JP2005323783A - Biomagnetism measuring device - Google Patents

Biomagnetism measuring device Download PDF

Info

Publication number
JP2005323783A
JP2005323783A JP2004144283A JP2004144283A JP2005323783A JP 2005323783 A JP2005323783 A JP 2005323783A JP 2004144283 A JP2004144283 A JP 2004144283A JP 2004144283 A JP2004144283 A JP 2004144283A JP 2005323783 A JP2005323783 A JP 2005323783A
Authority
JP
Japan
Prior art keywords
subject
light
quantum interference
superconducting quantum
magnetic sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004144283A
Other languages
Japanese (ja)
Inventor
Masahiro Murakami
正浩 村上
Kenji Teshigawara
健二 勅使河原
Atsushi Watanabe
厚志 渡邉
Yoshio Matsuoka
義雄 松岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Hitachi High Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp, Hitachi High Tech Corp filed Critical Hitachi High Technologies Corp
Priority to JP2004144283A priority Critical patent/JP2005323783A/en
Publication of JP2005323783A publication Critical patent/JP2005323783A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a technology which simplifies the constitution of a device for positioning a subject for measuring and for measuring the position of the subject as well as measuring procedure in a biomagnetism measuring device. <P>SOLUTION: The positioning of the subject and the position measurement of the subject can be simultaneously carried out by arranging a reflecting mirror secured to the predetermined position of the bottom portion of a cryostat and a displacement gauge measuring the distance between the bottom portion of the cryostat and the subject by irradiating the subject with laser light via the reflecting mirror and using the laser beam irradiated to the subject in the biomagnetism measuring device. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、被験者の心臓や脳などから発生する微弱な磁気信号を計測するSQUID
(Superconducting Quantum Interference Device:超伝導量子干渉素子) 磁束計を備えた生体磁気計測装置に係り、特に被験者と磁気センサの位置関係を計測する手段を備えた生体磁気計測装置に関する。
The present invention is a SQUID for measuring a weak magnetic signal generated from a subject's heart or brain.
(Superconducting Quantum Interference Device) The present invention relates to a biomagnetic measuring device including a magnetometer, and more particularly to a biomagnetic measuring device including means for measuring the positional relationship between a subject and a magnetic sensor.

生体磁気計測装置では計測結果を診断に用いるためにSQUID(Superconducting
Quantum Interference Device:超伝導量子干渉素子) 磁束計での測定結果と被験者の位置を対応させる必要がある。
The biomagnetic measuring device uses SQUID (Superconducting) to use the measurement results for diagnosis.
(Quantum Interference Device: Superconducting quantum interference device) It is necessary to correspond the measurement result with the magnetometer and the position of the subject.

特許文献1では、3つのレーザ光と超音波変位センサを用いて被験者の測定位置決めと、クライオスタット(磁気センサの冷却手段)底部と被験者の間の距離を測定する手段を備えた生体磁気計測装置が開示されている。   In Patent Document 1, a biomagnetism measuring apparatus provided with means for measuring the measurement and positioning of a subject using three laser beams and an ultrasonic displacement sensor and measuring the distance between the bottom of a cryostat (magnetic sensor cooling means) and the subject. It is disclosed.

特開2001−299714号公報JP 2001-299714 A

特許文献1記載の技術では、3つのレーザ光と超音波変位センサを用いているため、装置構成が大掛かりであることと、3つのレーザ光による被験者の位置決めと超音波変位センサによる間接的な被験者とクライオスタット底部との間の距離測定を行っているため、被験者の位置決め、及び被験者とクライオスタットとの距離の測定という測定前準備が複雑であるという問題があった。   In the technology described in Patent Document 1, since three laser beams and an ultrasonic displacement sensor are used, the apparatus configuration is large, and the subject is positioned by the three laser beams and the subject is indirect by the ultrasonic displacement sensor. And measuring the distance between the cryostat and the bottom of the cryostat, there is a problem that preparation for measurement, ie, positioning of the subject and measurement of the distance between the subject and the cryostat is complicated.

本発明の目的は、被験者の測定位置決め、被験者とクライオスタット底部との間の距離測定のための装置構成が単純で、かつ測定手順が簡便な生体磁気計測装置を提供することにある。   An object of the present invention is to provide a biomagnetic measurement apparatus that has a simple apparatus configuration for measuring and positioning a subject and measuring a distance between the subject and a cryostat bottom and that has a simple measurement procedure.

上記課題を解決するための本発明の構成は以下の通りである。   The configuration of the present invention for solving the above-described problems is as follows.

被験者を支持するための被験者支持手段と、被験者から発生する磁場を検出する超伝導量子干渉素子を有する磁気センサと、該磁気センサの前記超伝導量子干渉素子を低温に保持するための超伝導量子干渉素子保冷手段と、該超伝導量子干渉素子保冷手段の前記被験者側の底面に設けられた、該被験者に光を照射する光照射手段と、を備えた生体磁気計測装置。   Subject support means for supporting the subject, a magnetic sensor having a superconducting quantum interference element for detecting a magnetic field generated from the subject, and a superconducting quantum for holding the superconducting quantum interference element of the magnetic sensor at a low temperature A biomagnetism measuring apparatus comprising: an interference element cooling means; and a light irradiation means for irradiating the subject with light provided on a bottom surface of the superconducting quantum interference element cooling means on the subject side.

被験者支持手段は一般的にはベッドであるが、被験者を一定位置に保持することができればどのようなものであっても良い。磁気センサは超伝導量子干渉素子(SQUID)以外の常伝導磁気センサでも使用可能であるが、生体の微少な磁場を測定するためには
SQUIDであることが好ましい。超伝導量子干渉素子保冷手段は磁気センサを冷却できるものであればどのようなものでも良いが、一般的には液体ヘリウム,液体窒素等の冷媒を保持する容器状の手段、すなわちデュワと称されるようなクライオスタットであることが好ましい。もちろん、冷媒を強制的に循環させることにより磁気センサを冷却する手段であってもかまわない。クライオスタットは被験者側の底面には複数の磁気センサを並べて配置できるよう、底面がほぼ平面状となっていることが多い。このようなクライオスタットの底面に光を被験者に照射する手段を設けることが好ましい。光照射手段としては電球,LED等の発光素子を設けても良いし、光源を別に設け、光ファイバ等を介して光をクライオスタット底部まで導いても良い。また、鏡,プリズムのような光を反射するものを超伝導量子干渉素子保冷手段の底部に設け、外側からレーザ光のような非拡散光を鏡に照射し、底面上で光をほぼ直角方向に曲げて被験者に照射するものであっても良い。このような鏡,プリズムを用いた場合は、光の入射角と被験者から反射した光の反射角を測定することにより、超伝導量子干渉素子保冷手段の底部と被験者の距離を測定することが容易にできる。
The subject support means is generally a bed, but may be anything as long as the subject can be held in a fixed position. The magnetic sensor can be a normal conducting magnetic sensor other than the superconducting quantum interference device (SQUID), but is preferably a SQUID for measuring a minute magnetic field of a living body. The superconducting quantum interference element cooling means may be any means capable of cooling the magnetic sensor, but is generally referred to as a container-like means for holding a refrigerant such as liquid helium or liquid nitrogen, that is, dewar. Such a cryostat is preferable. Of course, a means for cooling the magnetic sensor by forcibly circulating the refrigerant may be used. The cryostat often has a substantially flat bottom surface so that a plurality of magnetic sensors can be arranged side by side on the bottom surface on the subject side. It is preferable to provide means for irradiating the subject with light on the bottom surface of such a cryostat. As the light irradiation means, a light emitting element such as a light bulb or LED may be provided, or a light source may be provided separately, and light may be guided to the bottom of the cryostat through an optical fiber or the like. Also, a mirror or prism that reflects light is provided at the bottom of the superconducting quantum interference device cold insulation means, and the non-diffused light such as laser light is irradiated from the outside to the mirror, and the light is directed almost perpendicularly on the bottom surface. It is also possible to irradiate the subject after bending it. When such mirrors and prisms are used, it is easy to measure the distance between the bottom of the superconducting quantum interference device cooling means and the subject by measuring the incident angle of light and the reflected angle of light reflected from the subject. Can be.

