power supply system, power supply method, program, recording medium, and power supply controller
WO2017026287A1 (en) Control device, energy management device, system, and control method
US20210203165A1 (en) Device and Method for Intelligent control of power supply source connection
KR101454299B1 (en) Control Method of Stand-alone Microgrid using Inverter for ESS
US20120262960A1 (en) Solar generation method and system
WO2007052349A1 (en) Electric power supply system and autonomous type distributed control system for electric power supply network and control method
JP6781637B2 (en) Control method of the cooperation system of storage battery and power converter, and power conditioning system
JPH11289668A (en) Apparatus and method for controlling reactive power
JP2008017652A (en) Power supply system
JP2014534794A (en) Photovoltaic generator with safety device for supply to public power grid
JP2002034162A (en) Distributed power supply system and its control method
JP2011211877A (en) Power supply control system
WO2020218191A1 (en) Power control device, method of controlling power control device, and distributed power generation system
JPH08251827A (en) Combined cycle power generation system
JP2019165552A (en) Centralized management device
Nguyen et al. Agent-based distributed event-triggered secondary control for energy storage system in islanded microgrids-cyber-physical validation
RU2726943C1 (en) Method of reducing fuel consumption by diesel-generator units in hybrid power plant with renewable energy resources
JP6479516B2 (en) Input control power storage system
JP2014103819A (en) Charging device, charging method, power supply system and residual stored power amount measuring method thereof
KR101299269B1 (en) Battery Energy Storage System
JP2000166124A (en) Auxiliary power unit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070501

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080916

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091013

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100824

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101019

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101022

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131029

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees