JP2005322890A - Piezoelectric/electrostrictive film element - Google Patents

Piezoelectric/electrostrictive film element Download PDF

Info

Publication number
JP2005322890A
JP2005322890A JP2005084990A JP2005084990A JP2005322890A JP 2005322890 A JP2005322890 A JP 2005322890A JP 2005084990 A JP2005084990 A JP 2005084990A JP 2005084990 A JP2005084990 A JP 2005084990A JP 2005322890 A JP2005322890 A JP 2005322890A
Authority
JP
Japan
Prior art keywords
piezoelectric
electrostrictive film
electrode
upper electrode
electrostrictive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005084990A
Other languages
Japanese (ja)
Other versions
JP5009507B2 (en
Inventor
Hirofumi Yamaguchi
浩文 山口
Takatomo Nehagi
隆智 根萩
Kunihiko Yoshioka
邦彦 吉岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP2005084990A priority Critical patent/JP5009507B2/en
Publication of JP2005322890A publication Critical patent/JP2005322890A/en
Application granted granted Critical
Publication of JP5009507B2 publication Critical patent/JP5009507B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B3/00Devices comprising flexible or deformable elements, e.g. comprising elastic tongues or membranes
    • B81B3/0064Constitution or structural means for improving or controlling the physical properties of a device
    • B81B3/0086Electrical characteristics, e.g. reducing driving voltage, improving resistance to peak voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2201/00Specific applications of microelectromechanical systems
    • B81B2201/02Sensors
    • B81B2201/0292Sensors not provided for in B81B2201/0207 - B81B2201/0285

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high-sensitivity sensor with regard to a piezoelectric/electrostrictive film element that is related to the piezoelectric/electrostrictive film element, and is used for especially actuators utilizing bending displacement, for example, microphones, sensors of fluid characteristics or sound pressure, very small weight, acceleration or the like, for example, viscosity sensors. <P>SOLUTION: The piezoelectric/electrostriction film element is formed by sequentially laminating a lower electrode and an auxiliary electrode, a piezoelectric/electrostriction film and an upper electrode on a substrate, comprising ceramics having a thin diaphragm section provided with a thick diaphragm on the circumference. In this case, the length of the upper electrode is 30% or higher and 70% or lower of that of the thin diaphragm. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、圧電/電歪膜型素子に係り、中でも屈曲変位を利用するアクチュエータ、例えばマイクロホンや、流体特性や音圧、微小重量、加速度等のセンサ、例えば、粘度センサに用いられる圧電/電歪膜型素子に関する。   The present invention relates to a piezoelectric / electrostrictive membrane element, and in particular, an actuator that uses bending displacement, such as a microphone, and a sensor such as a fluid characteristic, sound pressure, minute weight, or acceleration, such as a piezoelectric / electric sensor used for a viscosity sensor. The present invention relates to a strain film type element.

圧電/電歪電歪膜型素子は、従来よりアクチュエータや各種センサとして用いられている。センサとして用いられる圧電/電歪膜型素子は、例えば特許文献1に開示されるように、流体の密度、濃度、粘度等の特性測定に利用される。このような素子にあっては、圧電体振動子の振幅と振動子に接触する流体の粘性抵抗に相関があることを利用して、センサとして用いるものである。   Piezoelectric / electrostrictive electrostrictive membrane elements have been conventionally used as actuators and various sensors. A piezoelectric / electrostrictive film type element used as a sensor is used for measuring characteristics such as density, concentration, and viscosity of a fluid as disclosed in Patent Document 1, for example. Such an element is used as a sensor by utilizing the fact that there is a correlation between the amplitude of the piezoelectric vibrator and the viscous resistance of the fluid in contact with the vibrator.

一般的に、振動子の振動のような機械系での振動形態は、電気系での等価回路に置き換えることができ、流体中で圧電/電歪膜型振動子を振動させ、この振動子が流体の粘性抵抗に基づいて機械的抵抗を受けることにより振動子を構成する圧電体の等価回路の電気的定数が変化するのを検出し、流体の粘度、密度、濃度等の特性を測定することが可能となる。測定可能な流体としては、液体及び気体を意味し、水、アルコール、油等単一の成分からなる液体のみならず、これらの液体に可溶または不溶な媒質を溶解または混合あるいは懸濁せしめた液体、スラリー、ペーストが含まれる。   Generally, the vibration form in the mechanical system such as the vibration of the vibrator can be replaced with an equivalent circuit in the electric system, and the vibrator is made to vibrate the piezoelectric / electrostrictive membrane vibrator in the fluid. Detecting changes in the electrical constant of the equivalent circuit of the piezoelectric body that constitutes the vibrator by receiving mechanical resistance based on the viscous resistance of the fluid, and measuring characteristics such as viscosity, density, and concentration of the fluid Is possible. Measurable fluids mean liquids and gases, and not only liquids consisting of a single component, such as water, alcohol, oil, but also soluble or insoluble media dissolved or mixed or suspended in these liquids. Includes liquids, slurries, and pastes.

また、検出する電気的定数としては、損失係数、位相、抵抗、リアクタンス、コンダクダンス、サセプタンス、インダクタンス及びキャパシタンス等を挙げることができ、特に等価回路の共振周波数近傍で極大または極小変化点を1つもつ損失係数または位相が好ましく用いられる。これにより流体の粘度のみならず、密度や濃度をも測定することができ、例えば、硫酸水溶液中の硫酸濃度を測定することができる。なお、振動形態の変化を検出する指標として電気的定数以外に、測定精度、耐久性の観点から特に問題が無ければ共振周波数の変化を利用することもできる。   In addition, examples of the electrical constant to be detected include loss factor, phase, resistance, reactance, conductance, susceptance, inductance, capacitance, etc. Especially, one maximum or minimum change point near the resonance frequency of the equivalent circuit. The loss factor or phase that it has is preferably used. As a result, not only the viscosity of the fluid but also the density and concentration can be measured. For example, the sulfuric acid concentration in the sulfuric acid aqueous solution can be measured. In addition to the electrical constant, as an index for detecting the change in the vibration form, the change in the resonance frequency can be used if there is no particular problem from the viewpoint of measurement accuracy and durability.

かかる圧電/電歪膜型素子にあっては、特許文献2に開示されるように、図1のように厚肉部2を周縁部に持つ薄肉ダイヤフラム部3を有するセラミックスからなる基板1に積層した下部電極4とは独立した位置に、補助電極8を形成し、その補助電極の一部が前記圧電/電歪膜5の下側の一部に入り込ませるように形成されている。このような構成により、上部電極6を補助電極8及び圧電/電歪膜5の面上で断線すること無く連続して形成することが可能となり、上部電極6の接続の信頼性が向上する。なお図1にあっては、被測定流体は空洞部10に存在し、貫通孔9により導入される。さらに、補助電極8を、薄肉ダイヤフラム部3上より、厚肉部3にまで連続して形成することにより、安定した素子特性と、いかなる使用条件でも適用できる素子が得られる。
特開平8−201265号公報 特開2002−261347号公報
Such a piezoelectric / electrostrictive film type element is laminated on a substrate 1 made of ceramics having a thin diaphragm portion 3 having a thick portion 2 as a peripheral portion as shown in FIG. The auxiliary electrode 8 is formed at a position independent of the lower electrode 4, and a part of the auxiliary electrode is formed so as to enter a part below the piezoelectric / electrostrictive film 5. With such a configuration, the upper electrode 6 can be continuously formed on the auxiliary electrode 8 and the surface of the piezoelectric / electrostrictive film 5 without being disconnected, and the connection reliability of the upper electrode 6 is improved. In FIG. 1, the fluid to be measured exists in the cavity 10 and is introduced through the through hole 9. Furthermore, by forming the auxiliary electrode 8 continuously from the thin diaphragm portion 3 to the thick portion 3, a stable device characteristic and a device applicable under any use conditions can be obtained.
JP-A-8-201265 JP 2002-261347 A

このような振動に基づく電気的特性を検知することによりセンシングを行うセンサ用素子にあっては、例えば位相のピークにより共振周波数の変化を検知する場合には、図2に示すように共振周波数において位相のピークがシャープであることが、分解能や感度の高いセンサ用素子として、望ましい。しかしながら、従来はピークの鋭さが十分なものが得られず、高精度な検知を行う場合の障害となっていた。   In a sensor element that performs sensing by detecting such electrical characteristics based on vibration, for example, when detecting a change in resonance frequency due to a phase peak, as shown in FIG. A sharp phase peak is desirable as a sensor element with high resolution and sensitivity. However, in the past, a peak with sufficient sharpness could not be obtained, which was an obstacle when performing highly accurate detection.

そして、図1に示す従来の圧電/電歪膜型素子においては、図4に示すように、理想的な振動変形形状に対し、実際の振動変形形状が乖離しており、これが、被測定流体のさまざまなノイズをも検出することにつながり、結果としてシャープな電気特性の変化が得られない要因となっていた。   In the conventional piezoelectric / electrostrictive membrane element shown in FIG. 1, as shown in FIG. 4, the actual vibration deformation shape deviates from the ideal vibration deformation shape. As a result, a sharp change in electrical characteristics could not be obtained.

本発明は、この問題に対処するためになされたものである。即ち、本発明の目的は、理想的な振動変形形状と実際の振動変形形状とを合致させることができる圧電/電歪膜型素子を提供することにある。また、これにより感度の高いセンサー素子を提供することにある。   The present invention has been made to address this problem. That is, an object of the present invention is to provide a piezoelectric / electrostrictive membrane element that can match an ideal vibration deformation shape with an actual vibration deformation shape. Another object of the present invention is to provide a highly sensitive sensor element.

即ち、本発明による圧電/電歪膜型素子は、厚肉部を周縁部に持つ薄肉ダイヤフラム部を有するセラミックスからなる基板に下部電極及び補助電極と、圧電/電歪膜と、上部電極を順次積層させた圧電/電歪膜型素子であって、前記上部電極の長さが、薄肉ダイヤフラム部の長さの30%以上70%以下であることを特徴とする圧電/電歪膜型素子である。   That is, the piezoelectric / electrostrictive film type device according to the present invention sequentially forms a lower electrode and an auxiliary electrode, a piezoelectric / electrostrictive film, and an upper electrode on a substrate made of ceramics having a thin diaphragm portion having a thick portion at the peripheral portion. A laminated piezoelectric / electrostrictive film type element, wherein the length of the upper electrode is not less than 30% and not more than 70% of the length of the thin diaphragm portion. is there.

また、本発明による圧電/電歪膜型素子は、厚肉部を周縁部に持つ薄肉ダイヤフラム部を有するセラミックスからなる基板に下部電極及び補助電極と、圧電/電歪膜と、上部電極を順次積層させた圧電/電歪膜型素子であって、前記上部電極の幅が、薄肉ダイヤフラム部3の幅の70%以上であることを特徴とする圧電/電歪膜型素子である。   Further, the piezoelectric / electrostrictive film type element according to the present invention has a lower electrode and an auxiliary electrode, a piezoelectric / electrostrictive film, and an upper electrode in order on a substrate made of ceramics having a thin diaphragm portion having a thick portion at a peripheral portion. A laminated piezoelectric / electrostrictive film element, wherein the width of the upper electrode is 70% or more of the width of the thin diaphragm portion 3.

なお、ここでいう前記上部電極の長さ及び前記薄肉ダイヤフラム部の長さとは、空洞部10の長手方向に並行な方向における各部材の両端間の距離を指し、前記上部電極の幅及び前記薄肉ダイヤフラム部の幅とは、空洞部10の短手方向に並行な方向における各部材の両端間の距離を指す。   Here, the length of the upper electrode and the length of the thin diaphragm portion refer to the distance between both ends of each member in the direction parallel to the longitudinal direction of the cavity portion 10, and the width of the upper electrode and the thin wall portion The width of the diaphragm portion refers to the distance between both ends of each member in the direction parallel to the short direction of the cavity portion 10.

本発明により提供される圧電/電歪膜型素子は、理想的な振動変形形状と実際の振動変形形状とが合致するため、シャープな電気特性の変化を得ることができ、これにより、より分解能や感度の高いセンサー素子の提供が可能となる。   The piezoelectric / electrostrictive membrane element provided by the present invention matches the ideal vibration deformation shape with the actual vibration deformation shape, so that a sharp change in the electrical characteristics can be obtained, thereby improving the resolution. And a sensor element with high sensitivity can be provided.

以下、本発明の実施の最良の形態について説明するが、本発明は以下の実施の形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で、当業者の通常の知識に基づいて、適宜、設計の変更、改良等が加えられることが理解されるべきである。   BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the best mode for carrying out the present invention will be described. It should be understood that design changes, improvements, and the like can be made as appropriate.

本発明における圧電/電歪膜型振動子は、図1に示すように、薄肉のダイヤフラム部3と厚肉部2からなるセラミック基板1の上に、下部電極4と、圧電/電歪膜5及び上部電極6が、通常の膜形成法によって順次積層されてなる一体構造となって形成されている。   As shown in FIG. 1, the piezoelectric / electrostrictive film type vibrator according to the present invention has a lower electrode 4 and a piezoelectric / electrostrictive film 5 on a ceramic substrate 1 composed of a thin diaphragm portion 3 and a thick portion 2. The upper electrode 6 is formed as an integral structure formed by sequentially laminating by a normal film forming method.

下部電極4の補助電極8側の一端は、薄肉ダイヤフラム部3を越えない位置までの長さをもって形成されている。下部電極4と同一面上の、これとは独立した位置に、圧電/電歪膜5の下側に入り込むような位置に補助電極8が、下部電極4とは反対側の厚肉部1から薄肉ダイヤフラム部3に至るまでの所定の長さを持って連続的に形成さている。圧電/電歪膜5は下部電極4と補助電極8に跨るように形成され、上部電極6は圧電/電歪膜5と補助電極8に跨って、補助電極8に導通せしめるよう形成される。   One end of the lower electrode 4 on the auxiliary electrode 8 side is formed with a length up to a position not exceeding the thin diaphragm portion 3. The auxiliary electrode 8 is located on the same plane as the lower electrode 4, at a position independent of the lower electrode 4, so as to enter the lower side of the piezoelectric / electrostrictive film 5, and from the thick portion 1 on the side opposite to the lower electrode 4. It is continuously formed with a predetermined length up to the thin diaphragm portion 3. The piezoelectric / electrostrictive film 5 is formed so as to straddle the lower electrode 4 and the auxiliary electrode 8, and the upper electrode 6 is formed so as to be electrically connected to the auxiliary electrode 8 across the piezoelectric / electrostrictive film 5 and the auxiliary electrode 8.

上部電極6の長さLuは、ダイヤフラム部3の長さLdの30%から70%とされる。なお、上部電極6における補助電極8との導通を取るための接続部分については、圧電/電歪膜型素子の実質的な動作に寄与しないため、ここでは長さLuに含まないものとする。   The length Lu of the upper electrode 6 is set to 30% to 70% of the length Ld of the diaphragm portion 3. Note that the connection portion of the upper electrode 6 for conducting with the auxiliary electrode 8 does not contribute to the substantial operation of the piezoelectric / electrostrictive film type element, and is not included in the length Lu here.

この長さが、70%を越えた場合には、結果としてシャープなピークが得られず、また30%より短い場合には、電気定数の値そのものが小さくなり、感度の低下を招く。   If this length exceeds 70%, a sharp peak cannot be obtained as a result, and if it is shorter than 30%, the electric constant value itself becomes small, resulting in a decrease in sensitivity.

なお、シャープなピークを得るためには、上部電極6の長さLuに寄与する上部電極6の長さ方向の形状は、線対称であることが望ましい。対称形とすることで固有の振動のみを強調して振動させることができるためである。   In order to obtain a sharp peak, the shape of the upper electrode 6 that contributes to the length Lu of the upper electrode 6 in the length direction is preferably line symmetric. This is because it can be made to vibrate by emphasizing only the inherent vibration.

セラミック基板1の材質としては、耐熱性、化学的安定性、絶縁性を有する材質が好ましい。これは、後述するように下部電極4、圧電/電歪膜5、上部電極6を一体化する際に、熱処理する場合があること、センサ素子としての圧電/電歪膜型素子が液体の特性をセンシングする場合、その液体が導電性や、腐食性を有する場合があるためである。   The material of the ceramic substrate 1 is preferably a material having heat resistance, chemical stability, and insulation. This is because, as will be described later, when the lower electrode 4, the piezoelectric / electrostrictive film 5 and the upper electrode 6 are integrated, heat treatment may be performed, and the piezoelectric / electrostrictive film type element as the sensor element has liquid characteristics. This is because the liquid may be conductive or corrosive when sensing.

かかる観点から使用できるセラミックスとしては、安定化された酸化ジルコニウム、酸化アルミニウム、酸化マグネシウム、ムライト、窒化アルミニウム、窒化珪素及びガラス等を例示することができる。これらの内、安定化された酸化ジルコニウムは薄肉ダイヤフラム部を薄く形成した場合にも機械的強度を高く保てること、靭性に優れることなどから、好適に使用することができる。   Examples of ceramics that can be used from this viewpoint include stabilized zirconium oxide, aluminum oxide, magnesium oxide, mullite, aluminum nitride, silicon nitride, and glass. Among these, stabilized zirconium oxide can be preferably used because it can maintain high mechanical strength and has excellent toughness even when the thin diaphragm portion is formed thin.

セラミック基板1の薄肉ダイヤフラム部3の厚さとしては、駆動振幅が小さくならないようにするために、一般に50μm以下、好ましくは30μm以下、さらに好ましくは15μm以下とされる。   The thickness of the thin diaphragm portion 3 of the ceramic substrate 1 is generally set to 50 μm or less, preferably 30 μm or less, and more preferably 15 μm or less in order to prevent the drive amplitude from being reduced.

また、薄肉ダイヤフラム部の表面形状としては、長方形、正方形、三角形、楕円形、真円形等いかなる形状もとりうる。理想的な変形形状を得るためには、アスペクト比が1.5以上の、長方形、長円形、楕円形であることが好ましい。   Further, the surface shape of the thin diaphragm portion may be any shape such as a rectangle, a square, a triangle, an ellipse, or a perfect circle. In order to obtain an ideal deformed shape, a rectangular shape, an oval shape, or an elliptical shape with an aspect ratio of 1.5 or more is preferable.

このようなセラミック基板1の表面上に、下部電極4及び補助電極8が形成されている。   A lower electrode 4 and an auxiliary electrode 8 are formed on the surface of the ceramic substrate 1.

この際、下部電極4の幅は、ダイヤフラム部3の幅より大きくてもよいし、また一方、圧電/電歪膜5の幅よりは、小さい幅としてもよい。   At this time, the width of the lower electrode 4 may be larger than the width of the diaphragm portion 3, or may be smaller than the width of the piezoelectric / electrostrictive film 5.

一方、補助電極8は、セラミック基板1の下部電極4とは反対側の端部から、薄肉ダイヤフラム部3上の所定の位置まで連続して形成されている。下部電極4及び補助電極8の厚肉部上の端部は、それぞれ異なる端子電極11に接続される。   On the other hand, the auxiliary electrode 8 is continuously formed from the end of the ceramic substrate 1 opposite to the lower electrode 4 to a predetermined position on the thin diaphragm portion 3. The end portions on the thick portion of the lower electrode 4 and the auxiliary electrode 8 are connected to different terminal electrodes 11, respectively.

下部電極4及び補助電極8は、異なる材質でも、同一の材質でもよく、セラミック基板1と圧電/電歪膜5とのいずれとも接合性のよい導電性材料が用いられる。   The lower electrode 4 and the auxiliary electrode 8 may be made of different materials or the same material, and a conductive material having good bonding properties to both the ceramic substrate 1 and the piezoelectric / electrostrictive film 5 is used.

具体的には、白金、パラジウム、ロジウム、銀、あるいはこれらの合金を主成分とする電極材料が好適に用いられ、特に、圧電/電歪膜を形成する際に焼結のための熱処理が行われる場合には、白金、及びこれを主成分とする合金が好適に用いられる。   Specifically, an electrode material mainly composed of platinum, palladium, rhodium, silver, or an alloy thereof is preferably used. In particular, when forming a piezoelectric / electrostrictive film, a heat treatment for sintering is performed. In this case, platinum and an alloy containing this as a main component are preferably used.

下部電極4と補助電極8の形成には、公知の各種の膜形成手法が用いられる。具体的には、イオンビーム、スパッタリング、真空蒸着、CVD、イオンプレーティング、メッキ等の薄膜形成手法や、スクリーン印刷、スプレー、ディッピング等の厚膜形成手法が適宜選択されるが、その中でも特にスパッタリング法及びスクリーン印刷法が好適に選択される。   Various known film forming techniques are used to form the lower electrode 4 and the auxiliary electrode 8. Specifically, thin film formation methods such as ion beam, sputtering, vacuum deposition, CVD, ion plating, plating, and thick film formation methods such as screen printing, spraying, and dipping are appropriately selected. A method and a screen printing method are preferably selected.

下部電極4と補助電極8との間隙に、圧電/電歪膜5と薄肉ダイヤフラム部3を結合させるための結合層を設ける場合には、圧電/電歪膜5の形成に先立ち、図1に示すような位置に結合層7を形成すればよい。   In the case where a bonding layer for bonding the piezoelectric / electrostrictive film 5 and the thin diaphragm portion 3 is provided in the gap between the lower electrode 4 and the auxiliary electrode 8, prior to the formation of the piezoelectric / electrostrictive film 5, FIG. The bonding layer 7 may be formed at a position as shown.

結合層7の形成により、ダイヤフラム部3上での剛性が均一となり、理想的な振動変形形状を得る上で、好ましい。   The formation of the bonding layer 7 makes the rigidity on the diaphragm portion 3 uniform, which is preferable for obtaining an ideal vibration deformation shape.

絶縁体からなる結合層7としては、圧電/電歪膜5とセラミック基板1の双方との密着性、結合性が高ければ、有機材料、無機材料のいずれの材料でもよい。   As the bonding layer 7 made of an insulator, any material of an organic material or an inorganic material may be used as long as the adhesion and bonding properties between the piezoelectric / electrostrictive film 5 and the ceramic substrate 1 are high.

また、結合層7として用いる材料の熱膨張係数が、基板材料の熱膨張係数及び、圧電/電歪膜5に用いる材料の熱膨張係数の中間の値を有することが、信頼性の高い結合性が得られるためより好ましい。圧電/電歪膜5が焼結のために熱処理される場合には、結合層7を構成する材料として、圧電/電歪膜5に用いられる材料に微量のガラス成分を添加したものや、圧電/電歪膜5の熱処理温度以上の軟化点を有するガラス材料が、圧電/電歪膜5とセラミック基板1の双方と密着性、結合性が高いので、好適に用いられる。   Moreover, it is highly reliable that the thermal expansion coefficient of the material used as the bonding layer 7 has an intermediate value between the thermal expansion coefficient of the substrate material and the thermal expansion coefficient of the material used for the piezoelectric / electrostrictive film 5. Is more preferable. When the piezoelectric / electrostrictive film 5 is heat-treated for sintering, the material constituting the bonding layer 7 is a material used for the piezoelectric / electrostrictive film 5 to which a small amount of glass component is added, or a piezoelectric / A glass material having a softening point equal to or higher than the heat treatment temperature of the electrostrictive film 5 is preferably used because it has high adhesion and bonding properties to both the piezoelectric / electrostrictive film 5 and the ceramic substrate 1.

さらに、圧電/電歪膜5が、後述の(Bi0.5Na0.5)TiO3またはこれを主成分とする材料、または(1−x)(Bi0.5Na0.5)TiO3−xKNbO3(xはモル分率で0≦x≦0.06)またはこれを主成分とする材料で構成される場合には、(1−x)(Bi0.5Na0.5)TiO3−xKNbO3(xはモル分率で0<x≦0.5)を主成分とする材料にガラス成分を微量添加した結合層7が、圧電/電歪膜5とセラミック基板1の双方との密着性が高く、熱処理の際の圧電/電歪膜5及び基板1への悪影響を抑制できることから、より好適に用いられる。 Further, the piezoelectric / electrostrictive film 5 is made of (Bi 0.5 Na 0.5 ) TiO 3 described later or a material containing this as a main component, or (1-x) (Bi 0.5 Na 0.5 ) TiO 3 -xKNbO 3 (x is mol (1-x) (Bi 0.5 Na 0.5 ) TiO 3 —xKNbO 3 (x is a molar fraction of 0 < The bonding layer 7 obtained by adding a small amount of a glass component to a material having x ≦ 0.5) as a main component has high adhesion between the piezoelectric / electrostrictive film 5 and the ceramic substrate 1, and the piezoelectric / electrostrictive film during heat treatment. 5 and the substrate 1 can be prevented from being adversely affected.

すなわち、結合層7を、(1−x)(Bi0.5Na0.5)TiO3−xKNbO3(xはモル分率で0<x≦0.5)にガラス成分を微量添加した材料で形成することで、圧電/電歪膜5と同様の成分を有することから、圧電/電歪膜5との密着性が高く、ガラスを単独で用いた場合に生じ易い異種元素の拡散による問題が少なく、KNbO3を含むことから、基板1の反応性が高く強固な結合が可能となる。また、結合層の主成分を、(1−x)(Bi0.5Na0.5)TiO3−xKNbO3(xはモル分率で0.08≦x≦0.5)としているため、結合層は圧電特性をほとんど示さないので、使用時に下部電極4と補助電極8に生じる電界に対し、振動や変位及び応力を発生しないため、安定した素子特性を得ることができる。 That is, by forming the bonding layer 7 with a material obtained by adding a small amount of a glass component to (1-x) (Bi 0.5 Na 0.5 ) TiO 3 —xKNbO 3 (x is 0 <x ≦ 0.5 in terms of mole fraction), Since it has the same components as the piezoelectric / electrostrictive film 5, the adhesiveness with the piezoelectric / electrostrictive film 5 is high, and there are few problems due to the diffusion of different elements that are likely to occur when glass is used alone, and KNbO 3 is used. As a result, the substrate 1 is highly reactive and enables strong bonding. In addition, since the main component of the bonding layer is (1-x) (Bi 0.5 Na 0.5 ) TiO 3 —xKNbO 3 (x is 0.08 ≦ x ≦ 0.5 in terms of mole fraction), the bonding layer exhibits almost piezoelectric characteristics. Therefore, vibration, displacement, and stress are not generated with respect to the electric field generated in the lower electrode 4 and the auxiliary electrode 8 during use, so that stable element characteristics can be obtained.

これらの結合層7の形成には、通常の厚膜手法が用いられ、特にスタンピング法、スクリーン印刷法、あるいは形成すべき部分の大きさが数10μm〜数100μm程度の場合にはインクジェット法が好適に用いられる。また、結合層7の熱処理が必要な場合には、次の圧電/電歪膜5の形成前に熱処理されてもよいし、圧電/電歪膜5の形成後同時に熱処理されてもよい。   A normal thick film method is used to form these bonding layers 7, and in particular, a stamping method, a screen printing method, or an inkjet method is suitable when the size of the portion to be formed is about several tens to several hundreds of μm. Used for. Further, when the bonding layer 7 needs to be heat-treated, it may be heat-treated before the next piezoelectric / electrostrictive film 5 is formed, or may be simultaneously heat-treated after the piezoelectric / electrostrictive film 5 is formed.

圧電/電歪膜5は、下部電極4、補助電極8及び結合層7に跨るようにして、形成されている。圧電/電歪膜の材料としては、圧電/電歪効果を示す材料であればいずれの材料でもよく、このような材料として、ジルコン酸鉛、チタン酸鉛、チタン酸ジルコン酸鉛(PZT)等の鉛系セラミック圧電/電歪材料や、チタン酸バリウム及びこれを主成分とするチタバリ系セラミック強誘電体や、ポリ弗化ビニリデン(PVDF)に代表される高分子圧電体、あるいは(Bi0.5Na0.5)TiO3に代表されるBi系セラミック圧電体、Bi層状セラミックを挙げることができる。もちろん、圧電/電歪特性を改善した、これらの混合物や、固溶体及び、これらに添加物を添加せしめたものが用いられうることは言うまでもない。 The piezoelectric / electrostrictive film 5 is formed so as to straddle the lower electrode 4, the auxiliary electrode 8, and the coupling layer 7. The material of the piezoelectric / electrostrictive film may be any material that exhibits a piezoelectric / electrostrictive effect, such as lead zirconate, lead titanate, lead zirconate titanate (PZT), etc. Lead-based ceramic piezoelectric / electrostrictive materials, barium titanate and titavari-based ceramic ferroelectrics based on it, polymer piezoelectric materials represented by polyvinylidene fluoride (PVDF), or (Bi 0.5 Na 0.5 ) Bi-based ceramic piezoelectric bodies represented by TiO 3 and Bi layered ceramics. Of course, it is needless to say that a mixture, a solid solution, or a material obtained by adding an additive to these, which has improved piezoelectric / electrostrictive characteristics, can be used.

PZT系圧電体は、圧電特性が高く、高感度検出が可能なセンサの材料として好適に用いられる。本発明にあっては特に、チタン酸鉛、ジルコン酸鉛、マグネシウムニオブ酸鉛、ニッケルニオブ酸鉛から選ばれた少なくとも1種以上を主成分とする材料で構成されることが、基板を構成する材料との反応性が低く、熱処理中の成分の偏析が起き難く、組成を保つための処理が良好に行われ得、目的とする組成、結晶構造が得られやすいことから、より好適に用いられる。   The PZT-based piezoelectric body is suitably used as a sensor material having high piezoelectric characteristics and capable of high sensitivity detection. Particularly in the present invention, the substrate is composed of a material mainly composed of at least one selected from lead titanate, lead zirconate, lead magnesium niobate, lead nickel niobate. It is more suitably used because it has low reactivity with the material, segregation of components during heat treatment hardly occurs, treatment for maintaining the composition can be performed well, and the intended composition and crystal structure are easily obtained. .

また、下部電極4及び補助電極8に白金または白金を主成分とする合金が用いられる場合には、これらとの接合性がより高く、素子の特性ばらつきを少なくし、高い信頼性が得られることから、(Bi0.5Na0.5)TiO3またはこれを主成分とする材料が好適に用いられる。これらの中でも、特に、(1−x)(Bi0.5Na0.5)TiO3−xKNbO3(xはモル分率で0≦x≦0.06)またはこれを主成分とする材料が、比較的高い圧電特性を有することから、より好適に用いられる。 Further, when platinum or an alloy containing platinum as a main component is used for the lower electrode 4 and the auxiliary electrode 8, the bondability with these is higher, the characteristic variation of the element is reduced, and high reliability is obtained. Therefore, (Bi 0.5 Na 0.5 ) TiO 3 or a material containing this as a main component is preferably used. Among these, in particular, (1-x) (Bi 0.5 Na 0.5 ) TiO 3 —xKNbO 3 (x is a molar fraction, 0 ≦ x ≦ 0.06) or a material mainly composed thereof has relatively high piezoelectric characteristics. Since it has, it is used more suitably.

このような圧電/電歪材料は、圧電/電歪膜5として、下部電極4と補助電極8と同様に公知の各種膜形成法により形成される。中でも、低コストの観点からスクリーン印刷が好適に用いられる。   Such a piezoelectric / electrostrictive material is formed as the piezoelectric / electrostrictive film 5 by various known film forming methods in the same manner as the lower electrode 4 and the auxiliary electrode 8. Among these, screen printing is preferably used from the viewpoint of low cost.

これにより形成された圧電/電歪膜5は必要に応じて熱処理され、下部電極4、補助電極8及び結合層7と、一体化される。素子の特性ばらつきを抑え、信頼性を高くするために、圧電/電歪膜5と下部電極4及び補助電極8、結合層7の接合性をより強固にする必要がある場合には、(Bi0.5Na0.5)TiO3またはこれを主成分とする材料、特に、(1−x)(Bi0.5Na0.5)TiO3−xKNbO3(xはモル分率で0≦x≦0.06)またはこれを主成分とする材料を用い、900℃から1400℃好ましくは1000℃から1300℃の温度で熱処理されることが好ましい。PZT系材料を用いた場合にも同様である。この際、高温時に圧電/電歪膜5が不安定にならないように、圧電/電歪材料の蒸発源とともに雰囲気制御を行いながら熱処理することが好ましい。 The piezoelectric / electrostrictive film 5 thus formed is heat-treated as necessary, and integrated with the lower electrode 4, the auxiliary electrode 8 and the coupling layer 7. In order to suppress the variation in the characteristics of the element and to increase the reliability, when it is necessary to further strengthen the bonding property between the piezoelectric / electrostrictive film 5, the lower electrode 4, the auxiliary electrode 8, and the coupling layer 7, (Bi 0.5 Na 0.5 ) TiO 3 or a material based on this, in particular, (1-x) (Bi 0.5 Na 0.5 ) TiO 3 —xKNbO 3 (x is the molar fraction 0 ≦ x ≦ 0.06) or the main It is preferable to heat-treat at a temperature of 900 ° C. to 1400 ° C., preferably 1000 ° C. to 1300 ° C., using the material as a component. The same applies when using PZT-based materials. At this time, it is preferable to perform heat treatment while controlling the atmosphere together with the evaporation source of the piezoelectric / electrostrictive material so that the piezoelectric / electrostrictive film 5 does not become unstable at a high temperature.

さらに、このようにして形成された圧電/電歪膜5の上に、上部電極6が、圧電/電歪膜5から補助電極8にまで跨って連続的に形成されている。   Further, the upper electrode 6 is continuously formed on the piezoelectric / electrostrictive film 5 thus formed so as to extend from the piezoelectric / electrostrictive film 5 to the auxiliary electrode 8.

この上部電極6の材質としては、圧電/電歪膜5との接合性の高い導電性材料が用いられ、下部電極4及び補助電極8と同様の膜形成法により形成される。   As the material of the upper electrode 6, a conductive material having high bondability with the piezoelectric / electrostrictive film 5 is used, and the upper electrode 6 is formed by the same film forming method as the lower electrode 4 and the auxiliary electrode 8.

さらに、上部電極6は、膜形成後必要に応じて熱処理され、圧電/電歪膜5及び補助電極8と接合され、一体構造とされる。このような熱処理がかならずしも必要でないことは下部電極4と同様である。   Further, the upper electrode 6 is heat-treated as necessary after the film is formed, and is joined to the piezoelectric / electrostrictive film 5 and the auxiliary electrode 8 to form an integral structure. It is the same as that of the lower electrode 4 that such a heat treatment is not always necessary.

理想的な変形形状とするためには、ダイヤフラム部3上で剛性が均一であることが望ましく、このためには、下部電極4、補助電極8、結合層7、圧電/電歪膜5、上部電極6は接着剤を用いて接合するよりも、熱処理によりダイヤフラム部3と一体化されることが好ましい。   In order to obtain an ideal deformed shape, it is desirable that the rigidity is uniform on the diaphragm portion 3. For this purpose, the lower electrode 4, the auxiliary electrode 8, the coupling layer 7, the piezoelectric / electrostrictive film 5, the upper portion The electrode 6 is preferably integrated with the diaphragm portion 3 by heat treatment, rather than being bonded using an adhesive.

上部電極6の長さLuはダイヤフラム部3の長さLdの30%から70%とされる。上部電極6の幅は、理想的な変形形状を得るために、ダイヤフラム部3の幅に対し、70%以上とされる。なお、上部電極6とダイヤフラム部3との幅を比較する場合には、それぞれの幅の長さのうち最も長い部分で比較するものとする。   The length Lu of the upper electrode 6 is set to 30% to 70% of the length Ld of the diaphragm portion 3. The width of the upper electrode 6 is set to 70% or more with respect to the width of the diaphragm portion 3 in order to obtain an ideal deformed shape. In addition, when comparing the width | variety of the upper electrode 6 and the diaphragm part 3, it shall compare in the longest part among the lengths of each width | variety.

また、シャープなピークを得るためには、上部電極6の幅方向の形状は、線対称であることが望ましい。対称形とすることで固有の振動のみを強調して振動させることができるためである。   In order to obtain a sharp peak, the shape of the upper electrode 6 in the width direction is desirably line symmetric. This is because it can be made to vibrate by emphasizing only the inherent vibration.

更に、上部電極6とダイヤフラム部3の中心は一致することが望ましいが、中心からのずれが、ダイヤフラム部3の長さ方向において、ダイヤフラム部3の長さに対し5%以下、幅方向においてダイヤフラム部3の幅に対し10%以下であれば、理想的な変形形状が得られるので特に問題はない。   Further, it is desirable that the center of the upper electrode 6 and the diaphragm portion 3 coincide with each other, but the deviation from the center is 5% or less with respect to the length of the diaphragm portion 3 in the length direction of the diaphragm portion 3, and the diaphragm in the width direction. If it is 10% or less with respect to the width of the portion 3, an ideal deformed shape can be obtained, and there is no particular problem.

なお、ダイヤフラム部3の面積に対する、上部電極6の動作に有効な部分が占める面積の割合は、15%以上40%以下であることが好ましい。この割合が、15%以上であればセンシングするのに必要な振動を得ることができるためである。また、40%以下であれば、振動するのに有利な剛性を得ることができるからである。   In addition, it is preferable that the ratio of the area which the part effective for operation | movement of the upper electrode 6 occupies with respect to the area of the diaphragm part 3 is 15% or more and 40% or less. This is because if this ratio is 15% or more, vibration necessary for sensing can be obtained. Moreover, if it is 40% or less, rigidity advantageous for vibration can be obtained.

図5には、本発明の実施例の一つとしてセンサ用圧電/電歪膜型素子が示されている。上部電極の形状を長方形とし、Lu/Ldを0.42としたとき、及び0.57(実施例1)としたときの実際の振動変形形状を図6に示した。   FIG. 5 shows a piezoelectric / electrostrictive film element for a sensor as one embodiment of the present invention. The actual vibration deformation shape when the shape of the upper electrode is a rectangle and Lu / Ld is 0.42 and 0.57 (Example 1) is shown in FIG.

図5から明らかなように、理想的な振動変形形状に近く、これらの素子の周波数に対する位相ピークは図2のようになり、シャープなピークが得られた。   As is apparent from FIG. 5, the shape is close to the ideal vibration deformation shape, and the phase peak with respect to the frequency of these elements is as shown in FIG. 2, and a sharp peak was obtained.

また、図7に示したように、上部電極の形状をひし形とし、Lu/Ldを0.57(実施例2)としたときには、実際の振動変形形状は図8に示したように、理想的な振動変形形状に近くなり、これらの素子の周波数に対する位相ピークは図2のようになり、シャープなピークが得られた。   Further, as shown in FIG. 7, when the shape of the upper electrode is diamond and Lu / Ld is 0.57 (Example 2), the actual vibration deformation shape is ideal as shown in FIG. As shown in FIG. 2, the phase peak with respect to the frequency of these elements became a sharp peak.

また、図9に示したように上部電極を円形状とし、Lu/Ldを0.42(実施例3)としたとき、実際の振動変形形状は図10に示したように、従来例に比較して理想的な振動変形形状に近くなり、これらの素子の周波数に対する位相ピークは図2のようになり、シャープなピークが得られた。   Further, when the upper electrode is circular as shown in FIG. 9 and Lu / Ld is 0.42 (Example 3), the actual vibration deformation shape is compared with the conventional example as shown in FIG. Thus, it became close to an ideal vibration deformation shape, and the phase peak with respect to the frequency of these elements was as shown in FIG. 2, and a sharp peak was obtained.

なお、下部電極4、接合層7、圧電/電歪膜5、上部電極6が熱処理により接合される場合には、それぞれを形成の都度、熱処理してもよく、それぞれを順次膜形成後、同時に熱処理してもよい。熱処理する際、良好な接合性や構成元素の拡散による変質を抑制するために、熱処理温度が適切に選ばれるのは言うまでもない。   When the lower electrode 4, the bonding layer 7, the piezoelectric / electrostrictive film 5, and the upper electrode 6 are bonded by heat treatment, they may be heat-treated each time they are formed. You may heat-process. Needless to say, the heat treatment temperature is appropriately selected in order to suppress the deterioration due to good bondability and diffusion of constituent elements during the heat treatment.

また、図1では空洞部10に貫通孔9を形成しているが、素子が流体に接触する空洞部10以下の構造は、蓋部の無い単純なキャビティ構造等、どのような構造でもよく、限定しない。   Further, in FIG. 1, the through hole 9 is formed in the cavity 10, but the structure below the cavity 10 where the element contacts the fluid may be any structure such as a simple cavity structure without a lid, Not limited.

さらに、圧電/電歪膜5の長さ方向の端部は、薄肉ダイヤフラム部3を越えない様に配置し、圧電/電歪膜5が厚肉部2に跨らない構造としてもよい。   Further, the end of the piezoelectric / electrostrictive film 5 in the length direction may be disposed so as not to exceed the thin diaphragm portion 3 so that the piezoelectric / electrostrictive film 5 does not straddle the thick portion 2.

従来の圧電/電歪膜型素子の実施形態を示す説明図である。It is explanatory drawing which shows embodiment of the conventional piezoelectric / electrostrictive film type | mold element. 圧電/電歪膜型素子として望ましいピーク形状を示す説明図である。It is explanatory drawing which shows a peak shape desirable as a piezoelectric / electrostrictive film type | mold element. 従来の用圧電/電歪膜型素子におけるピーク形状を示す説明図である。It is explanatory drawing which shows the peak shape in the conventional piezoelectric / electrostrictive film type | mold element for use. 従来における振動変形形状を示す説明図である。It is explanatory drawing which shows the vibration deformation shape in the past. 本発明に係る圧電/電歪膜型素子の実施形態を示す説明図である。It is explanatory drawing which shows embodiment of the piezoelectric / electrostrictive film type | mold element which concerns on this invention. 図5における振動変形形状を示す説明図である。It is explanatory drawing which shows the vibration deformation shape in FIG. 本発明に係る圧電/電歪膜型素子の他の実施形態を示す説明図である。It is explanatory drawing which shows other embodiment of the piezoelectric / electrostrictive film type | mold element which concerns on this invention. 図7における振動変形形状を示す説明図である。It is explanatory drawing which shows the vibration deformation | transformation shape in FIG. 本発明に係る圧電/電歪膜型素子の他の実施形態を示す説明図である。It is explanatory drawing which shows other embodiment of the piezoelectric / electrostrictive film type | mold element which concerns on this invention. 図9における振動変形形状を示す説明図である。It is explanatory drawing which shows the vibration deformation shape in FIG.

符号の説明Explanation of symbols

1…基板、2…厚肉部、3…ダイヤフラム部、4…下部電極、5…圧電/電歪膜、6…上部電極、7…結合層、8…補助電極、9…貫通孔、10…空洞部、11…端子電極。 DESCRIPTION OF SYMBOLS 1 ... Board | substrate, 2 ... Thick part, 3 ... Diaphragm part, 4 ... Lower electrode, 5 ... Piezoelectric / electrostrictive film, 6 ... Upper electrode, 7 ... Coupling layer, 8 ... Auxiliary electrode, 9 ... Through-hole, 10 ... Cavity part, 11 ... terminal electrode.

Claims (2)

厚肉部を周縁部に持つ薄肉ダイヤフラム部を有するセラミックスからなる基板に下部電極及び補助電極と、圧電/電歪膜と、上部電極を順次積層させた圧電/電歪膜型素子であって、
前記上部電極の長さが、薄肉ダイヤフラム部の長さの30%以上70%以下であることを特徴とする圧電/電歪膜型素子。
A piezoelectric / electrostrictive film type element in which a lower electrode and an auxiliary electrode, a piezoelectric / electrostrictive film, and an upper electrode are sequentially laminated on a substrate made of ceramics having a thin-walled diaphragm portion with a thick-walled portion at the periphery,
The piezoelectric / electrostrictive film type device, wherein the length of the upper electrode is 30% or more and 70% or less of the length of the thin diaphragm portion.
前記上部電極の幅が、薄肉ダイヤフラム部3の幅の70%以上であることを特徴とする、請求項1記載の圧電/電歪膜型素子。   2. The piezoelectric / electrostrictive film element according to claim 1, wherein the width of the upper electrode is 70% or more of the width of the thin diaphragm portion.
JP2005084990A 2004-04-05 2005-03-23 Piezoelectric / electrostrictive membrane element Expired - Fee Related JP5009507B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005084990A JP5009507B2 (en) 2004-04-05 2005-03-23 Piezoelectric / electrostrictive membrane element

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004111468 2004-04-05
JP2004111468 2004-04-05
JP2005084990A JP5009507B2 (en) 2004-04-05 2005-03-23 Piezoelectric / electrostrictive membrane element

Publications (2)

Publication Number Publication Date
JP2005322890A true JP2005322890A (en) 2005-11-17
JP5009507B2 JP5009507B2 (en) 2012-08-22

Family

ID=35469900

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005084990A Expired - Fee Related JP5009507B2 (en) 2004-04-05 2005-03-23 Piezoelectric / electrostrictive membrane element

Country Status (1)

Country Link
JP (1) JP5009507B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007123278A1 (en) 2006-04-24 2007-11-01 Ngk Insulators, Ltd. Piezoelectric film device
JP2011254569A (en) * 2010-05-31 2011-12-15 Canon Inc Vibrator, method for manufacturing the same, and vibration wave actuator

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6438694A (en) * 1987-08-04 1989-02-08 Toshiba Corp Shield plug of fast breeder
JP2002076823A (en) * 2000-08-31 2002-03-15 Murata Mfg Co Ltd Piezoelectric resonator and piezoelectric filter
JP2002261347A (en) * 2001-03-02 2002-09-13 Ngk Insulators Ltd Piezoelectric/electrostriction film type element
JP2004048639A (en) * 2002-05-17 2004-02-12 Murata Mfg Co Ltd Piezo-resonator and manufacturing method of the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6438694A (en) * 1987-08-04 1989-02-08 Toshiba Corp Shield plug of fast breeder
JP2002076823A (en) * 2000-08-31 2002-03-15 Murata Mfg Co Ltd Piezoelectric resonator and piezoelectric filter
JP2002261347A (en) * 2001-03-02 2002-09-13 Ngk Insulators Ltd Piezoelectric/electrostriction film type element
JP2004048639A (en) * 2002-05-17 2004-02-12 Murata Mfg Co Ltd Piezo-resonator and manufacturing method of the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007123278A1 (en) 2006-04-24 2007-11-01 Ngk Insulators, Ltd. Piezoelectric film device
US7755253B2 (en) 2006-04-24 2010-07-13 Ngk Insulators, Ltd. Piezoelectric element and shape of an elecrode thereof
JP5031737B2 (en) * 2006-04-24 2012-09-26 日本碍子株式会社 Piezoelectric / electrostrictive membrane element
JP2011254569A (en) * 2010-05-31 2011-12-15 Canon Inc Vibrator, method for manufacturing the same, and vibration wave actuator

Also Published As

Publication number Publication date
JP5009507B2 (en) 2012-08-22

Similar Documents

Publication Publication Date Title
US7126255B2 (en) Piezoelectric/electrostrictive film-type device
US7183694B2 (en) Piezoelectric/electrostrictive device
JP3465675B2 (en) Piezoelectric / electrostrictive film type element
JP4963159B2 (en) Piezoelectric / electrostrictive device
JP3482939B2 (en) Piezoelectric / electrostrictive film type element
JP4980905B2 (en) Method for manufacturing piezoelectric / electrostrictive element
JP5031737B2 (en) Piezoelectric / electrostrictive membrane element
JP3728623B2 (en) Piezoelectric / electrostrictive membrane element
JP5009507B2 (en) Piezoelectric / electrostrictive membrane element
JP4936909B2 (en) How to use fluid property measuring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110719

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110912

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120423

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20120502

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120529

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120531

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150608

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees