JP2005327765A - Support structure of electromagnetic coil - Google Patents

Support structure of electromagnetic coil Download PDF

Info

Publication number
JP2005327765A
JP2005327765A JP2004141842A JP2004141842A JP2005327765A JP 2005327765 A JP2005327765 A JP 2005327765A JP 2004141842 A JP2004141842 A JP 2004141842A JP 2004141842 A JP2004141842 A JP 2004141842A JP 2005327765 A JP2005327765 A JP 2005327765A
Authority
JP
Japan
Prior art keywords
reaction force
electromagnetic coil
spacer
lip
coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004141842A
Other languages
Japanese (ja)
Inventor
Eizo Hayashi
英象 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nok Corp
Original Assignee
Nok Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nok Corp filed Critical Nok Corp
Priority to JP2004141842A priority Critical patent/JP2005327765A/en
Publication of JP2005327765A publication Critical patent/JP2005327765A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Magnetically Actuated Valves (AREA)
  • Electromagnets (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide the support structure of an electromagnetic coil that stably supports a coil 2 by providing a spacer 31 made of rubber-like elastic substance in a clearance 3 between the inner face 1a for housing an electrogamgentic coil such as a solenoid valve or the like and the coil 2, and delays changing of the reaction force production manner of the spacer to a compressed reaction force from a lip bending reaction force so as to minimize the maximum reaction force produced as a result. <P>SOLUTION: The spacer 31 is provided with bending deformable lips 32 and 34 around the inner and outer circumferences thereof respectively, and it is formed flat and elastically deformable as a whole. When an axial-direction clearance 3 is comparatively large, the spacer 31 presses and supports the electromagnetic coil 2 by a reaction force accompanied with the bending deformation of the lips 32 and 34, while the axial-direction clearance 3 is comparatively small, the spacer 31 is flatly and elastically deformed as a whole, and presses and supports the electromagnetic coil 2 by a reaction force accompanied with the compression deformation. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、電磁弁等の電磁装置内において電磁コイルを安定良く支持するための電磁コイルの支持構造に関するものである。   The present invention relates to an electromagnetic coil support structure for stably supporting an electromagnetic coil in an electromagnetic device such as an electromagnetic valve.

例えば、ABS(アンチロック・ブレーキ・システム)に搭載する車両液圧ユニットに組み付けられる電磁弁においては、複数の部品が組み付けられて構成されることから、電磁コイル収容空間の軸方向幅にバラツキが発生し、電磁コイル収容空間の内面と電磁コイルとの間に軸方向間隙が発生している。また、この軸方向間隙の大きさについても実寸上0.4〜1.2mm(0.8mmの差)程度の範囲にてバラツキが発生している。尚、軸方向は、電磁コイルの中心軸線方向である。   For example, in an electromagnetic valve assembled in a vehicle hydraulic unit mounted on an ABS (anti-lock brake system), since a plurality of parts are assembled, the axial width of the electromagnetic coil housing space varies. An axial gap is generated between the inner surface of the electromagnetic coil housing space and the electromagnetic coil. Further, the size of the gap in the axial direction also varies in the actual range of about 0.4 to 1.2 mm (difference of 0.8 mm). The axial direction is the central axial direction of the electromagnetic coil.

そのため、従来から、この軸方向間隙にゴム状弾性体よりなるスペーサーを介装することによって上記バラツキを吸収し、電磁コイルを安定支持することが行なわれているが、スペーサーには、バラツキ範囲内におけるどの寸法においても電磁コイルを支持するための最低反力を維持しつつ、圧縮時の最大反力はコイルハウジングや電磁コイルを破損させないよう可及的に小さく設定することが要求される。特に最近ではコイルハウジングの樹脂化に伴う強度の低下傾向が見られることから、圧縮時の最大反力を小さくするという要求が益々強くなってきている。   For this reason, conventionally, a spacer made of a rubber-like elastic body is interposed in the axial gap to absorb the variation and stably support the electromagnetic coil. However, the spacer is within the variation range. It is required to set the maximum reaction force at the time of compression as small as possible so as not to damage the coil housing and the electromagnetic coil while maintaining the minimum reaction force for supporting the electromagnetic coil in any of the dimensions. In particular, recently, since the tendency of the strength to decrease with the resinization of the coil housing is seen, there is an increasing demand for reducing the maximum reaction force during compression.

図4に示すように、スペーサーとして、先ずは単純に、断面O字状を呈するスクィーズ状のゴムリング(Oリング)11を用いることが考えられる。すなわち電磁弁における電磁コイル収容空間1に電磁コイル2を収容し、このとき収容空間1の内面1aと電磁コイル2との間に発生する軸方向間隙3にOリング11を介装し、このOリング11の圧縮変形に伴う反力(圧縮反力)によって電磁コイル2を収容空間1の反対側の内面1bに押し付けることにより、電磁コイル2に発生するガタツキを防止する。この場合、Oリング11の自由状態における軸方向幅wを内面1aおよび電磁コイル2間の軸方向間隙3の最大値Dmaxよりも大きく設定することにより、上記最低反力が確保される。 As shown in FIG. 4, it is conceivable to first use a squeeze-shaped rubber ring (O-ring) 11 having an O-shaped cross section as a spacer. That is, the electromagnetic coil 2 is accommodated in the electromagnetic coil accommodating space 1 of the electromagnetic valve, and an O-ring 11 is interposed in the axial gap 3 generated between the inner surface 1a of the accommodating space 1 and the electromagnetic coil 2 at this time. By pressing the electromagnetic coil 2 against the inner surface 1b on the opposite side of the accommodation space 1 by the reaction force (compression reaction force) accompanying the compression deformation of the ring 11, rattling generated in the electromagnetic coil 2 is prevented. In this case, the minimum reaction force is ensured by setting the axial width w 1 in the free state of the O-ring 11 to be larger than the maximum value D max of the axial gap 3 between the inner surface 1 a and the electromagnetic coil 2.

しかしながら、このようにスペーサーとしてスクィーズ状のOリング11を用いる場合には、図5に示すように軸方向間隙3の寸法Dが小さいときに、Oリング11が大きく圧縮変形せしめられることから、その圧縮量が極端に大きくなり、結果、反力が過大となってコイルハウジング4や電磁コイル2に破損が生じたり、あるいは圧縮量が過大となってOリング11に圧縮割れが生じたりすることがある。 However, in case of using the squeeze-like O-ring 11 as the spacer, since the when the dimension D 1 of the axial gap 3 is small as shown in FIG. 5, the O-ring 11 is made to large compressive deformation, The compression amount becomes extremely large, and as a result, the reaction force becomes excessive and the coil housing 4 and the electromagnetic coil 2 are damaged, or the compression amount is excessive and the O-ring 11 is compressed and cracked. There is.

また、図6(A)および(B)に示すように、スペーサーとして、断面X字状を呈するゴムリング(Xリング)21を用いることが考えられる。Xリング21はその名のとおり軸方向一方の内外周および軸方向他方の内外周にそれぞれリップ22,23を設けたものであって、これら4つのリップ22,23の屈曲変形に伴う反力(屈曲反力)によって電磁コイル2を収容空間1の反対側の内面(図示せず)に押し付け、これにより電磁コイル2に発生するガタツキを防止する。   As shown in FIGS. 6A and 6B, it is conceivable to use a rubber ring (X ring) 21 having an X-shaped cross section as a spacer. As the name suggests, the X ring 21 is provided with lips 22 and 23 on one inner and outer periphery in the axial direction and on the other inner and outer periphery in the axial direction, respectively. The electromagnetic coil 2 is pressed against the inner surface (not shown) on the opposite side of the accommodation space 1 by a bending reaction force, thereby preventing backlash generated in the electromagnetic coil 2.

しかしながら、このようにスペーサーとして4つのリップ22,23を有するXリング21を用いる場合には、図6(B)の状態を超えて、図7に示すように軸方向双方のリップ22,23が完全に閉じた状態から更に圧縮されるときに反力の発生態様が上記屈曲反力から上記圧縮反力へと切り替わり、このとき反力の大きさが急激に増大する。したがって、このXリング21でも圧縮時の最大反力を小さくするという要求を十分に満足することができず、よってOリング11の場合と同様の問題が生じる虞がある。また、Xリング21において、圧縮反力に切り替わるのを遅らせるべくリップ22,23の肉厚を薄くすることが考えられるが、電磁弁等に用いられる都合上、部品自体がもともと極小であるので、成形上肉厚を薄くするには限界がある。また、ゴム硬度をHs40程度以下にまで低くすることによって対応しようとすると、最低必要反力が足りなくなるので、ゴム厚を厚くしなければならず、結果、圧縮反力に切り替わる時期が早くなり、よって反力過大となる(要求反力の上限側および下限側の双方において益々不利に働く)。   However, when the X-ring 21 having the four lips 22 and 23 is used as a spacer in this way, the lips 22 and 23 in both the axial directions exceed the state of FIG. When further compression is performed from the completely closed state, the reaction force generation mode is switched from the bending reaction force to the compression reaction force, and at this time, the magnitude of the reaction force rapidly increases. Therefore, even this X-ring 21 cannot sufficiently satisfy the requirement for reducing the maximum reaction force during compression, and thus there is a possibility that the same problem as in the case of the O-ring 11 may occur. Further, in the X ring 21, it is conceivable to reduce the wall thickness of the lips 22 and 23 so as to delay the switching to the compression reaction force. However, because the parts themselves are originally extremely small for convenience of use for electromagnetic valves, There is a limit to reducing the wall thickness in terms of molding. In addition, when trying to cope by lowering the rubber hardness to about Hs40 or less, since the minimum necessary reaction force is insufficient, the rubber thickness must be increased, and as a result, the time to switch to the compression reaction force becomes earlier, Therefore, the reaction force becomes excessive (works more and more disadvantageously on both the upper limit side and the lower limit side of the required reaction force).

尚、本願に対する他の従来技術として、特開平8−54080号公報に掲載されているように、ハウジングおよび電磁コイル間にシリコーンゴムよりなるブッシュを介装したり、あるいは特開平11−43031号公報に掲載されているように、ハウジングおよび電磁コイル間に弾性体を介装したりするものが見受けられるが、これらのブッシュや弾性体は何れもリップを有しておらず、よって上記スクィーズ状のOリングに相当するものであるに過ぎない。   As another conventional technique for this application, as disclosed in Japanese Patent Laid-Open No. 8-54080, a bush made of silicone rubber is interposed between the housing and the electromagnetic coil, or Japanese Patent Laid-Open No. 11-43031. However, none of these bushes or elastic bodies have a lip, and thus the squeeze-like shape is not shown. It is only equivalent to an O-ring.

特開平8−54080号公報JP-A-8-54080 特開平11−43031号公報JP 11-43031 A

本発明は以上の点に鑑みて、スペーサーにおける反力の発生態様がリップの屈曲変形によるもの(屈曲反力)から圧縮変形によるもの(圧縮反力)に切り替わるのを従来よりも遅くすることができ、もって切り替え後の圧縮量によって定められる最大反力の大きさを従来よりも小さく設定することができる電磁コイルの支持構造を提供することを目的とする。   In view of the above, the present invention makes it possible to make the generation of the reaction force in the spacer slower than before by switching from the lip bending deformation (bending reaction force) to the compression deformation (compression reaction force). Therefore, an object of the present invention is to provide an electromagnetic coil support structure in which the magnitude of the maximum reaction force determined by the compression amount after switching can be set smaller than that of the conventional one.

上記目的を達成するため、本発明の電磁コイルの支持構造は、電磁弁等の電磁コイルを有する装置における電磁コイル収容空間に電磁コイルを収容し、前記収容空間の内面および前記電磁コイル間の軸方向間隙にゴム状弾性体よりなるスペーサーを介装することにより前記電磁コイルを安定支持する電磁コイルの支持構造において、前記スペーサーは、屈曲変形可能なリップを内外周に一つずつ有するとともに全体として扁平状に弾性変形可能な形状とされており、前記軸方向間隙が比較的大きなときには前記リップの屈曲変形に伴う反力により前記電磁コイルを押圧支持し、前記軸方向間隙が比較的小さなときには前記スペーサーが全体として扁平状に弾性変形してその圧縮変形に伴う反力により前記電磁コイルを押圧支持することを特徴とするものである。   In order to achieve the above object, the electromagnetic coil support structure of the present invention accommodates an electromagnetic coil in an electromagnetic coil accommodating space in an apparatus having an electromagnetic coil such as an electromagnetic valve, and an inner surface of the accommodating space and a shaft between the electromagnetic coils. In the electromagnetic coil support structure that stably supports the electromagnetic coil by interposing a spacer made of a rubber-like elastic body in the direction gap, the spacer has one lip that can be bent and deformed on the inner and outer circumferences as a whole. The electromagnetic coil is pressed and supported by a reaction force accompanying bending deformation of the lip when the axial gap is relatively large, and when the axial gap is relatively small The spacer is elastically deformed into a flat shape as a whole, and the electromagnetic coil is pressed and supported by a reaction force accompanying the compression deformation. It is intended to.

上記従来技術に係る図6のXリング21において、反力の発生態様が屈曲反力から圧縮反力に切り替わるのが比較的早かったのは、図6(B)に示したように軸方向両側のリップ22,23が閉じ合わさったときに圧縮反力に切り替わっていたからであって、すなわち軸方向間隙3の寸法Dがリップ22,23二つ分の厚みよりも小さな場合に圧縮反力に切り替わっていたからである。これに対して、上記構成を備えた本発明の支持構造においては、スペーサーが、屈曲変形可能なリップを内外周に一つずつ有するとともに全体として扁平状に弾性変形可能な形状とされているために、軸方向間隙の大きさがリップ一つ分の厚みまたはそれに近付いたときに限って反力の発生態様が圧縮反力に切り替えられる。したがって、Xリングでは既に切り替えられるのに本発明によれば未だ切り替えられないという事態が発生することから、この分、圧縮反力に切り替わるのを従来よりも遅くすることができ、よって切り替え後の圧縮量によって定められる最大反力の大きさを従来よりも小さく設定することが可能となる。圧縮反力への切り替えが遅くなれば、その後の圧縮量が少なくて済むからである。 In the X-ring 21 of FIG. 6 according to the above prior art, the reaction force generation mode was switched relatively quickly from the bending reaction force to the compression reaction force as shown in FIG. 6B. a because had switched to compression reaction force when the lip 22 and 23 together to close, i.e. the dimension D 2 of the axial gap 3 is switched to the compression reaction force when smaller than the thickness of the lip 22, 23 two minutes Because it was. On the other hand, in the support structure of the present invention having the above-described configuration, the spacer has one lip that can be bent and deformed on the inner and outer circumferences, and has a shape that can be elastically deformed in a flat shape as a whole. In addition, the reaction force generation mode is switched to the compression reaction force only when the size of the gap in the axial direction approaches the thickness of one lip or approaches it. Therefore, since the situation that the X ring is already switched but cannot be switched according to the present invention, the switching to the compression reaction force can be made slower than that in the prior art. The magnitude of the maximum reaction force determined by the amount of compression can be set smaller than in the past. This is because if the switching to the compression reaction force is delayed, the amount of subsequent compression can be reduced.

本発明は、以下の効果を奏する。   The present invention has the following effects.

すなわち、本発明の支持構造においては、上記構成および作用により、軸方向間隙の大きさがリップ一つ分の厚みまたはそれに近付いたときに限って反力の発生態様が屈曲反力から圧縮反力に切り替えられ、圧縮反力への切り替えが従来よりも遅くなることから、切り替え後の圧縮量によって定められる最大反力の大きさを従来よりも小さく設定することができる。したがって、発生する反力が過大となって破損事故が発生するのを有効に防止することができる。   That is, in the support structure of the present invention, due to the above configuration and operation, the reaction force is generated from the bending reaction force to the compression reaction force only when the size of the axial gap approaches the thickness of one lip or approaches it. Since the switching to the compression reaction force is slower than in the prior art, the magnitude of the maximum reaction force determined by the compression amount after the switching can be set smaller than in the past. Therefore, it is possible to effectively prevent the occurrence of damage due to excessive reaction force.

上記したように本発明によれば、軸方向間隙に介装されるスペーサーは、屈曲変形可能なリップを内外周に一つずつ有するとともに全体として扁平状に弾性変形することが可能な形状とされるが、具体的には例えば、断面U字形、V字形または凹字形等とするのが好適である。   As described above, according to the present invention, the spacer interposed in the axial gap has one lip that can be bent and deformed on the inner and outer peripheries and can be elastically deformed into a flat shape as a whole. Specifically, for example, it is preferable to have a U-shaped section, a V-shaped shape, a recessed shape, or the like.

また、本発明は、以下の内容を含むものである。
構成)スペーサーの断面形状について、従来リップが上下に向いていた2部構成であったのを、片側にのみの1部とする(U型、逆U型、V型、逆V型、凹型、逆凹型などが全て含まれる)。特に、断面形状はU字のリップ形状のゴムリングとするのが好ましい。
効果)上記構成によれば、圧縮反力に切り替わるのを遅らすことができるため、間隙の寸法のばらつき範囲が大きい場合においても、最低反力の確保および最大反力の低減化を実現できる。
Further, the present invention includes the following contents.
Configuration) Regarding the cross-sectional shape of the spacer, the conventional two-part configuration with the lip facing up and down is only one part on one side (U type, reverse U type, V type, reverse V type, concave type, All reverse concave types are included). In particular, the cross-sectional shape is preferably a U-shaped lip-shaped rubber ring.
(Effect) According to the above configuration, the switching to the compression reaction force can be delayed, so that the minimum reaction force can be ensured and the maximum reaction force can be reduced even when the gap variation range is large.

つぎに本発明の実施例を図面にしたがって説明する。   Next, embodiments of the present invention will be described with reference to the drawings.

図1は、本発明の実施例を示しており、すなわち図1(A)は本発明の実施例に係る支持構造に用いるスペーサー(緩衝ゴムまたはゴムリングとも称する)31の自由状態における半裁断面図、図1(B)はこのスペーサー31を装着して電磁コイル2を支持した状態の説明図をそれぞれ示している。   FIG. 1 shows an embodiment of the present invention, that is, FIG. 1A is a half-sectional view in a free state of a spacer (also referred to as a buffer rubber or a rubber ring) 31 used in a support structure according to an embodiment of the present invention. FIG. 1B shows an explanatory diagram of a state in which the spacer 31 is mounted and the electromagnetic coil 2 is supported.

すなわち、当該実施例に係る支持構造は、電磁弁における電磁コイル収容空間1に電磁コイル2を収容し、このとき収容空間1の内面1aと電磁コイル2との間に発生する軸方向間隙3にゴム状弾性体よりなる環状のスペーサー31を介装し、このスペーサー31の弾性によって電磁コイル2を収容空間1の反対側の内面(図示せず)に押し付けることにより電磁コイル2に発生するガタツキを防止するものであって、上記スペーサー31として、屈曲変形可能なリップ32,34を内外周に一つずつ有し、軸方向荷重が作用したときに全体として扁平状に弾性変形することが可能であり、その厚み寸法Eを径方向全長に亙ってリップ32,34の厚みE以下の寸法に形成されたものを用い、軸方向間隙3の大きさDがリップ32,34の厚みE以上であるときにはリップ32,34の屈曲変形に伴う反力(屈曲反力ないし屈曲弾性)により電磁コイル2を押圧支持するとともに、軸方向間隙3の大きさがリップ32,34の厚みEよりも小さなときには当該スペーサー31の圧縮変形に伴う反力(圧縮反力ないし圧縮弾性)により電磁コイル2を押圧支持するように構成されている。 That is, the support structure according to the embodiment accommodates the electromagnetic coil 2 in the electromagnetic coil housing space 1 of the electromagnetic valve, and the axial gap 3 generated between the inner surface 1a of the housing space 1 and the electromagnetic coil 2 at this time. An annular spacer 31 made of a rubber-like elastic body is interposed, and the electromagnetic coil 2 is pressed against the inner surface (not shown) on the opposite side of the accommodation space 1 by the elasticity of the spacer 31, thereby causing a backlash generated in the electromagnetic coil 2. The spacer 31 has one lip 32, 34 that can be bent and deformed on the inner and outer circumferences, and can be elastically deformed in a flat shape as a whole when an axial load is applied. There, with those formed in the dimension in the thickness E 2 following the lip 32 over its thickness E 1 in the radial direction the entire length, the size D 3 of the axial gap 3 is lip 32, The electromagnetic coil 2 as well as pressed and supported by the reaction force due to the bending deformation of the lip 32, 34 when it is 4 in the thickness E 2 or more (bending reaction force to the bending elasticity), the size of the axial gap 3 lip 32 When the thickness is smaller than the thickness E 2, the electromagnetic coil 2 is configured to be pressed and supported by a reaction force (compression reaction force or compression elasticity) accompanying compression deformation of the spacer 31.

また、当該実施例において、スペーサー31は、図1(A)に示すように所定のゴム状弾性体を成形材料として環状に成形され、外周リップ32、反転部(基部とも称する)33および内周リップ34を一体に有して断面略U字形ないし略V字形に形成されている。スペーサー31の成形材料としては、電磁弁の使用環境として温度範囲は広く油水は使われないことから、シリコーンゴム等が適している。また、スペーサー31の厚み寸法Eは、その径方向全長すなわち外周リップ32の先端部から反転部33を巡って内周リップ34の先端部に至るまで全て均一とされ、したがって全てリップ32,34の厚み寸法Eと同じとされているが、当該スペーサー31の機能ないし作用からすれば、リップ32,34以外の部位(屈曲部33)の厚み寸法はリップ32,34の厚み寸法Eより小さく形成されていても良い。また反対に、最低反力を確保する必要から、リップ32,34以外の部位の厚み寸法がリップ32,34の厚み寸法Eより若干大きく形成される場合もある。また、スペーサー31全体の自由状態における軸方向幅wおよびリップ32,34の自由状態における軸方向高さhは何れもリップ32,34の厚み寸法Eないしスペーサー31の厚み寸法Eよりも大きく設定され、図では随分と大きく設定されている。また、外周リップ32および内周リップ34は互いに同じ厚みEおよび軸方向高さhとされている。 In this embodiment, as shown in FIG. 1A, the spacer 31 is formed into a ring shape using a predetermined rubber-like elastic body as a molding material, and has an outer peripheral lip 32, an inversion portion (also referred to as a base portion) 33, and an inner peripheral portion. The lip 34 is integrally formed to have a substantially U-shaped or substantially V-shaped cross section. As a molding material for the spacer 31, silicone rubber or the like is suitable because the temperature range is wide as the use environment of the solenoid valve and oil water is not used. Furthermore, the thickness E 1 of the spacer 31 are all uniform up to the distal end portion of the inner peripheral lip 34 around the reversing portion 33 from the tip of the radial entire length i.e. the outer peripheral lip 32 and thus all the lip 32 of has been the same as the thickness dimension E 2, if the function or effect of the spacer 31, the thickness of the portion other than the lip 32, 34 (bending portion 33) than the thickness E 2 of the lip 32 It may be formed small. On the contrary, the need to ensure a minimum reaction force, there is a case where the thickness dimension of the portion other than the lip 32, 34 is slightly larger than the thickness E 2 of the lips 32, 34. The axial width w 2 in the free state of the entire spacer 31 and the axial height h 1 in the free state of the lips 32 and 34 are both from the thickness dimension E 2 of the lips 32 and 34 or the thickness dimension E 1 of the spacer 31. Is also set large, and in the figure it is set quite large. The outer peripheral lip 32 and the inner peripheral lip 34 are mutually the same thickness E 2 and the axial height h 1.

したがって、図1(A)の自由状態のスペーサー31に軸方向荷重が作用すると、スペーサー31は徐々に押し潰されてゆき、外周リップ32は徐々に径方向外方を向き、内周リップ34は徐々に径方向内方を向き、両リップ32,34のなす角度が徐々に大きくなって、遂には偏平状すなわち一枚の平板状となり、それまでリップ32,34の屈曲変形による反力が発生する状況であったのが以後、圧縮反力が発生する状況となる。   Therefore, when an axial load acts on the spacer 31 in the free state of FIG. 1A, the spacer 31 is gradually crushed, the outer peripheral lip 32 gradually faces radially outward, and the inner peripheral lip 34 Gradually inward in the radial direction, the angle formed by the lips 32 and 34 gradually increases, and finally becomes a flat shape, that is, a single flat plate shape. After that, the situation where the compression reaction force is generated is the situation where this occurs.

上記構成の支持構造においては、上記したようにスペーサー31として、屈曲変形可能なリップ32,34を内外周に一つずつ有し、軸方向荷重が作用したときに全体として扁平状に弾性変形し、厚み寸法Eを径方向全長に亙ってリップ32,34の厚みE以下の寸法に形成されたものを用いるために、軸方向間隙3の大きさがリップ32,34一つ分の厚みEよりも小さな場合に限って反力の発生態様が圧縮反力に切り替えられる。したがって、Xリングでは既に切り替えられるのに本発明によれば未だ切り替えられないという事態が発生することから、この分、圧縮反力に切り替わるのを従来よりも遅くすることができ、よって切り替え後の圧縮量によって定められる最大反力の大きさを従来よりも小さく設定することが可能となる。したがって、発生する反力が過大となってコイルハウジング4や電磁コイル2の破損事故等が発生するのを有効に防止することができる。 In the support structure having the above structure, as described above, the spacer 31 has one lip 32, 34 that can be bent and deformed on the inner and outer circumferences, and elastically deforms in a flat shape as a whole when an axial load is applied. in order to use one over the thickness E 1 in the radial direction the entire length is formed to a thickness E 2 following dimensions of the lip 32, the size of the axial gap 3 of the lip 32, 34 one minute only if smaller than the thickness E 2 generation mode of the reaction force is switched to the compression reaction force. Therefore, since the situation that the X-ring is already switched but cannot be switched according to the present invention, the switching to the compression reaction force can be made slower than the conventional one, and therefore, after the switching, The magnitude of the maximum reaction force determined by the amount of compression can be set smaller than in the past. Therefore, it is possible to effectively prevent the generated reaction force from becoming excessive and causing damage to the coil housing 4 and the electromagnetic coil 2.

尚、硬さHs50のシリコーンゴムよりなる従来例(図6)に係るスペーサー21と実施例(図1)に係るスペーサー31の反力を測定したので、その結果を図2のグラフに示す。間隙3のバラツキの範囲0.4〜1.2mmにおける反力は5.5〜140Nに収まっていれば良いとされている。従来例は0.4mm付近の反力が過大となり、上限値の140Nに達してしまっているが、実施例は範囲内に収まっている(下限値はギリギリではあるが問題ない)。   In addition, since the reaction force of the spacer 21 which concerns on the conventional example (FIG. 6) which consists of silicone rubber of hardness Hs50, and the spacer 31 which concerns on an Example (FIG. 1) was measured, the result is shown on the graph of FIG. The reaction force in the variation range of 0.4 to 1.2 mm of the gap 3 is considered to be within 5.5 to 140 N. In the conventional example, the reaction force in the vicinity of 0.4 mm is excessive and has reached the upper limit of 140 N, but the embodiment is within the range (the lower limit is barely a problem).

また、実施例(図1)に係るスペーサー31について、シリコーンゴムの硬度をHs50、60、70、80と変えて反力を測定した結果を図3のグラフに示す。結果、間隙0.4〜1.2mmにおける反力については全て要求の5.5〜140Nに入っており問題ないことを確認することができたが、最低反力の大きさに余裕があることからHs70〜80程度がちょうど良い。   Moreover, about the spacer 31 which concerns on an Example (FIG. 1), the result of having measured the reaction force by changing the hardness of silicone rubber into Hs50, 60, 70, 80 is shown in the graph of FIG. As a result, it was confirmed that the reaction force in the gap of 0.4 to 1.2 mm was all within the required 5.5 to 140 N, and it was confirmed that there was no problem, but there was a margin in the magnitude of the minimum reaction force. To Hs 70-80 is just right.

(A)は本発明の実施例に係る支持構造に用いるスペーサーの自由状態における半裁断面図、(B)は同スペーサーを装着して電磁コイルを支持した状態の説明図(A) is a half sectional view in a free state of a spacer used in a support structure according to an embodiment of the present invention, (B) is an explanatory diagram of a state in which the spacer is mounted and an electromagnetic coil is supported 従来例および実施例に係るスペーサーにおける間隙と反力の関係を示すグラフ図The graph which shows the relationship between the clearance gap and reaction force in the spacer which concerns on a prior art example and an Example 実施例に係るスペーサーにおける間隙と反力の関係を示すグラフ図The graph which shows the relationship between the clearance gap in the spacer which concerns on an Example, and reaction force 従来例に係るスペーサーを装着して電磁コイルを支持した状態(間隙が大きなとき)の説明図Explanatory drawing of a state (when the gap is large) in which the spacer according to the conventional example is attached and the electromagnetic coil is supported 同スペーサーを装着して電磁コイルを支持した状態(間隙が小さなとき)の説明図Explanatory drawing of a state where the spacer is attached and the electromagnetic coil is supported (when the gap is small) (A)は他の従来例に係る支持構造に用いるスペーサーの自由状態における半裁断面図、(B)は同スペーサーを装着して電磁コイルを支持した状態(間隙が大きなとき)の説明図(A) is a half-sectional view in a free state of a spacer used in a support structure according to another conventional example, and (B) is an explanatory diagram of a state in which the spacer is mounted and an electromagnetic coil is supported (when the gap is large). 同スペーサーを装着して電磁コイルを支持した状態(間隙が小さなとき)の説明図Explanatory drawing of a state where the spacer is attached and the electromagnetic coil is supported (when the gap is small)

符号の説明Explanation of symbols

1 電磁コイル収容空間
1a 内面
2 電磁コイル
3 軸方向間隙
4 コイルハウジング
31 スペーサー
32,34 リップ
33 反転部
DESCRIPTION OF SYMBOLS 1 Electromagnetic coil accommodation space 1a Inner surface 2 Electromagnetic coil 3 Axial direction gap 4 Coil housing 31 Spacer 32, 34 Lip 33 Reverse part

Claims (1)

電磁弁等の電磁コイル(2)を有する装置における電磁コイル収容空間(1)に電磁コイル(2)を収容し、前記収容空間(1)の内面(1a)および前記電磁コイル(2)間の軸方向間隙(3)にゴム状弾性体よりなるスペーサー(31)を介装することにより前記電磁コイル(2)を安定支持する電磁コイルの支持構造において、
前記スペーサー(31)は、屈曲変形可能なリップ(32)(34)を内外周に一つずつ有するとともに、全体として扁平状に弾性変形可能な形状とされており、前記軸方向間隙(3)が比較的大きなときには前記リップ(32)(34)の屈曲変形に伴う反力により前記電磁コイル(2)を押圧支持し、前記軸方向間隙(3)が比較的小さなときには前記スペーサー(31)が全体として扁平状に弾性変形してその圧縮変形に伴う反力により前記電磁コイル(2)を押圧支持することを特徴とする電磁コイルの支持構造。
An electromagnetic coil (2) is housed in an electromagnetic coil housing space (1) in a device having an electromagnetic coil (2) such as a solenoid valve, and the space between the inner surface (1a) of the housing space (1) and the electromagnetic coil (2). In the electromagnetic coil support structure that stably supports the electromagnetic coil (2) by interposing a spacer (31) made of a rubber-like elastic body in the axial gap (3),
The spacer (31) has one lip (32) (34) that can be bent and deformed on the inner and outer peripheries, and has a shape that can be elastically deformed in a flat shape as a whole, and the axial gap (3) Is relatively large, the electromagnetic coil (2) is pressed and supported by the reaction force accompanying the bending deformation of the lips (32), (34), and when the axial gap (3) is relatively small, the spacer (31) An electromagnetic coil support structure, wherein the electromagnetic coil (2) is elastically deformed in a flat shape as a whole and pressed and supported by a reaction force accompanying the compression deformation.
JP2004141842A 2004-05-12 2004-05-12 Support structure of electromagnetic coil Pending JP2005327765A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004141842A JP2005327765A (en) 2004-05-12 2004-05-12 Support structure of electromagnetic coil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004141842A JP2005327765A (en) 2004-05-12 2004-05-12 Support structure of electromagnetic coil

Publications (1)

Publication Number Publication Date
JP2005327765A true JP2005327765A (en) 2005-11-24

Family

ID=35473890

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004141842A Pending JP2005327765A (en) 2004-05-12 2004-05-12 Support structure of electromagnetic coil

Country Status (1)

Country Link
JP (1) JP2005327765A (en)

Similar Documents

Publication Publication Date Title
US7461571B2 (en) Vehicle steering apparatus
JP6144847B2 (en) Seat ring for butterfly valve, its fixing structure and eccentric butterfly valve
JP2017511450A (en) Mechanical seal device with bellows element
US6981579B2 (en) Dynamic damper
JP2014206283A (en) Seal ring and assembly including the same
JP2005327765A (en) Support structure of electromagnetic coil
TW200307793A (en) Hydraulic spring used as principal spring in rail vehicles
WO2014061356A1 (en) Rebound rubber
JP2015206402A (en) Vibration isolator
JPH09133215A (en) Sealing device
JP2008032112A (en) Seal and hydraulic clutch release device
KR20200098263A (en) Noise reducing apparatus for power steering system
JP4026609B2 (en) Cylindrical dynamic damper
JP2005265158A (en) Vibration-proof rubber formed body
JP2002349711A (en) Gasket
JP2007211904A (en) Vibration control device
JP2009024712A (en) Sealing device
JP2007315531A (en) Shift lever bush
WO2012169495A1 (en) Terminal supporting apparatus of control cable
CN219888571U (en) Brake device
JP2009024774A (en) Ball joint
KR200371648Y1 (en) Steel-laminated elastomeric bearing for bridge
CN212775208U (en) Bearing assembly and compressor
JP7376657B1 (en) Annular metal seal, installation structure of annular metal seal, and installation method of annular metal seal
WO2023153175A1 (en) Buffer stopper

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070419

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090717

A131 Notification of reasons for refusal

Effective date: 20090722

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091202