JP2005324132A - Method and apparatus for treating waste water - Google Patents

Method and apparatus for treating waste water Download PDF

Info

Publication number
JP2005324132A
JP2005324132A JP2004144908A JP2004144908A JP2005324132A JP 2005324132 A JP2005324132 A JP 2005324132A JP 2004144908 A JP2004144908 A JP 2004144908A JP 2004144908 A JP2004144908 A JP 2004144908A JP 2005324132 A JP2005324132 A JP 2005324132A
Authority
JP
Japan
Prior art keywords
bacteria
anaerobic ammonia
treatment tank
oxidizing bacteria
wastewater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004144908A
Other languages
Japanese (ja)
Other versions
JP3907004B2 (en
Inventor
Tatsuo Sumino
立夫 角野
Kazuichi Isaka
和一 井坂
So Ikuta
創 生田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Plant Technologies Ltd
Original Assignee
Hitachi Plant Technologies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Plant Technologies Ltd filed Critical Hitachi Plant Technologies Ltd
Priority to JP2004144908A priority Critical patent/JP3907004B2/en
Publication of JP2005324132A publication Critical patent/JP2005324132A/en
Application granted granted Critical
Publication of JP3907004B2 publication Critical patent/JP3907004B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • Y02W10/12

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for treating waste water capable of specifically realizing a method and an apparatus for filtering out a nitrogen content in the waste water by denitrification using an anaerobic ammonia oxidizing bacteria since start-up of a treatment tank in waste water treatment using the anaerobic ammonia oxidizing bacteria having an extremely low proliferation rate can be made high-speed and also a denitrification reaction in normal operation of the treatment tank after start-up can be made high-speed, and its apparatus. <P>SOLUTION: In the waste water treatment method for filtering out a nitrogen component in the waste water by denitrification with suspended microbe flocks in the treatment tank 16, the concentration of bacteria of the suspended microbe flocks is so adjusted that the total number of bacteria ranges 10<SP>7</SP>bacteria/mL or more as the concentration in the treatment tank 16 and also the anaerobic ammonia oxidizing bacteria ranges from 1/10 to 1/1,000 to the total number of bacteria by introducing the suspended microbe flocks into the treatment tank 16. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、廃水中の窒素成分を除去する廃水処理方法及び装置に係り、特に嫌気性アンモニア酸化細菌を用いた脱窒処理の高速化技術に関する。   The present invention relates to a wastewater treatment method and apparatus for removing nitrogen components in wastewater, and more particularly to a technique for speeding up denitrification treatment using anaerobic ammonia oxidizing bacteria.

下水や産業廃水に含有する窒素成分は、湖沼の富栄養化の原因になること、河川の溶存酸素の低下原因になること等の理由から、窒素成分を除去する必要がある。下水や産業廃水に含有する窒素成分は、アンモニア性窒素、亜硝酸性窒素、硝酸性窒素、有機性窒素が主たる窒素成分である。   Nitrogen components contained in sewage and industrial wastewater need to be removed for reasons such as causing eutrophication of lakes and marshes and reducing dissolved oxygen in rivers. Nitrogen components contained in sewage and industrial wastewater are mainly nitrogen components such as ammonia nitrogen, nitrite nitrogen, nitrate nitrogen, and organic nitrogen.

従来、この種の廃水は、窒素濃度が低濃度であれば、イオン交換法での除去や塩素、オゾンによる酸化も用いられているが、中高濃度の場合には生物処理が採用されており、一般的には以下の条件で運転されている。   Conventionally, this type of wastewater, if the nitrogen concentration is low, is also removed by ion exchange method and oxidation by chlorine, ozone, but in the case of medium to high concentration, biological treatment is adopted, Generally, it is operated under the following conditions.

生物処理では好気硝化と嫌気脱窒による硝化・脱窒処理が行われており、好気硝化では、アンモニア酸化細菌(Nitrosomonas,Nitrosococcus,Nitrosospira,Nitrosolobusなど)と亜硝酸酸化細菌(Nitrobactor,Nitrospina,Nitrococcus,Nitrospira など)によるアンモニア性窒素や亜硝酸性窒素の酸化が行われる一方、嫌気脱窒では、従属栄養細菌(Pseudomonas denitrificans など)による脱窒が行われる。   Biological treatment involves aerobic nitrification and anaerobic denitrification, and in aerobic nitrification, ammonia oxidizing bacteria (Nitrosomonas, Nitrosococcus, Nitrosospira, Nitrosolobus, etc.) and nitrite oxidizing bacteria (Nitrobactor, Nitrospina, Nitrococcus, Nitrospira, etc.) oxidize ammonia nitrogen and nitrite nitrogen, while anaerobic denitrification involves denitrification by heterotrophic bacteria (Pseudomonas denitrificans, etc.).

また、好気硝化を行う硝化槽は負荷0.2〜0.3kg−N/m3 /日の範囲で運転され、嫌気脱窒の脱窒槽は負荷0.2〜0.4kg−N/m3 /日の範囲で運転される。下水の総窒素濃度30〜40mg/Lを処理するには、硝化槽で6〜8時間の滞留時間、脱窒槽で5〜8時間が必要であり、大規模な処理槽が必要であった。また無機質だけを含有する産業廃水では、硝化槽や脱窒槽は先と同様の負荷で設計されるが、脱窒に有機物が必要で、窒素濃度の3〜4倍濃度のメタノールを添加していた。このためイニシャルコストばかりでなく、多大なランニングコストを要するという問題もある。 A nitrification tank for performing aerobic nitrification is operated within a load range of 0.2 to 0.3 kg-N / m 3 / day, and an anaerobic denitrification denitrification tank is loaded with a load of 0.2 to 0.4 kg-N / m. It is operated in the range of 3 / day. In order to treat the total nitrogen concentration of sewage of 30 to 40 mg / L, a residence time of 6 to 8 hours was required in the nitrification tank and 5 to 8 hours were required in the denitrification tank, and a large-scale treatment tank was required. In industrial wastewater containing only inorganic substances, nitrification tanks and denitrification tanks are designed with the same load as before, but organic substances are required for denitrification, and methanol with a concentration of 3 to 4 times the nitrogen concentration was added. . For this reason, there is a problem that not only the initial cost but also a great running cost is required.

これに対し、最近、嫌気性アンモニア酸化細菌を用いた廃水処理方法が注目されている(例えば特許文献1)。この嫌気性アンモニア酸化は、アンモニアを水素供与体とし、亜硝酸を水素受容体として、嫌気性アンモニア酸化細菌によりアンモニアと亜硝酸とを同時脱窒する方法である。   In contrast, recently, a wastewater treatment method using anaerobic ammonia-oxidizing bacteria has attracted attention (for example, Patent Document 1). This anaerobic ammonia oxidation is a method in which ammonia and nitrous acid are simultaneously denitrified by anaerobic ammonia oxidizing bacteria using ammonia as a hydrogen donor and nitrous acid as a hydrogen acceptor.

この方法によれば、アンモニアを水素供与体とするため、脱窒で使用するメタノール等の使用量を大幅に削減できることや、汚泥の発生量を削減できる等のメリットがあり,今後の廃水処理方法として有効な方法であると考えられている。
特開2001−37467号公報
According to this method, since ammonia is used as a hydrogen donor, there are merits such as greatly reducing the amount of methanol used for denitrification and reducing the amount of sludge generated. It is considered to be an effective method.
JP 2001-37467 A

ところで、嫌気性アンモニア酸化反応を行う嫌気性アンモニア酸化細菌は、Planctomycete が代表的で、その他にも多くの種や属があるものと考えられるが、増殖速度が0.001h-1と極めて遅いことが報告されている(Strous,M.et al.:Nature,400,446(1999)。従って、嫌気性アンモニア酸化細菌を用いて実際の廃水処理方法や装置を構成するには、この増殖速度の極めて遅い嫌気性アンモニア酸化細菌を用いた廃水処理における処理槽を高速に立ち上げると共に、立ち上げ後の処理槽の脱窒反応を高速で行うことが必要になる。 By the way, anaerobic ammonia oxidizing bacteria that undergo anaerobic ammonia oxidation reaction are typically Planctomycete, and it is thought that there are many other species and genera, but the growth rate is extremely slow at 0.001 h -1. (Strous, M. et al .: Nature, 400, 446 (1999). Therefore, in order to construct an actual wastewater treatment method and apparatus using anaerobic ammonia oxidizing bacteria, this growth rate is extremely slow. It is necessary to start up a treatment tank in wastewater treatment using anaerobic ammonia-oxidizing bacteria at a high speed and to perform a denitrification reaction of the treatment tank after the start-up at a high speed.

しかしながら、この方法は未だ反応特性が十分に解明されておらず、高速な立ち上げや脱窒速度を大きくすることが難しいという欠点がある。   However, this method has the drawback that the reaction characteristics have not been sufficiently elucidated, and it is difficult to increase the startup speed and denitrification rate.

本発明は、このような事情に鑑みてなされたもので、増殖速度の極めて遅い嫌気性アンモニア酸化細菌を用いた廃水処理における処理槽の立ち上げを高速化することができると共に、立ち上げ後の処理槽の定常運転での脱窒反応を高速化することができるので、廃水中の窒素成分を嫌気性アンモニア酸化細菌を用いた脱窒により除去するための方法や装置を具体的に実現化することができる廃水処理方法及びその装置を提供することを目的とする。   The present invention has been made in view of such circumstances, and can speed up the start-up of a treatment tank in wastewater treatment using anaerobic ammonia-oxidizing bacteria with a very slow growth rate. Since the denitrification reaction in the steady operation of the treatment tank can be accelerated, a method and apparatus for removing nitrogen components in wastewater by denitrification using anaerobic ammonia-oxidizing bacteria will be specifically realized. It is an object of the present invention to provide a wastewater treatment method and an apparatus for the same.

本発明者は、嫌気性アンモニア酸化細菌は他の細菌との共生関係において特異的な特性があり、その特性を生かした嫌気性アンモニア酸化を行うことが嫌気性アンモニア酸化細菌を用いた廃水処理の処理槽の高速な立ち上げや、立ち上がった後の処理槽の定常運転における高速な脱窒反応を行う上で極めて重要であるとの知見を得た。即ち、廃水処理を行う処理槽に投入する浮遊微生物群中又は固定化微生物群中の嫌気性アンモニア酸化細菌が単に高ければ立ち上げや定常運転時の脱窒反応を高速化できるのではなく、微生物群の総菌数に対する嫌気性アンモニア酸化細菌の比率である共生バランスが重要であることが分かった。ここで、浮遊微生物群とは例えば処理槽内で浮遊する汚泥等であり、固定化微生物群とは、例えば流動可能な担体に付着固定又は包括固定された汚泥や、あるいは固定床に付着固定された汚泥等である。本発明はかかる知見に基づいて成されたものである。   The present inventor believes that anaerobic ammonia-oxidizing bacteria have specific characteristics in symbiotic relationships with other bacteria, and that anaerobic ammonia oxidation utilizing these characteristics can be performed in wastewater treatment using anaerobic ammonia-oxidizing bacteria. We obtained the knowledge that it is extremely important for the high-speed denitrification reaction in the high-speed start-up of the treatment tank and the steady operation of the treatment tank after the start-up. In other words, if the anaerobic ammonia-oxidizing bacteria in the floating microorganism group or the immobilized microorganism group to be put into the treatment tank for wastewater treatment is simply high, the start-up and the denitrification reaction during steady operation cannot be accelerated. The symbiotic balance, which is the ratio of anaerobic ammonia-oxidizing bacteria to the total number of bacteria in the group, was found to be important. Here, the floating microorganism group is, for example, sludge floating in a treatment tank, and the immobilized microorganism group is, for example, sludge adhered and fixed to a flowable carrier or entrapped or fixed to a fixed bed. Sludge. The present invention has been made based on such findings.

本発明の請求項1は、前記目的を達成するために、廃水中の窒素成分を処理槽内の浮遊微生物群で脱窒して除去する廃水処理方法において、前記浮遊微生物群の菌体濃度は、該浮遊微生物群を前記処理槽に投入し、その総菌数が前記処理槽内濃度として107 個/mL以上且つ嫌気性アンモニア酸化細菌が前記総菌数の1/10〜1/1000の範囲になるように調整することを特徴とする。 In order to achieve the above object, claim 1 of the present invention is a wastewater treatment method in which nitrogen components in wastewater are denitrified and removed by a floating microorganism group in a treatment tank. The floating microorganism group is charged into the treatment tank, the total bacterial count is 10 7 / mL or more as the concentration in the treatment tank, and the anaerobic ammonia oxidizing bacteria is 1/10 to 1/1000 of the total bacterial count. It adjusts so that it may become a range, It is characterized by the above-mentioned.

請求項1は、嫌気性アンモニア酸化細菌が処理槽内に浮遊する浮遊微生物群中の微生物の一部として存在する場合であり、この場合には処理槽に投入する時点での浮遊微生物群の菌体濃度を、総菌数が107 個/mL以上且つ嫌気性アンモニア酸化細菌が総菌数の1/10〜1/1000の範囲に調整することにより、処理槽の高速な立ち上げを行うことができると共に、立ち上がった後の処理槽の定常運転においても高速で安定した脱窒反応を行うことができる。尚、処理槽に投入する時点は、換言すると、処理槽の立ち上げ開始時に相当する。 Claim 1 is the case where the anaerobic ammonia oxidizing bacteria are present as part of the microorganisms in the floating microorganism group floating in the treatment tank. In this case, the bacteria of the floating microorganism group at the time when the microorganism is introduced into the treatment tank The body concentration is adjusted to 10 7 cells / mL or more and the anaerobic ammonia-oxidizing bacteria are adjusted to a range of 1/10 to 1/1000 of the total cell count, so that the treatment tank can be started up at high speed. In addition, a stable denitrification reaction can be performed at a high speed even in a steady operation of the treatment tank after the start-up. In addition, in other words, the time when it is put into the treatment tank corresponds to the start of the start-up of the treatment tank.

本発明の請求項2は、前記目的を達成するために、廃水中の窒素成分を処理槽内の固定化微生物群で脱窒して除去する廃水処理方法において、前記固定化微生物群を前記処理槽に投入するときの前記固定化微生物群の菌体濃度は、総菌数が106 個/mL以上、且つ嫌気性アンモニア酸化細菌が前記総菌数の1/10〜1/1000の範囲であることを特徴とする。 According to a second aspect of the present invention, in order to achieve the above object, in the wastewater treatment method for removing nitrogen components in wastewater by denitrification with an immobilized microorganism group in a treatment tank, the immobilized microorganism group is treated with the treatment. The cell concentration of the immobilized microorganism group when put into the tank is such that the total number of bacteria is 10 6 cells / mL or more and the anaerobic ammonia-oxidizing bacteria are in the range of 1/10 to 1/1000 of the total number of bacteria. It is characterized by being.

請求項2は、嫌気性アンモニア酸化細菌が処理槽内に投入された固定化微生物群中の微生物の一部として存在する場合であり、この場合には処理槽に投入する時点での固定化微生物群の菌体濃度を、総菌数が106 個/mL以上で、且つ嫌気性アンモニア酸化細菌が前記総菌数の1/10〜1/1000の範囲に調整することにより、処理槽の高速な立ち上げを行うことができると共に、立ち上がった後の処理槽の定常運転においても高速で安定した脱窒反応を行うことができる。また、微生物群が浮遊微生物群である場合と、固定化された固定化微生物群である場合では、固定化微生物群の方が総菌数が少なくても良好な立ち上げを行うことができる。 Claim 2 is the case where the anaerobic ammonia oxidizing bacteria are present as part of the microorganisms in the immobilized microorganism group charged into the treatment tank. In this case, the immobilized microorganism at the time when it is charged into the treatment tank By adjusting the bacterial cell concentration of the group to a total bacterial count of 10 6 cells / mL or more and anaerobic ammonia oxidizing bacteria in the range of 1/10 to 1/1000 of the total bacterial count, In addition, it is possible to perform a stable denitrification reaction at a high speed even in a steady operation of the treatment tank after the startup. In addition, when the microbial group is a floating microbial group and when the microbial group is an immobilized microbial group, the immobilized microbial group can be started up even if the total number of bacteria is smaller.

請求項3は、前記目的を達成するために、請求項1又は請求項2の廃水処理方法を実施するための装置であることを特徴とする。   A third aspect of the present invention is an apparatus for carrying out the wastewater treatment method according to the first or second aspect of the invention in order to achieve the object.

請求項3は、請求項1又は請求項2の廃水処理方法を実施するための装置として構成したものである。   Claim 3 is configured as an apparatus for carrying out the wastewater treatment method of claim 1 or claim 2.

請求項4は、前記目的を達成するために、請求項1又は請求項2の廃水処理方法を実施するための嫌気性アンモニア酸化反応を行う処理槽と、前記処理槽内で脱窒された窒素を減圧で引き抜くための減圧装置と、を具備したことを特徴とする。   According to a fourth aspect of the present invention, in order to achieve the above object, a treatment tank for performing an anaerobic ammonia oxidation reaction for carrying out the wastewater treatment method of the first or second aspect, and nitrogen denitrified in the treatment tank And a decompression device for pulling out the product under reduced pressure.

請求項4のように、請求項1又は請求項2の廃水処理方法を実施するための嫌気性アンモニア酸化反応を行う処理槽内を減圧するようにしたので、処理槽内に発生する窒素ガス(N2 ガス)気泡が除去され、基質と浮遊微生物群、又は基質と固定化微生物群との接触が良くなり、窒素の除去性能が向上する。 Since the pressure in the treatment tank for performing the anaerobic ammonia oxidation reaction for carrying out the wastewater treatment method of claim 1 or claim 2 is reduced as in claim 4, the nitrogen gas generated in the treatment tank ( N 2 gas) bubbles are removed, the contact between the substrate and the floating microorganism group, or the substrate and the immobilized microorganism group is improved, and the nitrogen removal performance is improved.

以上説明したように本発明の廃水処理方法及びその装置によれば、増殖速度の極めて遅い嫌気性アンモニア酸化細菌を用いた廃水処理における処理槽の立ち上げを高速化することができると共に、立ち上げ後の処理槽の定常運転での脱窒反応を高速化することができる。   As described above, according to the wastewater treatment method and apparatus of the present invention, it is possible to speed up the start-up of a treatment tank in wastewater treatment using anaerobic ammonia oxidizing bacteria having a very slow growth rate. The denitrification reaction in the steady operation of the subsequent treatment tank can be speeded up.

従って、廃水中の窒素成分を嫌気性アンモニア酸化細菌を用いた脱窒により除去するための方法や装置を具体的に実現化することができる。   Therefore, the method and apparatus for removing the nitrogen component in wastewater by denitrification using anaerobic ammonia oxidizing bacteria can be specifically realized.

以下添付図面に従って本発明に係る廃水処理方法及びその装置における好ましい実施の形態について詳説する。   Hereinafter, preferred embodiments of a wastewater treatment method and apparatus according to the present invention will be described in detail with reference to the accompanying drawings.

本発明では、嫌気性アンモニア酸化細菌と、他の細菌との共生関係における特異的な特性について解明できたことが最も重要な点であり、以下にその特性について説明する。   In the present invention, the most important point is that the specific characteristics in the symbiotic relationship between the anaerobic ammonia oxidizing bacteria and other bacteria can be clarified, and the characteristics will be described below.

これまで嫌気性アンモニア酸化細菌自体の菌体濃度や他の菌との共生バランスが解明できていない原因として、嫌気性アンモニア酸化細菌の計測方法がなく菌数を把握できないことが大きな要因である。そこで、本発明では以下に示す嫌気性アンモニア酸化細菌の計測手法を新たに開発し、嫌気性アンモニア酸化細菌数の計測を可能とした。そして、その特性を生かした処理を行うことが嫌気性アンモニア酸化細菌を用いた処理槽の高速な立ち上げや、立ち上げ後の処理槽の定常運転における高速な脱窒反応を行うことを可能とした。   A major factor that has not been able to elucidate the cell concentration of the anaerobic ammonia-oxidizing bacteria themselves and the symbiotic balance with other bacteria is that there is no measurement method for anaerobic ammonia-oxidizing bacteria and the number of bacteria cannot be determined. Therefore, in the present invention, the following method for measuring anaerobic ammonia-oxidizing bacteria has been newly developed to enable measurement of the number of anaerobic ammonia-oxidizing bacteria. And it is possible to perform a high-speed denitrification reaction in the steady operation of the treatment tank after the start-up and the treatment tank using the anaerobic ammonia-oxidizing bacteria by performing the processing taking advantage of the characteristics. did.

(嫌気性アンモニア酸化菌数計測方法)
表1は、嫌気性アンモニア酸化細菌の計測のために開発した培地である。
(Anaerobic ammonia-oxidizing bacteria count method)
Table 1 shows the media developed for the measurement of anaerobic ammonia oxidizing bacteria.

Figure 2005324132
Figure 2005324132

(注)この培地は10%ブロモチモルブルー液を数滴添加して使用。 (Note) This medium is used with a few drops of 10% bromothymol blue solution.

表1の無機培地を試験管50mLずつ分注し、ダーラム管に入れオートクレーブにより121°Cで滅菌した。この培地に、最確値法(鈴木達彦編「土壌微生物実験法」養賢堂、P21−41(1978))に準じて菌数測定サンプルを希釈接種した。この培養において、接種は嫌気グローボックスで行い、嫌気条件下、37°Cで3ケ月培養した。培養後、ダーラム管にガスが溜まり且つ培地の色が緑から青に変化した試験管について、嫌気性アンモニア酸化細菌が陽性と判断した。この色の変化は窒素ガスが発生し且つアルカリ性に変化したことを意味する。陽性、陰性の判定の後、最確値法に準じて嫌気性アンモニア酸化細菌数を換算した。また、嫌気性アンモニア酸化細菌を包括固定化した包括担体での菌数測定は、包括担体をホモジナイズし、懸濁液を先と同様の培地を用い、最確値法で嫌気性アンモニア酸化細菌数を換算した。   The inorganic medium shown in Table 1 was dispensed in 50 mL test tubes, placed in a Durham tube, and sterilized at 121 ° C. by an autoclave. This medium was diluted and inoculated with a sample for measuring the number of bacteria according to the most probable method (Tatsuhiko Suzuki, “Soil Microbial Experiment Method”, Yokendo, P21-41 (1978)). In this culture, inoculation was performed in an anaerobic glow box, and cultured at 37 ° C for 3 months under anaerobic conditions. After the culture, anaerobic ammonia-oxidizing bacteria were judged to be positive in the test tube in which gas was accumulated in the Durham tube and the medium color changed from green to blue. This color change means that nitrogen gas was generated and changed to alkaline. After positive / negative determination, the number of anaerobic ammonia-oxidizing bacteria was converted according to the most probable value method. In addition, the number of bacteria in the inclusion carrier in which the anaerobic ammonia-oxidizing bacteria are entrapped and immobilized is obtained by homogenizing the inclusion carrier and using the same medium as in the previous suspension to determine the number of anaerobic ammonia-oxidizing bacteria using the most probable method. Converted.

一例として次式に、包括担体中の嫌気性アンモニア酸化細菌数の換算方法を示す。
(数1)Xp=Xo×(Vp+Vw)/Vp
ここで、Xp:担体内部の嫌気性アンモニア酸化細菌数(個/mL)
Xo:培地に接種した原液の嫌気性アンモニア酸化細菌数(個/mL)
Vp:原液の作製に供試した担体量(mL)
Vw:原液の作製に加えた殺菌水液量(mL)である。
As an example, the following formula shows how to convert the number of anaerobic ammonia-oxidizing bacteria in the entrapping carrier.
(Expression 1) Xp = Xo × (Vp + Vw) / Vp
Where Xp: number of anaerobic ammonia oxidizing bacteria inside the carrier (units / mL)
Xo: Anaerobic ammonia-oxidizing bacteria count in stock solution inoculated to medium (cells / mL)
Vp: Amount of carrier used for preparation of stock solution (mL)
Vw: The amount (mL) of sterilized water added to the preparation of the stock solution.

図1は、上記した嫌気性アンモニア酸化細菌の計測方法を使用し、嫌気性アンモニア酸化細菌と他の細菌との共生バランスにおける特異的な特性について、浮遊微生物群を使用して調べたものである。   FIG. 1 is an investigation of specific characteristics in the symbiotic balance between anaerobic ammonia-oxidizing bacteria and other bacteria using the method for measuring anaerobic ammonia-oxidizing bacteria. .

即ち、廃水中の窒素成分を除去する処理槽への投入時の浮遊微生物群の総菌数と、該総菌数に対する嫌気性アンモニア酸化細菌の比率(E)を変えたときに、処理槽における嫌気性アンモニア酸化が立ち上がるまでの日数がどのように変わるかを調べた。図1の横軸の嫌気性アンモニア酸化細菌の比率(E)は、次式で定義したものである。尚、総菌数はバイオプロラーで測定した。   That is, when the total number of floating microorganisms at the time of charging into the treatment tank for removing nitrogen components in waste water and the ratio (E) of anaerobic ammonia oxidizing bacteria to the total number of bacteria are changed, We investigated how the number of days until anaerobic ammonia oxidation rises. The ratio (E) of anaerobic ammonia-oxidizing bacteria on the horizontal axis in FIG. 1 is defined by the following equation. The total number of bacteria was measured with a bioprolar.

E=X/Xa
ここで、X:嫌気性アンモニア酸化細菌数(個/mL)
Xa:総菌数(個/mL)
試験に供した廃水は、アンモニア性窒素濃度が300mg/L、亜硝酸性窒素濃度が280mg/Lと無機塩類を含む無機合成廃水を使用した。また、嫌気性アンモニア酸化細菌の種汚泥としては、下水処理場の活性汚泥から馴養した嫌気性アンモニア酸化細菌集積汚泥(アンモニアと亜硝酸を含有する無機廃水を負荷3kg−N/m3 /日で馴養した汚泥)を使用した。そして、処理槽の亜硝酸濃度を60mg/L以下になるように希釈しながら、負荷1kg−N/m3 /日で運転し、T−N(総窒素)除去率が70%を得た時点で立ち上がったと判断した。
E = X / Xa
Here, X: the number of anaerobic ammonia oxidizing bacteria (units / mL)
Xa: Total number of bacteria (cells / mL)
The wastewater used for the test was an inorganic synthetic wastewater containing an inorganic nitrogen and an ammoniacal nitrogen concentration of 300 mg / L and a nitrite nitrogen concentration of 280 mg / L. In addition, as anaerobic ammonia oxidizing bacteria seed sludge, anaerobic ammonia oxidizing bacteria accumulated sludge acclimatized from activated sludge in sewage treatment plants (loading inorganic wastewater containing ammonia and nitrous acid at 3 kg-N / m 3 / day) Acclimatized sludge) was used. And it was operated at a load of 1 kg-N / m 3 / day while diluting the nitrite concentration in the treatment tank to be 60 mg / L or less, and when the TN (total nitrogen) removal rate obtained 70%. It was judged that he stood up.

図1から明らかなように、浮遊微生物群の総菌数が107 個/mL以上且つ嫌気性アンモニア酸化細菌が総菌数の1/10〜1/1000の範囲(嫌気性アンモニア酸化細菌数に換算すると104 〜106 個/mL)を満足する共生バランス条件において、立ち上がりが非常に速いことが分かる。即ち、立ち上げ開始時の嫌気性アンモニア酸化細菌の種汚泥が、上記の共生バランス条件を満足することにより、処理槽の立ち上げを高速化することができると共に、立ち上げ後の処理槽の定常運転においても上記の共生バランス条件を満足することにより、脱窒反応をも高速化することができる。 As is clear from FIG. 1, the total number of floating microorganisms is 10 7 / mL or more and the range of anaerobic ammonia oxidizing bacteria is 1/10 to 1/1000 of the total number of bacteria (the number of anaerobic ammonia oxidizing bacteria It can be seen that the rise is very fast under the symbiotic balance condition satisfying 10 4 to 10 6 / mL in terms of conversion. That is, the seed sludge of the anaerobic ammonia-oxidizing bacteria at the start of start-up satisfies the above symbiotic balance condition, so that the start-up of the treatment tank can be speeded up and the treatment tank after the start-up In operation, the above-mentioned symbiotic balance condition is satisfied, so that the denitrification reaction can be accelerated.

図2は、固定化微生物群の一例として、微生物群を包括固定化した包括固定化担体について、上記した浮遊微生物群の場合と同様に、嫌気性アンモニア酸化細菌と他の細菌との共生バランスにおける特異的な特性について調べたものである。試験に供した廃水は図1の浮遊微生物群の場合と同様である。   As an example of the immobilized microorganism group, FIG. 2 shows a symbiotic balance between anaerobic ammonia-oxidizing bacteria and other bacteria, as in the case of the suspended microorganism group described above. It investigated about a specific characteristic. The waste water used for the test is the same as that of the floating microorganism group in FIG.

試験に供した包括固定化担体は次のように作成した。即ち、下水処理場の活性汚泥に、馴養した嫌気性アンモニア酸化細菌含有汚泥(アンモニアと亜硝酸を含有する無機廃水を負荷3kg−N/m3 /日で馴養した汚泥)を混合し、嫌気性アンモニア酸化細菌数と総菌数を調整した包括固定用の種汚泥を得た。この種汚泥を分子量4000番のポリエチレングリコールジアクリレートに懸濁し、過硫酸カリウムを添加することにより重合し、これにより種汚泥をゲル中に包括固定化した。包括固定に使用した成分の組成比率は表2の通りである。 The entrapping immobilization carrier used for the test was prepared as follows. That is, the anaerobic ammonia-oxidizing bacteria-containing sludge (sludge acclimatized with a load of 3 kg-N / m 3 / day of inorganic wastewater containing ammonia and nitrous acid) was mixed with the activated sludge of the sewage treatment plant, and anaerobic The seed sludge for entrapping and fixing the number of ammonia oxidizing bacteria and total number of bacteria was obtained. This seed sludge was suspended in polyethylene glycol diacrylate having a molecular weight of 4000 and polymerized by adding potassium persulfate, whereby the seed sludge was entrapped and immobilized in the gel. Table 2 shows the composition ratios of the components used for comprehensive fixation.

Figure 2005324132
Figure 2005324132

包括固定化担体は、3mm角に成形して処理槽の立ち上げ試験を行った。   The entrapping immobilization support was molded into a 3 mm square, and a start-up test of the treatment tank was performed.

その結果は、図2から明らかなように、包括固定化担体内部の微生物群の総菌数が10
6 個/mL以上且つ嫌気性アンモニア酸化細菌が総菌数の1/10〜1/1000の範囲(嫌気性アンモニア酸化細菌数に換算すると103 〜105 個/mL)を満足する共生バランス条件において立ち上がりが早いことが分かる。即ち、包括固定化担体の場合には、包括固定化担体内部の嫌気性アンモニア酸化細菌の種汚泥が、上記の共生バランス条件を満足することにより、処理槽の立ち上げを高速化することができると共に、立ち上げ後の処理槽の定常運転においても上記の共生バランス条件を満足することにより、脱窒反応をも高速化することができる。また、包括固定化担体の場合には、先の浮遊微生物群の場合に比べて総菌数が106 個/mLと1オーダー少ない菌数で嫌気性アンモニア酸化の活性が立ち上がることが分かる。これは、包括固定により菌の安定性が増したものと考えられ、包括固定以外の付着固定やグラニュールでも同様の傾向が得られた。
As is clear from FIG. 2, the total number of bacteria in the microbial group inside the entrapping immobilization carrier is 10
Symbiotic balance condition that satisfies 6 or more / mL and anaerobic ammonia oxidizing bacteria within the range of 1/10 to 1/1000 of the total number of bacteria (10 3 to 10 5 / mL in terms of anaerobic ammonia oxidizing bacteria number) It can be seen that the rise is fast. That is, in the case of a entrapping immobilization support, the seed sludge of anaerobic ammonia oxidizing bacteria inside the entrapping immobilization support can satisfy the above symbiotic balance condition, thereby speeding up the start-up of the treatment tank. At the same time, the denitrification reaction can be speeded up by satisfying the above symbiotic balance condition in the steady operation of the treatment tank after startup. In addition, in the case of the entrapping immobilization carrier, it can be seen that the activity of anaerobic ammonia oxidation rises when the total number of bacteria is 10 6 / mL, which is one order of magnitude less than in the case of the previous floating microorganism group. It is thought that the stability of the bacteria was increased by the entrapping immobilization, and the same tendency was obtained with adhesion immobilization and granules other than the entrapping immobilization.

図1及び図2の結果から、総菌数と嫌気性アンモニア酸化細菌数とは共生的なリンケージ関係があり、総菌数に対する嫌気性アンモニア酸化細菌の比率(E)が低いと立ち上がらず、高過ぎても立ち上がりが悪いことが分かる。これは、比率(E)が低い場合には微生物の捕食により嫌気性アンモニア酸化細菌が減少することは容易に想定されるが、高過ぎる場合の立ち上がり期間の増大は、嫌気性アンモニア酸化細菌が他の菌から供給される活性促進因子が少なくなるためと推察される。   From the results of FIG. 1 and FIG. 2, there is a symbiotic linkage relationship between the total number of bacteria and the number of anaerobic ammonia-oxidizing bacteria, and when the ratio (E) of anaerobic ammonia-oxidizing bacteria to the total number of bacteria is low, the number of bacteria does not rise. Even if it passes, it turns out that the rise is bad. This is because when the ratio (E) is low, it is easily assumed that the anaerobic ammonia-oxidizing bacteria are reduced by predation of the microorganisms, but when the ratio is too high, the rise period is increased by the anaerobic ammonia-oxidizing bacteria. It is presumed that the activity promoting factor supplied from these bacteria decreases.

図3は本発明の廃水処理方法を実施するために好適な廃水処理装置の一例で、浮遊微生物群で嫌気性アンモニア酸化反応を行う場合である。尚、以下で述べる処理槽は、嫌気性アンモニア酸化細菌が作用する槽で、脱窒を行う槽である。この処理槽は、完全嫌気でなくても反応は進行し、定常時には無酸素条件又は微好気条件の槽であってもよい。   FIG. 3 is an example of a wastewater treatment apparatus suitable for carrying out the wastewater treatment method of the present invention, and shows a case where an anaerobic ammonia oxidation reaction is carried out in a floating microorganism group. In addition, the processing tank described below is a tank in which anaerobic ammonia oxidizing bacteria acts, and is a tank which performs denitrification. In this treatment tank, the reaction proceeds even if it is not completely anaerobic, and it may be a tank under anaerobic conditions or microaerobic conditions in a steady state.

図3に示すように、廃水処理装置10は、アンモニアと亜硝酸とを含有する廃水が、原水配管12を介して原水ポンプ14により処理槽16内に流入する。処理槽16内では、浮遊微生物群中の嫌気性アンモニア酸化細菌により、アンモニアと亜硝酸とが同時脱窒され、処理水が処理水配管18を介して排出される。そして、処理槽16内に投入されて立ち上げられる浮遊微生物群の菌体濃度は、総菌数が107 個/mL以上且つ嫌気性アンモニア酸化細菌が総菌数の1/10〜1/1000の範囲に調整されている。このように、総菌数と、総菌数に対する嫌気性アンモニア酸化細菌数を調整することにより、浮遊微生物群中に存在する嫌気性アンモニア酸化細菌と他の菌との共生バランスを適切なバランスに設定することができるので、処理槽16の高速な立ち上げを行うことができると共に、定常運転時においても高速で安定した脱窒反応を行うことができる。 As shown in FIG. 3, in the wastewater treatment apparatus 10, wastewater containing ammonia and nitrous acid flows into the treatment tank 16 by the raw water pump 14 through the raw water pipe 12. In the treatment tank 16, ammonia and nitrous acid are simultaneously denitrified by the anaerobic ammonia oxidizing bacteria in the floating microorganism group, and the treated water is discharged via the treated water pipe 18. The cell concentration of the floating microorganism group that is put into the treatment tank 16 and started up is such that the total number of bacteria is 10 7 / mL or more and the anaerobic ammonia oxidizing bacteria is 1/10 to 1/1000 of the total number of bacteria. The range is adjusted. In this way, by adjusting the total number of bacteria and the number of anaerobic ammonia-oxidizing bacteria relative to the total number of bacteria, the symbiotic balance between the anaerobic ammonia-oxidizing bacteria present in the floating microorganism group and other bacteria can be adjusted to an appropriate balance. Since it can be set, the treatment tank 16 can be started up at a high speed, and a stable denitrification reaction can be carried out at a high speed even during steady operation.

また、処理槽16内に底部に窒素ガスの散気管20を設け、処理槽16の立ち上げ開始時には処理槽16内に窒素ガスを散気し、被処理水中の酸素を脱気することが好ましい。これは、酸素は嫌気性アンモニア酸化細菌の活性を阻害するからであり、立ち上げ時に廃水の酸素を除去することで、立ち上げ速度を更に速くすることができるからである。また、処理槽16内の上端部にヘッドスペース部22が形成されるように、原水配管12からの廃水の流入量と処理水配管18の設置位置を調整すると共に、このヘッドスペース部22と真空ポンプ24とを減圧配管26を介して接続し、処理槽16内を減圧することが好ましい。これは、処理槽16内を減圧すると、嫌気性アンモニア酸化細菌の窒素除去活性が増大するためである。窒素除去活性が増大する理由としては、減圧することにより嫌気性アンモニア酸化細菌の表面の分子状の窒素が除去され、基質の拡散がよくなるためと推察される。また、浮遊微生物群による嫌気性アンモニア酸化反応の場合には、処理槽16内の上部に逆ハ状の庇28を設け、その庇28の上部に処理水配管18の吸込み口を設けるとよい。これにより、処理槽16内で浮遊する浮遊微生物群が処理水に同伴して処理水配管18から流出するのを抑制できる。また、処理槽16の底部と上部とを循環配管30で連通し、循環配管30に設けた循環ポンプ32で被処理水を循環させることが好ましい。これにより、浮遊微生物群が処理槽16内全体に均等に浮遊し、廃水に効率的に接触す
るので、立ち上げの高速化を促進できる。通気線速度1〜5cm/秒が有効である。
Further, it is preferable that a nitrogen gas diffusing pipe 20 is provided at the bottom in the processing tank 16, and nitrogen gas is diffused into the processing tank 16 at the start of the start-up of the processing tank 16 to degas oxygen in the water to be treated. . This is because oxygen inhibits the activity of anaerobic ammonia-oxidizing bacteria, and the startup speed can be further increased by removing oxygen from the wastewater during startup. In addition, the amount of waste water flowing from the raw water pipe 12 and the installation position of the treated water pipe 18 are adjusted so that the head space part 22 is formed at the upper end in the treatment tank 16, and the head space part 22 and the vacuum It is preferable to connect the pump 24 via a decompression pipe 26 and decompress the inside of the processing tank 16. This is because the nitrogen removal activity of the anaerobic ammonia oxidizing bacteria increases when the inside of the treatment tank 16 is depressurized. The reason why the nitrogen removing activity is increased is presumed that the molecular nitrogen on the surface of the anaerobic ammonia oxidizing bacteria is removed by reducing the pressure and the diffusion of the substrate is improved. In the case of the anaerobic ammonia oxidation reaction by the floating microorganism group, it is preferable to provide a reverse bowl-shaped bowl 28 in the upper part of the treatment tank 16 and provide a suction port for the treated water pipe 18 in the upper part of the bowl 28. Thereby, it can suppress that the floating microorganism group which floats in the processing tank 16 entrains with a treated water, and flows out from the treated water piping 18. FIG. Further, it is preferable that the bottom and top of the treatment tank 16 are communicated with each other by a circulation pipe 30 and the water to be treated is circulated by a circulation pump 32 provided in the circulation pipe 30. Thereby, the floating microorganism group floats evenly in the entire treatment tank 16 and efficiently contacts the wastewater, so that the startup speed can be increased. A ventilation line speed of 1 to 5 cm / sec is effective.

図4は本発明の廃水処理方法を実施するために好適な廃水処理装置の別の例で、包括固定化担体で嫌気性アンモニア酸化反応を行う場合である。尚、図3と同じ部材及び装置は同符合を付して説明する。また、包括固定化担体による嫌気性アンモニア酸化反応の場合には完全混合でよい。   FIG. 4 shows another example of a wastewater treatment apparatus suitable for carrying out the wastewater treatment method of the present invention, in which an anaerobic ammonia oxidation reaction is carried out with a entrapping immobilization support. In addition, the same member and apparatus as FIG. 3 attaches | subjects a same sign, and demonstrates. Further, in the case of the anaerobic ammonia oxidation reaction by the entrapping immobilization carrier, complete mixing may be sufficient.

図4に示すように、廃水処理装置10は、アンモニアと亜硝酸とを含有する廃水が、原水配管12を介して処理槽16内に流入し、処理槽16内に投入された多数の包括固定化担体34、34…に固定化された嫌気性アンモニア酸化細菌により、アンモニアと亜硝酸とが同時脱窒され、処理水が処理水配管18を介して排出される。また、処理水配管18の吸込み口近傍にはスクリーン36が設けられ、これにより包括固定化担体34が処理水に同伴して流出することを防止する。そして、処理槽16内に投入されて立ち上げられる包括固定化担体34の菌体濃度は、総菌数が106 個/mL以上、且つ嫌気性アンモニア酸化細菌が総菌数の1/10〜1/1000の範囲に調整される。このように、総菌数と、総菌数に対する嫌気性アンモニア酸化細菌数を調整することにより、包括固定化担体34中に存在する嫌気性アンモニア酸化細菌と他の菌との共生バランスを適切なバランスに設定することができるので、処理槽16の高速な立ち上げを行うことができると共に、処理槽16の定常運転時においても高速で安定した脱窒反応を行うことができる。 As shown in FIG. 4, the wastewater treatment apparatus 10 is configured such that wastewater containing ammonia and nitrous acid flows into the treatment tank 16 through the raw water pipe 12 and is supplied into the treatment tank 16. Ammonia and nitrous acid are simultaneously denitrified by the anaerobic ammonia oxidizing bacteria immobilized on the chemical carriers 34, 34... And the treated water is discharged via the treated water pipe 18. Further, a screen 36 is provided in the vicinity of the suction port of the treated water pipe 18, thereby preventing the entrapping immobilization carrier 34 from flowing out along with the treated water. The microbial cell concentration of the entrapping immobilization carrier 34 that is put into the treatment tank 16 and started up is such that the total cell count is 10 6 cells / mL or more and the anaerobic ammonia-oxidizing bacteria are 1/10 to 10% of the total cell count. The range is adjusted to 1/1000. Thus, by adjusting the total number of bacteria and the number of anaerobic ammonia-oxidizing bacteria with respect to the total number of bacteria, an appropriate symbiotic balance between the anaerobic ammonia-oxidizing bacteria present in the entrapping immobilization carrier 34 and other fungi is adequate. Since the balance can be set, the treatment tank 16 can be started up at a high speed, and a stable denitrification reaction can be carried out at a high speed even during the steady operation of the treatment tank 16.

包括固定化担体34による嫌気性アンモニア酸化反応の場合にも、浮遊微生物群の場合と同様に、処理槽16の立ち上げ開始時には、処理槽16内に散気管20から窒素ガスを散気し、被処理水中の酸素を脱気することが好ましい。また、処理槽16内は減圧することが好ましい。更に、処理槽16内を攪拌する攪拌機38を設けることが好ましい。これにより、包括固定化担体34が処理槽16内全体に均等に流動し、廃水に効率的に接触するので、処理槽16の立ち上げの高速化を促進できる。   Also in the case of the anaerobic ammonia oxidation reaction by the entrapping immobilization support 34, as in the case of the floating microorganism group, nitrogen gas is diffused into the treatment tank 16 from the diffuser tube 20 at the start of the start-up of the treatment tank 16, It is preferable to deaerate oxygen in the water to be treated. Moreover, it is preferable to depressurize the inside of the processing tank 16. Furthermore, it is preferable to provide a stirrer 38 for stirring the inside of the treatment tank 16. As a result, the entrapping immobilization carrier 34 flows evenly throughout the processing tank 16 and efficiently contacts the waste water, so that the start-up of the processing tank 16 can be accelerated.

図4では、固定化微生物群として、包括固定化担体34の例で説明したが、付着固定やグラニュールを用いることもできる。   In FIG. 4, the entrapping immobilization carrier 34 has been described as an example of the immobilized microorganism group. However, adhesion fixation or granule can be used.

付着固定では球状や筒状などの担体材料、ひも状材料、ゲル状担体、不織布状材料など凹凸が多い固定化材料が付着しやすく除去率が向上する。上記した包括固定では嫌気性アンモニア酸化細菌と固定化材料(モノマ、プレポリマ)を混合した混合液を重合し、ゲルの内部に嫌気性アンモニア酸化細菌を包括固定化する。モノマー材料としてはアクリルアミド、メチレンビスアクリルアミド、トリアクリルフォルマールなどがよい。プレポリマ材料としてはポリエチレングリコールジアクリレートやポリエチレングリコールメタアクリレートがよく、その誘導体を用いることができる。包括固定化担体34の形状は球状や筒状などの包括担体、ひも状包括担体、不織布状など凹凸が多い包括担体が接触効率がよく脱窒速度が向上する。   In adhesion fixation, immobilization materials having many irregularities such as spherical or cylindrical carrier materials, string-like materials, gel-like carriers, and nonwoven fabric materials are likely to adhere, and the removal rate is improved. In the above-described entrapping immobilization, a mixed solution in which anaerobic ammonia oxidizing bacteria and an immobilizing material (monomer, prepolymer) are mixed is polymerized to immobilize the anaerobic ammonia oxidizing bacteria in the gel. As the monomer material, acrylamide, methylenebisacrylamide, triacryl formal and the like are preferable. The prepolymer material is preferably polyethylene glycol diacrylate or polyethylene glycol methacrylate, and derivatives thereof can be used. The entrapping immobilization carrier 34 has a spherical or cylindrical inclusion carrier, a string-like inclusion carrier, or a non-woven fabric inclusion carrier with many irregularities, which has good contact efficiency and an improved denitrification rate.

嫌気性アンモニア酸化細菌を付着固定又は包括固定で固定化した担体の脱窒速度を調べるために、図4の装置構成で試験した。即ち、図4に示す各種の担体を担体充填率25%になるように処理槽に充填し、アンモニア性廃水を処理した。固定化に使用した種汚泥は、アンモニアと亜硝酸で集積培養して得られた脱窒速度1.2kg−N/m3 /日の能力をもった汚泥であり、嫌気性アンモニア酸化細菌濃度が8×106 個/mLであり、総菌数8×108 個/mLであった。 In order to investigate the denitrification rate of a carrier on which anaerobic ammonia-oxidizing bacteria were immobilized by adhesion immobilization or entrapping immobilization, a test was conducted with the apparatus configuration of FIG. That is, various types of carriers shown in FIG. 4 were filled in a treatment tank so that the carrier filling rate was 25%, and ammonia wastewater was treated. The seed sludge used for immobilization is a sludge with a denitrification rate of 1.2 kg-N / m 3 / day, obtained by accumulating and culturing with ammonia and nitrous acid, and has anaerobic ammonia-oxidizing bacteria concentration. It was 8 × 10 6 cells / mL, and the total number of bacteria was 8 × 10 8 cells / mL.

その結果、表3に示すように、4週間後には、何れの付着担体又は包括担体の場合にも200(mg-N/L-担体/h) 以上の高い脱窒速度を得ることができた。この実験には、アンモニア性窒素濃度と亜硝酸性窒素濃度が5:4のT−N(全窒素)500mg/Lの廃水を
用いた。表3の末尾の欄に減圧したときの脱窒速度を示す。減圧するとN2 気泡が除去され、基質と担体との接触が良好となり脱窒速度が向上した。
As a result, as shown in Table 3, after 4 weeks, it was possible to obtain a high denitrification rate of 200 (mg-N / L-carrier / h) or more in any case of any attached carrier or inclusion carrier. . In this experiment, wastewater having 500 mg / L of TN (total nitrogen) having an ammonia nitrogen concentration and a nitrite nitrogen concentration of 5: 4 was used. The column at the end of Table 3 shows the denitrification rate when the pressure is reduced. When the pressure was reduced, N 2 bubbles were removed, the contact between the substrate and the carrier was good, and the denitrification rate was improved.

Figure 2005324132
Figure 2005324132

*…260mmHg減圧培養処理     * ... 260mmHg vacuum culture treatment

(第1実施例)
以下、本発明の実施例を説明するが、こられの実施例に限定するものではない。
(First embodiment)
Examples of the present invention will be described below, but the present invention is not limited to these examples.

第1実施例は浮遊微生物群で本発明の廃水処理方法を行った場合である。   1st Example is a case where the waste-water-treatment method of this invention is performed by the floating microorganism group.

アンモニアと亜硝酸で集積培養して得られた脱窒速度1.2kg−N/m3 /日の能力をもった集積培養汚泥を試験に供試した。この集積培養汚泥の嫌気性アンモニア酸化細菌濃度は8×108 個/mLであった。そして、この集積培養汚泥と活性汚泥とを混合し、図3の廃水処理装置10における処理槽16に汚泥濃度(MLSS)として4000mg/L投入し、浮遊微生物群の菌体濃度が総菌数4×108 個/mL、嫌気性アンモニア酸化細菌8×105 個/mLになるようにして運転を開始した。 An accumulation culture sludge having a denitrification rate of 1.2 kg-N / m 3 / day obtained by accumulation culture with ammonia and nitrous acid was used for the test. The concentration of the anaerobic ammonia-oxidizing bacteria in this integrated culture sludge was 8 × 10 8 cells / mL. And this accumulation culture sludge and activated sludge are mixed, 4000 mg / L as sludge density | concentration (MLSS) is thrown into the processing tank 16 in the wastewater treatment apparatus 10 of FIG. The operation was started at x10 8 cells / mL and anaerobic ammonia oxidizing bacteria 8 × 10 5 cells / mL.

廃水は、アンモニア性窒素濃度と亜硝酸性窒素濃度が5:4の比の廃水T−N(総窒素)1000mg/Lを用いて、負荷1kg−N/m3 /日で運転を開始し、アンモニア性窒素濃度と亜硝酸性窒素濃度とをモニタリングしながら、アンモニア性窒素濃度が50〜100mg/L且つ亜硝酸性窒素濃度が30〜80mg/Lになるように水道水で希釈して運転した。始めの10日間は4倍希釈が必要であったが、その後、徐々に希釈率を下げ、運転4週間後、負荷1kg−N/m3 /日でT−N(総窒素)除去率が80%以上となって立ち上がり、その後も80〜90%で安定した。 Wastewater starts operation at a load of 1 kg-N / m 3 / day using 1000 mg / L of wastewater TN (total nitrogen) at a ratio of ammonia nitrogen concentration and nitrite nitrogen concentration of 5: 4. While monitoring the ammonia nitrogen concentration and the nitrite nitrogen concentration, it was diluted with tap water so that the ammonia nitrogen concentration was 50 to 100 mg / L and the nitrite nitrogen concentration was 30 to 80 mg / L. . The first 10 days required a 4-fold dilution, but then gradually decreased the dilution rate, and after 4 weeks of operation, the TN (total nitrogen) removal rate was 80 at a load of 1 kg-N / m 3 / day. % And then rises up and then stabilizes at 80-90%.

比較として、浮遊微生物群の菌体濃度が総菌数8×105 個/mL、嫌気性アンモニア酸化細菌8×105 個/mLとなるように、即ち菌の全てが嫌気性アンモニア酸化細菌であるような汚泥を調整し、この汚泥を処理槽16に投入して運転を開始したが、運転開始100日後でもT−N(総窒素)除去率が40%以下と立ち上げることができず、その後も30〜60%の間で推移した。 For comparison, the cell concentration of the floating microorganism group is 8 × 10 5 cells / mL and the anaerobic ammonia oxidizing bacteria are 8 × 10 5 cells / mL, that is, all the bacteria are anaerobic ammonia oxidizing bacteria. Some sludge was adjusted, and this sludge was thrown into the treatment tank 16 to start operation, but even after 100 days from the start of operation, the TN (total nitrogen) removal rate could not be raised to 40% or less, After that, it changed between 30-60%.

(第2実施例)
第2実施例では以下のように作製した包括固定化担体で本発明の廃水処理方法を行った場合である。
(Second embodiment)
In the second embodiment, the wastewater treatment method of the present invention is carried out with a entrapping immobilization support prepared as follows.

包括固定するための種汚泥はアンモニアと亜硝酸で集積培養し得られた脱室速度1.2kg−N/m3 /日の能力をもった汚泥で、初期濃度3×108 個/mLを固定化の種菌として供試した。種菌を遠心分離で回収し、この菌に活性汚泥を混合した複合菌を、分子量4000番のポリエチレングリコールジアクリレート(固定化材料)に懸濁し、過硫酸カリウムを添加することにより重合して、次に示す組成の包括固定化担体を作製した。
・嫌気性アンモニア酸化細菌:4×105 個/mL
・総菌数 :3×108 個/mL
・ポリエチレングリコールジアクリレート:10%
・過硫酸カリウム :0.25%
このゲルを3mm角に成形し、図4に示す廃水処理装置10の処理槽16に充填率38%になるよう充填した。
The seed sludge for entrapping and fixing is sludge with a capacity of 1.2 kg-N / m 3 / day, which is obtained by accumulating and culturing with ammonia and nitrous acid, with an initial concentration of 3 × 10 8 pieces / mL. It was used as an inoculum for immobilization. The inoculum is collected by centrifugation, and the combined fungus in which activated sludge is mixed with this fungus is suspended in polyethylene glycol diacrylate (an immobilizing material) having a molecular weight of 4000, and polymerized by adding potassium persulfate. A entrapping immobilization carrier having the composition shown below was prepared.
Anaerobic ammonia oxidizing bacteria: 4 × 10 5 / mL
・ Total number of bacteria: 3 × 10 8 cells / mL
-Polyethylene glycol diacrylate: 10%
-Potassium persulfate: 0.25%
This gel was formed into a 3 mm square and filled in the treatment tank 16 of the wastewater treatment apparatus 10 shown in FIG.

廃水は、アンモニア性窒素濃度と亜硝酸性窒素濃度が5:4の比の廃水T−N(総窒素)600mg/Lを用いて、負荷0.5kg−N/m3 /日で運転を開始した。徐々に負荷を増大させて、運転開始4週間後に負荷1.5kg−N/m3 /日でT−N(総窒素)除去率が80%以上となって立ち上がり、その後も80〜90%で安定して推移した。 Wastewater starts operation at a load of 0.5 kg-N / m 3 / day using 600 mg / L of wastewater TN (total nitrogen) with a ratio of ammonia nitrogen and nitrite nitrogen of 5: 4. did. Gradually increase the load, 4 weeks after the start of operation, the TN (total nitrogen) removal rate rises to 80% or more at a load of 1.5 kg-N / m 3 / day, and then rises to 80-90%. It was stable.

比較として、微生物群の総菌数3×108 個/mL、嫌気性アンモニア酸化細菌4×103 個/mLで、総菌数に対して嫌気性アンモニア酸化細菌が1/100000と本発明の共生バランス条件(1/10〜1/1000)の下限を下回る場合の包括固定化担体を作成し、この包括固定化担体を処理槽16に投入して運転を開始したが、運転開始100日後でも立ち上がらず、その後も20〜40%の間で不安定に推移した。 For comparison, the total number of bacteria in the microbial group was 3 × 10 8 cells / mL, anaerobic ammonia-oxidizing bacteria 4 × 10 3 cells / mL, and the anaerobic ammonia-oxidizing bacteria were 1/100000 with respect to the total number of bacteria. A entrapping immobilization support in the case of falling below the lower limit of the symbiotic balance condition (1/10 to 1/1000) was prepared, and this entrapping immobilization support was put into the treatment tank 16, and the operation was started. It did not stand up and remained unstable between 20 and 40%.

第1の実施例及び第2の実施例から分かるように、処理槽16における浮遊微生物群又は包括固定化担体の嫌気性アンモニア酸化細菌が単に高ければ立ち上げや定常運転時の脱窒反応を高速化できるのではなく、浮遊微生物群又は包括固定化担体の総菌数に対する嫌気性アンモニア酸化細菌の比率である共生バランスが重要である。   As can be seen from the first embodiment and the second embodiment, if the suspended microorganisms in the treatment tank 16 or the anaerobic ammonia-oxidizing bacteria in the entrapping immobilization carrier is simply high, the denitrification reaction during startup or steady operation can be accelerated. The symbiotic balance, which is the ratio of anaerobic ammonia-oxidizing bacteria to the total number of floating microorganisms or entrapping immobilization carriers, is important.

嫌気性アンモニア酸化細菌と他の菌の共生バランスを浮遊微生物群で説明する説明図Explanatory drawing explaining the symbiotic balance of anaerobic ammonia-oxidizing bacteria and other fungi with floating microorganisms 嫌気性アンモニア酸化細菌と他の菌の共生バランスを固定化微生物群の一例として包括固定化担体で説明する説明図Explanatory drawing explaining the symbiotic balance of anaerobic ammonia-oxidizing bacteria and other fungi as an example of an immobilized microorganism group using a entrapped immobilization carrier 本発明の廃水処理方法を実施する廃水処理装置で、浮遊微生物群に好適な装置の構成図Configuration diagram of an apparatus suitable for a floating microorganism group in a wastewater treatment apparatus for implementing the wastewater treatment method of the present invention 本発明の廃水処理方法を実施する廃水処理装置で、包括固定化担体に好適な装置の構成図Configuration diagram of an apparatus suitable for a entrapping immobilization carrier in a wastewater treatment apparatus for carrying out the wastewater treatment method of the present invention

符号の説明Explanation of symbols

10…廃水処理装置、12…原水配管、14…原水ポンプ、16…処理槽、18…処理水配管、20…窒素ガスの散気管、22…ヘッドスペース部、24…真空ポンプ、26…減圧配管、28…庇、30…循環配管、32…循環ポンプ、34…包括固定化担体、36…スクリーン、38…攪拌機
DESCRIPTION OF SYMBOLS 10 ... Waste water treatment apparatus, 12 ... Raw water piping, 14 ... Raw water pump, 16 ... Treatment tank, 18 ... Treatment water piping, 20 ... Nitrogen gas diffusion pipe, 22 ... Head space part, 24 ... Vacuum pump, 26 ... Decompression piping , 28 ... 庇, 30 ... circulation piping, 32 ... circulation pump, 34 ... entrapping immobilization carrier, 36 ... screen, 38 ... stirrer

