JP2005326232A - Photoelectric encoder - Google Patents

Photoelectric encoder Download PDF

Info

Publication number
JP2005326232A
JP2005326232A JP2004143908A JP2004143908A JP2005326232A JP 2005326232 A JP2005326232 A JP 2005326232A JP 2004143908 A JP2004143908 A JP 2004143908A JP 2004143908 A JP2004143908 A JP 2004143908A JP 2005326232 A JP2005326232 A JP 2005326232A
Authority
JP
Japan
Prior art keywords
light
grating
moving
interference
generated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004143908A
Other languages
Japanese (ja)
Inventor
Toru Imai
亨 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Sendai Nikon Corp
Original Assignee
Nikon Corp
Sendai Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp, Sendai Nikon Corp filed Critical Nikon Corp
Priority to JP2004143908A priority Critical patent/JP2005326232A/en
Publication of JP2005326232A publication Critical patent/JP2005326232A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Transform (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a photoelectric encoder with a high operational stability capable of measurement of triaxial directions of the moving grating with a small size and at an economical price. <P>SOLUTION: The six light beams 21a, 21b, 22a, 22b, 23a, 23b generated by the light beam 3 incident diffracted by the diffraction gratings 4A, 4B enter the moving grating 5. These light beams are diffracted by the moving grating 5 respectively, the light beams 21b, and 23b are emitted almost in the same direction and detected by the light receiving element A, the light beams 21a, 22b are emitted almost in the same direction and detected by the light receiving element B, and the light beams 22a, 23a are emitted almost in the same direction and detected by the light receiving element C. Based on the output signal of the light receiving elements A, B, and C, the operation for the phase information etc. of the intensity of the interference light is performed by the encoder processing circuit 7, and based on the phase information, the x-axis movement information, z-axis movement information on the moving grating 5 and pitch angle variation information can be acquired. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、光学的に移動信号を生成し、これらの光電変換信号を変位情報として用いる光電式エンコーダに関する。   The present invention relates to a photoelectric encoder that optically generates a movement signal and uses these photoelectric conversion signals as displacement information.

従来、光ヘテロダイン干渉のビート信号を利用し、移動スケールの移動方向およびギャップ方向の検出が可能な位置検出装置が知られている(例えば、特許文献1参照)。この位置検出装置では、レーザ出射光に含まれる周波数f1の光と周波数f2の光を分離し、それらの光を±1次回折光が発生する入射角度で移動スケールに入射させる。そして、移動格子の法線方向に出射する±1次回折光を干渉させてビート信号を発生させ、この信号位相差に移動スケールの移動情報をのせている。   Conventionally, there has been known a position detection device that can detect a moving direction and a gap direction of a moving scale by using a beat signal of optical heterodyne interference (see, for example, Patent Document 1). In this position detection device, the light of the frequency f1 and the light of the frequency f2 included in the laser emission light are separated, and these lights are incident on the moving scale at an incident angle at which ± first-order diffracted light is generated. Then, ± 1st order diffracted light emitted in the normal direction of the moving grating is caused to interfere to generate a beat signal, and movement information of the moving scale is put on this signal phase difference.

一方、ギャップ方向の計測では、周波数f2の光を3次回折光が発生する角度で移動スケールに入射させると、周波数f1の+1次回折光とf2の−1次回折光とが干渉してビート信号が発生する。このビート信号には移動スケールの移動情報とギャップ情報とがのっているので、ここで得られる位相情報から上記移動情報を減算(または加算)することでギャップ情報を取得するようにしている。   On the other hand, in the measurement in the gap direction, if light of frequency f2 is incident on the moving scale at an angle at which the third-order diffracted light is generated, the + 1st-order diffracted light of frequency f1 and the -1st-order diffracted light of f2 interfere to generate a beat signal To do. Since the beat signal includes movement information of the movement scale and gap information, the gap information is obtained by subtracting (or adding) the movement information from the phase information obtained here.

特公平6−63739号公報Japanese Patent Publication No. 6-63739

しかしながら、上述した従来の装置では、光源として横ゼーマンレーザ等を用いているため装置が大型になり、かつ高価であった。また、光路途中に多数の偏光素子やミラーが必要なために、光路が非常に長くなり装置が不安定になる可能性があった。さらに、従来の装置では、移動スケールの移動方向およびギャップ方向の2軸方向の情報しか得ることができなかった。   However, in the above-described conventional apparatus, a lateral Zeeman laser or the like is used as a light source, so that the apparatus becomes large and expensive. In addition, since a large number of polarizing elements and mirrors are required in the middle of the optical path, there is a possibility that the optical path becomes very long and the apparatus becomes unstable. Furthermore, in the conventional apparatus, only information in the biaxial direction of the moving scale and the gap direction can be obtained.

請求項1の発明による光電式エンコーダは、光源と、光源の光から、互いに異なる方向に進む少なくとも第1、第2および第3の光束を生成する光学系と、第1、第2および第3の光束が入射し、第1,第2および第3の光束の各々について0次光を含む複数の回折光をそれぞれ生成する第1の回折格子と、(a)第1の光束から生成された複数の回折光のいずれか一つと、第1の回折格子で生成された他の回折光の一つとにより第1の干渉光を生成し、(b)第2の光束から生成された複数の回折光のいずれか一つと、第1の回折格子で生成された他の回折光の一つとにより第2の干渉光を生成し、(c)第3の光束から生成された複数の回折光のいずれか一つと、第1の回折格子で生成された他の回折光の一つとにより第3の干渉光を生成する第2の回折格子と、第1の干渉光を検出する第1の検出部と、第2の干渉光を検出する第2の検出部と、第3の干渉光を検出する第3の検出部と、第1乃至第3の検出部の検出結果から算出される位相情報に基づく演算を行う演算部とを備え、第1および第2の回折格子のうちの一方は可動物体に固定された移動格子であって、演算部は移動格子の移動方向の変位および移動格子に垂直な方向の変位を演算することを特徴とする。
請求項1の発明による光電式エンコーダは、光源と、光源の光から、互いに異なる方向に進む第1、第2、第3、第4、第5および第6の光束を生成する光学系と、第1および第2の光束の入射角度平均値と、第3および第4の光束の入射角度平均値と、第5および第6の光束の入射角度平均値とが異なるように第1乃至第6の光束がそれぞれ入射し、第1乃至第6の光束の各々について0次光を含む複数の回折光をそれぞれ生成する第1の回折格子と、(a)第1の光束から生成された複数の回折光のいずれか一つと、第2の光束から生成された複数の回折光のいずれか一つとにより第1の干渉光を生成し、(b)第3の光束から生成された複数の回折光のいずれか一つと、第4の光束から生成された複数の回折光のいずれか一つとにより第2の干渉光を生成し、(c)第5の光束から生成された複数の回折光のいずれか一つと、第6の光束から生成された複数の回折光のいずれか一つとにより第3の干渉光を生成する第2の回折格子と、第1の干渉光を検出する第1の検出部と、第2の干渉光を検出する第2の検出部と、第3の干渉光を検出する第3の検出部と、第1乃至第3の検出部の検出結果から算出される位相情報に基づく演算を行う演算部とを備え、第1および第2の回折格子のうちの一方は可動物体に固定された移動格子であって、演算部は前記移動格子の移動方向の変位および移動格子に垂直な方向の変位を演算することを特徴とする。
According to a first aspect of the present invention, a photoelectric encoder includes: a light source; an optical system that generates at least first, second, and third light fluxes traveling in different directions from the light of the light source; and the first, second, and third And a first diffraction grating that generates a plurality of diffracted lights including zeroth order light for each of the first, second, and third light fluxes, and (a) the first light flux generated from the first light flux. A first interference light is generated by any one of the plurality of diffracted lights and one of the other diffracted lights generated by the first diffraction grating, and (b) a plurality of diffractions generated from the second light flux. The second interference light is generated by any one of the lights and one of the other diffracted lights generated by the first diffraction grating, and (c) any of the plurality of diffracted lights generated from the third light flux. One and another of the diffracted lights generated by the first diffraction grating generate a third interference light. The second diffraction grating, the first detection unit for detecting the first interference light, the second detection unit for detecting the second interference light, and the third detection for detecting the third interference light. And a calculation unit that performs calculation based on phase information calculated from detection results of the first to third detection units, and one of the first and second diffraction gratings is fixed to a movable object In the moving grid, the calculation unit calculates a displacement in a moving direction of the moving grid and a displacement in a direction perpendicular to the moving grid.
A photoelectric encoder according to a first aspect of the present invention includes a light source, and an optical system that generates first, second, third, fourth, fifth, and sixth light fluxes traveling in different directions from the light of the light source, The first to sixth so that the incident angle average values of the first and second light beams, the incident angle average values of the third and fourth light beams, and the incident angle average values of the fifth and sixth light beams are different. And a first diffraction grating for generating a plurality of diffracted lights including zeroth order light for each of the first to sixth light beams, and (a) a plurality of light beams generated from the first light flux. The first interference light is generated by any one of the diffracted light and any one of the plurality of diffracted lights generated from the second light beam, and (b) the plurality of diffracted lights generated from the third light beam. And any one of a plurality of diffracted lights generated from the fourth light flux. (C) the third interference light beam is generated by any one of the plurality of diffracted light beams generated from the fifth light beam and one of the plurality of diffracted light beams generated from the sixth light beam. A second diffraction grating that generates interference light; a first detection unit that detects first interference light; a second detection unit that detects second interference light; and third interference light. A third detection unit; and a calculation unit that performs calculation based on phase information calculated from detection results of the first to third detection units, wherein one of the first and second diffraction gratings is a movable object. The calculation unit calculates a displacement in a moving direction of the moving grid and a displacement in a direction perpendicular to the moving grid.

本発明によれば、移動格子の3軸方向の変位を測定を実現でき、かつ、光学部品点数の非常に少ない、小型で安価な光電式エンコーダを提供することができる。   According to the present invention, it is possible to provide a small-sized and inexpensive photoelectric encoder that can measure the displacement of the moving grating in the three-axis directions and has a very small number of optical components.

以下、図を参照して本発明を実施するための最良の形態について説明する。
−第1の実施の形態−
図1は本発明による光電式エンコーダの第1の実施の形態を示す図であり、エンコーダの主要構成を示したものである。本実施の形態のエンコーダは、光源1,コリメートレンズ2,光束分割素子として機能する回折格子4Aおよび4B,位置測定の対象物に固定される移動格子5,干渉光を検出する受光素子A,B,Cおよびエンコーダ処理回路6を備えている。本実施の形態では、回折格子4A,4Bおよび移動格子5の格子ピッチはいずれもpに設定されている。
Hereinafter, the best mode for carrying out the present invention will be described with reference to the drawings.
-First embodiment-
FIG. 1 is a diagram showing a first embodiment of a photoelectric encoder according to the present invention, and shows a main configuration of the encoder. The encoder according to the present embodiment includes a light source 1, a collimating lens 2, diffraction gratings 4A and 4B functioning as beam splitting elements, a moving grating fixed to a position measurement object 5, and light receiving elements A and B that detect interference light. , C and an encoder processing circuit 6. In the present embodiment, the grating pitches of the diffraction gratings 4A and 4B and the moving grating 5 are all set to p.

図1に示すエンコーダでは、後述するように移動格子5のx方向とz方向の移動情報およびy軸周りの傾きであるピッチ角の変化を検出して、基準位置からのx位置,z位置およびピッチ角を測定する。なお、エンコーダ処理回路8はエンコーダ側に設けられても良いし、エンコーダの出力信号に基づいて制御されるアクチュエータの制御回路に含まれるようにしても良い。   In the encoder shown in FIG. 1, the movement information of the moving grid 5 in the x direction and the z direction and the change in the pitch angle, which is the inclination around the y axis, are detected, and the x position, z position, and Measure the pitch angle. The encoder processing circuit 8 may be provided on the encoder side, or may be included in an actuator control circuit controlled based on an encoder output signal.

光源1から出射された光は、コリメートレンズ2により平行光とされる。なお、光源1にはレーザ光源や発光ダイオード(LED)等が用いられる。コリメートレンズ2により平行光とされた光束3は、第1の光束分割素子である回折格子4Aに入射する。光束3は回折格子4Aで0次および±1次回折を受けて3光束21,22,23が生成され、光束21は角度a1で、光束21は角度0で、光束23は角度−a1でそれぞれ出射される。これらの光束21,22,23はさらに第2の光束分割素子である回折格子4Bに入射して、回折格子4Bによりそれぞれ2つの光束に分割される。   The light emitted from the light source 1 is converted into parallel light by the collimating lens 2. As the light source 1, a laser light source, a light emitting diode (LED), or the like is used. The light beam 3 converted into parallel light by the collimator lens 2 is incident on the diffraction grating 4A which is the first light beam splitting element. The light beam 3 is subjected to 0th order and ± 1st order diffraction by the diffraction grating 4A to generate three light beams 21, 22, and 23. The light beam 21 has an angle a1, the light beam 21 has an angle 0, and the light beam 23 has an angle −a1. Emitted. These light beams 21, 22, and 23 further enter the diffraction grating 4B, which is the second light beam splitting element, and are divided into two light beams by the diffraction grating 4B.

光束21は回折格子4Bで+1次回折および+2次回折を受けて、+1次回折を受けた光束21aが角度0で出射され、+2次回折を受けた光束21bが角度−a1方向に出射される。光束22は回折格子4Bで±1次回折を受けて、光束22aが角度−a1方向に出射され、光束22bが角度+a1方向に出射される。光束23は回折格子4Bで−1次回折および−2次回折を受けて、−1次回折を受けた光束23aが角度0で出射され、−2次回折を受けた光束23bが角度a1で出射される。ここで、入射角度および出射角度については、垂線から右回りの角度をプラス方向とする。   The light beam 21 is subjected to + 1st order diffraction and + 2nd order diffraction by the diffraction grating 4B, and the light beam 21a subjected to + 1st order diffraction is emitted at an angle 0, and the light beam 21b subjected to + 2nd order diffraction is emitted in the angle -a1 direction. . The light beam 22 undergoes ± first-order diffraction at the diffraction grating 4B, and the light beam 22a is emitted in the direction of the angle −a1 and the light beam 22b is emitted in the direction of the angle + a1. The light beam 23 is subjected to −1st order diffraction and −2nd order diffraction by the diffraction grating 4B, and the light beam 23a subjected to −1st order diffraction is emitted at an angle 0, and the light beam 23b subjected to −2nd order diffraction is emitted at an angle a1. Is done. Here, with respect to the incident angle and the outgoing angle, the clockwise direction from the perpendicular is the plus direction.

これら6つの光束21a,21b,22a,22b,23a,23bはそれぞれ移動格子5で回折を受け、−1次回折を受けた光束21bおよび+1次回折を受けた光束23bはそれぞれ角度0で受光素子Aに入射する。また、−1次回折を受けた光束21aおよび0次回折光である光束22bは、それぞれ角度a1で受光素子Bに入射する。さらに、0次回折光である光束22aおよび−1次回折を受けた光束23aはそれぞれ角度−a1で受光素子Cに入射する。   These six light beams 21a, 21b, 22a, 22b, 23a, and 23b are diffracted by the moving grating 5, respectively. Incident on A. Further, the light beam 21a subjected to the −1st order diffraction and the light beam 22b which is the 0th order diffracted light enter the light receiving element B at an angle a1. Further, the light beam 22a which is 0th-order diffracted light and the light beam 23a which has received the −1st-order diffraction are incident on the light receiving element C at an angle −a1.

後述するように、移動格子5から出射される0次回折光22a,22bは移動格子5の移動の影響を受けず、±1次回折を受けた光束21a,21b,23a,23bは移動格子5の移動の影響を受けて位相がシフトする。受光素子Aは光束21b,23bの干渉光が検出される位置に配設され、受光素子Bは光束21a,22bの干渉光が検出される位置に配設され、受光素子Cは光束22a,23aの干渉光が検出される位置に配設される。   As will be described later, the 0th-order diffracted lights 22a and 22b emitted from the moving grating 5 are not affected by the movement of the moving grating 5, and the light beams 21a, 21b, 23a and 23b subjected to ± 1st-order diffraction are obtained from the moving grating 5. The phase shifts under the influence of movement. The light receiving element A is disposed at a position where the interference light of the light beams 21b and 23b is detected, the light receiving element B is disposed at a position where the interference light of the light beams 21a and 22b is detected, and the light receiving element C is the light beams 22a and 23a. The interference light is disposed at a position where it is detected.

なお、図1では、光束21,22,23以降の光束については、光束の中心軸のみを記載した。このように、本実施の形態では、異なる3種類の干渉光が受光素子A,B,Cでそれぞれ検出される。各受光素子A,B,Cから出力される受光信号はエンコーダ処理回路6に入力され、エンコーダ処理回路6において後述する干渉光強度の位相情報等の演算が行われる。   In FIG. 1, only the central axis of the light beam is shown for the light beams after the light beams 21, 22, and 23. Thus, in this embodiment, three different types of interference light are detected by the light receiving elements A, B, and C, respectively. The light reception signals output from the respective light receiving elements A, B, and C are input to the encoder processing circuit 6, and the encoder processing circuit 6 performs calculations such as phase information of interference light intensity described later.

《原理の説明》
上述したように、本発明のエンコーダでは、移動格子5に2つの光束11,12を入射し、各々の光束11,12に関して得られる干渉光をそれぞれ受光素子A,Bで検出して移動格子5のx方向(移動方向)への移動およびz方向への移動を検出するようにしている。その際、移動する格子により散乱される光のドップラーシフトを利用して、移動格子の移動情報に基づいて計測を行っている。そこで、図1のエンコーダにおける計測方法を説明する前に、レーザドップラーシフトの原理について、図2の原理図を参照しながら説明する。
<Description of principle>
As described above, in the encoder of the present invention, the two light beams 11 and 12 are incident on the moving grating 5, and the interference light obtained with respect to each of the light beams 11 and 12 is detected by the light receiving elements A and B, respectively. The movement in the x direction (movement direction) and the movement in the z direction are detected. At that time, the measurement is performed based on the movement information of the moving grating using the Doppler shift of the light scattered by the moving grating. Therefore, before describing the measurement method in the encoder of FIG. 1, the principle of laser Doppler shift will be described with reference to the principle diagram of FIG.

図2はドップラーシフトを説明する図であり、100は被測定物体である。まず、被測定物体100がx軸プラス方向に速度ベクトルVで移動している場合について考える。この被測定物体100に波数ベクトルKの光が角度αで入射し角度β方向に散乱された光(波数ベクトルK)のドップラーシフトfDXは、以下のようにして算出される。ここでは、図2に示したようにベクトルV,K,Kが同一平面(xz平面)内にある場合を考え、角度α、βはz軸との成す角を表している。 FIG. 2 is a diagram for explaining the Doppler shift, and 100 is an object to be measured. First, consider a case where the object to be measured 100 is moving in the x-axis plus direction by the velocity vector V X. The Doppler shift f DX of the light (wave vector K S ) in which light of the wave vector K O is incident on the measured object 100 at an angle α and scattered in the angle β direction is calculated as follows. Here, as shown in FIG. 2, a case where the vectors V X , K O , and K S are in the same plane (xz plane) is considered, and the angles α and β represent angles formed with the z axis.

このとき、ドップラーシフトfDXは次式(1)で表される。式(1)において、右辺第1式はベクトル(K−K)とベクトルVとの内積式であり、右辺第2式、第3式は内積を具体的に計算したものである。ここで、角度θはベクトル(K−K)とx軸との成す角を表している。また、kは波数ベクトルK,Kの絶対値である波数を表しており、その値は2π/λである。vはベクトルVの絶対値である。
2πfDX=(K−K)・V
=|K−K|×|V|×cosθ
=[2kcos(α/2−β/2)]×vcosθ …(1)
At this time, the Doppler shift f DX is expressed by the following equation (1). In the equation (1), the first equation on the right side is an inner product equation of the vector (K S −K O ) and the vector V X, and the second and third equations on the right side are specifically calculated inner products. Here, the angle θ represents an angle formed by the vector (K S −K O ) and the x axis. K represents the wave number which is an absolute value of the wave number vectors K O and K S , and the value is 2π / λ. v X is the absolute value of the vector V X.
2πf DX = (K S −K O ) · V X
= | K S -K O | × | V X | × cos θ
= [2k cos (α / 2−β / 2)] × v X cos θ (1)

ここで、図2の角度θを角度α、βで表すと次式(2)のようになるので、式(1)は式(3)のように変形できる。
θ=π/2−(α/2+β/2) …(2)
2πfDX=2kvcos(α/2−β/2)×cos[π/2−(α/2+β/2)]
=kv×[sin(α)+sin(β)] …(3)
Here, when the angle θ in FIG. 2 is expressed by the angles α and β, the following equation (2) is obtained. Therefore, the equation (1) can be transformed as the equation (3).
θ = π / 2− (α / 2 + β / 2) (2)
2πf DX = 2 kv X cos (α / 2−β / 2) × cos [π / 2− (α / 2 + β / 2)]
= Kv X x [sin (α) + sin (β)] (3)

次に、被測定物体100がz軸プラス方向に速度ベクトルV(|V|=v)で移動している場合について考える。この場合も速度ベクトルVの場合と同様に計算することにより散乱光のドップラーシフトfDZが得られ、それは次式(4)のように表される。
2πfDZ=[2kcos(α/2−β/2)]×vcos(π/2−θ)
=2kvcos(α/2−β/2)×cos(α/2+β/2)
=kv×[cos(α)+cos(β)] …(4)
Next, consider a case where the measured object 100 is moving in the z-axis plus direction with a velocity vector V Z (| V Z | = v Z ). In this case as well, the Doppler shift f DZ of the scattered light is obtained by calculating in the same manner as in the case of the velocity vector V X , which is expressed by the following equation (4).
2πf DZ = [2k cos (α / 2−β / 2)] × v Z cos (π / 2−θ)
= 2kv Z cos (α / 2−β / 2) × cos (α / 2 + β / 2)
= Kv Z x [cos (α) + cos (β)] (4)

式(3),(4)は振動数シフト量と移動速度との関係を示したものであるが、これらの両辺に時間Δtを乗算すると、次式(5),(6)で表されるような被測定物体100の位置変化Δx,Δzと位相変化φ,φとの関係が得られる。そして、被測定物体100がx方向およびz方向の両方向に移動している場合には、φとφとの和が散乱光の位相シフト量φとなり、式(7)のように表される。
φ=kΔx×[sin(α)+sin(β)] …(5)
φ=kΔz×[cos(α)+cos(β)] …(6)
φ=kΔx×[sin(α)+sin(β)]+kΔz×[cos(α)+cos(β)] …(7)
Equations (3) and (4) show the relationship between the frequency shift amount and the moving speed. When these sides are multiplied by time Δt, they are expressed by the following equations (5) and (6). The relationship between the positional changes Δx and Δz of the measured object 100 and the phase changes φ X and φ Z can be obtained. When the object to be measured 100 is moving in both the x and z directions, the sum of φ X and φ Z is the phase shift amount φ of the scattered light, which is expressed as in equation (7). The
φ X = kΔx × [sin (α) + sin (β)] (5)
φ Z = kΔz × [cos ( α) + cos (β)] ... (6)
φ = kΔx × [sin (α) + sin (β)] + kΔz × [cos (α) + cos (β)] (7)

ここで、被測定物体100がピッチpの回折格子の場合を考える。第1の光束は回折格子に入射角度α1で入射し、出射角度β方向にn次回折光が出射される。第2の光束は回折格子に入射角度α2で入射し、同じ出射角度β方向にm次回折光が出射される。各回折光の位相シフト量φ1,φ2は式(7)を用いて算出され、次式(8),(9)で与えられる。
φ1=kΔx×[sin(α1)+sin(β)]+kΔz×[cos(α1)+cos(β)] …(8)
φ2=kΔx×[sin(α2)+sin(β)]+kΔz×[cos(α2)+cos(β)] …(9)
Here, consider a case where the object 100 to be measured is a diffraction grating having a pitch p. The first light beam enters the diffraction grating at an incident angle α1, and n-order diffracted light is emitted in the direction of the outgoing angle β. The second light beam is incident on the diffraction grating at an incident angle α2, and m-order diffracted light is emitted in the same emission angle β direction. The phase shift amounts φ1 and φ2 of each diffracted light are calculated using the equation (7) and are given by the following equations (8) and (9).
φ1 = kΔx × [sin (α1) + sin (β)] + kΔz × [cos (α1) + cos (β)] (8)
φ2 = kΔx × [sin (α2) + sin (β)] + kΔz × [cos (α2) + cos (β)] (9)

出射角度β方向に出射された位相シフト量φ1の光束と位相シフト量φ2の光束とが干渉した場合、干渉光の位相情報ψは次式(10)で表される。なお、ψはcos関数の位相項であるので、位相情報は絶対値情報として得られる。
ψ=φ1−φ2
=kΔx・[sin(α1)+sin(β)]+kΔz・[cos(α1)+cos(β)]
−kΔx・[sin(α2)+sin(β)]−kΔz・[cos(α2)+cos(β)]
=kΔx×[sin(α1)−sin(α2)]+kΔz×[cos(α1)−cos(α2)]…(10)
When the light beam having the phase shift amount φ1 and the light beam having the phase shift amount φ2 emitted in the direction of the emission angle β interfere with each other, the phase information ψ of the interference light is expressed by the following equation (10). Since ψ is the phase term of the cos function, the phase information is obtained as absolute value information.
ψ = φ1-φ2
= KΔx · [sin (α1) + sin (β)] + kΔz · [cos (α1) + cos (β)]
−kΔx · [sin (α2) + sin (β)] − kΔz · [cos (α2) + cos (β)]
= KΔx × [sin (α1) −sin (α2)] + kΔz × [cos (α1) −cos (α2)] (10)

ここで、格子のピッチはpなので、入射角度α1とn次回折光の出射角度βとの間には次式(11)の関係が成り立ち、入射角度α2とm次回折光の出射角度βとの間には次式(12)の関係(回折条件)が成り立つ。そして、式(11),(12)を式(10)に代入すると、位相情報ψとして式(13)を得る。
sin(α1)+sin(β)=nλ/p …(11)
sin(α2)+sin(β)=mλ/p …(12)
ψ=kΔx×[sin(α1)−sin(α2)]+kΔz×[cos(α1)−cos(α2)]
=2π(n−m)Δx/p+kΔz×[cos(α1)−cos(α2)] …(13)
Here, since the pitch of the grating is p, the relationship of the following equation (11) is established between the incident angle α1 and the output angle β of the n-th order diffracted light, and between the incident angle α2 and the output angle β of the m-order diffracted light. Satisfies the relationship (diffraction condition) of the following equation (12). Then, when Expressions (11) and (12) are substituted into Expression (10), Expression (13) is obtained as phase information ψ.
sin (α1) + sin (β) = nλ / p (11)
sin (α2) + sin (β) = mλ / p (12)
ψ = kΔx × [sin (α1) −sin (α2)] + kΔz × [cos (α1) −cos (α2)]
= 2π (n−m) Δx / p + kΔz × [cos (α1) −cos (α2)] (13)

《エンコーダにおける測定方法の説明》
図1に示した本実施の形態のエンコーダでは、上述したような原理に基づいて、具体的には式(10),(13)により得られる位相情報を用いることによって、移動格子5のx方向、z方向の移動情報およびピッチ角の変動情報を検出するようにしている。
<< Explanation of measurement method in encoder >>
In the encoder of the present embodiment shown in FIG. 1, based on the principle as described above, specifically, by using the phase information obtained by the equations (10) and (13), the x direction of the moving grating 5 is obtained. , Z-direction movement information and pitch angle fluctuation information are detected.

(受光素子A)
まず、受光素子Aの干渉光強度について説明する。上述したように、移動格子5に角度−a1で入射した光束21bは−1次回折を受けて角度0で受光素子Aに入射し、移動格子5に角度a1で入射した光束23bは+1次回折を受けて角度0で受光素子Aに入射する。このとき、入射角度a1と格子ピッチpとの間には次式(14)が成り立っている。
sin(a1)=λ/p …(14)
(Light receiving element A)
First, the interference light intensity of the light receiving element A will be described. As described above, the light beam 21b incident on the moving grating 5 at the angle −a1 undergoes −1st order diffraction and is incident on the light receiving element A at the angle 0, and the light beam 23b incident on the moving grating 5 at the angle a1 is + 1st order diffraction. Is incident on the light receiving element A at an angle of zero. At this time, the following equation (14) is established between the incident angle a1 and the grating pitch p.
sin (a1) = λ / p (14)

そして、上述した式(10)のφ1を光束23bの位相シフト量とし、φ2を光束21bの位相シフト量とすると、α1にa1をα2に−a1を代入して得られる次式(15)により、受光素子Aで生じる光束21bと光束23bとの干渉強度の位相情報ψが算出される。なお、式(14)を用いて式変形を行った。
ψ=kΔx×[sin(a1)−sin(−a1)]+kΔz×[cos(a1)−cos(−a1)]
=2kΔx×sin(a1)
=4πΔx/p …(15)
Then, when φ1 in the above equation (10) is the phase shift amount of the light beam 23b and φ2 is the phase shift amount of the light beam 21b, the following equation (15) obtained by substituting -a1 for α1 to α1 Then, phase information ψ A of the interference intensity between the light beam 21b and the light beam 23b generated in the light receiving element A is calculated. Note that the equation was transformed using equation (14).
ψ A = kΔx × [sin (a1) −sin (−a1)] + kΔz × [cos (a1) −cos (−a1)]
= 2kΔx × sin (a1)
= 4πΔx / p (15)

(受光素子B)
角度0で移動格子5に入射した光束21aは、−1次回折を受けて角度a1で出射され受光素子Bに入射する。一方、角度a1で移動格子5に入射した光束22bは、0次回折光として角度a1で出射され受光素子Bに入射する。この場合、式(10)のφ1を光束22bの位相シフト量とし、φ2を光束21aの位相シフト量とする。位相情報ψは、式(10)のα1にa1をα2に0を代入して式(14)を用いて変形することにより、次式(16)のように表される。
ψ=kΔx×[sin(a1)−sin(0)]+kΔz×[cos(a1)−cos(0)]
=kΔx×sin(a1)+kΔz×[cos(a1)−1]
=2πΔx/p−kΔz×[1−cos(a1)]
=2πΔx/p−kΔz×[1−{1−(λ/p)1/2
≒2πΔx/p−πλΔz/p …(16)
(Light receiving element B)
The light beam 21 a incident on the moving grating 5 at an angle 0 undergoes −1st order diffraction, is emitted at an angle a 1, and enters the light receiving element B. On the other hand, the light beam 22b incident on the moving grating 5 at the angle a1 is emitted as the 0th-order diffracted light at the angle a1 and enters the light receiving element B. In this case, φ1 in equation (10) is the phase shift amount of the light beam 22b, and φ2 is the phase shift amount of the light beam 21a. The phase information ψ B is expressed as shown in the following equation (16) by substituting a1 into α1 and α2 into α2 in equation (10) and transforming using equation (14).
ψ B = kΔx × [sin (a1) −sin (0)] + kΔz × [cos (a1) −cos (0)]
= KΔx × sin (a1) + kΔz × [cos (a1) −1]
= 2πΔx / p−kΔz × [1-cos (a1)]
= 2πΔx / p−kΔz × [1- {1- (λ / p) 2 } 1/2 ]
≈ 2πΔx / p−πλΔz / p 2 (16)

(受光素子C)
角度−a1で移動格子5に入射した光束22aは、0次回折光として角度−a1で出射されて受光素子Cに入射する。一方、角度0で移動格子5に入射した光束23aは、+1次回折を受けて角度−a1で出射され受光素子Cに入射する。この場合、式(10)のφ1を光束23aの位相シフト量とし、φ2を光束22aの位相シフト量とする。位相情報ψは、式(10)のα1に0をα2に−a1を代入して式(14)を用いて変形することにより、次式(17)のように表される。
ψ=kΔx×[sin(0)−sin(−a1)]+kΔz×[cos(0)−cos(−a1)]
=kΔx×sin(a1)+kΔz×[1−cos(a1)]
=2πΔx/p+kΔz×[1−{1−(λ/p)1/2
≒2πΔx/p+πλΔz/p …(17)
(Light receiving element C)
The light beam 22a incident on the moving grating 5 at the angle −a1 is emitted as the 0th-order diffracted light at the angle −a1 and enters the light receiving element C. On the other hand, the light beam 23 a incident on the moving grating 5 at the angle 0 undergoes + 1st order diffraction, is emitted at the angle −a 1, and enters the light receiving element C. In this case, φ1 in equation (10) is the phase shift amount of the light beam 23a, and φ2 is the phase shift amount of the light beam 22a. Phase information [psi C, by deforming using Equation (10) Equation (14) by substituting the -a1 the α1 to 0 α2 of, is expressed by the following equation (17).
ψ C = kΔx × [sin ( 0) -sin (-a1)] + kΔz × [cos (0) -cos (-a1)]
= KΔx × sin (a1) + kΔz × [1-cos (a1)]
= 2πΔx / p + kΔz × [1- {1- (λ / p) 2 } 1/2 ]
≈ 2πΔx / p + πλΔz / p 2 (17)

このようにして、受光素子A,B,Cのそれぞれについて干渉光強度の位相情報ψ,ψ,ψが得られる。図1のエンコーダ処理回路6は干渉信号の位相角を計算して出力するようになっているので、各受光素子A,B,Cの出力を処理した後にそれらの信号の四則演算を行うと、移動格子5に関するx軸移動情報,z軸移動情報およびピッチ角度変動情報を得ることができる。
(x軸移動情報)
Δx=pψ/4π
(z軸移動情報)
Δz=(ψ−ψ)p/2πλ
In this way, phase information ψ A , ψ B , ψ C of the interference light intensity is obtained for each of the light receiving elements A, B, and C. Since the encoder processing circuit 6 in FIG. 1 calculates and outputs the phase angle of the interference signal, after processing the outputs of the light receiving elements A, B, and C, the four arithmetic operations of those signals are performed. The x-axis movement information, the z-axis movement information, and the pitch angle fluctuation information regarding the moving grid 5 can be obtained.
(X-axis movement information)
Δx = pψ A / 4π
(Z-axis movement information)
Δz = (ψ C −ψ B ) p 2 / 2πλ

(ピッチ角度変動情報)
上述した(ψ−ψ)は、移動格子5のz軸移動の平均値と考えることができる。ところで、移動格子5に関して初期状態からピッチ角度の変動が生じた場合、各ψ,ψは移動格子5上の各ビーム照射位置におけるz移動情報を含んでいるので式(18),(19)のように書ける。
ψ=2πΔx/p−πλΔz/p …(18)
ψ=2πΔx/p+πλΔz/p …(19)
(Pitch angle fluctuation information)
The above-described (ψ C −ψ B ) can be considered as an average value of the z-axis movement of the moving grating 5. By the way, when the fluctuation of the pitch angle occurs from the initial state with respect to the moving grating 5, each ψ B and ψ C includes z movement information at each beam irradiation position on the moving grating 5, and therefore, equations (18) and (19 ).
ψ B = 2πΔx / p−πλΔz B / p 2 (18)
ψ C = 2πΔx / p + πλΔz C / p 2 (19)

移動格子5上の照射位置間隔Dは予め分っているので、間隔DとΔzおよびΔzを用いてピッチ角の変化は次式(20)で与えられる。
ピッチ角の変化=tan−1[(Δz−Δz)/D] …(20)
ただし、Δz−Δzは次式(21)により与えられる。
Δz−Δz=(ψ+ψ−ψ)p/πλ …(21)
Since the irradiation position interval D on the moving grating 5 is known in advance, the change in pitch angle is given by the following equation (20) using the interval D and Δz B and Δz C.
Change in pitch angle = tan −1 [(Δz C −Δz B ) / D] (20)
However, Δz C −Δz B is given by the following equation (21).
Δz C −Δz B = (φ B + φ C −φ A ) p 2 / πλ (21)

これらの値Δx,Δzやピッチ角の変化は所定時間あたりの変動量を表しており、例えば、所定時間間隔で繰り返し検出する場合には時間間隔あたりの変動量を表している。そのため、移動格子5のx位置,z位置およびピッチ角は、これらの移動情報と予め取得した基準位置とから算出することができる。基準位置としては、例えばエンコーダの電源投入時の位置などが選ばれる。   These values Δx, Δz and changes in pitch angle represent fluctuation amounts per predetermined time. For example, in the case of repeatedly detecting at predetermined time intervals, they represent fluctuation amounts per time interval. Therefore, the x position, the z position, and the pitch angle of the moving grid 5 can be calculated from the movement information and the reference position acquired in advance. As the reference position, for example, a position when the encoder is turned on is selected.

なお、本実施の形態では、6つの光束21a,21b,22a,22b,23a,23bの中の少なくとも4光束の移動格子入射角が異なり、かつ、移動格子5に入射する際の光束21b,23bの入射角度平均値と、光束21a,22bの入射角度平均値と、光束22a,23aの入射角度平均値とが異なっていることが重要である。そして、異なる3種類の干渉光を受光素子A,B,Cでそれぞれ検出することにより、上述したようなx軸移動情報、z軸移動情報およびピッチ角度変動情報とを得ることができる。   In the present embodiment, at least four of the six light beams 21 a, 21 b, 22 a, 22 b, 23 a, and 23 b have different moving grating incident angles, and the light beams 21 b and 23 b are incident upon the moving grating 5. It is important that the incident angle average value of the light beams 21a and 22b is different from the average incident angle value of the light beams 22a and 23a. Then, by detecting three different types of interference light by the light receiving elements A, B, and C, the x-axis movement information, the z-axis movement information, and the pitch angle variation information as described above can be obtained.

[変形例1]
上述した実施の形態では、移動格子5を透過した光束を受光素子A,B,Cで受光する透過型のエンコーダを構成したが、本発明は図3に示すような反射型エンコーダにも適用することができる。この場合、移動格子15をハーフミラーで構成し、透過率が50%で反射率が50%になるようにする。なお、エンコーダ処理回路6については図示を省略した。光束21b、23bは移動格子15で回折反射されて受光素子Aに入射し、光束21a,22bは移動格子15で回折反射されて受光素子Bに入射し、光束22a,23aは移動格子15で回折反射されて受光素子Cに入射する。位相情報および移動情報については上述した実施の形態と同様に算出されるので、ここでは説明を省略する。
[Modification 1]
In the above-described embodiment, the transmissive encoder that receives the light beam transmitted through the moving grating 5 by the light receiving elements A, B, and C is configured. However, the present invention is also applied to a reflective encoder as shown in FIG. be able to. In this case, the moving grating 15 is composed of a half mirror so that the transmittance is 50% and the reflectance is 50%. The encoder processing circuit 6 is not shown. The light beams 21 b and 23 b are diffracted and reflected by the moving grating 15 and enter the light receiving element A, the light beams 21 a and 22 b are diffracted and reflected by the moving grating 15 and enter the light receiving element B, and the light beams 22 a and 23 a are diffracted by the moving grating 15. The light is reflected and enters the light receiving element C. Since the phase information and the movement information are calculated in the same manner as in the above-described embodiment, description thereof is omitted here.

[変形例2]
図4は本発明による光電式エンコーダの第2の変形例を示す図である。なお、エンコーダ処理回路6の図示は省略した。この変形例では、光束分割素子である回折格子30により光束3を6つの光束41〜46に分割するようにした。図4に示すエンコーダでは移動格子5の格子ピッチpに対して、回折格子30の格子ピッチを2p、回折格子31の格子ピッチをp/4に設定している。
[Modification 2]
FIG. 4 is a view showing a second modification of the photoelectric encoder according to the present invention. The encoder processing circuit 6 is not shown. In this modification, the light beam 3 is divided into six light beams 41 to 46 by the diffraction grating 30 which is a light beam splitting element. In the encoder shown in FIG. 4, the grating pitch of the diffraction grating 30 is set to 2 p and the grating pitch of the diffraction grating 31 is set to p / 4 with respect to the grating pitch p of the moving grating 5.

光束42および45は移動格子5により同一方向に回折されて受光素子Aに入射し、光束41および光束44は移動格子5により同一方向に回折されて受光素子Bに入射し、光束43および光束46は移動格子5により同一方向に回折されて受光素子Cに入射する。第1の実施の形態と同様に、受光素子A,B,Cの各々について干渉強度の位相情報ψ,ψおよびψが得られ、それらを用いてx軸移動情報、z軸移動情報およびピッチ角度変動情報が算出される。すなわち、3軸方向に関して計測を行うことができる。 The light beams 42 and 45 are diffracted in the same direction by the moving grating 5 and enter the light receiving element A, and the light beams 41 and 44 are diffracted in the same direction by the moving grating 5 and enter the light receiving element B. Is diffracted in the same direction by the moving grating 5 and enters the light receiving element C. Similarly to the first embodiment, phase information ψ A , ψ B and ψ C of interference intensity is obtained for each of the light receiving elements A, B, and C, and is used to obtain x-axis movement information and z-axis movement information. And pitch angle variation information is calculated. That is, measurement can be performed in the three-axis directions.

上述した実施の形態は本発明の一例を説明したものであり、格子ピッチや回折光次数は上述したものに限らず、2種類の干渉強度が得られる光学系であれば同様の効果を奏することができる。そして、上述した以外にも様々な実施形態が可能であり、例えば、光束分割素子として回折格子を用いたが、プリズムやハーフミラー等を用いても良い。また、光束分割素子として2つの回折格子(4A,4Bまたは30,31)を用いたが、例えば、ガラス光学素子の互いに平行な2面にこれら2種類の格子溝を形成して一体としても良い。   The embodiment described above is an example of the present invention, and the grating pitch and the diffracted light order are not limited to those described above, and the same effect can be obtained as long as the optical system can obtain two types of interference intensities. Can do. Various embodiments other than those described above are possible. For example, although a diffraction grating is used as a light beam splitting element, a prism, a half mirror, or the like may be used. Further, although two diffraction gratings (4A, 4B or 30, 31) are used as the light beam splitting elements, for example, these two kinds of grating grooves may be formed on two mutually parallel surfaces of the glass optical element. .

なお、光束分割素子4A,30に入射する光束は平行光で垂直入射としたが、必ずしも平行光でなくても良いし、垂直入射でなくても良い。ただし、垂直入射でない場合には、格子出射角度は対称等角とはならない。また、移動格子5とインデックス格子6を同一格子ピッチpとしたが、必ずしも同一ピッチでなくても良い。さらに、干渉光を得るための光学系をモアレ方式や格子ピッチが異なるバーニア方式とし、受光素子A,Bに多分割受光素子を用いるようにしても良い。また、図1,3,4において、格子4B,31を移動格子としても良く、同様の計算により移動量が算出される。   The light beams incident on the light beam splitting elements 4A and 30 are parallel light and vertically incident. However, the light beams may not necessarily be parallel light and may not be vertically incident. However, the grating exit angle is not a symmetric equiangular angle when it is not perpendicularly incident. In addition, although the moving grating 5 and the index grating 6 have the same grating pitch p, they need not necessarily be the same pitch. Furthermore, the optical system for obtaining the interference light may be a moiré method or a vernier method having a different grating pitch, and a multi-segment light receiving element may be used for the light receiving elements A and B. 1, 3 and 4, the gratings 4B and 31 may be moving gratings, and the movement amount is calculated by the same calculation.

なお、光源に横ゼーマンレーザ等を用いることも当然可能であり、ヘテロダイン干渉計を構築することにより高分解能なエンコーダを構成することができる。また、本光学系構成を2組用いることによって、5自由度エンコーダを構成することも可能である。   Of course, a transverse Zeeman laser or the like can be used as the light source, and a high-resolution encoder can be configured by constructing a heterodyne interferometer. In addition, a 5-degree-of-freedom encoder can be configured by using two sets of the present optical system configuration.

さらに、上述したように本発明ではレーザドップラーシフトの原理を利用して移動情報を取得しているので、本光学系構成で5自由度のレーザドップラー速度計を構築することも可能である。なお、本発明の特徴を損なわない限り、本発明は上記実施の形態に何ら限定されるものではない。   Furthermore, as described above, in the present invention, movement information is acquired using the principle of laser Doppler shift, so it is possible to construct a laser Doppler velocimeter with five degrees of freedom with this optical system configuration. Note that the present invention is not limited to the above embodiment as long as the characteristics of the present invention are not impaired.

以上説明した実施の形態と特許請求の範囲の要素との対応において、光束21,22,23は請求項1の第1〜第3の光束を、回折格子4A,30は光学系を、回折格子4B,31は第1の回折格子を、受光素子Aは第1の検出部を、受光素子Bは第2の検出部を、受光素子Cは第3の検出部を、エンコーダ処理回路6は演算部を、移動格子5は第2の回折格子を、光束41〜46は請求項2の第1〜第6の光束をそれぞれ構成する。   In the correspondence between the embodiment described above and the elements of the claims, the light beams 21, 22, 23 are the first to third light beams of claim 1, the diffraction gratings 4A, 30 are the optical system, and the diffraction grating. 4B and 31 are the first diffraction grating, the light receiving element A is the first detecting unit, the light receiving element B is the second detecting unit, the light receiving element C is the third detecting unit, and the encoder processing circuit 6 is the arithmetic unit. The moving grating 5 constitutes the second diffraction grating, and the luminous fluxes 41 to 46 constitute the first to sixth luminous fluxes of claim 2, respectively.

本発明による光電式エンコーダの第1の実施の形態を示す図であり、エンコーダの主要構成を示したものである。BRIEF DESCRIPTION OF THE DRAWINGS It is a figure which shows 1st Embodiment of the photoelectric encoder by this invention, and shows the main structures of an encoder. ドップラーシフトの原理を説明する図である。It is a figure explaining the principle of Doppler shift. 第1の変形例を示す図である。It is a figure which shows a 1st modification. 第2の変形例を示す図である。It is a figure which shows the 2nd modification.

符号の説明Explanation of symbols

1 光源
2 コリメートレンズ
3,21,22,23,21a,21b,22a,22b,23a,23b,41〜46 光束
4A,4B,30,31 回折格子
5 移動格子
6 エンコーダ処理回路
A,B,C 受光素子
DESCRIPTION OF SYMBOLS 1 Light source 2 Collimating lens 3, 21, 22, 23, 21a, 21b, 22a, 22b, 23a, 23b, 41-46 Light beam 4A, 4B, 30, 31 Diffraction grating 5 Moving grating 6 Encoder processing circuit A, B, C Light receiving element

Claims (2)

光源と、
前記光源の光から、互いに異なる方向に進む少なくとも第1、第2および第3の光束を生成する光学系と、
前記第1、第2および第3の光束が入射し、前記第1,第2および第3の光束の各々について0次光を含む複数の回折光をそれぞれ生成する第1の回折格子と、
(a)前記第1の光束から生成された前記複数の回折光のいずれか一つと、前記第1の回折格子で生成された他の回折光の一つとにより第1の干渉光を生成し、(b)前記第2の光束から生成された前記複数の回折光のいずれか一つと、前記第1の回折格子で生成された他の回折光の一つとにより第2の干渉光を生成し、(c)前記第3の光束から生成された前記複数の回折光のいずれか一つと、前記第1の回折格子で生成された他の回折光の一つとにより第3の干渉光を生成する第2の回折格子と、
前記第1の干渉光を検出する第1の検出部と、
前記第2の干渉光を検出する第2の検出部と、
前記第3の干渉光を検出する第3の検出部と、
前記第1乃至第3の検出部の検出結果から算出される位相情報に基づく演算を行う演算部とを備え、
前記第1および第2の回折格子のうちの一方は可動物体に固定された移動格子であって、前記演算部は前記移動格子の移動方向の変位および移動格子に垂直な方向の変位を演算することを特徴とする光電式エンコーダ。
A light source;
An optical system that generates at least first, second, and third light fluxes traveling in different directions from the light of the light source;
A first diffraction grating that receives the first, second, and third light fluxes and generates a plurality of diffracted lights including zero-order light for each of the first, second, and third light fluxes;
(A) generating a first interference light by any one of the plurality of diffracted lights generated from the first light flux and one of the other diffracted lights generated by the first diffraction grating; (B) generating a second interference light by any one of the plurality of diffracted lights generated from the second light flux and one of the other diffracted lights generated by the first diffraction grating; (C) A third interference light is generated by using one of the plurality of diffracted lights generated from the third light flux and one of the other diffracted lights generated by the first diffraction grating. Two diffraction gratings;
A first detector for detecting the first interference light;
A second detection unit for detecting the second interference light;
A third detection unit for detecting the third interference light;
A calculation unit that performs calculation based on phase information calculated from detection results of the first to third detection units,
One of the first and second diffraction gratings is a moving grating fixed to a movable object, and the calculation unit calculates a displacement in a moving direction of the moving grating and a displacement in a direction perpendicular to the moving grating. A photoelectric encoder characterized by that.
光源と、
前記光源の光から、互いに異なる方向に進む第1、第2、第3、第4、第5および第6の光束を生成する光学系と、
前記第1および第2の光束の入射角度平均値と、前記第3および第4の光束の入射角度平均値と、前記第5および第6の光束の入射角度平均値とが異なるように前記第1乃至第6の光束がそれぞれ入射し、前記第1乃至第6の光束の各々について0次光を含む複数の回折光をそれぞれ生成する第1の回折格子と、
(a)前記第1の光束から生成された前記複数の回折光のいずれか一つと、前記第2の光束から生成された前記複数の回折光のいずれか一つとにより第1の干渉光を生成し、(b)前記第3の光束から生成された前記複数の回折光のいずれか一つと、前記第4の光束から生成された前記複数の回折光のいずれか一つとにより第2の干渉光を生成し、(c)前記第5の光束から生成された前記複数の回折光のいずれか一つと、前記第6の光束から生成された前記複数の回折光のいずれか一つとにより第3の干渉光を生成する第2の回折格子と、
前記第1の干渉光を検出する第1の検出部と、
前記第2の干渉光を検出する第2の検出部と、
前記第3の干渉光を検出する第3の検出部と、
前記第1乃至第3の検出部の検出結果から算出される位相情報に基づく演算を行う演算部とを備え、
前記第1および第2の回折格子のうちの一方は可動物体に固定された移動格子であって、前記演算部は前記移動格子の移動方向の変位および移動格子に垂直な方向の変位を演算することを特徴とする光電式エンコーダ。
A light source;
An optical system for generating first, second, third, fourth, fifth and sixth light fluxes traveling in different directions from the light of the light source;
The first and second light beam incident angle average values, the third and fourth light beam incident angle average values, and the fifth and sixth light beam incident angle average values are different from each other. A first diffraction grating on which each of the first to sixth light beams is incident, and each of the first to sixth light beams generates a plurality of diffracted lights including zeroth-order light;
(A) A first interference light is generated by any one of the plurality of diffracted lights generated from the first light flux and one of the plurality of diffracted lights generated from the second light flux. And (b) second interference light by any one of the plurality of diffracted lights generated from the third light flux and one of the plurality of diffracted lights generated from the fourth light flux. (C) the third diffracted light generated from the fifth light flux and the third diffracted light generated from the sixth light flux. A second diffraction grating that generates interference light;
A first detector for detecting the first interference light;
A second detection unit for detecting the second interference light;
A third detection unit for detecting the third interference light;
A calculation unit that performs calculation based on phase information calculated from detection results of the first to third detection units,
One of the first and second diffraction gratings is a moving grating fixed to a movable object, and the calculation unit calculates a displacement in a moving direction of the moving grating and a displacement in a direction perpendicular to the moving grating. A photoelectric encoder characterized by that.
JP2004143908A 2004-05-13 2004-05-13 Photoelectric encoder Pending JP2005326232A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004143908A JP2005326232A (en) 2004-05-13 2004-05-13 Photoelectric encoder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004143908A JP2005326232A (en) 2004-05-13 2004-05-13 Photoelectric encoder

Publications (1)

Publication Number Publication Date
JP2005326232A true JP2005326232A (en) 2005-11-24

Family

ID=35472706

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004143908A Pending JP2005326232A (en) 2004-05-13 2004-05-13 Photoelectric encoder

Country Status (1)

Country Link
JP (1) JP2005326232A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007078687A (en) * 2005-09-12 2007-03-29 Dr Johannes Heidenhain Gmbh Locating device
EP1865292A1 (en) 2006-05-19 2007-12-12 Nikon Corporation Encoder
US7601947B2 (en) 2006-05-19 2009-10-13 Nikon Corporation Encoder that optically detects positional information of a scale
JP2013003146A (en) * 2011-06-13 2013-01-07 Mitsutoyo Corp Displacement sensor
US8529823B2 (en) 2009-09-29 2013-09-10 Asml Netherlands B.V. Imprint lithography
US10401152B2 (en) 2016-03-14 2019-09-03 Canon Kabushiki Kaisha Position detection apparatus, force sensor, and apparatus

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007078687A (en) * 2005-09-12 2007-03-29 Dr Johannes Heidenhain Gmbh Locating device
EP1865292A1 (en) 2006-05-19 2007-12-12 Nikon Corporation Encoder
US7601947B2 (en) 2006-05-19 2009-10-13 Nikon Corporation Encoder that optically detects positional information of a scale
US8529823B2 (en) 2009-09-29 2013-09-10 Asml Netherlands B.V. Imprint lithography
JP2013003146A (en) * 2011-06-13 2013-01-07 Mitsutoyo Corp Displacement sensor
US10401152B2 (en) 2016-03-14 2019-09-03 Canon Kabushiki Kaisha Position detection apparatus, force sensor, and apparatus

Similar Documents

Publication Publication Date Title
US7573581B2 (en) Position-measuring device
USRE40551E1 (en) Device for measuring translation, rotation or velocity via light beam interference
KR101240413B1 (en) Origin detection apparatus, displacement measurement apparatus and optical apparatus
JP5268529B2 (en) Displacement measuring device and semiconductor manufacturing device
JP6329456B2 (en) Optical position measuring device
JPH06194123A (en) Displacement detecting device
US20160116757A1 (en) Optical encoder
JP2004144581A (en) Displacement detecting apparatus
KR100531458B1 (en) Optical displacement measurement system
US10527405B2 (en) Optical position-measuring device
EP0682230A2 (en) Apparatus for measuring displacement for object using diffraction grating
JP4506271B2 (en) Photoelectric encoder
JP3548275B2 (en) Displacement information measuring device
JPS58191907A (en) Method for measuring extent of movement
JP2005326232A (en) Photoelectric encoder
JP2718440B2 (en) Length measuring or angle measuring device
JP5355790B2 (en) Interferometric distance measuring device and / or rotation measuring device
US11644348B2 (en) Optical position measuring device
JP6251126B2 (en) Displacement detector
US9638514B2 (en) Optical position-measuring device
US9739598B2 (en) Device for interferential distance measurement
JP2020051782A (en) Optical angle sensor
JP2675317B2 (en) Moving amount measuring method and moving amount measuring device
JP3728310B2 (en) Encoder
JPH0799325B2 (en) Minute displacement measuring method and minute displacement measuring device