JP2005325248A - Carbon fiber reinforced plastic - Google Patents

Carbon fiber reinforced plastic Download PDF

Info

Publication number
JP2005325248A
JP2005325248A JP2004145018A JP2004145018A JP2005325248A JP 2005325248 A JP2005325248 A JP 2005325248A JP 2004145018 A JP2004145018 A JP 2004145018A JP 2004145018 A JP2004145018 A JP 2004145018A JP 2005325248 A JP2005325248 A JP 2005325248A
Authority
JP
Japan
Prior art keywords
matrix resin
carbon fiber
fiber reinforced
surface energy
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004145018A
Other languages
Japanese (ja)
Inventor
Kazumi Saito
和美 斉藤
Kazuto Nakao
和人 中尾
Satoshi Hirawaki
聡志 平脇
Yasuo Yamane
保夫 山根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2004145018A priority Critical patent/JP2005325248A/en
Publication of JP2005325248A publication Critical patent/JP2005325248A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Reinforced Plastic Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a low-cost carbon fiber reinforced plastic which improves the impregnation properties of carbon fibers with a matrix resin without deteriorating the properties. <P>SOLUTION: The carbon fiber reinforced plastic is obtained by impregnating carbon fibers with a matrix resin, and the matrix resin is obtained by modifying a base matrix resin with a component having a higher surface energy than the surface energy of the base matrix resin. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、炭素繊維強化プラスチックスに係り、特に、炭素繊維強化プラスチックスに用いられるマトリックス樹脂に関するものである。   The present invention relates to carbon fiber reinforced plastics, and more particularly to a matrix resin used for carbon fiber reinforced plastics.

繊維強化複合材料の一つに、炭素繊維と樹脂からなる炭素繊維強化プラスチックス(以下、CFRPと略称する。)がある。このCFRPを構成するマトリックス樹脂としては、一般的に広く使用されているエポキシ樹脂の他、不飽和ポリエステル樹脂、ビニルエステル樹脂、アクリル樹脂などのラジカル重合系樹脂など多くの樹脂が用いられている。CFRPに使用されている炭素繊維は、化学組成の大部分(90%以上)が炭素よりなる繊維であり、再生セルロース、ポリアクリロニトリル(PAN)、ピッチなどから得られ、高強度炭素繊維、高弾性炭素繊維などに区別される。この炭素繊維は、軽量で、比強度および比弾性率に対して特に優れた性質を有している。加えて、耐熱性、耐薬品性にも優れていることなどから、強化材として有効であり、広範囲に用いられている。   One of fiber reinforced composite materials is carbon fiber reinforced plastics (hereinafter abbreviated as CFRP) made of carbon fiber and resin. As the matrix resin constituting the CFRP, many resins such as radical polymerization resins such as unsaturated polyester resins, vinyl ester resins and acrylic resins are used in addition to generally used epoxy resins. Carbon fiber used in CFRP is a fiber whose chemical composition is mostly composed of carbon (90% or more), and is obtained from regenerated cellulose, polyacrylonitrile (PAN), pitch, etc., and has high strength carbon fiber and high elasticity. A distinction is made between carbon fibers and the like. This carbon fiber is lightweight and has particularly excellent properties with respect to specific strength and specific modulus. In addition, because of its excellent heat resistance and chemical resistance, it is effective as a reinforcing material and is widely used.

しかしながら、この炭素繊維は、一般にマトリックス樹脂に対する含浸性に乏しいため、これを使用したCFRPにおいて、炭素繊維の有する優れた性質を充分に発揮させることが困難であるという不都合が生じていた。   However, since this carbon fiber is generally poor in impregnation with the matrix resin, there has been a disadvantage that it is difficult to sufficiently exhibit the excellent properties of the carbon fiber in CFRP using this carbon fiber.

マトリックス樹脂の炭素繊維に対する含浸性を改善するため、従来から様々な試みがなされてきた。例えば、マトリックス樹脂を低分子量化して樹脂粘度を下げる方法、炭素繊維束や織物を薄くする方法、および炭素繊維に対して表面処理を行い、炭素繊維の表面エネルギーをマトリックス樹脂の表面エネルギーに近づけて濡れ性を向上させる方法(例えば特許文献1〜3参照)等が挙げられる。   Various attempts have been made to improve the impregnation of the matrix resin into the carbon fibers. For example, the method of lowering the molecular weight of the matrix resin to lower the resin viscosity, the method of thinning the carbon fiber bundle or fabric, and the surface treatment of the carbon fiber to bring the surface energy of the carbon fiber closer to the surface energy of the matrix resin Examples thereof include a method for improving wettability (see, for example, Patent Documents 1 to 3).

特開2000−355881号公報JP 2000-355881 A 特開2000−355884号公報JP 2000-355884 A 特開2001−3266号公報Japanese Patent Laid-Open No. 2001-3266

しかしながら、マトリックス樹脂を低分子量化して樹脂粘度を下げる方法においては、含浸性は高まる反面、熱分解温度や樹脂強度等のマトリックス樹脂の物性が低下するため、それを用いたCFRPの物性も低下する。また、炭素繊維束や織物を薄くして含浸性を高める方法においては、厚い板状体を作製することができず、厚い板状体を得る場合には薄い板状体を積層しなければならないという問題を有していた。さらに、炭素繊維に対して表面処理を行い、炭素繊維の表面エネルギーをマトリックス樹脂の表面エネルギーに近づけて濡れ性を向上させる方法においては、新たに表面処理工程を要し、サイズ剤等の原料コストの増大が問題となるばかりでなく、炭素繊維にサイズ剤を均一に付着させることが難しく、含浸性にムラが出るという問題を有していた。   However, in the method of lowering the resin viscosity by lowering the molecular weight of the matrix resin, the impregnation property is increased, but the physical properties of the matrix resin such as the thermal decomposition temperature and the resin strength are lowered, so that the physical properties of the CFRP using the same are also lowered. . Moreover, in the method of increasing the impregnation property by thinning the carbon fiber bundle or the woven fabric, it is not possible to produce a thick plate-like body, and in order to obtain a thick plate-like body, the thin plate-like body must be laminated. Had the problem. Furthermore, in the method of surface treatment of carbon fiber to improve the wettability by bringing the surface energy of the carbon fiber closer to the surface energy of the matrix resin, a new surface treatment process is required, and the raw material costs such as sizing agent are increased. In addition to the problem of increase in the size, it is difficult to uniformly attach the sizing agent to the carbon fiber, and the impregnation property is uneven.

本発明は上記状況に鑑みてなされたものであり、樹脂の物性を低下させることなく、炭素繊維とマトリックス樹脂の含浸性が向上した低コストな炭素繊維強化プラスチックスを提供することを目的としている。   The present invention has been made in view of the above situation, and an object thereof is to provide a low-cost carbon fiber reinforced plastic with improved impregnation of carbon fiber and matrix resin without deteriorating the physical properties of the resin. .

本発明の炭素繊維強化プラスチックスは、炭素繊維にマトリックス樹脂を含浸させてなる炭素繊維強化プラスチックスであって、上記マトリックス樹脂は、基マトリックス樹脂を、この基マトリックス樹脂よりも表面エネルギーの高い成分によって改質した改質マトリックス樹脂であることを特徴としている。   The carbon fiber reinforced plastics of the present invention are carbon fiber reinforced plastics obtained by impregnating a carbon fiber with a matrix resin, and the matrix resin is a component having a surface energy higher than that of the base matrix resin. It is characterized by being a modified matrix resin modified by the above.

本発明の炭素繊維強化プラスチックスによれば、基マトリックス樹脂に対して、この基マトリックス樹脂よりも表面エネルギーの高い成分によって改質した改質マトリックス樹脂を用いているので、マトリックス樹脂の表面エネルギーが従来のものと比較して高くなっており、炭素繊維への濡れ性が向上している。したがって、マトリックス樹脂の粘度を下げることなく炭素繊維に対するマトリックス樹脂の含浸性が向上し、結果として優れた性能を有する炭素繊維強化プラスチックスを提供することができる。   According to the carbon fiber reinforced plastics of the present invention, since the modified matrix resin modified with a component having a surface energy higher than that of the base matrix resin is used for the base matrix resin, the surface energy of the matrix resin is reduced. It is higher than the conventional one and the wettability to the carbon fiber is improved. Therefore, the impregnation property of the matrix resin with respect to the carbon fibers is improved without lowering the viscosity of the matrix resin, and as a result, carbon fiber reinforced plastics having excellent performance can be provided.

以下、本発明の炭素繊維強化プラスチックスの好適な実施形態について、説明する。
本発明では、マトリックス樹脂を改質することによって表面エネルギーを増加させ、炭素繊維への含浸性の向上を図っている。表面エネルギーを増加させる手段としては特に制限されず、任意の手段を選択可能であるが、分子鎖中に官能基を持たない基マトリックス樹脂に対して、電子線や放射線を照射してラジカルを発生させて改質成分との重合を行うグラフト重合法によって官能基を導入した改質マトリックス樹脂を用いる態様が好ましい。このような基マトリックス樹脂としては、ポリエチレン、ポリプロピレン等のオレフィン系樹脂が好ましく用いられる。
Hereinafter, preferred embodiments of the carbon fiber reinforced plastics of the present invention will be described.
In the present invention, the surface energy is increased by modifying the matrix resin to improve the impregnation of carbon fibers. The means for increasing the surface energy is not particularly limited, and any means can be selected, but radicals are generated by irradiating a base matrix resin that does not have a functional group in the molecular chain with an electron beam or radiation. An embodiment using a modified matrix resin into which a functional group has been introduced by a graft polymerization method in which polymerization with a modifying component is performed is preferred. As such a base matrix resin, an olefin resin such as polyethylene and polypropylene is preferably used.

改質のためにグラフト重合によって基マトリックス樹脂に導入される成分としては、エチレン性不飽和結合含有カルボン酸、およびその無水物が挙げられる。具体例としては、アクリル酸、メタクリル酸等のモノカルボン酸、マレイン酸、フマル酸、イタコン酸等のジカルボン酸、無水マレイン酸、無水イタコン酸等のカルボン酸無水物が挙げられる。化1に、本発明の一例であるポリプロピレンに無水マレイン酸を導入した改質マトリックス樹脂の構造式を示す。   Components introduced into the base matrix resin by graft polymerization for modification include ethylenically unsaturated bond-containing carboxylic acids and anhydrides thereof. Specific examples include monocarboxylic acids such as acrylic acid and methacrylic acid, dicarboxylic acids such as maleic acid, fumaric acid and itaconic acid, and carboxylic acid anhydrides such as maleic anhydride and itaconic anhydride. Chemical formula 1 shows the structural formula of a modified matrix resin in which maleic anhydride is introduced into polypropylene as an example of the present invention.

Figure 2005325248
Figure 2005325248

基マトリックス樹脂に対する改質成分のグラフト重合量としては、基マトリックス樹脂分子中の炭素原子数(C)と改質成分のカルボキシル基数(COOH)が、下記式の範囲であることが好ましい。
40<(C)/(COOH)<1400 (ポリプロピレンの場合)
27<(C)/(COOH)<930 (ポリエチレンの場合)
ポリプロピレンに無水マレイン酸をグラフト重合させた場合は、後述の実施例で示すように、無水マレイン酸の含有量が0.3〜10重量%であれば好ましい。
As the graft polymerization amount of the modifying component with respect to the base matrix resin, the number of carbon atoms (C) in the base matrix resin molecule and the number of carboxyl groups (COOH) of the modifying component are preferably in the range of the following formula.
40 <(C) / (COOH) <1400 (in the case of polypropylene)
27 <(C) / (COOH) <930 (in the case of polyethylene)
When maleic anhydride is graft-polymerized to polypropylene, it is preferable that the content of maleic anhydride is 0.3 to 10% by weight, as shown in Examples described later.

本発明の炭素繊維強化プラスチックスに用いられる炭素繊維は、ピッチ、レーヨン、またはポリアクリロニトリル等のいずれの原料物質から製造したものでもよく、特に制限されない。また、その種類は、高強度タイプの低弾性率炭素繊維、中高弾性炭素繊維、および超高弾性炭素繊維などいずれの種類のものでもよい。さらに、その形態は、長繊維、短繊維、あるいは織物、編み物、不織布などのシート状形態を有するもの等、任意のものが使用可能である。   The carbon fiber used for the carbon fiber reinforced plastics of the present invention may be produced from any raw material such as pitch, rayon, or polyacrylonitrile, and is not particularly limited. Moreover, the kind may be any kind such as a high strength type low elastic modulus carbon fiber, medium high elasticity carbon fiber, and ultra high elasticity carbon fiber. Furthermore, the form can use arbitrary things, such as what has a sheet form form, such as a long fiber, a short fiber, or a textile fabric, a knitted fabric, and a nonwoven fabric.

炭素繊維シート状物としては、織布、一方向配列シート、不織布、マット等、およびこれらを組み合わせたものが挙げられる。織り組織は特に限定はされず、平織り、綾織り、朱子織り等の他、これら原組織を変化させたものでもよい。また、緯糸、経糸共に上記の炭素繊維でもよく、また他の炭素繊維あるいは炭素繊維以外の繊維との混織でもよい。このような繊維としては、ガラス繊維、チラノ繊維、SiC繊維等の無機繊維、アラミド、ポリエステル、ポリプロピレン、ナイロン、アクリル、ポリイミド、ビニロン等の有機繊維等が挙げられる。   Examples of the carbon fiber sheet include woven fabrics, unidirectionally arranged sheets, nonwoven fabrics, mats, and the like, and combinations thereof. The weaving structure is not particularly limited, and other than the plain weaving, twill weaving, satin weaving, etc., these original structures may be changed. Further, both the weft and the warp may be the above carbon fiber, or may be a mixed weave with other carbon fibers or fibers other than carbon fibers. Examples of such fibers include inorganic fibers such as glass fibers, Tyranno fibers, and SiC fibers, and organic fibers such as aramid, polyester, polypropylene, nylon, acrylic, polyimide, and vinylon.

本発明の炭素繊維強化プラスチックスは、これらの繊維を補強繊維として、マトリックス樹脂と複合化され、一方向プリプレグ、クロスプリプレグ、トウプレグ、短繊維強化樹脂含浸シート、短繊維マット強化樹脂含浸シート等の炭素繊維強化プラスチックスとなる。   The carbon fiber reinforced plastics of the present invention are compounded with matrix resin using these fibers as reinforcing fibers, such as unidirectional prepreg, cross prepreg, tow prepreg, short fiber reinforced resin impregnated sheet, short fiber mat reinforced resin impregnated sheet, etc. Carbon fiber reinforced plastics.

以下、実施例および比較例を用いて本発明を具体的に説明する。
[樹脂のグラフト]
無水マレイン酸0.03kgとt−ブチルペルオキシベンゾエート0.03kgと結晶性プロピレン単独重合体パウダー10kgとをドライブレンドした後、ニーダー(森山製作所製)により210℃で溶融混練し、無水マレイン酸グラフト変性ポリプロピレン樹脂(PP−1)を得た。
Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples.
[Resin graft]
After dry blending 0.03 kg of maleic anhydride, 0.03 kg of t-butylperoxybenzoate and 10 kg of crystalline propylene homopolymer powder, the mixture was melt-kneaded at 210 ° C. with a kneader (manufactured by Moriyama Seisakusho) and grafted with maleic anhydride. A polypropylene resin (PP-1) was obtained.

[測定試料の作製]
PP−1を表面温度200℃に調整したホットプレスに1g載せ、5分間予熱後、5MPaの圧力をかけてフィルムを作製した。
[Preparation of measurement sample]
1 g of PP-1 was placed on a hot press adjusted to a surface temperature of 200 ° C., preheated for 5 minutes, and then a pressure of 5 MPa was applied to produce a film.

[表面エネルギーの測定]
あらかじめ表面エネルギーの分かっている蒸留水(和光純薬工業株式会社製)、流動パラフィン(和光純薬工業株式会社製)を上記で作製したフィルムに0.2μl滴下し、接触角測定器(商品名:G−I、ERMA INC社製)を用いて接触角を測定した。測定に当たっては滴下後30、60、90秒後の接触角を測定し、その回帰線から滴下直後の接触角を求めた。表面エネルギーの算出は以下の式を用いた。
γ=γd+γp
γd=7.95×(1+cosθp)
γp=[72.8×(1+cosθw)−2×(γd×21.8)0.5/204
(上式において、θwは蒸留水接触角、θpは流動パラフィン接触角である)
[Measurement of surface energy]
Distilled water (manufactured by Wako Pure Chemical Industries, Ltd.) with known surface energy and liquid paraffin (manufactured by Wako Pure Chemical Industries, Ltd.) are dropped in an amount of 0.2 μl on the film prepared above, and a contact angle measuring device (trade name) : GI, manufactured by ERMA INC.), The contact angle was measured. In the measurement, the contact angle was measured 30, 60, and 90 seconds after dropping, and the contact angle immediately after dropping was determined from the regression line. The following formula was used for the calculation of the surface energy.
γ = γd + γp
γd = 7.95 × (1 + cos θp) 2
γp = [72.8 × (1 + cosθw) -2 × (γd × 21.8) 0.5] 2/204
(In the above equation, θw is the distilled water contact angle and θp is the liquid paraffin contact angle)

[含浸深さの測定]
オーブン(商品名:ハイテンプオーブンPHH−200、TABAI社製)を用いて雰囲気温度230度に設定し、PP−1を30g入れて1時間恒温槽中で保持し溶融させた。炭素繊維織物(商品名:TCS−S3001、東邦テナックス社製)の目付け300gを50×50mmに切り取り、ステンレス製バットの上に、炭素繊維の織目が互いに直交するように7層積層した。この積層物の上に、外径φ26、内径φ22、重量100gの金属製円筒を載せた。バットを恒温槽にいれ、溶融させたPP−1を5g注いだ。恒温槽内で5分間放置後、バットを取り出して室内にて冷却した。SEM(商品名:S−800、日立製)を用いて板厚方向に対する含浸深さを測定した。
[Measurement of impregnation depth]
Using an oven (trade name: High Temp Oven PHH-200, manufactured by Tabai Co., Ltd.), the ambient temperature was set to 230 ° C., 30 g of PP-1 was added and held in a constant temperature bath for 1 hour to melt. A carbon fiber fabric (trade name: TCS-S3001, manufactured by Toho Tenax Co., Ltd.) having a basis weight of 300 g was cut into 50 × 50 mm, and seven layers were laminated on a stainless steel bat so that the carbon fiber textures were orthogonal to each other. On this laminate, a metal cylinder having an outer diameter of φ26, an inner diameter of φ22, and a weight of 100 g was placed. The bat was placed in a thermostat and 5 g of melted PP-1 was poured. After leaving for 5 minutes in a thermostatic bath, the bat was taken out and cooled indoors. The impregnation depth with respect to the plate thickness direction was measured using SEM (trade name: S-800, manufactured by Hitachi).

[測定結果]
マレイン酸のグラフト量とマトリックス樹脂の表面エネルギーの関係を図1に、表面エネルギーと含浸深さの関係を図2に示した。図から明らかなように、マレイン酸のグラフトに伴いマトリックス樹脂の表面エネルギーが増加しており、表面エネルギーの増加に伴い含浸深さが深くなっている。無水マレイン酸の含有量は、0.3〜10重量%の範囲であれば好ましい。含有量が0.3重量%未満の場合は本発明の効果が得られない。また、グラフト量を10重量%より大きくしようとすると、マレイン酸成分が分子鎖中で立体的に干渉するため、分子鎖を切断して端部にマレイン酸をグラフトしなければならない。ただし、分子鎖を切断するとマトリックス樹脂の分子量が低下するため、所望の物性が得られず、好ましくない。
[Measurement result]
The relationship between the graft amount of maleic acid and the surface energy of the matrix resin is shown in FIG. 1, and the relationship between the surface energy and the impregnation depth is shown in FIG. As is apparent from the figure, the surface energy of the matrix resin increases with the grafting of maleic acid, and the impregnation depth increases with the increase of the surface energy. The maleic anhydride content is preferably in the range of 0.3 to 10% by weight. When the content is less than 0.3% by weight, the effect of the present invention cannot be obtained. On the other hand, if the grafting amount is more than 10% by weight, the maleic acid component sterically interferes with the molecular chain, so that the molecular chain must be cut and maleic acid grafted to the end. However, if the molecular chain is cleaved, the molecular weight of the matrix resin is lowered, so that desired physical properties cannot be obtained, which is not preferable.

以上説明したように、本発明の繊維強化プラスチック用多軸積層強化材によれば、マトリックス樹脂の粘度を上げることなく含浸性を高めることができるため、樹脂の物性を下げることなく厚いマットへの含浸を行うことが可能になる。   As described above, according to the multiaxial laminated reinforcing material for fiber reinforced plastic of the present invention, the impregnation property can be improved without increasing the viscosity of the matrix resin, so that a thick mat can be formed without reducing the physical properties of the resin. Impregnation can be performed.

本発明のマトリックス樹脂におけるマレイン酸のグラフト量と表面エネルギーの関係を示すグラフである。It is a graph which shows the relationship between the graft amount of maleic acid in the matrix resin of this invention, and surface energy. 本発明のマトリックス樹脂の表面エネルギーと炭素繊維への含浸深さの関係を示すグラフである。It is a graph which shows the relationship between the surface energy of the matrix resin of this invention, and the impregnation depth to a carbon fiber.

Claims (2)

炭素繊維にマトリックス樹脂を含浸させてなる炭素繊維強化プラスチックスであって、上記マトリックス樹脂は、基マトリックス樹脂を、この基マトリックス樹脂よりも表面エネルギーの高い成分によって改質した改質マトリックス樹脂であることを特徴とする炭素繊維強化プラスチックス。   Carbon fiber reinforced plastic obtained by impregnating a carbon fiber with a matrix resin, wherein the matrix resin is a modified matrix resin obtained by modifying a base matrix resin with a component having a higher surface energy than the base matrix resin. Carbon fiber reinforced plastics. 前記改質マトリックス樹脂は、熱可塑性樹脂であり、かつ、エチレン性不飽和結合含有カルボン酸もしくはその無水物をグラフト重合した改質マトリックス樹脂であることを特徴とする請求項1に記載の炭素繊維強化プラスチックス。   2. The carbon fiber according to claim 1, wherein the modified matrix resin is a thermoplastic resin and is a modified matrix resin obtained by graft polymerization of an ethylenically unsaturated bond-containing carboxylic acid or an anhydride thereof. Reinforced plastics.
JP2004145018A 2004-05-14 2004-05-14 Carbon fiber reinforced plastic Pending JP2005325248A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004145018A JP2005325248A (en) 2004-05-14 2004-05-14 Carbon fiber reinforced plastic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004145018A JP2005325248A (en) 2004-05-14 2004-05-14 Carbon fiber reinforced plastic

Publications (1)

Publication Number Publication Date
JP2005325248A true JP2005325248A (en) 2005-11-24

Family

ID=35471845

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004145018A Pending JP2005325248A (en) 2004-05-14 2004-05-14 Carbon fiber reinforced plastic

Country Status (1)

Country Link
JP (1) JP2005325248A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012149170A (en) * 2011-01-19 2012-08-09 Teijin Ltd Carbon fiber-reinforced polyolefin-based resin composite material and method for producing the same
JP2017132239A (en) * 2016-01-26 2017-08-03 エフテックス有限会社 Injection molding method of carbon fiber reinforced and modified polypropylene resin

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012149170A (en) * 2011-01-19 2012-08-09 Teijin Ltd Carbon fiber-reinforced polyolefin-based resin composite material and method for producing the same
JP2017132239A (en) * 2016-01-26 2017-08-03 エフテックス有限会社 Injection molding method of carbon fiber reinforced and modified polypropylene resin

Similar Documents

Publication Publication Date Title
KR101518145B1 (en) Carbon-fiber-precursor fiber bundle, carbon fiber bundle, and uses thereof
Masuelli Introduction of fibre-reinforced polymers− polymers and composites: concepts, properties and processes
US6630231B2 (en) Composite articles reinforced with highly oriented microfibers
KR101965470B1 (en) Carbon fiber bundle and process for producing same
CN104736614B (en) Fiber reinforcement high modulus polymer complex with enhancing interface phase
CN104884512B (en) Conductive fibers enhance polymer composite body and multi-functional complex
KR20170039197A (en) Fibre-reinforced thermoplastic resin moulding material, and fibre-reinforced thermoplastic resin moulded article
JP2007016121A (en) Prepreg for composite material and composite material
US20060062998A1 (en) Reinforcement for composite materials and method for making the reforcement
WO1997028210A1 (en) Resin compositions for fiber-reinforced composite materials and processes for producing the same, prepregs, fiber-reinforced composite materials, and honeycomb structures
JP2012007280A (en) Carbon fiber bundle and method for producing the same, and molded article from the same
JP3720633B2 (en) Sizing agent for carbon fiber, sizing agent solution for carbon fiber, carbon fiber, carbon fiber sheet and carbon fiber reinforced resin composition using the same
JP6394085B2 (en) Carbon fiber coated with sizing agent and production method thereof, prepreg and carbon fiber reinforced composite material
JP2005325248A (en) Carbon fiber reinforced plastic
JP4361401B2 (en) Carbon fiber, carbon fiber reinforced thermoplastic resin, and method for producing carbon fiber
WO2020003926A1 (en) Laminated body
JP6499029B2 (en) Sheet material for manufacturing vibration damping member, vibration damping member using the sheet material, and method for manufacturing the same
JP2006249395A (en) Carbon fiber-reinforced resin
JP4346936B2 (en) Vapor grown carbon fiber-containing prepreg and method for producing the same
JP2011246595A (en) Glass fiber-reinforced composite material and production method therefor
JP5385734B2 (en) Impact resistant composite
JP2000355881A (en) Sizing agent for carbon fiber, sizing agent solution for carbon fiber, carbon fiber sheetlike material using the carbon fiber and carbon fiber-reinforced resin composition
JP2010241845A (en) Prepreg and fiber-reinforced composite material obtained by curing the same
JP2000355883A (en) Sizing agent for reinforcing fiber
JP2000254917A (en) Prepreg and carbon fiber-reinforced composite material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090423

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090619

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100205