上記に示した本発明によれば、生体磁気計測において、被験者の測定位置の位置決めと、被験者と磁気センサの間の距離測定が同時に簡便に行えるため、被験者を検査するための拘束時間が短くなり、かつ、煩わしかったオペレータ操作の手間も簡便に行える。   According to the present invention described above, in biomagnetism measurement, the measurement position of the subject and the distance measurement between the subject and the magnetic sensor can be easily performed at the same time, so the restraint time for examining the subject is shortened. In addition, troublesome operator operations can be easily performed.

本発明の一実施例を図を用いて説明する。   An embodiment of the present invention will be described with reference to the drawings.

図1は、本発明の実施例である生体磁気計測装置の構成を示す図である。図1に示すように磁気シールドルーム1内には、被験者8が横になるベッド4と複数個(複数チャンネル)のSQUID磁気センサおよびSQUID磁気センサを超伝導状態に保持するための冷媒(液体ヘリウムまたは液体窒素)が貯蔵されたクライオスタット2と、クライオスタット2を機械的に保持するガントリー3が配置されている。ベッド4は、X方向,Y方向,Z方向に移動可能である。磁気シールドルーム1の外部にはSQUID磁束計動作回路5と、アンプ回路およびフィルタ回路ユニット6と、データ取り込みおよびデータ解析用コンピュータ7と、が配置されている。   FIG. 1 is a diagram showing a configuration of a biomagnetic measurement apparatus according to an embodiment of the present invention. As shown in FIG. 1, in the magnetic shield room 1, a bed 4 on which a subject 8 lies, a plurality (multiple channels) of SQUID magnetic sensors and a refrigerant (liquid helium) for maintaining a superconducting state. Alternatively, a cryostat 2 that stores liquid nitrogen) and a gantry 3 that mechanically holds the cryostat 2 are disposed. The bed 4 is movable in the X direction, the Y direction, and the Z direction. Outside the magnetic shield room 1, a SQUID magnetometer operating circuit 5, an amplifier circuit and filter circuit unit 6, and a data capture and data analysis computer 7 are arranged.

SQUID磁気センサによって検出された生体磁気信号は、アンプ回路およびフィルタ回路ユニット6により増幅され、かつ設定周波数より低い周波数信号を通過させるローパスフィルタや設定周波数より高い周波数信号を通過させるハイパスフィルタ,商用電源周波数だけをカットするノッチフィルタなどの信号処理を経た後、パソコン(コンピュータ)7に生データとして取り込まれる。また、パソコン7は、取り込んだ生データを生データファイルに格納し、波形を画面表示したり、また波形の信号処理などを行い、表示することもできる。   A biomagnetic signal detected by the SQUID magnetic sensor is amplified by an amplifier circuit and filter circuit unit 6 and passes a frequency signal lower than a set frequency, a high-pass filter that passes a frequency signal higher than a set frequency, and a commercial power supply After undergoing signal processing such as a notch filter that cuts only the frequency, it is taken into the personal computer (computer) 7 as raw data. Further, the personal computer 7 can store the captured raw data in a raw data file, display the waveform on the screen, or perform waveform signal processing and display the waveform.

図2は、本発明の実施例である生体磁気計測装置において、被験者の測定位置決めの手段と、被験者とクライオスタット底部との間の距離を測定する手段を示した図である。   FIG. 2 is a view showing a measurement positioning means for a subject and a means for measuring the distance between the subject and the cryostat bottom in the biomagnetic measurement apparatus according to the embodiment of the present invention.

レーザ光を用いた変位計13のレーザ光照射部14より、クライオスタット11の横から水平に照射されたレーザ光17は、クライオスタット11の底部の所定位置に取り付けられた反射鏡12により直角に反射され、被験者16に照射される。照射されたレーザ光の位置に被験者の測定したい部位をあわせることで被験者の測定位置決めを行う。また、レーザ光を用いた変位計13により、被験者とクライオスタット底部との間の距離を測定することができる。レーザ光を用いた変位計13の測定原理は、本発明において限定されるものではないが、一例として挙げると、レーザ光照射部14から照射されたレーザ光が対象物に照射され、反射して戻ってきたレーザ光を受光部15で捉える。対象物に反射して戻ってきたレーザ光の角度は、対象物の距離に応じて変化するので、受光部15が検知したレーザ光の角度により対象物までの距離が計測される。受光部15として、CCD受光素子などが使われる。更に、反射鏡12とレーザ光照射部との距離をあらかじめオフセットにより0としておけば、クライオスタット底部と被験者との距離が測定できる。   Laser light 17 irradiated horizontally from the side of the cryostat 11 from the laser light irradiation unit 14 of the displacement meter 13 using laser light is reflected at a right angle by the reflecting mirror 12 attached to a predetermined position on the bottom of the cryostat 11. The subject 16 is irradiated. The subject is measured and positioned by matching the position of the subject to be measured with the position of the irradiated laser beam. Moreover, the distance between a test subject and a cryostat bottom part can be measured with the displacement meter 13 using a laser beam. The measurement principle of the displacement meter 13 using laser light is not limited in the present invention, but as an example, the laser light emitted from the laser light irradiation unit 14 is applied to the object and reflected. The returned laser beam is captured by the light receiving unit 15. Since the angle of the laser light reflected and returned from the object changes according to the distance of the object, the distance to the object is measured by the angle of the laser light detected by the light receiving unit 15. A CCD light receiving element or the like is used as the light receiving unit 15. Furthermore, the distance between the cryostat bottom and the subject can be measured by setting the distance between the reflecting mirror 12 and the laser beam irradiator to 0 in advance by an offset.

光照射手段をレーザ光の代わりに電球,LED等の発光素子をクライオスタットの底面に設けても良いし、光源をクライオスタットの底面とは別のところに設けて光ファイバ等を介して光をクライオスタット底部まで導いても良い。   The light irradiation means may be provided with a light emitting element such as a light bulb or LED instead of the laser light on the bottom surface of the cryostat, or the light source is provided at a location different from the bottom surface of the cryostat and the light is transmitted through the optical fiber or the like at the bottom of the cryostat. You may lead to.

図3は、図2の実施例において、クライオスタット11の底部の形状を変えた実施例である。図3において、クライオスタット21の底部に溝23を切って、反射鏡22を埋め込み、クライオスタット横からレーザ光24を、溝23に沿って照射し、反射鏡22で、レーザ光24を垂直真下方向に反射させる。溝23により、被験者がクライオスタットの底部に接近あるいは接触しても、レーザ光24の光路は遮られずに距離測定が可能である。また、溝23をレーザ光が屈折しない透明な物質,ガラスやアクリルで埋めてもよい。   FIG. 3 is an embodiment in which the shape of the bottom of the cryostat 11 is changed in the embodiment of FIG. In FIG. 3, a groove 23 is cut at the bottom of the cryostat 21 and a reflecting mirror 22 is embedded. Laser light 24 is irradiated from the side of the cryostat along the groove 23, and the laser light 24 is directed vertically downward by the reflecting mirror 22. Reflect. Even when the subject approaches or contacts the bottom of the cryostat, the groove 23 can measure the distance without blocking the optical path of the laser light 24. Further, the groove 23 may be filled with a transparent material that does not refract laser light, glass or acrylic.

図4は、本発明の実施例である磁気センサと被験者の間の距離測定の原理を示した図である。図4において、クライオスタット41の中は、磁気センサ42が配置されていて、磁気センサ42を超伝導状態で動作させるための冷媒43(液体ヘリウムまたは液体窒素)が満たされている。クライオスタット41の底部と被験者47の間の距離49は、レーザ光を用いた変位計44から照射されたレーザ光45を反射鏡46によって、クライオスタット底部から直角に反射させ、被験者に照射することで計測する。変位計44で計測された距離49は、設計上の磁気センサからクライオスタット底部までの間の距離48を加味して、被験者から磁気センサまでの間の距離としてモニター50に表示される。   FIG. 4 is a diagram illustrating the principle of distance measurement between the magnetic sensor and the subject according to the embodiment of the present invention. In FIG. 4, a cryostat 41 is provided with a magnetic sensor 42, which is filled with a refrigerant 43 (liquid helium or liquid nitrogen) for operating the magnetic sensor 42 in a superconducting state. The distance 49 between the bottom of the cryostat 41 and the subject 47 is measured by irradiating the subject with the laser beam 45 irradiated from the displacement meter 44 using laser light at a right angle from the bottom of the cryostat by the reflecting mirror 46. To do. The distance 49 measured by the displacement meter 44 is displayed on the monitor 50 as the distance from the subject to the magnetic sensor, taking into account the distance 48 from the designed magnetic sensor to the cryostat bottom.

図5は、図4におけるモニター50の表示の一例として、本発明の実施例である被験者−磁気センサ間距離モニター画面の一例を示した図である。被験者−磁気センサ間距離モニター画面51には、被験者からクライオスタット底部までの間の距離表示(計測値表示)52とクライオスタット底部から磁気センサまでの間の距離表示(設計上の値)53と被験者から磁気センサまでの間の距離表示(52と53から求めた計算値)54とが表示される。   FIG. 5 is a diagram showing an example of a subject-magnetic sensor distance monitor screen as an example of the present invention as an example of the display of the monitor 50 in FIG. The subject-magnetic sensor distance monitor screen 51 includes a distance display (measurement value display) 52 from the subject to the cryostat bottom, a distance display (design value) 53 from the cryostat bottom to the magnetic sensor, and the subject. A distance display (calculated value obtained from 52 and 53) 54 to the magnetic sensor is displayed.

本発明の実施例である生体磁気計測装置の構成を示した図である。It is the figure which showed the structure of the biomagnetic measuring device which is an Example of this invention. 本発明の実施例である生体磁気計測装置の被験者の測定位置決めの手段と、被験者とクライオスタット底部との間の距離を測定する手段を示した図である。It is the figure which showed the means for the measurement positioning of the test subject of the biomagnetic measuring device which is an Example of this invention, and the means to measure the distance between a test subject and a cryostat bottom part. 本発明の実施例である生体磁気計測装置の被験者の測定位置決めの手段と、被験者とクライオスタット底部との間の距離を測定する手段を示した図である。It is the figure which showed the means for the measurement positioning of the test subject of the biomagnetic measuring device which is an Example of this invention, and the means to measure the distance between a test subject and a cryostat bottom part. 本発明の実施例である生体磁気計測における磁気センサと被験者の間の距離測定の原理を示した図である。It is the figure which showed the principle of the distance measurement between the magnetic sensor and test subject in the biomagnetic measurement which is an Example of this invention. 本発明の実施例である生体磁気計測における被験者−磁気センサ間距離モニター画面の一例を示した図である。It is the figure which showed an example of the test subject-magnetic sensor distance monitor screen in the biomagnetism measurement which is an Example of this invention.

符号の説明Explanation of symbols

1…磁気シールドルーム、2…SQUID磁気センサおよびクライオスタット、3…ガントリー、4…ベッド、5…SQUID磁束計動作回路、6…アンプ回路およびフィルタ回路ユニット、7…コンピュータ、8,16,47…被験者、11,21,41…クライオスタット、12,22,46…反射鏡、13,44…レーザ光を用いた変位計、14…レーザ光照射部、15…受光部、17,24,45…レーザ光、23…溝、42…磁気センサ、43…冷媒、48…磁気センサからクライオスタット底部までの間の距離、49…クライオスタット底部から被験者までの距離、50…被験者−磁気センサ間距離モニター、51…被験者−磁気センサ間距離モニター画面、52…被験者からクライオスタット底部までの間の距離表示(計測値表示)、53…クライオスタット底部から磁気センサまでの間の距離表示(設計上の値)、54…被験者から磁気センサまでの間の距離表示(52と53から求めた計算値)。   DESCRIPTION OF SYMBOLS 1 ... Magnetic shield room, 2 ... SQUID magnetic sensor and cryostat, 3 ... Gantry, 4 ... Bed, 5 ... SQUID magnetometer operation circuit, 6 ... Amplifier circuit and filter circuit unit, 7 ... Computer, 8, 16, 47 ... Subject DESCRIPTION OF SYMBOLS 11, 21, 41 ... Cryostat, 12, 22, 46 ... Reflector, 13, 44 ... Displacement meter using laser light, 14 ... Laser light irradiation part, 15 ... Light receiving part, 17, 24, 45 ... Laser light , 23 ... groove, 42 ... magnetic sensor, 43 ... refrigerant, 48 ... distance from the magnetic sensor to the cryostat bottom, 49 ... distance from the cryostat bottom to the subject, 50 ... subject-magnetic sensor distance monitor, 51 ... subject -Distance monitor screen between magnetic sensors, 52 ... Distance display from subject to cryostat bottom (measured value) Shown), 53 ... distance display (a design value between the cryostat bottom to the magnetic sensor), 54 ... values calculated from the distance display (52 and 53 between the subject to the magnetic sensor).

Claims (7)

被験者を支持するための被験者支持手段と、
被験者から発生する磁場を検出する超伝導量子干渉素子を有する磁気センサと、
該磁気センサの前記超伝導量子干渉素子を低温に保持するための超伝導量子干渉素子保冷手段と、
該超伝導量子干渉素子保冷手段の前記被験者側の底面に設けられた、該被験者に光を照射する光照射手段と、
を備えたことを特徴とする生体磁気計測装置。
A subject support means for supporting the subject;
A magnetic sensor having a superconducting quantum interference element for detecting a magnetic field generated from a subject;
A superconducting quantum interference device cold-retaining means for keeping the superconducting quantum interference device of the magnetic sensor at a low temperature;
A light irradiating means for irradiating the subject with light, provided on a bottom surface of the superconducting quantum interference device cold insulating means on the subject side;
A biomagnetism measuring device comprising:
請求項1記載の光照射手段が光反射体であり、前記超伝導量子干渉素子保冷手段の側方から入射した光を前記被験者側に反射するものであることを特徴とする生体磁気計測装置。   The biomagnetism measuring apparatus according to claim 1, wherein the light irradiation means is a light reflector, and reflects light incident from a side of the superconducting quantum interference device cold insulation means toward the subject. 請求項2記載の生体磁気計測装置において、
前記超伝導量子干渉素子保冷手段の前記被験者側の底面に、前記超伝導量子干渉素子保冷手段の側方から入射した光を通過させるための光路が形成されていることを特徴とする生体磁気計測装置。
The biomagnetism measuring device according to claim 2,
A biomagnetic measurement characterized in that an optical path for allowing light incident from the side of the superconducting quantum interference device cold insulation means to pass is formed on the bottom surface of the superconducting quantum interference device cold insulation means on the subject side. apparatus.
請求項3記載の光路は、少なくとも一部が、光が透過可能な透明物質で充填されていることを特徴とする生体磁気計測装置。   The biomagnetic measuring apparatus according to claim 3, wherein at least a part of the optical path is filled with a transparent material capable of transmitting light. 請求項1〜4のいずれかに記載の生体磁気計測装置において、
前記光照射手段から被験者に照射され、該被験者から反射してきた光を受光する受光手段を備えたことを特徴とする生体磁気計測装置。
In the biomagnetism measuring device according to any one of claims 1 to 4,
A biomagnetism measuring apparatus comprising: a light receiving means for receiving light irradiated to the subject from the light irradiation means and reflected from the subject.
請求項5記載の生体磁気計測装置において、
前記光照射手段から前記被験者に照射された光の角度と、該被験者から反射してきた光の角度の情報に基づき、該被験者と前記超伝導量子干渉素子保冷手段との距離を算出する算出手段を備えたことを特徴とする生体磁気計測装置。
The biomagnetic measurement apparatus according to claim 5,
A calculating means for calculating a distance between the subject and the superconducting quantum interference device cooling means based on information on an angle of light emitted from the light irradiating means to the subject and an angle of light reflected from the subject; A biomagnetism measuring device characterized by comprising.
被験者を支持するための被験者支持手段と、
被験者から発生する磁場を検出する超伝導量子干渉素子を有する磁気センサと、
該磁気センサの前記超伝導量子干渉素子を低温に保持するための超伝導量子干渉素子保冷手段と、
を備えた生体磁気計測装置の超伝導量子干渉素子保冷手段であって、
該超伝導量子干渉素子保冷手段の前記被験者側の底面に該被験者に光を照射する光照射手段を備えたことを特徴とする超伝導量子干渉素子保冷手段。
A subject support means for supporting the subject;
A magnetic sensor having a superconducting quantum interference element for detecting a magnetic field generated from a subject;
A superconducting quantum interference device cold-retaining means for keeping the superconducting quantum interference device of the magnetic sensor at a low temperature;
A superconducting quantum interference device cold insulation means of a biomagnetic measurement device comprising:
A superconducting quantum interference element cold insulation means, comprising a light irradiation means for irradiating the subject with light on the bottom surface of the superconducting quantum interference element cold insulation means on the subject side.
JP2004144283A 2004-05-14 2004-05-14 Biomagnetism measuring device Pending JP2005323783A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004144283A JP2005323783A (en) 2004-05-14 2004-05-14 Biomagnetism measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004144283A JP2005323783A (en) 2004-05-14 2004-05-14 Biomagnetism measuring device

Publications (1)

Publication Number Publication Date
JP2005323783A true JP2005323783A (en) 2005-11-24

Family

ID=35470594

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004144283A Pending JP2005323783A (en) 2004-05-14 2004-05-14 Biomagnetism measuring device

Country Status (1)

Country Link
JP (1) JP2005323783A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008029459A (en) * 2006-07-27 2008-02-14 Hitachi High-Technologies Corp Bio-magnetic field measuring instrument and measurement position setting method for bio-magnetic field measuring instrument
JP2009128186A (en) * 2007-11-22 2009-06-11 Toshiba Corp Radiation detector
WO2017092718A1 (en) * 2015-12-03 2017-06-08 深圳市奥沃医学新技术发展有限公司 Laser monitoring device for use in head radiotherapy equipment

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008029459A (en) * 2006-07-27 2008-02-14 Hitachi High-Technologies Corp Bio-magnetic field measuring instrument and measurement position setting method for bio-magnetic field measuring instrument
JP2009128186A (en) * 2007-11-22 2009-06-11 Toshiba Corp Radiation detector
WO2017092718A1 (en) * 2015-12-03 2017-06-08 深圳市奥沃医学新技术发展有限公司 Laser monitoring device for use in head radiotherapy equipment

Similar Documents

Publication Publication Date Title
JP3579686B2 (en) Measuring position reproducing method, measuring position reproducing device, and optical measuring device using the same
JP5189912B2 (en) Photoacoustic measuring device
US20070219450A1 (en) Three-dimensional breast anatomy imaging system
US20070295888A1 (en) Portable optical wound scanner
JPH03146032A (en) Method and device for measuring noninvasive blood sugar concentration
JPH11318938A (en) Image-guided operation system
JPH08299310A (en) Non-invasive blood analysis device and method therefor
JP2009168670A (en) Optical measurement unit
EP2936123B1 (en) Apparatus for in-vitro imaging and analysis of dental samples
JP2012000452A (en) Position sensing device for portable detection device
JP2013183915A (en) Object information acquiring apparatus
JP2015503392A (en) System and method for needle navigation using PA effect in US imaging
JP4048274B2 (en) Blood flow state display device for patch test measurement
US20110125004A1 (en) Analysis by photo acoustic displacement and interferometryl
JP5686738B2 (en) Biological light measurement device
JP2000346796A (en) Gas visualizing apparatus and method
CN102665570B (en) Magnetic-field measurement jig, magnetic-field measurement program, and inspection device provided with magnetic position detector
JP2009106376A (en) Sensing apparatus for biological surface tissue
JP2005323783A (en) Biomagnetism measuring device
JP2009106373A (en) Sensing apparatus for biological surface tissue
JP5501488B2 (en) Photoacoustic measuring device
JP2007508097A (en) Method and spectroscopic system for determining fluid properties
KR20140108413A (en) Infrared thermography system and method for wind blade
CN107115097A (en) Subject information acquisition device and information processor
JP5281805B2 (en) Phantom device for inspection of biological light measurement device

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060509