JP2005327871A - Solar battery and its manufacturing method - Google Patents

Solar battery and its manufacturing method Download PDF

Info

Publication number
JP2005327871A
JP2005327871A JP2004143986A JP2004143986A JP2005327871A JP 2005327871 A JP2005327871 A JP 2005327871A JP 2004143986 A JP2004143986 A JP 2004143986A JP 2004143986 A JP2004143986 A JP 2004143986A JP 2005327871 A JP2005327871 A JP 2005327871A
Authority
JP
Japan
Prior art keywords
substrate
solar cell
groove
degrees
emitter layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004143986A
Other languages
Japanese (ja)
Inventor
Hiroyuki Otsuka
寛之 大塚
Seishi Izumi
清史 出水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Shin Etsu Handotai Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Shin Etsu Handotai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd, Shin Etsu Handotai Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2004143986A priority Critical patent/JP2005327871A/en
Publication of JP2005327871A publication Critical patent/JP2005327871A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

<P>PROBLEM TO BE SOLVED: To provide a highly strong solar battery capable of increasing photoelectric conversion efficiency, that is power generation, and to provide its manufacturing method. <P>SOLUTION: The solar battery comprises a first conductivity-type (110) substrate with a dent groove, constituted of ä111} surface on a substrate upper surface, for which the substrate thickness direction is [110] direction, a second conductivity-type emitter layer provided on the upper surface of the substrate, and a finger electrode formed on the upper surface of the emitter layer. The longitudinal direction of the finger electrode and the groove line direction of the dent groove are crossed at an angle such that it is ≥45° and ≤90°. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、(110)基板を利用した太陽電池、さらに詳細には、光電変換効率、即ち発電量を増大させることができかつ強度の高い太陽電池およびその製造方法に関する。   The present invention relates to a solar cell using a (110) substrate, and more particularly to a solar cell that can increase the photoelectric conversion efficiency, that is, the amount of power generation and has high strength, and a method for manufacturing the solar cell.

通常の単結晶太陽電池は(100)基板を用いて形成される。(100)基板が用いられる最大の理由は反射防止構造であるテクスチャ構造を比較的容易かつ低コストで形成できることによる。図6に示すように、この従来の太陽電池においては、通常、ダメージを取り除いた単結晶基板40を3重量パーセント水酸化ナトリウムもしくは水酸化カリウムにイソプロピルアルコールを加えた水溶液に浸し,70〜90℃に加熱することにより、この基板40の上面にランダムに配置されたピラミッド構造42を形成する。   A typical single crystal solar cell is formed using a (100) substrate. The largest reason why the (100) substrate is used is that a texture structure as an antireflection structure can be formed relatively easily and at low cost. As shown in FIG. 6, in this conventional solar cell, the single crystal substrate 40 from which damage has been removed is usually immersed in an aqueous solution obtained by adding isopropyl alcohol to 3 weight percent sodium hydroxide or potassium hydroxide at 70 to 90 ° C. To form a pyramid structure 42 randomly arranged on the upper surface of the substrate 40.

一方、この一般的な方法とは別に、(110)基板を利用する太陽電池が提案されている(特許文献1)。この提案された(110)基板を用いた太陽電池の構造について図3を参照して簡単に説明する。10Bは従来の太陽電池で、第一導電型、例えばn型の(110)基板11を有している。この基板11の基板厚み方向Zは[110]方向であり、その基板上面には、{111}面のV溝面12aによって構成された谷溝12が設けられている。14は前記基板11の上面部分に形成された第2導電型、例えばp型のエミッタ層、例えば高濃度p型拡散層で、そのエミッタ層14の上面には表面保護膜、例えば窒化 膜16が設けられている。このエミッタ層14の上面には窒化膜16を介してフィンガー電極18が形成されている。20は前記基板10の下面部分に設けられたBSF(Base Surface Field)層、例えば高濃度のn型拡散層で、そのBSF層20の下面には裏面電極22が設けられている。
特公表2001−504996号公報
On the other hand, apart from this general method, a solar cell using a (110) substrate has been proposed (Patent Document 1). The structure of the solar cell using the proposed (110) substrate will be briefly described with reference to FIG. 10B is a conventional solar cell, which has a (110) substrate 11 of a first conductivity type, for example, an n-type. The substrate thickness direction Z of the substrate 11 is the [110] direction, and a trough groove 12 constituted by a {111} V-groove surface 12a is provided on the upper surface of the substrate. Reference numeral 14 denotes a second conductivity type, for example, p-type emitter layer, for example, a high-concentration p-type diffusion layer formed on the upper surface portion of the substrate 11. A surface protective film, for example, a nitride film 16 is formed on the upper surface of the emitter layer 14. Is provided. Finger electrodes 18 are formed on the upper surface of the emitter layer 14 via a nitride film 16. Reference numeral 20 denotes a BSF (Base Surface Field) layer provided on the lower surface portion of the substrate 10, for example, a high-concentration n-type diffusion layer, and a back electrode 22 is provided on the lower surface of the BSF layer 20.
Japanese Patent Publication No. 2001-504996

ところが、上記提案された太陽電池の構造においては、図3に示すように、前記フィンガー電極18が、その長手方向Yと前記谷溝12の溝線方向Xとが平行又は平行に近い状態となるように設けられた場合には、大きな歩留り低下を招く。この歩留り低下の原因は、結晶障壁線に沿って結晶が割れやすいためであり、特にフィンガー電極18を形成する際の負荷によるものが多い。   However, in the structure of the proposed solar cell, as shown in FIG. 3, the finger electrode 18 is in a state in which the longitudinal direction Y and the groove line direction X of the valley groove 12 are parallel or nearly parallel. In such a case, the yield is greatly reduced. The cause of the decrease in yield is that the crystal is easily broken along the crystal barrier line, and in particular, it is often caused by a load when the finger electrode 18 is formed.

さらに、この従来の構造においては、フィンガー電極18の長手方向が{111}面のV溝面12aによって構成される谷溝12の溝線方向Xと平行に近くなった場合、抵抗損の問題が発生する。通常、反射防止構造を低コストで形成するためには、上記のようにアルカリ水溶液を利用する。この場合,エッチングレートが最も遅い{111}面が露出する。(110)基板を利用した場合,図6に示すようなランダムテクスチャを形成することは非常に困難であるが、エッチングマスクを利用することにより、図4に示すような{111}面をV溝面12aとして露出させ谷溝12を形成することが可能である。   Furthermore, in this conventional structure, when the longitudinal direction of the finger electrode 18 is close to parallel to the groove line direction X of the valley groove 12 constituted by the {111} plane V-groove surface 12a, there is a problem of resistance loss. Occur. Usually, in order to form an antireflection structure at low cost, an alkaline aqueous solution is used as described above. In this case, the {111} plane with the slowest etching rate is exposed. When a (110) substrate is used, it is very difficult to form a random texture as shown in FIG. 6, but by using an etching mask, a {111} plane as shown in FIG. It is possible to form the valley groove 12 by exposing it as the surface 12a.

図3において、谷溝12の溝線方向Xとフィンガー電極18の長手方向Yが平行であれば,エミッタ層14内を流れる電線の電流経路14bは鋸歯状となるため直線状の電流経路に比較して長くなる。これは、後述する本発明に係る太陽電池10Aの一つの実施の形態を示す図1と上述した従来の(110)基板を用いた太陽電池10Bの構造例を示す図3とを比較すれば自明の通り、図3及び図1におけるフィンガー電極18,19のピッチが等しいと仮定し、かつ図1のエミッタ層14の電流経路14aは直線状であり電流が見かけ上距離L移動すると仮定すると、図3のエミッタ層14の電流経路14bは鋸歯状であり電流は距離1.225L移動するためである。その結果、従来の太陽電池10Bでは、その内部の直列抵抗が増大し、発電時に抵抗損から光電変換効率の低下をまねく。   In FIG. 3, if the groove line direction X of the trough groove 12 and the longitudinal direction Y of the finger electrode 18 are parallel, the current path 14b of the electric wire flowing in the emitter layer 14 has a sawtooth shape, so that it is compared with a linear current path. And get longer. This is obvious when comparing FIG. 1 showing one embodiment of a solar cell 10A according to the present invention to be described later and FIG. 3 showing a structural example of a solar cell 10B using the above-described conventional (110) substrate. Assuming that the pitches of the finger electrodes 18 and 19 in FIGS. 3 and 1 are equal and that the current path 14a of the emitter layer 14 in FIG. 1 is linear and the current apparently moves a distance L, as shown in FIG. This is because the current path 14b of the third emitter layer 14 is serrated and the current moves a distance of 1.225L. As a result, in the conventional solar cell 10B, the internal series resistance increases, and the photoelectric conversion efficiency decreases due to resistance loss during power generation.

また、上記した従来の(110)基板11を用いた太陽電池において、基板厚み方向Zが[110]方向と一致している場合、上記のようなV溝面反射防止構造を形成しても、反射率を低めた(すなわち、透過率を高めた)反射防止膜は内部から同角度で戻ってきた光に対しても透過率が高いため、図5(a)に示したように、基板11に入射した長波長光の入射光24は出射光26として基板11から容易に抜けてしまう。   Further, in the solar cell using the conventional (110) substrate 11 described above, when the substrate thickness direction Z coincides with the [110] direction, even if the above V-groove surface antireflection structure is formed, The antireflection film having a low reflectance (that is, a high transmittance) has a high transmittance even with respect to light returning from the inside at the same angle. Therefore, as shown in FIG. The incident light 24 of the long wavelength light incident on the substrate 11 easily escapes from the substrate 11 as the outgoing light 26.

本発明は、上記した従来技術の問題点を克服するためになされたものであって、光電変換効率、即ち発電量を増大させることができかつ強度の高い太陽電池及びその製造方法を提供することを目的とする。   The present invention has been made in order to overcome the above-described problems of the prior art, and provides a high-strength solar cell that can increase photoelectric conversion efficiency, that is, power generation, and a method for manufacturing the same. With the goal.

上記課題を解決するために、本発明の太陽電池の第1の態様は、基板厚み方向が[110]方向でありかつ基板上面に[111]面によって構成された谷溝を有する第一導電型(110)基板と、前記基板の上面に設けられた第二導電型エミッタ層と、前記エミッタ層の上面に形成されたフィンガー電極とを有し、前記フィンガー電極の長手方向と前記谷溝の溝線方向とが45度以上90度以下の角度で交差するようにしたことを特徴とする。   In order to solve the above-described problem, a first aspect of the solar cell of the present invention is a first conductivity type having a valley groove in which the substrate thickness direction is the [110] direction and the substrate upper surface is configured by the [111] plane. (110) A substrate, a second conductivity type emitter layer provided on the upper surface of the substrate, and a finger electrode formed on the upper surface of the emitter layer, the longitudinal direction of the finger electrode and the groove of the trough The linear direction intersects at an angle of 45 degrees or more and 90 degrees or less.

本発明の太陽電池の第2の態様は、基板厚み方向が[110]方向に対して、0度を超え10度以下の角度で設定されておりかつ基板上面に[111]面によって構成された谷溝を有する第一導電型(110)基板と、前記基板の上面に設けられた第二導電型エミッタ層と、前記エミッタ層の上面に形成されたフィンガー電極とを有し、前記フィンガー電極の長手方向と前記谷溝の溝線方向とが45度以上90度以下の角度で交差するようにしたことを特徴とする。前記第一導電型基板としては、n型基板が好適に用いられる。   In the second aspect of the solar cell of the present invention, the substrate thickness direction is set at an angle of more than 0 degree and not more than 10 degrees with respect to the [110] direction, and is configured by the [111] plane on the upper surface of the substrate. A first conductivity type (110) substrate having a trough, a second conductivity type emitter layer provided on the upper surface of the substrate, and a finger electrode formed on the upper surface of the emitter layer, The longitudinal direction and the groove line direction of the valley groove intersect with each other at an angle of 45 degrees or more and 90 degrees or less. As the first conductivity type substrate, an n-type substrate is preferably used.

本発明の太陽電池の製造方法は、基板厚み方向が[110]方向に対して、0度以上10度以下の角度で設定された第一導電型基板を用意する工程と、前記基板の少なくとも片方の面にエッチングマスクを形成する工程と、前記エッチングマスクを   The method for manufacturing a solar cell according to the present invention includes a step of preparing a first conductivity type substrate in which the substrate thickness direction is set at an angle of 0 degrees to 10 degrees with respect to the [110] direction, and at least one of the substrates Forming an etching mask on the surface, and the etching mask.

Figure 2005327871
Figure 2005327871

方向又は[001]方向に削って谷溝を形成する工程と、前記基板の上面に第二導電型エミッタ層を形成する工程と、前記エミッタ層の上面に前記谷溝の溝線方向と45度以上90度以下の角度で交差するフィンガー電極を形成する工程とを含むことを特徴とする。 Forming a valley groove by cutting in a direction or [001] direction, forming a second conductivity type emitter layer on the upper surface of the substrate, and 45 degree to the groove line direction of the valley groove on the upper surface of the emitter layer. And a step of forming finger electrodes that intersect at an angle of 90 degrees or less.

本発明の第1の態様の太陽電池によれば、(110)基板を利用することにより,小数キャリヤの拡散長を長くでき、従って、光電変換効率、即ち発電量を増大させることが可能であり、さらに,フィンガー電極の長手方向を、{111}面によって構成される谷溝の溝線方向に対し45度以上90度以下の角度で交差させることにより、太陽電池の強度を高めることができ、スクリーン印刷による電極形成時の歩留まり低下を防止することが可能となる。また、本発明の第2の態様の太陽電池によれば、基板厚み方向を[110]方向に対して僅かにチルトする(傾ける)構成を採用することにより、光閉じこめ作用を高めることができ、したがって、一層光電変換効率、即ち発電量を増大させることができるという効果が達成される。本発明方法によれば、本発明の太陽電池を効率よく製造することができる。   According to the solar cell of the first aspect of the present invention, by using the (110) substrate, it is possible to increase the diffusion length of the fractional carriers, and thus it is possible to increase the photoelectric conversion efficiency, that is, the power generation amount. Furthermore, the strength of the solar cell can be increased by crossing the longitudinal direction of the finger electrodes at an angle of 45 degrees or more and 90 degrees or less with respect to the groove line direction of the troughs constituted by {111} planes, It is possible to prevent the yield from being lowered when electrodes are formed by screen printing. Further, according to the solar cell of the second aspect of the present invention, by adopting a configuration in which the substrate thickness direction is slightly tilted (tilted) with respect to the [110] direction, the light confinement effect can be enhanced, Therefore, the effect that the photoelectric conversion efficiency, that is, the power generation amount can be further increased is achieved. According to the method of the present invention, the solar cell of the present invention can be efficiently produced.

以下、添付図面中、図1を参照して本発明の実施の形態を詳細に説明するが、本発明の技術思想から逸脱しない限り図示例以外に種々の変形が可能であることはいうまでもない。図1は本発明に係る太陽電池の一つの実施の形態を模式的に示す斜視説明図である。なお、図1において図3に示した部材と同一又は類似部材は同一符号を用いて説明する。   Hereinafter, the embodiment of the present invention will be described in detail with reference to FIG. 1 in the accompanying drawings, but it goes without saying that various modifications other than the illustrated examples are possible without departing from the technical idea of the present invention. Absent. FIG. 1 is a perspective explanatory view schematically showing one embodiment of a solar cell according to the present invention. 1, the same or similar members as those shown in FIG. 3 will be described using the same reference numerals.

図1において、10Aは本発明に係る太陽電池で、図3に示した従来の太陽電池10Bと同様の構成については重複を避けるため図示のみで再度の説明を省略する場合がある。本発明の太陽電池10Aは、第一導電型、例えばn型の(110)基板11を有している。この基板11の基板厚み方向Zは[110]方向であり、その基板上面には、{111}面のV溝面12aによって構成された谷溝12が設けられている。14は前記基板11の上面部分に形成された第2導電型、例えばp型のエミッタ層、例えば高純度p型拡散層で、そのエミッタ層14の上面には表面保護膜、例えば窒化膜16が設けられている。このエミッタ層14の上面には窒化膜16を介してフィンガー電極19が形成されている。   In FIG. 1, 10A is a solar cell according to the present invention, and the same configuration as the conventional solar cell 10B shown in FIG. The solar cell 10A of the present invention has a (110) substrate 11 of a first conductivity type, for example, an n-type. The substrate thickness direction Z of the substrate 11 is the [110] direction, and a trough groove 12 constituted by a {111} -plane V-groove surface 12a is provided on the upper surface of the substrate. Reference numeral 14 denotes a second conductivity type, for example, p-type emitter layer, for example, a high-purity p-type diffusion layer formed on the upper surface portion of the substrate 11. A surface protective film, for example, a nitride film 16 is formed on the upper surface of the emitter layer 14. Is provided. A finger electrode 19 is formed on the upper surface of the emitter layer 14 via a nitride film 16.

このフィンガー電極19が従来の太陽電池10Aのフィンガー電極18とは異なる態様で形成される点に本発明の太陽電池10Aの特徴がある。即ち、従来の太陽電池10Bのフィンガー電極18が、その長手方向Yと前記谷溝12の溝線方向Xとが平行又は平行に近い角度で設けられているのに対して、本発明の太陽電池10Bのフィンガー電極19は、その長手方向Yと前記谷溝12の溝線方向Xとが45度以上90度以下の角度で交差するように設けられている。図1の例では谷溝12の溝線方向Xとフィンガー電極19の長手方向Yとは直交、即ち90度の角度で交差する態様が図示されている。   The feature of the solar cell 10A of the present invention is that the finger electrode 19 is formed in a mode different from the finger electrode 18 of the conventional solar cell 10A. That is, while the finger electrode 18 of the conventional solar cell 10B is provided at an angle in which the longitudinal direction Y and the groove line direction X of the valley groove 12 are parallel or nearly parallel, the solar cell of the present invention. The finger electrode 19 of 10B is provided so that the longitudinal direction Y and the groove line direction X of the valley groove 12 intersect at an angle of 45 degrees or more and 90 degrees or less. In the example of FIG. 1, the groove line direction X of the valley groove 12 and the longitudinal direction Y of the finger electrode 19 are orthogonal to each other, that is, intersects at an angle of 90 degrees.

このような構成とすることにより、前述したように、図1に示した本発明の太陽電池10Aと図3に示した従来構造の太陽電池10Bとを比較すると、図3及び図1におけるフィンガー電極18,19のピッチが等しいと仮定し、かつ図1のエミッタ層14の電流経路14aは直線状であり電流が見かけ上距離L移動すると仮定すると、図3のエミッタ層14の電流経路14bは鋸歯状であり電流は距離1.225L移動する。換言すれば、本発明の太陽電池10Aのエミッタ層14内を流れる電流の電流経路14aは従来の太陽電池10Bのエミッタ層14内を流れる電流の電流経路14bよりも短くなる。その結果、太陽電池10A内の直列抵抗は減少し、発電時における抵抗損に起因する光電変換効率の低下は減少し、従来に比べて光電変換効率は向上する。   By adopting such a configuration, as described above, when the solar cell 10A of the present invention shown in FIG. 1 is compared with the solar cell 10B having the conventional structure shown in FIG. 3, the finger electrodes in FIG. 3 and FIG. Assuming that the pitches 18 and 19 are equal and the current path 14a of the emitter layer 14 in FIG. 1 is linear and the current apparently moves a distance L, the current path 14b of the emitter layer 14 in FIG. The current travels a distance of 1.225L. In other words, the current path 14a of the current flowing in the emitter layer 14 of the solar cell 10A of the present invention is shorter than the current path 14b of the current flowing in the emitter layer 14 of the conventional solar cell 10B. As a result, the series resistance in the solar cell 10A is reduced, the decrease in photoelectric conversion efficiency due to resistance loss during power generation is reduced, and the photoelectric conversion efficiency is improved as compared with the conventional case.

なお、上記実施の形態においては、基板厚み方向Zが [110]方向である(110)基板を用いた場合について説明したが、基板厚み方向が[110]方向に対して、0度を超え10度以下の角度でチルトした(傾けた)(110)基板を用いても同様の効果を達成することができ、この場合さらに光閉じこめ作用を高めることができる利点がある。   In the above-described embodiment, the case where the (110) substrate in which the substrate thickness direction Z is the [110] direction has been described. However, the substrate thickness direction exceeds 10 degrees with respect to the [110] direction. Even if a (110) substrate tilted at an angle of less than or equal to a degree is used, the same effect can be achieved. In this case, there is an advantage that the light confinement action can be further enhanced.

すなわち、底面に対して垂直に入射してきた大部分の光は、V溝面に対し、角度Aでシリコン内部を進み底面で反射した後、角度Bで他のV溝面にぶつかる。通常、太陽電池は反射率をできる限り小さくし、最大限に光をデバイス内に導入できるよう反射防止膜を形成する。ところが、このような反射率が小さな膜は、透過率が高い膜でもあるため、図5(a)、(b)のようにデバイス内部から外部へ光が出射する場合、光を透過させる条件となっている。特に、図5(a)のように、基板厚み方向が[110]方向に対してチルトしていない場合、角度Aと角度Bは等しくなるため、最も透過しやすい条件となる。   That is, most of the light incident perpendicularly to the bottom surface travels inside the silicon at an angle A with respect to the V-groove surface, reflects off the bottom surface, and then collides with another V-groove surface at an angle B. Usually, a solar cell has a reflectance as small as possible, and an antireflection film is formed so that light can be maximally introduced into the device. However, since such a film having a low reflectance is also a film having a high transmittance, when light is emitted from the inside of the device to the outside as shown in FIGS. It has become. In particular, as shown in FIG. 5A, when the substrate thickness direction is not tilted with respect to the [110] direction, the angle A and the angle B are equal to each other, so that the transmission conditions are most easily transmitted.

これに対し、図5(b)のように、基板厚み方向を[110]方向に対しチルトさせた場合、角度Bと角度Aが異なり、角度B>角度Aとなれば、V溝面12aにおけるシリコンから外部への透過率が角度Aと角度Bが等しい場合より必ず低くなるので、太陽電池内部に取り込まれた光が外に漏れにくくなり、光生成電流が増加する。   On the other hand, when the substrate thickness direction is tilted with respect to the [110] direction as shown in FIG. 5B, if the angle B is different from the angle A, and the angle B> the angle A, the V groove surface 12a Since the transmittance from the silicon to the outside is always lower than when the angle A and the angle B are equal, the light taken into the solar cell is less likely to leak to the outside, and the light generation current increases.

なお、基板厚み方向を[110]方向に対しチルトさせた太陽電池は、[110]結晶をチルトさせる角度で傾けてスライスすることにより、容易に得ることができる。   Note that a solar cell in which the substrate thickness direction is tilted with respect to the [110] direction can be easily obtained by slicing the [110] crystal at an angle to tilt.

続いて、本発明の太陽電池の製造方法について、図2を参照して説明する。図2は本発明方法の工程順の1例を示すフローチャートである。図2においては、第一導電型がn型、第二導電型がp型の場合について説明する。なお、下記説明文中の各部材の符号は図1における符号を用いた。   Then, the manufacturing method of the solar cell of this invention is demonstrated with reference to FIG. FIG. 2 is a flowchart showing an example of the process sequence of the method of the present invention. In FIG. 2, the case where the first conductivity type is n-type and the second conductivity type is p-type will be described. In addition, the code | symbol in FIG. 1 was used for the code | symbol of each member in the following explanatory note.

図2に示したように、まず、n型の(110)基板11を用意する(ステップ100)。この基板はその厚み方向が[100]方向に対して、0度以上10度以下の角度で設定されている。この基板としては、シリコン単結晶基板を用いることができ、チョコラルスキー(CZ)法およびフロートゾーン(FZ)法のいずれの方法によって作成されていても構わない。基板比抵抗は例えば0.1〜20Ω・cmが好ましく、特に0.5〜2.0Ω・cmであることが高い性能の太陽電池を作る上で好適である。   As shown in FIG. 2, first, an n-type (110) substrate 11 is prepared (step 100). The thickness direction of this substrate is set at an angle of 0 ° to 10 ° with respect to the [100] direction. As this substrate, a silicon single crystal substrate can be used, and it may be produced by any method of the chocolate ski (CZ) method and the float zone (FZ) method. The substrate specific resistance is preferably, for example, 0.1 to 20 Ω · cm, and in particular, 0.5 to 2.0 Ω · cm is suitable for producing a high-performance solar cell.

次に、上記基板11のダメージ層をエッチングで取り除く(ステップ102)。このダメージ除去のためのエッチング液としては、水酸化ナトリウム水溶液の他、水酸化カリウム等の強アルカリ水溶液を用いることができ、またフッ硝酸等の酸水溶液でも同様の目的を達成することが可能である。   Next, the damaged layer of the substrate 11 is removed by etching (step 102). As an etching solution for removing the damage, a strong alkaline aqueous solution such as potassium hydroxide can be used in addition to the aqueous sodium hydroxide solution, and the same purpose can be achieved with an aqueous acid solution such as hydrofluoric acid. is there.

ダメージエッチングを行った基板11の表面に酸化膜又は窒化膜を所定の方法で堆積し、マルチブレードダイシングソーを利用し、図1に示すW方向、即ち   An oxide film or a nitride film is deposited on the surface of the substrate 11 subjected to the damage etching by a predetermined method, and a multi-blade dicing saw is used.

Figure 2005327871
Figure 2005327871

方向(又は[001]方向)に上記基板11も含めて上記酸化膜又は窒化膜を短冊状に削って、エッチングマスクを形成する(ステップ104)。この削り残す箇所は細いほど後のエッチングが容易となる。 The oxide film or nitride film including the substrate 11 is cut into a strip shape in the direction (or [001] direction) to form an etching mask (step 104). The later the etching becomes easier as the portion left to be cut becomes thinner.

このエッチングマスクを設けた基板をエッチング液に浸漬することによってV溝エッチングが行われ、図4に示したようなV溝構造又は谷溝構造を形成する(ステップ106)。太陽電池は通常、表面に凸凹形状を形成するのが好ましい。その理由は、可視光域の反射率を低減させるため、できる限り2回以上の反射を受光面で行わせる必要があるためである。本発明においては、V溝構造又は谷溝構造を形成する。図2の例では、ウェットエッチングによる反射防止構造形成方法を記したが、V溝、U溝を研削機やレーザー加工機を利用して、ダイレクトに形成することも可能である。また、谷溝内にミクロなランダム凹凸構造を作るには酸エッチングやリアクティブ・イオン・エッチング等を用いることが可能である。   V-groove etching is performed by immersing the substrate provided with this etching mask in an etching solution, thereby forming a V-groove structure or a valley-groove structure as shown in FIG. 4 (step 106). In general, it is preferable that the solar cell has an uneven shape on the surface. The reason is that in order to reduce the reflectance in the visible light region, it is necessary to cause the light receiving surface to perform reflection at least twice as much as possible. In the present invention, a V-groove structure or a trough structure is formed. In the example of FIG. 2, the antireflection structure forming method by wet etching is described. However, it is also possible to directly form the V-groove and U-groove using a grinding machine or a laser processing machine. Also, acid etching, reactive ion etching, or the like can be used to create a micro random uneven structure in the trough.

上記V溝構造又は谷溝構造を有する基板に対してボロン拡散を行うことによりエミッタ層(p型拡散層)14を形成する(ステップ108)。ボロン拡散の方法としては、臭化ホウ素等の液体ソースを用いる熱拡散の他に固体ソースを用いる熱拡散を行うことも可能である。イオン注入法は表面濃度を高めることが難しいため、太陽電池作製では積極的には用いられてこなかったが、本発明では(110)基板11を利用しているため、このイオン打ち込み法も拡散層形成をコントロールし易く有効である。   An emitter layer (p-type diffusion layer) 14 is formed by performing boron diffusion on the substrate having the V-groove structure or the valley-groove structure (step 108). As a boron diffusion method, it is possible to perform thermal diffusion using a solid source in addition to thermal diffusion using a liquid source such as boron bromide. Since it is difficult to increase the surface concentration in the ion implantation method, it has not been actively used in the production of solar cells. However, in the present invention, since the (110) substrate 11 is used, this ion implantation method is also a diffusion layer. It is easy to control the formation and is effective.

このエミッタ層14を形成した基板11に対してリン拡散を行うことにより高濃度n型拡散層(BSF層)20をエミッタ層14と反対の面に形成する(ステップ110)。ここでも、固体拡散ソースを利用した熱拡散法やイオン打ち込み法によるBSF層20の形成は可能であるが、リンおよびボロンドーパントを片面ずつに予めウェハにスピン塗布し、一度に大量枚数をスタックして拡散を行う同時拡散が簡便かつ経済的にも最も有効な方法の一つである。   Phosphorus diffusion is performed on the substrate 11 on which the emitter layer 14 is formed, thereby forming a high concentration n-type diffusion layer (BSF layer) 20 on the surface opposite to the emitter layer 14 (step 110). Again, the BSF layer 20 can be formed by a thermal diffusion method using a solid diffusion source or an ion implantation method, but phosphorus and boron dopants are spin-coated on a wafer in advance on each side, and a large number of layers are stacked at a time. Co-diffusion is one of the most effective and convenient methods.

さらに、上記エミッタ層14上に表面保護膜16を形成する(ステップ112)。具体的には、基板表面に形成されたボロン又はリンガラスをフッ酸でエッチングした後、例えばダイレクトプラズマCVD装置を用い、エミッタ層14上に窒化膜等を表面保護膜16として堆積する。この膜厚は、反射防止膜も兼ねさせるため70nmから100nmが適している。他の反射防止膜として酸化膜、二酸化チタン膜、酸化亜鉛膜、酸化スズ膜等があり、代替が可能である。また、形成法も上記以外にリモートプラズマCVD法、コーティング法、真空蒸着法等があるが、経済的な観点から、上記窒化膜をプラズマCVD法によって形成するのが好適である。さらに、上記反射防止膜上にトータルの反射率が最も小さくなるような条件、例えば二フッ化マグネシウム膜といった屈折率が1から2の間の膜を形成すれば、反射率がさらに低減し、生成電流密度は高くなる。   Further, a surface protective film 16 is formed on the emitter layer 14 (step 112). Specifically, after boron or phosphorous glass formed on the substrate surface is etched with hydrofluoric acid, a nitride film or the like is deposited as a surface protective film 16 on the emitter layer 14 using, for example, a direct plasma CVD apparatus. The film thickness is preferably 70 nm to 100 nm because it also serves as an antireflection film. Other antireflection films include oxide films, titanium dioxide films, zinc oxide films, tin oxide films, and the like, which can be substituted. In addition to the above, the formation method includes a remote plasma CVD method, a coating method, a vacuum deposition method, and the like. From the economical viewpoint, it is preferable to form the nitride film by the plasma CVD method. Furthermore, if a film having a refractive index between 1 and 2, such as a magnesium difluoride film, is formed on the antireflection film so that the total reflectance is minimized, the reflectance is further reduced. The current density is increased.

続いて、基板裏面に電極22を形成する(ステップ114)。具体的には、スクリーン印刷装置を用い、基板裏面に銀からなるペーストを塗布し乾燥させる。   Subsequently, an electrode 22 is formed on the back surface of the substrate (step 114). Specifically, using a screen printing apparatus, a paste made of silver is applied to the back surface of the substrate and dried.

次に、基板表面にフィンガー電極19を形成する(ステップ116)。具体的には、スクリーン印刷装置を用い、フィンガー電極パターン印刷版によりアルミニウムを含んだ銀電極を印刷し乾燥させる。この際、フィンガー電極の長手方向Yが上記V溝又は谷溝の稜線方向(溝線方向)Xと45度以上90度以下の角度(図1の例では90度)で交差するように印刷を行う。その後、所定の熱プロファイルにより焼成を行い、最終的な電極とする。これらの電極形成は、上記した印刷法以外にも真空蒸着法、スパッタリング法等によって行うこともできる。上記した電極22,19を形成することによって本発明の太陽電池10Aが完成する(ステップ118)。   Next, the finger electrode 19 is formed on the substrate surface (step 116). Specifically, a silver electrode containing aluminum is printed and dried with a finger electrode pattern printing plate using a screen printing apparatus. At this time, printing is performed so that the longitudinal direction Y of the finger electrode intersects the ridge line direction (groove line direction) X of the V-groove or valley groove at an angle of 45 degrees to 90 degrees (90 degrees in the example of FIG. 1). Do. Thereafter, firing is performed with a predetermined thermal profile to obtain a final electrode. These electrodes can be formed by a vacuum deposition method, a sputtering method, or the like other than the printing method described above. By forming the electrodes 22 and 19 described above, the solar cell 10A of the present invention is completed (step 118).

以下に実施例をあげて本発明をさらに具体的に説明するが、これらの実施例は例示的に示されるもので限定的に解釈されるべきでないことはいうまでもない。下記説明文中の各部材の符号は図1における符号を用いた。   The present invention will be described more specifically with reference to the following examples. However, it is needless to say that these examples are shown by way of illustration and should not be construed in a limited manner. The reference numerals in FIG. 1 are used as the reference numerals of the members in the following description.

(実施例1)
本実施例における太陽電池の作製方法は以下の通りである。まず、結晶面方位(110),250μm厚、アズスライス比抵抗2Ω・cm(ドーパント濃度2.4×1015cm-3)リンドープn型単結晶シリコン基板を用意し、40重量パーセント水酸化ナトリウム水溶液に浸し、ダメージ層をエッチングで取り除いた。次に、酸化膜もしくは窒化膜を所定の方法で堆積し、マルチブレードダイシングソーを利用し,図1に示すW方向、即ち
(Example 1)
The method for manufacturing the solar cell in this example is as follows. First, a crystal plane orientation (110), a thickness of 250 μm, an as-slice specific resistance of 2 Ω · cm (a dopant concentration of 2.4 × 10 15 cm −3 ), a phosphorus-doped n-type single crystal silicon substrate was prepared, and a 40 weight percent aqueous sodium hydroxide solution was prepared. And the damaged layer was removed by etching. Next, an oxide film or a nitride film is deposited by a predetermined method, and using a multi-blade dicing saw, the W direction shown in FIG.

Figure 2005327871
Figure 2005327871

方向にSi基板11も含め、上記酸化膜もしくは窒化膜を短冊状に削った。削り残す箇所は細いほど、後のエッチングが容易となる。このサンプルを再度40重量パーセント水酸化ナトリウムに数分浸せば、図4に示すようなV溝構造又は谷溝構造が形成される。 The oxide film or nitride film including the Si substrate 11 in the direction was cut into a strip shape. The thinner the portion to be shaved, the easier it is to etch later. If this sample is immersed again in 40 weight percent sodium hydroxide for several minutes, a V-groove structure or a trough structure as shown in FIG. 4 is formed.

引き続き、臭化ホウ素液体ソースを用い、ボロン熱拡散を行うことによりシート抵抗40Ω/□のp型拡散層(エミッタ層)14を形成した。さらに、オキシ塩化リン液体ソースを用い、リン熱拡散を行うことによりシート抵抗20Ω/□の高濃度n型拡散層(BSF層)20をエミッタ層14と反対の面に形成した。この際、p型エミッタ層14にリンが拡散することを避けるために、エミッタ層14を形成した面同士を重ね合わせた後、炉に導入した。次に、表面に形成されたボロンもしくはリンガラスをフッ酸でエッチングした後、ダイレクトプラズマCVD装置を用い、エミッタ層上に表面保護膜である窒化膜16を堆積した。   Subsequently, a p-type diffusion layer (emitter layer) 14 having a sheet resistance of 40Ω / □ was formed by performing boron thermal diffusion using a boron bromide liquid source. Further, a high concentration n-type diffusion layer (BSF layer) 20 having a sheet resistance of 20Ω / □ was formed on the surface opposite to the emitter layer 14 by performing phosphorous thermal diffusion using a phosphorous oxychloride liquid source. At this time, in order to prevent phosphorus from diffusing into the p-type emitter layer 14, the surfaces on which the emitter layer 14 was formed were overlapped and then introduced into the furnace. Next, after boron or phosphorous glass formed on the surface was etched with hydrofluoric acid, a nitride film 16 as a surface protective film was deposited on the emitter layer using a direct plasma CVD apparatus.

次に、スクリーン印刷装置を用い、裏面に銀からなるペーストを塗布し、乾燥させた。さらに表面側もスクリーン印刷装置を用い、フィンガー電極パターン印刷版によりアルミニウムを含んだ銀電極を印刷し、乾燥させた。この際、フィンガー電極19の長手方向Yが上記V溝又は谷溝12の稜線方向(溝線方向)Xと直交、即ち90度で交差するように印刷を行った。その後、所定の熱プロファイルにより焼成を行い、最終的な電極19,22とした。   Next, using a screen printing apparatus, a silver paste was applied to the back surface and dried. Further, on the surface side, a silver electrode containing aluminum was printed by a finger electrode pattern printing plate using a screen printing apparatus and dried. At this time, printing was performed so that the longitudinal direction Y of the finger electrode 19 was orthogonal to the ridge line direction (groove line direction) X of the V groove or the valley groove 12, that is, intersected at 90 degrees. Thereafter, firing was performed with a predetermined thermal profile, and final electrodes 19 and 22 were obtained.

作製した100枚の10cm角太陽電池を25℃の雰囲気の中、ソーラーシミュレータ(光強度:1kW/m2,スペクトル:AM1.5グローバル)の下で電流電圧特性を測定した。実施例1で作製した太陽電池の諸特性を表1に示す。 The current-voltage characteristics of 100 manufactured 10 cm square solar cells were measured in a 25 ° C. atmosphere under a solar simulator (light intensity: 1 kW / m 2 , spectrum: AM1.5 global). Table 1 shows the characteristics of the solar cell manufactured in Example 1.

(実施例2)
実施例1と同じグレードであって、その基板厚み方向を[110]方向に対し10度チルトさせたn型(110)基板を用いた以外は実施例1と同様にして太陽電池を作製し、その諸特性を表1にあわせて示した。
(Example 2)
A solar cell was produced in the same manner as in Example 1 except that an n-type (110) substrate having the same grade as Example 1 and having the substrate thickness direction tilted by 10 degrees with respect to the [110] direction was used. The characteristics are shown in Table 1.

(比較例1)
実施例1と同じグレードのn型(100)基板を用いた以外は実施例1と同様にして太陽電池を作製し、その諸特性を表1にあわせて示した。
(Comparative Example 1)
A solar cell was produced in the same manner as in Example 1 except that an n-type (100) substrate of the same grade as that in Example 1 was used.

Figure 2005327871
Figure 2005327871

実施例1では、表1に示すようにn型(110)基板を利用することにより同グレードのn型(100)基板を利用した太陽電池(比較例1)より高い変換効率を得ることができた。   In Example 1, as shown in Table 1, by using an n-type (110) substrate, higher conversion efficiency can be obtained than a solar cell using the same grade n-type (100) substrate (Comparative Example 1). It was.

これは[110]方向の移動度が高いため、拡散長が[111]方向と比較して長いことによる。図7にn型単結晶シリコン基板の移動度を電界を変化させてホール測定によって得た結果を示す。小数キャリヤライフタイムは[110]方向であろうと[111]方向であろうと大きな差はない。つまり、捕獲断面積の方向依存性は結晶シリコン内で小さい。しかし、励起した少数キャリヤがpn接合面に到達できるか否かは拡散長に依存しており、本発明の場合のように移動度が大きいと、太陽電池裏面近傍で生成した少数キャリヤが、より一層受光面近傍に形成したpn接合に到達できるため、発電量が増す。   This is because the mobility in the [110] direction is high and the diffusion length is longer than that in the [111] direction. FIG. 7 shows the results obtained by measuring the mobility of the n-type single crystal silicon substrate by changing the electric field. The decimal carrier lifetime is not significantly different whether in the [110] direction or the [111] direction. That is, the direction dependence of the capture cross section is small in crystalline silicon. However, whether or not the excited minority carriers can reach the pn junction depends on the diffusion length. If the mobility is large as in the present invention, the minority carriers generated near the back surface of the solar cell are more Since the pn junction formed near the light receiving surface can be reached, the amount of power generation is increased.

一般にキャリヤの拡散長L、拡散係数D、ライフタイムtの間には、下記式(1)の関係が成立する。   In general, the relationship of the following equation (1) is established among the carrier diffusion length L, the diffusion coefficient D, and the lifetime t.

Figure 2005327871
Figure 2005327871

一方、キャリヤの移動度をμとすると、Dとμの間にはアインシュタインの関係式が成立し、   On the other hand, if the carrier mobility is μ, Einstein's relational expression is established between D and μ,

Figure 2005327871
Figure 2005327871

と表すことが可能である。式(2)において、kはボルツマン定数、Tは絶対温度、qは電荷を示す。上記式(1)及び(2)より、 Can be expressed as In Equation (2), k is Boltzmann's constant, T is absolute temperature, and q is electric charge. From the above formulas (1) and (2),

Figure 2005327871
Figure 2005327871

となり、移動度μが高いほど、拡散長Lは長くなり、上記理論を満足させる。 Thus, the higher the mobility μ, the longer the diffusion length L, satisfying the above theory.

さらに、実施例2では基板厚み方向を[110]方向に10度チルトさせることにより、基板厚み方向を[110]方向にチルトさせない実施例1よりV溝面におけるシリコンから外部への透過率が低くなるので、太陽電池内部に取り込まれた光が外に漏れにくくなり、発電量を一層増加させることができる。   Furthermore, in Example 2, the substrate thickness direction is tilted by 10 degrees in the [110] direction, so that the transmittance from the silicon to the outside on the V groove surface is lower than in Example 1 in which the substrate thickness direction is not tilted in the [110] direction. Therefore, the light taken into the solar cell is less likely to leak to the outside, and the power generation amount can be further increased.

(実施例3〜7及び比較例2〜5)
基板厚み方向を[110]方向に対してチルトさせない基板に、{111}面によって構成された谷溝12の溝線方向Xとフィンガー電極19の長手方向Yとの交差角度を0度(比較例2)、30度(比較例3)、45度(実施例3)及び60度(実施例4)とした以外は実施例1と同様に太陽電池を作製した。さらに、基板厚み方向を[110]方向に対して10度チルトさせた基板に、{111}面によって構成された谷溝12の溝線方向Xとフィンガー電極19の長手方向Yとの交差角度を0度(比較例4)、30度(比較例5)、45度(実施例5)及び60度(実施例6)とした以外は実施例1と同様に太陽電池を作製した。そして、それぞれの太陽電池についてその特性平均値と歩留まりを、交差角度90度の実施例1及び実施例2の太陽電池についての数値とあわせて表2に示した。
(Examples 3-7 and Comparative Examples 2-5)
The crossing angle between the groove line direction X of the troughs 12 constituted by {111} planes and the longitudinal direction Y of the finger electrodes 19 is 0 degree (comparative example) on the substrate whose substrate thickness direction is not tilted with respect to the [110] direction. A solar cell was produced in the same manner as in Example 1 except that 2), 30 degrees (Comparative Example 3), 45 degrees (Example 3), and 60 degrees (Example 4). Furthermore, the crossing angle between the groove line direction X of the trough groove 12 constituted by the {111} plane and the longitudinal direction Y of the finger electrode 19 is set on the substrate whose substrate thickness direction is tilted by 10 degrees with respect to the [110] direction. A solar cell was produced in the same manner as in Example 1 except that the angle was 0 degrees (Comparative Example 4), 30 degrees (Comparative Example 5), 45 degrees (Example 5), and 60 degrees (Example 6). The characteristic average values and yields of the respective solar cells are shown in Table 2 together with the numerical values of the solar cells of Example 1 and Example 2 having an intersection angle of 90 degrees.

Figure 2005327871
Figure 2005327871

表2に示すように、フィンガー電極の長手方向Yと{111}面によって構成される谷溝の溝線方向Xとの交差角度を90度に近づけることにより、歩留まりを向上させることが出来た。それと共に、エミッタ層内の実効的な電流経路を短縮することによって抵抗損を減らすことが出来、結果的により変換効率の高い太陽電池が得ることが出来た。さらに、基板厚み方向を[110]方向に10度チルトさせた基板を用いることにより、より一層変換効率の高い太陽電池とすることが可能となる。なお、基板厚み方向を[110]方向に0度を超え10度未満の角度でチルトさせた基板についても同様の実験を行い、10度チルトさせた場合と同様に変換効率の向上した太陽電池を得ることができることを確認した。   As shown in Table 2, the yield could be improved by bringing the intersection angle between the longitudinal direction Y of the finger electrode and the groove line direction X of the trough constituted by the {111} planes to 90 degrees. At the same time, resistance loss can be reduced by shortening the effective current path in the emitter layer, and as a result, a solar cell with higher conversion efficiency can be obtained. Furthermore, by using a substrate whose substrate thickness direction is tilted by 10 degrees in the [110] direction, a solar cell with even higher conversion efficiency can be obtained. The same experiment was performed on the substrate whose substrate thickness direction was tilted at an angle of more than 0 degrees and less than 10 degrees in the [110] direction, and a solar cell with improved conversion efficiency was obtained as in the case of tilting by 10 degrees. Confirmed that it can be obtained.

本発明に係る太陽電池の一つの実施の形態を模式的に示す斜視説明図である。1 is a perspective explanatory view schematically showing one embodiment of a solar cell according to the present invention. 本発明方法の工程順の一例を示すフローチャートである。It is a flowchart which shows an example of the process order of this invention method. 従来の太陽電池の一つの構造例を示す図である。It is a figure which shows one structural example of the conventional solar cell. 結晶太陽電池における谷溝構造の一例を示す説明図である。It is explanatory drawing which shows an example of the trough structure in a crystalline solar cell. 表面が谷溝構造及び裏面がフラットな構造を有する太陽電池における光の一経路を示す説明図で、(a)は、基板厚み方向が[110]方向に対して0度の基板の場合、(b)は基板厚み方向を[110]方向に対してチルトさせた基板の場合をそれぞれ示す。It is explanatory drawing which shows one path | route of the light in the solar cell which has a trough structure on the surface and a structure where the back surface is flat, (a) is a board | substrate whose substrate thickness direction is 0 degree | times with respect to a [110] direction, b) shows the case of the substrate in which the substrate thickness direction is tilted with respect to the [110] direction. 結晶太陽電池における反射防止構造(ランダムテクスチャ)の一例を示す説明図である。It is explanatory drawing which shows an example of the antireflection structure (random texture) in a crystalline solar cell. n型単結晶シリコンの(110)基板及び(100)基板における結晶軸方向に対する移動度の大きさを示すグラフである。It is a graph which shows the magnitude | size of the mobility with respect to the crystal-axis direction in the (110) board | substrate of a n-type single crystal silicon, and a (100) board | substrate.

符号の説明Explanation of symbols

10A:本発明の太陽電池、10B:従来構造の太陽電池、11:基板(n型シリコン)、12:谷溝、12a:V溝面、14:エミッタ層(高濃度p型拡散層)、14a,14b:エミッタ層内電流経路,16:絶縁膜(窒化膜)、18:フィンガー電極、20:BSF層(高濃度n型拡散層)、22:裏面電極、24:入射光、26:出射光。   10A: Solar cell of the present invention, 10B: Solar cell of conventional structure, 11: Substrate (n-type silicon), 12: Valley groove, 12a: V-groove surface, 14: Emitter layer (high concentration p-type diffusion layer), 14a , 14b: current path in the emitter layer, 16: insulating film (nitride film), 18: finger electrode, 20: BSF layer (high concentration n-type diffusion layer), 22: back electrode, 24: incident light, 26: outgoing light .

Claims (4)

基板厚み方向が[110]方向でありかつ基板上面に{111}面によって構成された谷溝を有する第一導電型(110)基板と、前記基板の上面に設けられた第二導電型エミッタ層と、前記エミッタ層の上面に形成されたフィンガー電極とを有し、前記フィンガー電極の長手方向と前記谷溝の溝線方向とが45度以上90度以下の角度で交差するようにしたことを特徴とする太陽電池。   A first conductivity type (110) substrate having a [110] direction in the substrate thickness direction and having a trough formed by {111} planes on the upper surface of the substrate, and a second conductivity type emitter layer provided on the upper surface of the substrate And a finger electrode formed on the upper surface of the emitter layer, and the longitudinal direction of the finger electrode and the groove line direction of the valley groove intersect at an angle of 45 degrees or more and 90 degrees or less. Solar cell featuring. 基板厚み方向が[110]方向に対して、0度を超え10度以下の角度で設定されておりかつ基板上面に{111}面によって構成された谷溝を有する第一導電型(110)基板と、前記基板の上面に設けられた第二導電型エミッタ層と、前記エミッタ層の上面に形成されたフィンガー電極とを有し、前記フィンガー電極の長手方向と前記谷溝の溝線方向とが45度以上90度以下の角度で交差するようにしたことを特徴とする太陽電池。   1st conductivity type (110) board | substrate which has the trough groove | channel comprised by the angle of more than 0 degree | times and below 10 degree | times with respect to the [110] direction, and the board | substrate thickness direction comprised by the {111} surface on the board | substrate upper surface And a second conductivity type emitter layer provided on the upper surface of the substrate, and a finger electrode formed on the upper surface of the emitter layer, wherein the longitudinal direction of the finger electrode and the groove line direction of the valley groove are A solar cell characterized by intersecting at an angle of 45 degrees or more and 90 degrees or less. 前記第一導電型基板がn型基板であることを特徴とする請求項1又は2記載の太陽電池。   The solar cell according to claim 1 or 2, wherein the first conductivity type substrate is an n-type substrate. 基板厚み方向が[110]方向に対して0度以上10度以下の角度で設定された第一導電型基板を用意する工程と、前記基板の少なくとも片方の面にエッチングマスクを形成する工程と、前記エッチングマスクを
Figure 2005327871
方向又は[001]方向に削って谷溝を形成する工程と、前記基板の上面に第二導電型エミッタ層を形成する工程と、前記エミッタ層の上面に前記谷溝の溝線方向と45度以上90度以下の角度で交差するフィンガー電極を形成する工程とを含むことを特徴とする太陽電池の製造方法。
Providing a first conductivity type substrate in which the substrate thickness direction is set at an angle of 0 degrees to 10 degrees with respect to the [110] direction; and forming an etching mask on at least one surface of the substrate; The etching mask
Figure 2005327871
Forming a valley groove by cutting in the direction or [001] direction, forming a second conductivity type emitter layer on the upper surface of the substrate, and 45 degree to the groove line direction of the valley groove on the upper surface of the emitter layer. And a step of forming finger electrodes intersecting at an angle of 90 degrees or less.
JP2004143986A 2004-05-13 2004-05-13 Solar battery and its manufacturing method Pending JP2005327871A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004143986A JP2005327871A (en) 2004-05-13 2004-05-13 Solar battery and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004143986A JP2005327871A (en) 2004-05-13 2004-05-13 Solar battery and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2005327871A true JP2005327871A (en) 2005-11-24

Family

ID=35473972

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004143986A Pending JP2005327871A (en) 2004-05-13 2004-05-13 Solar battery and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2005327871A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011142210A (en) * 2010-01-07 2011-07-21 Sharp Corp Solar cell and method of manufacturing the same
KR101223033B1 (en) 2011-07-29 2013-01-17 엘지전자 주식회사 Solar cell
EP2626914A2 (en) 2012-02-10 2013-08-14 Shin-Etsu Chemical Co., Ltd. Solar Cell and Method of Manufacturing the Same
WO2014075060A1 (en) * 2012-11-12 2014-05-15 The Board Of Trustees Of The Leland Stanford Junior Univerisity Nanostructured window layer in solar cells

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6373954U (en) * 1986-10-31 1988-05-17
JPH05235385A (en) * 1992-02-21 1993-09-10 Sharp Corp Silicon solar cell
JPH0794764A (en) * 1993-09-20 1995-04-07 Sharp Corp Photoelectric converter apparatus
JPH07193263A (en) * 1993-12-27 1995-07-28 Sharp Corp Manufacture of solar battery
JP2002217433A (en) * 2001-01-18 2002-08-02 Sharp Corp Semiconductor device
JP2002305313A (en) * 2001-01-31 2002-10-18 Shin Etsu Handotai Co Ltd Solar battery
JP2003142708A (en) * 2001-10-31 2003-05-16 Sony Corp Method for manufacturing single-crystal semiconductor thin film and method for manufacturing thin film semiconductor element
WO2003075363A1 (en) * 2002-03-06 2003-09-12 Sharp Kabushiki Kaisha Photoelectric converting device and its production method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6373954U (en) * 1986-10-31 1988-05-17
JPH05235385A (en) * 1992-02-21 1993-09-10 Sharp Corp Silicon solar cell
JPH0794764A (en) * 1993-09-20 1995-04-07 Sharp Corp Photoelectric converter apparatus
JPH07193263A (en) * 1993-12-27 1995-07-28 Sharp Corp Manufacture of solar battery
JP2002217433A (en) * 2001-01-18 2002-08-02 Sharp Corp Semiconductor device
JP2002305313A (en) * 2001-01-31 2002-10-18 Shin Etsu Handotai Co Ltd Solar battery
JP2003142708A (en) * 2001-10-31 2003-05-16 Sony Corp Method for manufacturing single-crystal semiconductor thin film and method for manufacturing thin film semiconductor element
WO2003075363A1 (en) * 2002-03-06 2003-09-12 Sharp Kabushiki Kaisha Photoelectric converting device and its production method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011142210A (en) * 2010-01-07 2011-07-21 Sharp Corp Solar cell and method of manufacturing the same
KR101223033B1 (en) 2011-07-29 2013-01-17 엘지전자 주식회사 Solar cell
US9166082B2 (en) 2011-07-29 2015-10-20 Lg Electronics Inc. Solar cell
US9412885B2 (en) 2011-07-29 2016-08-09 Lg Electronics Inc. Solar cell
EP2626914A2 (en) 2012-02-10 2013-08-14 Shin-Etsu Chemical Co., Ltd. Solar Cell and Method of Manufacturing the Same
KR20130092494A (en) 2012-02-10 2013-08-20 신에쓰 가가꾸 고교 가부시끼가이샤 Solar cell and method of manufacturing the same
US9871156B2 (en) 2012-02-10 2018-01-16 Shin-Etsu Chemical Co., Ltd. Solar cell and method of manufacturing the same
EP3712968A1 (en) 2012-02-10 2020-09-23 Shin-Etsu Chemical Co., Ltd. Solar cell manufacturing method
WO2014075060A1 (en) * 2012-11-12 2014-05-15 The Board Of Trustees Of The Leland Stanford Junior Univerisity Nanostructured window layer in solar cells

Similar Documents

Publication Publication Date Title
JP2593063B2 (en) Laser grooved solar cell
JP5868503B2 (en) Solar cell and method for manufacturing the same
KR101561682B1 (en) Deep grooved rear contact photovoltaic solar cells
EP1876650A1 (en) Solar cell manufacturing method and solar cell
EP2413374B1 (en) Method for roughening substrate surface and method for manufacturing photovoltaic device
JP5963999B1 (en) Solar cell manufacturing method and solar cell
EP3425682A1 (en) Front contact solar cell with backside poly-crystalline silicon emitter
JP2010521824A (en) Solar cell
US20090038682A1 (en) Semiconductor substrate for solar cell, method for manufacturing the same, and solar cell
JP2004235274A (en) Polycrystalline silicon substrate and method of roughing its surface
JP6091458B2 (en) Photoelectric conversion device and manufacturing method thereof
JP6525583B2 (en) Solar cell element and solar cell module
KR101659451B1 (en) Solar cell and manufacturing method thereof
JP6144778B2 (en) Manufacturing method of solar cell
JP5408022B2 (en) Solar cell and manufacturing method thereof
JP2006286673A (en) Photovoltaic power apparatus and method of manufacturing it
TWI401810B (en) Solar cell
JP2002270869A (en) Solar battery
JP2014229826A (en) Manufacturing method of solar cell element and solar cell element
TWI535041B (en) Light power device and its manufacturing method, light from the power module
JP6114171B2 (en) Manufacturing method of solar cell
JP2005327871A (en) Solar battery and its manufacturing method
JP2011035101A (en) Solar cell and manufacturing method thereof
US7994064B2 (en) Selective etch for damage at exfoliated surface
JPWO2011132340A1 (en) Method for manufacturing low-reflection substrate and method for manufacturing photovoltaic device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070123

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090908

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090911

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100921

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110128