Claims (4)

廃水中の窒素成分を処理槽内の浮遊微生物群で脱窒して除去する廃水処理方法において、
前記浮遊微生物群の菌体濃度は、該浮遊微生物群を前記処理槽に投入し、その総菌数が前記処理槽内濃度として107 個/mL以上且つ嫌気性アンモニア酸化細菌が前記総菌数の1/10〜1/1000の範囲になるように調整することを特徴とする廃水処理方法。
In a wastewater treatment method for denitrifying and removing nitrogen components in wastewater with floating microorganisms in the treatment tank,
The cell concentration of the floating microorganism group is such that the floating microorganism group is charged into the treatment tank, the total number of bacteria is 10 7 / mL or more as the concentration in the treatment tank, and the anaerobic ammonia oxidizing bacteria is the total number of bacteria. The wastewater treatment method is characterized in that it is adjusted to be in the range of 1/10 to 1/1000 of the above.
廃水中の窒素成分を処理槽内の固定化微生物群で脱窒して除去する廃水処理方法において、
前記固定化微生物群を前記処理槽に投入するときの前記固定化微生物群の菌体濃度は、総菌数が106 個/mL以上、且つ嫌気性アンモニア酸化細菌が前記総菌数の1/10〜1/1000の範囲であることを特徴とする廃水処理方法。
In a wastewater treatment method for denitrifying and removing nitrogen components in wastewater with immobilized microorganisms in the treatment tank,
The cell concentration of the immobilized microorganism group when the immobilized microorganism group is introduced into the treatment tank is such that the total number of bacteria is 10 6 cells / mL or more and anaerobic ammonia-oxidizing bacteria are 1 / of the total number of bacteria. A wastewater treatment method characterized by being in the range of 10 to 1/1000.
請求項1又は請求項2の廃水処理方法を実施するための装置であることを特徴とする廃水処理装置。   A wastewater treatment apparatus, which is an apparatus for carrying out the wastewater treatment method according to claim 1 or 2. 請求項1又は請求項2の廃水処理方法を実施するための嫌気性アンモニア酸化反応を行う処理槽と、
前記処理槽内で脱窒された窒素を減圧で引き抜くための減圧装置と、を具備したことを特徴とする廃水処理装置。

A treatment tank for performing an anaerobic ammonia oxidation reaction for carrying out the wastewater treatment method according to claim 1 or 2;
A wastewater treatment apparatus comprising: a decompression device for extracting nitrogen denitrified in the treatment tank under reduced pressure.

JP2004144908A 2004-05-14 2004-05-14 Wastewater treatment method and apparatus Expired - Fee Related JP3907004B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004144908A JP3907004B2 (en) 2004-05-14 2004-05-14 Wastewater treatment method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004144908A JP3907004B2 (en) 2004-05-14 2004-05-14 Wastewater treatment method and apparatus

Publications (2)

Publication Number Publication Date
JP2005324132A true JP2005324132A (en) 2005-11-24
JP3907004B2 JP3907004B2 (en) 2007-04-18

Family

ID=35470901

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004144908A Expired - Fee Related JP3907004B2 (en) 2004-05-14 2004-05-14 Wastewater treatment method and apparatus

Country Status (1)

Country Link
JP (1) JP3907004B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008194620A (en) * 2007-02-13 2008-08-28 Hitachi Plant Technologies Ltd Wastewater treating method and apparatus
JP2009095243A (en) * 2007-10-12 2009-05-07 Hitachi Plant Technologies Ltd Culture method and device, and drain treatment method and device
JP2011189261A (en) * 2010-03-12 2011-09-29 Mitsubishi Rayon Co Ltd Biological treatment system, and biological treatment method
JP2012501845A (en) * 2008-09-12 2012-01-26 ツィクラー−シュトゥルツ・アップヴァッサーテヒニク・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Ammonium-containing wastewater treatment method
CN103435166A (en) * 2013-09-03 2013-12-11 北京工业大学 Method for quickly improving enrichment rate and degree of ammonia-oxidizing bacteria (AOB) in sequencing batch reactor (SBR)
JP2016140824A (en) * 2015-02-02 2016-08-08 学校法人 東洋大学 Processing method and processing apparatus of ammonia-containing waste water
JP2017119253A (en) * 2015-12-28 2017-07-06 オルガノ株式会社 Organic wastewater treatment method
JP2021027814A (en) * 2019-08-09 2021-02-25 日立造船株式会社 Anammox bacteria culture apparatus and anammox bacteria culture method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008194620A (en) * 2007-02-13 2008-08-28 Hitachi Plant Technologies Ltd Wastewater treating method and apparatus
JP2009095243A (en) * 2007-10-12 2009-05-07 Hitachi Plant Technologies Ltd Culture method and device, and drain treatment method and device
JP2012501845A (en) * 2008-09-12 2012-01-26 ツィクラー−シュトゥルツ・アップヴァッサーテヒニク・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Ammonium-containing wastewater treatment method
JP2011189261A (en) * 2010-03-12 2011-09-29 Mitsubishi Rayon Co Ltd Biological treatment system, and biological treatment method
CN103435166A (en) * 2013-09-03 2013-12-11 北京工业大学 Method for quickly improving enrichment rate and degree of ammonia-oxidizing bacteria (AOB) in sequencing batch reactor (SBR)
JP2016140824A (en) * 2015-02-02 2016-08-08 学校法人 東洋大学 Processing method and processing apparatus of ammonia-containing waste water
JP2017119253A (en) * 2015-12-28 2017-07-06 オルガノ株式会社 Organic wastewater treatment method
JP2021027814A (en) * 2019-08-09 2021-02-25 日立造船株式会社 Anammox bacteria culture apparatus and anammox bacteria culture method

Also Published As

Publication number Publication date
JP3907004B2 (en) 2007-04-18

Similar Documents

Publication Publication Date Title
Zhao et al. Nitrogen removal and microbial community for the treatment of rural domestic sewage with low C/N ratio by A/O biofilter with Arundo donax as carbon source and filter media
US6423229B1 (en) Bioreactor systems for biological nutrient removal
US20140374344A1 (en) Method for treating wastewater containing ammonia nitrogen
Chen et al. Accelerated start-up of moving bed biofilm reactor by using a novel suspended carrier with porous surface
Huang et al. Biological nutrient removal in the anaerobic side-stream reactor coupled membrane bioreactors for sludge reduction
Liu et al. Microbial nitrogen removal of ammonia wastewater in poly (butylenes succinate)-based constructed wetland: effect of dissolved oxygen
JP5098183B2 (en) Waste water treatment method and apparatus
JP4835536B2 (en) Removal of organic substances and nitrogen from liquid to be treated
JP3907004B2 (en) Wastewater treatment method and apparatus
Subroto et al. Organic removal in domestic wastewater using anaerobic treatment system-MBBR with flow recirculation ratio and intermittent aeration
JP4678577B2 (en) Wastewater treatment system
JP2014097478A (en) Effluent treatment method and effluent treatment apparatus
JP4811702B2 (en) Anaerobic ammonia oxidation method and wastewater treatment method
WO2012108437A1 (en) Method for treating 1,4-dioxane-containing wastewater, and treatment device
JP4817057B2 (en) Batch treatment of nitrogen-containing water
CN112479498A (en) Intermittent water inlet filler type biological rotating cage efficient sewage treatment device and treatment method thereof
US6099731A (en) Method and apparatus for treating water
Hakim et al. Development of microalgal-bacterial aerobic granules for ammonium removal from wastewater in a photo sequencing batch reactor
JP4006750B2 (en) Immobilized microorganism carrier and environmental purification method using the same
JP2007268368A (en) Entrapping immobilization carrier and wastewater treatment system using it
Comett et al. Treatment of leachate from the anaerobic fermentation of solid wastes using two biofilm support media
Kherbeche et al. Study of the initial glycerol concentration effects upon bacterial cells adaptation and biodegradation kinetics on a submerged aerated fixed bed reactor using biocell® packing
Wang et al. Biological Processes for Water Resource Protection and Water Recovery
Akankshya et al. Removal of organic matters and nutrients by using bio-balls and corn cobs as bio-film carrier in MBBR technology
WO2019198803A1 (en) Wastewater treatment method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060817

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060825

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061023

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070110

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110126

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110126

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120126

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130126

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140126

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees