JP2005322433A - Separator for fuel cell, and its manufacturing method - Google Patents

Separator for fuel cell, and its manufacturing method Download PDF

Info

Publication number
JP2005322433A
JP2005322433A JP2004137272A JP2004137272A JP2005322433A JP 2005322433 A JP2005322433 A JP 2005322433A JP 2004137272 A JP2004137272 A JP 2004137272A JP 2004137272 A JP2004137272 A JP 2004137272A JP 2005322433 A JP2005322433 A JP 2005322433A
Authority
JP
Japan
Prior art keywords
conductive sheet
metal plate
fuel cell
separator
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004137272A
Other languages
Japanese (ja)
Inventor
Tomoaki Sasaoka
友陽 笹岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2004137272A priority Critical patent/JP2005322433A/en
Publication of JP2005322433A publication Critical patent/JP2005322433A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a separator for a fuel cell and its manufacturing method, wherein the restrictions for flow passage shape can be reduced, variations in the flow passage dimensions can be reduced, the possibility of local corrosion can be diminished, and the possibility of stress corrosion cracks can be diminished. <P>SOLUTION: (1) This separator 18 is for the fuel cell which has a flat metal plate 40 and a conductive sheet 41 jointed to the flat metal plate, and the conductive sheet 41 has a gas flow passage 42 and an adhesive sealing part 43, composed of unevenness formed by heat press at a face on the opposite side to the metal plate jointing side of the conductive sheet 41. (3) This manufacturing method of the separator for the fuel cell includes a process of joining the conductive sheet 41 to the flat metal plate 40, and a process of heat pressing an assembly of the flat conductive sheet and the metal plate, of making the metal plate jointing side and the opposite face of the conductive sheet 41 uneven, while maintaining the metal plate 40 to be flat, and of forming the gas flow passage 42 and the adhesive seal part 43 at the conductive sheet 41. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は燃料電池用セパレータとその製造方法に関する。   The present invention relates to a fuel cell separator and a method for producing the same.

燃料電池(セル)、たとえば固体高分子電解質型燃料電池は、膜−電極アッセンブリ(MEA:Membrane-Electrode Assembly )とセパレータとを重ね合わせたものから構成される。複数のセルを積層してセル積層体とし、セル積層体のセル積層方向両端に、ターミナル、インシュレータ、エンドプレートを配置し、セル積層体をセル積層方向に締め付け、セル積層方向に延びる締結部材(たとえば、テンションプレート)、ボルト・ナットにて固定して、燃料電池スタックを構成する。
セパレータとして、図10に示す比較例のように、金属板1に導電性樹脂層2を一定厚みで被覆形成した後、樹脂被覆金属板をプレスで波形に成形して反応ガス流路3、4を形成することが、軽量化と耐食性の向上をはかる上で、有効であると考えられる。特開2002−15750号公報には、図示されてはいないが、上記比較例に準じる導電性樹脂層被覆メタルセパレータが記載されている。
2. Description of the Related Art A fuel cell (cell), for example, a solid polymer electrolyte fuel cell, is configured by stacking a membrane-electrode assembly (MEA) and a separator. A plurality of cells are stacked to form a cell stack, and terminals, insulators and end plates are arranged at both ends of the cell stack in the cell stacking direction, the cell stack is clamped in the cell stacking direction, and a fastening member extending in the cell stacking direction ( For example, the fuel cell stack is configured by fixing with tension plates), bolts and nuts.
As a separator, as in the comparative example shown in FIG. 10, the conductive resin layer 2 is coated on the metal plate 1 with a certain thickness, and then the resin-coated metal plate is formed into a corrugated shape by a press, and the reaction gas flow paths 3, 4 It is considered that the formation of is effective in reducing the weight and improving the corrosion resistance. Japanese Patent Application Laid-Open No. 2002-15750 describes a conductive resin layer-coated metal separator according to the above comparative example, although not shown.

しかし、上記比較例の導電性樹脂層被覆メタルセパレータでは、つぎの問題がある。
(i) 流路形状に制約がある。その理由は、金属に伸び限界があること、およびガス流路と冷却流路が表裏一体に形成されるからである。
(ii) 防食処理層の厚みがばらつき、そのばらつきにより圧損増加を招く。防食コートの膜厚均一化が困難なためである。
(iii )局所腐食の可能性がある。防食コートを形成した後金属板を曲げるため防食コートに欠陥が生じ、防食コートのピンホールレス化が困難なためである。
(iv) 応力腐食割れの可能性がある。凹凸形状に長期間にわたりスタック締結荷重がかかるからである。
(v) シール部に剛性が必要なため、金属板の薄肉化が困難である。薄肉化するとシール部の変形によりシールが不十分になるからである。
特開2002−15750号公報
However, the conductive resin layer-covered metal separator of the comparative example has the following problems.
(I) There are restrictions on the flow path shape. The reason is that the metal has an elongation limit and the gas flow path and the cooling flow path are formed integrally with each other.
(Ii) The thickness of the anticorrosion treatment layer varies, and the variation causes an increase in pressure loss. This is because it is difficult to make the film thickness of the anticorrosion coat uniform.
(Iii) There is a possibility of local corrosion. This is because the metal plate is bent after the anticorrosion coat is formed, so that the anticorrosion coat is defective, and it is difficult to make the anticorrosion coat pinholeless.
(Iv) Possible stress corrosion cracking. This is because the stack fastening load is applied to the uneven shape over a long period of time.
(V) Since the seal portion requires rigidity, it is difficult to reduce the thickness of the metal plate. This is because when the thickness is reduced, the seal becomes insufficient due to deformation of the seal portion.
JP 2002-15750 A

本発明が解決しようとする問題点は、上記比較例で説明した、導電性樹脂層被覆メタルセパレータにおける、流路形状に制約がある、被覆樹脂層の厚みのばらつきにより流路寸法がばらつく、局所腐食の可能性がある、応力腐食割れの可能性がある、シール部の剛性が低いことによりシール性が低下する、等の問題である。   The problem to be solved by the present invention is that the conductive resin layer-covered metal separator described in the comparative example has restrictions on the flow path shape, and the flow path dimensions vary due to variations in the thickness of the coated resin layer. There are problems such as the possibility of corrosion, the possibility of stress corrosion cracking, and low sealing performance due to the low rigidity of the seal portion.

本発明の目的は、流路形状の制約を少なくでき、流路寸法ばらつきを少なくでき、局所腐食のおそれを軽減でき、応力腐食割れのおそれを軽減できる、燃料電池用セパレータとその製造方法を提供することにある。
本発明のさらなる目的は、これに加えて、シール部の剛性を高くすることができる、燃料電池用セパレータとその製造方法を提供することにある。
An object of the present invention is to provide a fuel cell separator and a method for manufacturing the same that can reduce restrictions on the flow path shape, reduce flow path dimension variation, reduce the risk of local corrosion, and reduce the risk of stress corrosion cracking. There is to do.
In addition to this, it is another object of the present invention to provide a fuel cell separator and a method for manufacturing the same that can increase the rigidity of the seal portion.

上記課題を解決する、そして上記目的を達成する、本発明はつぎの通りである。
(1) 金属板と、
該金属板に接合された導電性シートと、
を備え、
前記導電性シートは、前記導電性シートを前記金属板に接合後に前記導電性シートを熱プレスして形成した、ガス流路および接着剤シール部を有している、
燃料電池用セパレータ。
(2) 前記導電性シートの、前記接着剤シール部での厚さは前記反応ガス流路の流路溝底部での厚さより大である(1)記載の燃料電池用セパレータ。
(3) 金属板に導電性シートを接合する工程と、
前記導電性シートを前記金属板に接合後、前記導電性シートに、熱プレスによりガス流路と接着剤シール部を成形する工程と、
を有する燃料電池用セパレータの製造方法。
(4) 前記導電性シートのガス流路間のリブ部位が熱プレス中に受ける圧力を、燃料電池使用環境で前記リブ部位が受ける圧力以上とする(3)記載の燃料電池用セパレータの製造方法。
(5) 前記導電性シートのガス流路間のリブ部位が熱プレス中に受ける温度を、燃料電池使用環境で前記リブ部位が受ける温度とほぼ同じとする(3)記載の燃料電池用セパレータの製造方法。
(6) 熱プレス工程において、前記導電性シートの、前記接着剤シール部での厚さを前記反応ガス流路の流路溝底部での厚さより大とする(3)記載の燃料電池用セパレータの製造方法。
The present invention for solving the above problems and achieving the above object is as follows.
(1) a metal plate;
A conductive sheet bonded to the metal plate;
With
The conductive sheet has a gas flow path and an adhesive seal part formed by hot pressing the conductive sheet after joining the conductive sheet to the metal plate.
Fuel cell separator.
(2) The fuel cell separator according to (1), wherein the thickness of the conductive sheet at the adhesive seal portion is larger than the thickness at the bottom of the reaction gas flow channel.
(3) joining a conductive sheet to a metal plate;
After bonding the conductive sheet to the metal plate, forming a gas flow path and an adhesive seal part by hot pressing on the conductive sheet;
The manufacturing method of the separator for fuel cells which has this.
(4) The manufacturing method of the separator for a fuel cell according to (3), wherein the pressure received by the rib portion between the gas flow paths of the conductive sheet during hot pressing is equal to or higher than the pressure received by the rib portion in a fuel cell use environment. .
(5) In the fuel cell separator according to (3), the temperature that the rib portion between the gas flow paths of the conductive sheet receives during hot pressing is substantially the same as the temperature that the rib portion receives in the fuel cell use environment. Production method.
(6) The fuel cell separator according to (3), wherein, in the hot pressing step, the thickness of the conductive sheet at the adhesive seal portion is larger than the thickness at the bottom of the reaction gas flow channel. Manufacturing method.

上記(1)の燃料電池用セパレータおよび上記(3)の燃料電池用セパレータの製造方法によれば、金属板の曲げ加工がないため、流路形状が金属板の曲げの伸びからの制限を受けない。また、導電性シートに冷却水流路に制限されることなくガス流路を形成できる。これらの結果、ガス流路の成形に制約を受けることが少なくなり、流路の成形性を向上できる。
また、熱プレス成形によりガス流路および接着剤シール面が精度高く形成できるので、比較例のような防食処理層の厚みがばらつきにより流路断面積がばらついて圧損が増加するという問題もなくなる。
また、導電性シート接合金属板を曲げ加工することがないので、導電性シートには欠陥が生じにくく、ピンホールレス化がはかられる。これによって、水が導電性シートの欠陥を通って金属板を腐食するという問題を除去できる。
また、導電性シートの熱プレス時に、導電性シートが緻密化し、流路から金属板への生成水の漏れがなくなり、金属板の耐蝕性が向上する。
また、金属板は平坦とすれば、曲げの残留応力がないため、金属板の応力腐食割れもなくなる。
上記(2)の燃料電池用セパレータおよび上記(6)の燃料電池用セパレータの製造方法によれば、導電性シートの、接着剤シール部での厚さを前記反応ガス流路の流路溝底部での厚さより大とするので、比較例のように全域で防食処理層が薄くかつ一定厚みの場合に比べて、接着剤シール部での導電性シートの厚さを厚くすることができ、接着剤シール部の剛性が増大し、シール部が変形しにくくなってシール性が向上する。
上記(4)の燃料電池用セパレータの製造方法によれば、導電性シートのガス流路間のリブ部位が熱プレス中に受ける圧力を、燃料電池使用環境でリブ部位が受ける圧力以上としたので、導電性シートが燃料電池使用環境でMEA・拡散層から荷重を受けた時に導電性シートの流路のリブ形状、流路断面形状が変形することはない。
上記(5)の燃料電池用セパレータの製造方法によれば、導電性シートのガス流路間のリブ部位が熱プレス中に受ける温度を、燃料電池使用環境でリブ部位が受ける温度とほぼ同じとしたので、導電性シートが燃料電池使用環境で燃料電池拡散層から温度を受けた時に導電性シートの流路のリブ形状、流路断面形状が変形することはない。
According to the manufacturing method of the fuel cell separator of (1) and the fuel cell separator of (3), since the metal plate is not bent, the flow path shape is limited by the bending extension of the metal plate. Absent. Further, the gas flow path can be formed in the conductive sheet without being limited to the cooling water flow path. As a result, there are less restrictions on the molding of the gas flow path, and the moldability of the flow path can be improved.
Moreover, since the gas flow path and the adhesive seal surface can be formed with high accuracy by hot press molding, there is no problem that the flow path cross-sectional area varies due to variations in the thickness of the anticorrosion treatment layer as in the comparative example and the pressure loss increases.
In addition, since the conductive sheet-bonded metal plate is not bent, the conductive sheet is less likely to be defective and can be made pinhole-free. This eliminates the problem of water corroding the metal plate through defects in the conductive sheet.
Further, when the conductive sheet is hot-pressed, the conductive sheet is densified, and there is no leakage of generated water from the flow path to the metal plate, thereby improving the corrosion resistance of the metal plate.
Further, if the metal plate is flat, there is no residual stress of bending, and therefore stress corrosion cracking of the metal plate is eliminated.
According to the fuel cell separator of the above (2) and the method of manufacturing the fuel cell separator of the above (6), the thickness of the conductive sheet at the adhesive seal portion is set to the channel groove bottom portion of the reaction gas channel. The thickness of the conductive sheet at the adhesive seal part can be increased compared to the case where the anticorrosion treatment layer is thin and constant in the entire area as in the comparative example. The rigidity of the agent seal part is increased, the seal part is hardly deformed, and the sealing performance is improved.
According to the fuel cell separator manufacturing method of (4) above, the pressure that the rib portion between the gas flow paths of the conductive sheet receives during hot pressing is equal to or higher than the pressure that the rib portion receives in the fuel cell use environment. When the conductive sheet receives a load from the MEA / diffusion layer in the fuel cell use environment, the rib shape and the channel cross-sectional shape of the channel of the conductive sheet are not deformed.
According to the fuel cell separator manufacturing method of (5) above, the temperature that the rib portion between the gas flow paths of the conductive sheet receives during hot pressing is substantially the same as the temperature that the rib portion receives in the fuel cell use environment. Therefore, when the conductive sheet receives a temperature from the fuel cell diffusion layer in the fuel cell use environment, the rib shape and the channel cross-sectional shape of the channel of the conductive sheet are not deformed.

以下に、本発明の燃料電池用セパレータとその製造方法燃料電池用導電板を図1〜図9を参照して説明する。
図1〜図4は本発明の実施例1を示し、図5〜図7は本発明の実施例2を示し、図8、図9は本発明の実施例1、実施例2に適用可能な構造を示す。本発明の実施例1、2にわたって共通する部分には、本発明の実施例1、2にわたって同じ符号を付してある。
Below, the separator for fuel cells of this invention and its manufacturing method The electrically conductive plate for fuel cells is demonstrated with reference to FIGS.
1 to 4 show Embodiment 1 of the present invention, FIGS. 5 to 7 show Embodiment 2 of the present invention, and FIGS. 8 and 9 are applicable to Embodiments 1 and 2 of the present invention. The structure is shown. Portions common to the first and second embodiments of the present invention are denoted by the same reference numerals throughout the first and second embodiments of the present invention.

まず、本発明の実施例1、2にわたって共通する部分を図1〜図4(または図5〜図7)および図8、図9を参照して説明する。
本発明の燃料電池用セパレータとその製造方法が適用される燃料電池は、たとえば固体高分子電解質型燃料電池10である。該燃料電池10は、たとえば燃料電池自動車に搭載される。ただし、自動車以外に用いられてもよい。
図1および図8、図9に示すように、固体高分子電解質型燃料電池10は、膜−電極アッセンブリ(MEA:Membrane-Electrode Assembly )とセパレータ18との積層体からなる。積層方向は上下方向でもよいし水平方向でもよいし、任意である。膜−電極アッセンブリは、イオン交換膜からなる電解質膜11と、この電解質膜の一面に配置された触媒層を有する電極(アノード、燃料極)14および電解質膜11の他面に配置された触媒層を有する電極(カソード、空気極)17とからなる。膜−電極アッセンブリとセパレータ18との間には、アノード側、カソード側に、それぞれ、リブ下にもガスを流通させ拡散させるために拡散層13、16が設けられる。
First, parts common to the first and second embodiments of the present invention will be described with reference to FIGS. 1 to 4 (or FIGS. 5 to 7), FIGS.
The fuel cell to which the separator for fuel cell of the present invention and the manufacturing method thereof are applied is, for example, a solid polymer electrolyte fuel cell 10. The fuel cell 10 is mounted on, for example, a fuel cell vehicle. However, it may be used other than an automobile.
As shown in FIG. 1, FIG. 8, and FIG. 9, the solid polymer electrolyte fuel cell 10 is composed of a laminate of a membrane-electrode assembly (MEA) and a separator 18. The stacking direction may be the vertical direction or the horizontal direction, and is arbitrary. The membrane-electrode assembly includes an electrolyte membrane 11 made of an ion exchange membrane, an electrode (anode, fuel electrode) 14 having a catalyst layer disposed on one surface of the electrolyte membrane, and a catalyst layer disposed on the other surface of the electrolyte membrane 11. Electrode (cathode, air electrode) 17. Diffusion layers 13 and 16 are provided between the membrane-electrode assembly and the separator 18 on the anode side and the cathode side, respectively, in order to circulate and diffuse the gas also below the ribs.

膜−電極アッセンブリとセパレータ18を重ねてセル(単セル)19を構成し、少なくとも1つのセルからセルモジュールを構成する。セルモジュールを複数、直列に積層してセル積層体とし、セル積層体のセル積層方向両端に、ターミナル20、インシュレータ(電気絶縁体)21、エンドプレート22を配置し、セル積層体をセル積層方向に締め付け、セル積層体の外側でセル積層方向に延びる締結部材(たとえば、テンションプレート24)、ボルト・ナット25にて固定して、燃料電池スタック23を構成する。   A cell (single cell) 19 is formed by stacking the membrane-electrode assembly and the separator 18, and a cell module is formed from at least one cell. A plurality of cell modules are stacked in series to form a cell stack, and terminals 20, insulators (electrical insulators) 21 and end plates 22 are arranged at both ends of the cell stack in the cell stack direction, and the cell stack is stacked in the cell stack direction. The fuel cell stack 23 is configured by fastening with a fastening member (for example, a tension plate 24) extending in the cell stacking direction outside the cell stack, and bolts and nuts 25.

MEAを挟む一対のセパレータ18のうち、アノード側のセパレータ18には、MEAに対向する側に、アノード14に燃料ガス(水素)を供給するための燃料ガス流路27が形成され、カソード側のセパレータ18には、MEAに対向する側に、カソード17に酸化ガス(酸素、通常は空気)を供給するための酸化ガス流路28が形成されている。また、セパレータ18のガス流路27、28と反対側の面には冷媒(通常、冷却水)を流すための冷媒流路26が形成される。燃料電池のうちガス流路27、28とMEAの両方が存在する領域が、セル19の発電領域を構成する。   Of the pair of separators 18 sandwiching the MEA, the anode-side separator 18 is formed with a fuel gas flow path 27 for supplying fuel gas (hydrogen) to the anode 14 on the side facing the MEA. In the separator 18, an oxidizing gas channel 28 for supplying an oxidizing gas (oxygen, usually air) to the cathode 17 is formed on the side facing the MEA. In addition, a coolant channel 26 for flowing a coolant (usually cooling water) is formed on the surface of the separator 18 opposite to the gas channels 27 and 28. A region where both the gas flow paths 27 and 28 and the MEA exist in the fuel cell constitutes a power generation region of the cell 19.

セル19には、セル積層方向に延びる燃料ガスマニホールド30、酸化ガスマニホールド31、冷媒マニホールド29が形成される。燃料ガスマニホールド30は燃料ガス流路27に接続しており、燃料ガス流路27に燃料ガスを供給・排出する。酸化ガスマニホールド31は酸化ガス流路28に接続しており、酸化ガス流路28に酸化ガスを供給・排出する。冷媒マニホールド29は冷媒流路26に接続しており、冷媒流路26に冷媒を供給・排出する。   In the cell 19, a fuel gas manifold 30, an oxidizing gas manifold 31, and a refrigerant manifold 29 extending in the cell stacking direction are formed. The fuel gas manifold 30 is connected to the fuel gas passage 27, and the fuel gas is supplied to and discharged from the fuel gas passage 27. The oxidizing gas manifold 31 is connected to the oxidizing gas channel 28, and supplies and discharges the oxidizing gas to and from the oxidizing gas channel 28. The refrigerant manifold 29 is connected to the refrigerant flow path 26 and supplies / discharges the refrigerant to / from the refrigerant flow path 26.

セル19のMEAを挟んで対向する一対のセパレータ18同士は、セル外周部およびマニホールド29、30、31まわりで、電気絶縁材である接着剤33によりシール接着されている。隣接するセル19同士は、セル外周部およびマニホールド29、30、31まわりで、電気絶縁材であるガスケット32(ゴムガスケット)によりシールされる。   The pair of separators 18 facing each other across the MEA of the cell 19 is sealed and bonded with an adhesive 33 which is an electrical insulating material around the outer periphery of the cell and the manifolds 29, 30 and 31. Adjacent cells 19 are sealed with a gasket 32 (rubber gasket), which is an electrical insulating material, around the cell outer periphery and around the manifolds 29, 30, and 31.

各セル19の、アノード14側では、水素を水素イオン(プロトン)と電子にする電離反応が行われ、水素イオンは電解質膜中をカソード側に移動し、カソード17側では酸素と水素イオンおよび電子(隣りのMEAのアノードで生成した電子がセパレータを通してくる、またはセル積層方向一端のセルのアノードで生成した電子が外部回路を通して他端のセルのカソードにくる)から水を生成するつぎの反応が行われ、かくして発電が行われる。
アノード側:H2 →2H+ +2e-
カソード側:2H+ +2e- +(1/2)O2 →H2
An ionization reaction that converts hydrogen into hydrogen ions (protons) and electrons is performed on the anode 14 side of each cell 19, and the hydrogen ions move through the electrolyte membrane to the cathode side, and oxygen, hydrogen ions, and electrons on the cathode 17 side. The next reaction to generate water from (the electrons generated at the anode of the adjacent MEA come through the separator, or the electrons generated at the anode of the cell at one end in the cell stacking direction come to the cathode of the other end cell through an external circuit) This is how it generates electricity.
Anode side: H 2 → 2H + + 2e
Cathode side: 2H + + 2e + (1/2) O 2 → H 2 O

本発明の燃料電池用セパレータ18は、平坦な金属板40と、金属板40の少なくとも一面(実施例1では一面、実施例2では両面)に接合された導電性シート41と、を備えている。金属板40は、平坦(断面がストレート)で流路形成のための凹凸をもたない(比較例のような波形凹凸をもたない)。導電性シート41は、エラストマー、樹脂、導電性カーボン(導電性の、粒子、粉、繊維、フィラーなど)を混合したもので、金属板40に、熱溶着、導電性接着剤などにより接合される。
導電性シート41は、該導電性シートの金属板接合側41aと反対側の面41bに熱プレスにより形成された凹凸からなる、ガス流路42および接着剤シール部43を有している。ガス流路42および接着剤シール部43は、導電性シート41を金属板40に接合後に、導電性シート41を熱プレスして形成される。ガス流路42および接着剤シール部43は、金属板40を平板に維持したまま、導電性シート41部位のみに形成される。
The fuel cell separator 18 of the present invention includes a flat metal plate 40 and a conductive sheet 41 bonded to at least one surface of the metal plate 40 (one surface in the first embodiment and both surfaces in the second embodiment). . The metal plate 40 is flat (the cross section is straight) and does not have irregularities for forming a flow path (no corrugated irregularities as in the comparative example). The conductive sheet 41 is a mixture of elastomer, resin, and conductive carbon (conductive particles, powder, fibers, fillers, etc.), and is bonded to the metal plate 40 by heat welding, conductive adhesive, or the like. .
The conductive sheet 41 has a gas flow path 42 and an adhesive seal portion 43 made of unevenness formed by hot pressing on a surface 41b opposite to the metal plate bonding side 41a of the conductive sheet. The gas flow path 42 and the adhesive seal portion 43 are formed by hot pressing the conductive sheet 41 after bonding the conductive sheet 41 to the metal plate 40. The gas flow path 42 and the adhesive seal part 43 are formed only on the conductive sheet 41 portion while the metal plate 40 is maintained as a flat plate.

ガス流路42は、セパレータ18がアノード側セパレータの場合は燃料ガス流路27として用いられ、セパレータ18がカソード側セパレータの場合は酸化ガス流路28として用いられる。MEAを挟んで対向する一対のセパレータ18の外周の接着剤33が塗布される部位が接着剤シール部43であり、接着剤シール部43に接着剤33が塗布されてMEAを挟んで対向する一対のセパレータ18間をシールする。
導電性シート41の接着剤シール部43の面は導電性シート41のガス流路42のリブの頂面よりは金属板40側に後退している。
導電性シート41の、接着剤シール部43での厚さt1は反応ガス流路の流路溝底部での厚さt2より大である。これにより、接着剤シール部43の剛性が向上されている。
The gas flow path 42 is used as the fuel gas flow path 27 when the separator 18 is an anode side separator, and is used as the oxidizing gas flow path 28 when the separator 18 is a cathode side separator. A portion where the adhesive 33 on the outer periphery of the pair of separators 18 facing each other across the MEA is applied is an adhesive seal portion 43, and a pair of the adhesive seal portion 43 is coated with the adhesive 33 and opposed across the MEA. The separators 18 are sealed.
The surface of the adhesive seal portion 43 of the conductive sheet 41 is set back toward the metal plate 40 from the top surface of the rib of the gas flow path 42 of the conductive sheet 41.
The thickness t1 of the conductive sheet 41 at the adhesive seal portion 43 is greater than the thickness t2 at the bottom of the reaction gas flow channel. Thereby, the rigidity of the adhesive seal part 43 is improved.

導電性シート41の望ましい物理的性質はつぎの通りである。
イ)シート物性: エラストマー+バインダ樹脂+導電性カーボン(粒子状、繊維状、フィラー状)
ロ)導電性カーボン割合:30〜70重量%(30%より低いと導電性が悪くなり、70%より大だと欠けやすくなるので、それを防止するため)
ハ)伸び:30%以上(好ましくは、50%以上)、割れ防止上伸びが必要である。
ホ)ヤング率:1×10-1〜1×104 MPa、ある程度の弾性をもたせるために必要である。
ヘ)ポアソン比:0.3〜0.5
ト)比抵抗:1Ωcm以下
チ)水蒸気透過性:1000g/(m2 ×day)以下、これより大きいとセル内の水が金属板に透過して金属板の腐食を生じるおそれがあるのでそれを防止するためである。
リ)導電性カーボンの種類:アセチレンブラック、ファーネスブラック、天然黒鉛粉末、ホウ素含有カーボン等
ヌ)バインダの種類 熱可塑性エラストマー:スチレン系、オレフィン系、塩ビ系、ウレタン系、エステル系、
架橋ゴム:SBR(スチレン−ブタジエンゴム)、EPDM(エチレンプロピレンジエン共重合体)BR(ブタジエンゴム)、シリコーンゴム、フッ素ゴム、
樹脂:ポリプロピレン等
ル)不純物量:金属物質0.1重量%以下(好ましくは0.05重量%以下)
オ)金属板との密着強度:0.01MPa以上、
ワ)導電性シート41の厚さ:100〜1000μm以上、ただし流路溝深さは約500μm
カ)導電性シート41と金属板40との間の接触抵抗:20mΩcm,2MPa以下
ヨ)耐環境性:pH2以上の酸性雰囲気で変化なし
30℃〜120℃においてガラス転移点なし。
Desirable physical properties of the conductive sheet 41 are as follows.
B) Sheet physical properties: Elastomer + Binder resin + Conductive carbon (Particulate, fibrous, filler)
B) Conductive carbon ratio: 30 to 70% by weight (If it is lower than 30%, the conductivity deteriorates, and if it is higher than 70%, it tends to be chipped. To prevent this)
C) Elongation: 30% or more (preferably 50% or more), and elongation is necessary for preventing cracking.
E) Young's modulus: 1 × 10 −1 to 1 × 10 4 MPa, necessary for giving a certain degree of elasticity.
F) Poisson's ratio: 0.3 to 0.5
G) Specific resistance: 1 Ωcm or less h) Water vapor permeability: 1000 g / (m 2 × day) or less, if larger than this, water in the cell may permeate the metal plate and cause corrosion of the metal plate. This is to prevent it.
B) Types of conductive carbon: acetylene black, furnace black, natural graphite powder, boron-containing carbon, etc.) Binder types Thermoplastic elastomers: Styrene, olefin, vinyl chloride, urethane, ester,
Cross-linked rubber: SBR (styrene-butadiene rubber), EPDM (ethylene propylene diene copolymer) BR (butadiene rubber), silicone rubber, fluoro rubber,
Resin: Polypropylene, etc.) Impurity amount: Metal material 0.1 wt% or less (preferably 0.05 wt% or less)
E) Adhesive strength with metal plate: 0.01 MPa or more,
C) Thickness of the conductive sheet 41: 100 to 1000 μm or more, but the channel groove depth is about 500 μm
F) Contact resistance between the conductive sheet 41 and the metal plate 40: 20 mΩcm, 2 MPa or less e) Environmental resistance: No change in an acidic atmosphere of pH 2 or more
No glass transition point at 30 ° C to 120 ° C.

本発明の燃料電池用セパレータ18の製造方法は、平坦な金属板40に導電性シート41を接合する工程と、平坦な導電性シート41と金属板40との接合体を熱プレスし、金属板40を平坦に保ったまま、導電性シート41の金属板接合側41aと反対側の面41bを凹凸させて、導電性シート41にガス流路42と接着剤シール部43を形成する工程と、を有する。ガス流路42と接着剤シール部43は導電性シート41に形成され、金属板40には形成されない。導電性シート41は、上記イ)〜ヨ)に記載した物性を有する。   The manufacturing method of the separator 18 for a fuel cell according to the present invention includes a step of bonding the conductive sheet 41 to the flat metal plate 40, and hot pressing the bonded body of the flat conductive sheet 41 and the metal plate 40. A step of forming the gas flow path 42 and the adhesive seal portion 43 in the conductive sheet 41 by making the surface 41b of the conductive sheet 41 opposite to the metal plate bonding side 41a, while keeping 40 flat. Have The gas flow path 42 and the adhesive seal portion 43 are formed on the conductive sheet 41 and are not formed on the metal plate 40. The conductive sheet 41 has the physical properties described in the above a) to y).

熱プレス工程では、流路形成用の型45は、図3に示すように、1ピース型であってもよいし、図4に示すように、2ピース型であってもよい。
図4の熱プレス工程においては、導電性シート41のリブ部位44(流路42と流路42との間の部位)が熱プレス中に型から受ける圧力を、燃料電池使用環境でリブ部位44が拡散層13、16から受ける圧力(0.5〜5MPa)以上とする。たとえば、導電性シート41のリブ部位44をプレス時に押圧する型45を導電性シート41の流路42となる溝部位をプレス時に押圧する型46と別型としておき、型45でリブ部位44を0.5〜5MPaで押し、型46で0.5〜5MPaに比べて大きな圧力で流路42となる溝部位を押圧し、流路42を形成する。
熱プレス工程においては、導電性シート41のリブ部位44(流路42と流路42との間の部位)が熱プレス中に受ける温度を、燃料電池使用環境でリブ部位44が受ける温度(60〜120℃)とほぼ同じとする。
熱プレスにおいて、導電性シート41の、接着剤シール部43での厚さt1を反応ガス流路42の流路溝底部での厚さt2より大とする。
In the hot press process, the flow path forming mold 45 may be a one-piece mold as shown in FIG. 3 or a two-piece mold as shown in FIG.
In the hot pressing step of FIG. 4, the rib portion 44 of the conductive sheet 41 (the portion between the flow path 42 and the flow path 42) receives the pressure received from the mold during the hot pressing in the environment where the fuel cell is used. Or higher than the pressure (0.5 to 5 MPa) received from the diffusion layers 13 and 16. For example, the mold 45 that presses the rib portion 44 of the conductive sheet 41 during pressing is separated from the mold 46 that presses the groove portion that becomes the flow path 42 of the conductive sheet 41 during pressing. Pressing at 0.5 to 5 MPa, pressing the groove portion that becomes the flow path 42 with a pressure larger than that of 0.5 to 5 MPa with the mold 46, the flow path 42 is formed.
In the hot pressing step, the temperature that the rib portion 44 of the conductive sheet 41 (the portion between the flow path 42 and the flow path 42) receives during the hot pressing is the temperature that the rib portion 44 receives in the fuel cell use environment (60 ˜120 ° C.).
In the hot press, the thickness t1 of the conductive sheet 41 at the adhesive seal portion 43 is made larger than the thickness t2 at the bottom of the flow channel groove of the reaction gas flow channel 42.

上記本発明の燃料電池用セパレータ18とその製造方法による作用・効果はつぎの通りである。
まず、導電性シート41を金属板40に接合後に導電性シート41を熱プレスしてガス流路42および接着剤シール部43を形成するので、比較例のような金属板の曲げ加工が、本発明にはない。そのため、比較例のような、曲げ時の金属の伸びからの、流路成形の制限がない。また、樹脂層接合金属板に表裏にガス流路と冷却水流路を互いに対応させて形成する必要がない。それらの結果、流路42の成形に制約を受けることが少なくなり、流路42の成形性を向上させることができる。
また、導電性シート41の熱プレス成形によりガス流路42および接着剤シール部43が寸法上精度高く形成できるので、比較例のような防食処理層の厚みがばらつくことにより流路断面積のばらつきとそれによる圧損の増加の問題も、本発明ではなくなる。
また、導電性シート接合金属板を曲げ加工することがないので、導電性シート41には欠陥が生じにくく、ピンホールレス化がはかられる。これによって、水が導電性シート41の欠陥を通って金属板40を腐食するという問題を除去できる。
また、導電性シート41の熱プレス時に、導電性シート41が緻密化し、流路42から金属板40への反応生成水の漏れがなくなり、金属板41の耐蝕性が向上する。
また、金属板は平坦であり、曲げの残留応力がないため、金属板の応力腐食割れもなくなる。
The operation and effect of the fuel cell separator 18 of the present invention and the manufacturing method thereof are as follows.
First, since the conductive sheet 41 is bonded to the metal plate 40 and then the conductive sheet 41 is hot-pressed to form the gas flow path 42 and the adhesive seal portion 43, the bending process of the metal plate as in the comparative example is performed in this way. There is no invention. Therefore, there is no restriction | limiting of flow path shaping | molding from the elongation of the metal at the time of a bending like a comparative example. Moreover, it is not necessary to form the gas flow path and the cooling water flow path on the front and back surfaces of the resin layer bonded metal plate so as to correspond to each other. As a result, there is less restriction on the molding of the flow path 42, and the moldability of the flow path 42 can be improved.
Further, since the gas flow path 42 and the adhesive seal portion 43 can be formed with high dimensional accuracy by hot press molding of the conductive sheet 41, variation in the cross-sectional area of the flow path due to variation in the thickness of the anticorrosion treatment layer as in the comparative example. The problem of increased pressure loss due to this is also eliminated by the present invention.
In addition, since the conductive sheet-bonded metal plate is not bent, the conductive sheet 41 is less likely to be defective and can be made pinhole-free. Thereby, the problem that water corrodes the metal plate 40 through the defect of the conductive sheet 41 can be eliminated.
Further, when the conductive sheet 41 is hot-pressed, the conductive sheet 41 is densified, and no reaction product water leaks from the flow path 42 to the metal plate 40, thereby improving the corrosion resistance of the metal plate 41.
Further, since the metal plate is flat and has no bending residual stress, stress corrosion cracking of the metal plate is eliminated.

また、導電性シート41の、接着剤シール部43での厚さt1を反応ガス流路42の流路溝底部での厚さt2より大とするので、比較例のように全域で防食処理層が薄くかつ一定厚みの場合に比べて、接着剤シール部43での導電性シート41の厚さを厚くすることができる。その結果、接着剤シール部43の剛性が増大し、シール部43が変形しにくくなってシール性が向上する。   In addition, since the thickness t1 of the conductive sheet 41 at the adhesive seal portion 43 is larger than the thickness t2 at the bottom of the flow channel groove of the reaction gas flow channel 42, the anticorrosion treatment layer is applied to the entire region as in the comparative example. The thickness of the conductive sheet 41 at the adhesive seal portion 43 can be increased as compared with the case where the thickness of the conductive sheet 41 is small and constant. As a result, the rigidity of the adhesive seal part 43 is increased, the seal part 43 is hardly deformed, and the sealing performance is improved.

また、本発明の燃料電池用セパレータの製造方法によれば、導電性シート41のガス流路42間のリブ部位44が熱プレス中に受ける圧力を、燃料電池使用環境でリブ部位44が受ける圧力以上としたので、導電性シート41が燃料電池使用環境でMEA・拡散層から荷重を受けた時に導電性シート41のリブ44の形状、流路42の断面形状が変形することはない。
また、導電性シート41のガス流路42間のリブ部位44が熱プレス中に受ける温度を、燃料電池使用環境でリブ部位44が受ける温度とほぼ同じとしたので、導電性シート41が燃料電池使用環境で燃料電池拡散層から温度を受けた時に導電性シート41のリブ44の形状、流路42の断面形状が変形することはない。
In addition, according to the method for manufacturing a fuel cell separator of the present invention, the pressure received by the rib portions 44 between the gas flow paths 42 of the conductive sheet 41 during the hot pressing is the pressure received by the rib portions 44 in the fuel cell use environment. As described above, the shape of the rib 44 of the conductive sheet 41 and the cross-sectional shape of the flow path 42 are not deformed when the conductive sheet 41 receives a load from the MEA / diffusion layer in the fuel cell use environment.
Further, since the temperature received by the rib portions 44 between the gas flow paths 42 of the conductive sheet 41 during the hot press is substantially the same as the temperature received by the rib portions 44 in the fuel cell usage environment, the conductive sheet 41 becomes the fuel cell. The shape of the rib 44 of the conductive sheet 41 and the cross-sectional shape of the flow path 42 are not deformed when receiving a temperature from the fuel cell diffusion layer in the use environment.

つぎに、本発明の各実施例に特有な構成、作用・効果を説明する。
〔実施例1〕
本発明の実施例1では、図1〜図4に示すように、金属板40の片面のみに導電性シート41が接合され、他面には導電性シートは接合されない。導電性シート41が接合された金属板40は金属板40を下側に向けて下型47上にセットされ、流路溝形成用の凹凸をもつ上型45(2ピース型の場合は上型45、46)を下降させて導電性シート41にガス流路42を形成する。セパレータ18間にMEAを挟んで外周部を接着剤33にてシール接着し、セル19を作成する。
セル19を積層してスタック23とする場合に、隣接するセル19間に、冷却水が流れる部分に、冷却水流路26が形成された導電性の冷却水流路板48を挟み、外周部位にシール部材(たとえば、ゴムガスケット32)を挟む。冷却水流路板48は、互いに隣接するセル19のセパレータ18の平板の金属板40で挟まれる。冷却水流路板48はセパレータ18とは別ピースであり、冷却水流路26は、セパレータ18のガス流路27、28とは、独立に、プレスにて成形される。
Next, configurations, operations, and effects unique to each embodiment of the present invention will be described.
[Example 1]
In Example 1 of this invention, as shown in FIGS. 1-4, the electroconductive sheet 41 is joined only to one side of the metal plate 40, and an electroconductive sheet is not joined to the other surface. The metal plate 40 to which the conductive sheet 41 is bonded is set on the lower die 47 with the metal plate 40 facing downward, and an upper die 45 having irregularities for forming a channel groove (in the case of the two-piece type, the upper die 45). 45, 46) is lowered to form the gas flow path 42 in the conductive sheet 41. The MEA is sandwiched between the separators 18 and the outer peripheral portion is sealed and bonded with the adhesive 33 to form the cell 19.
When the cells 19 are stacked to form the stack 23, a conductive cooling water flow path plate 48 in which the cooling water flow path 26 is formed is sandwiched between the adjacent cells 19 where the cooling water flows. A member (for example, rubber gasket 32) is sandwiched. The cooling water flow path plate 48 is sandwiched between the flat metal plates 40 of the separators 18 of the cells 19 adjacent to each other. The cooling water flow path plate 48 is a separate piece from the separator 18, and the cooling water flow path 26 is formed by a press independently of the gas flow paths 27 and 28 of the separator 18.

本発明の実施例1の作用・効果については、冷却水流路板48をセパレータ18と別ピースとしたので、セパレータ18の導電性シート41のガス流路42は、冷却水流路板48の冷却水流路26と独立に成形され、冷却水流路26からの制限を受けない。また、導電性シート41のガス流路42は、型成形で作成されるので、折り曲げ成形に比べて、高精度寸法で形成される。その結果、流路42の寸法ばらつきによる圧損増加は少ない。   Regarding the operation and effect of the first embodiment of the present invention, since the cooling water flow path plate 48 is a separate piece from the separator 18, the gas flow path 42 of the conductive sheet 41 of the separator 18 is the cooling water flow rate of the cooling water flow path plate 48. It is formed independently of the passage 26 and is not restricted by the cooling water passage 26. Moreover, since the gas flow path 42 of the electroconductive sheet 41 is created by mold forming, it is formed with a high-precision dimension as compared with bending molding. As a result, there is little increase in pressure loss due to dimensional variation of the flow path 42.

〔実施例2〕
本発明の実施例2では、図5〜図7に示すように、金属板40の両面に導電性シート41が接合される。一面の導電性シート41にはガス流路42(燃料ガス流路27、酸化ガス流路28)が形成され、他面の導電性シート41には冷却水流路26が形成される。導電性シート41が接合された金属板40は、凹凸が形成された下型47上にセットされ、凹凸をもつ上型45(2ピースの場合は実施例1に準じて上型45、46)を下降させて導電性シート41にガス流路42(燃料ガス流路27、酸化ガス流路28)、冷却水流路26を形成する。セパレータ18間にMEAを挟んで外周部を接着剤33にてシール接着し、セル19を作成する。
セル19を積層してスタック23とする場合に、外周部位にシール部材(たとえば、ゴムガスケット32)を挟む。
[Example 2]
In Example 2 of this invention, as shown in FIGS. 5-7, the electroconductive sheet 41 is joined to both surfaces of the metal plate 40. FIG. A gas flow path 42 (a fuel gas flow path 27 and an oxidizing gas flow path 28) is formed in the conductive sheet 41 on one side, and a cooling water flow path 26 is formed in the conductive sheet 41 on the other side. The metal plate 40 to which the conductive sheet 41 is bonded is set on a lower mold 47 having irregularities formed thereon, and an upper mold 45 having irregularities (in the case of two pieces, upper molds 45 and 46 according to Example 1). The gas flow path 42 (fuel gas flow path 27, oxidizing gas flow path 28) and cooling water flow path 26 are formed in the conductive sheet 41. The MEA is sandwiched between the separators 18 and the outer peripheral portion is sealed and bonded with the adhesive 33 to form the cell 19.
When the cells 19 are stacked to form the stack 23, a sealing member (for example, a rubber gasket 32) is sandwiched between the outer peripheral portions.

本発明の実施例2の作用・効果については、ガス流路42(燃料ガス流路27、酸化ガス流路28)と冷却水流路26を別型47、45(または45、46)で形成するので、ガス流路42は、冷却水流路26と独立に成形され、冷却水流路26からの制限を受けない。また、導電性シート41のガス流路42は、型成形で作成されるので、折り曲げ成形に比べて、高精度寸法で形成される。その結果、流路42の寸法ばらつきによる圧損増加は少ない。
上記実施例1、2では、金属板を平坦とし、単セルが平坦である場合を説明したが、本発明は、円柱型の単セルや円錐型の単セルを有する燃料電池にも適用可能である。したがって、金属板は平坦な場合に限定されるものではなく、セパレータは平板に限定されるものではない。
Regarding the operation and effect of the second embodiment of the present invention, the gas flow path 42 (the fuel gas flow path 27 and the oxidizing gas flow path 28) and the cooling water flow path 26 are formed by separate molds 47 and 45 (or 45 and 46). Therefore, the gas flow path 42 is formed independently of the cooling water flow path 26 and is not limited by the cooling water flow path 26. Moreover, since the gas flow path 42 of the electroconductive sheet 41 is created by mold forming, it is formed with a high-precision dimension as compared with bending molding. As a result, there is little increase in pressure loss due to dimensional variation of the flow path 42.
In the first and second embodiments, the case where the metal plate is flat and the single cell is flat has been described. However, the present invention can also be applied to a fuel cell having a cylindrical single cell or a conical single cell. is there. Therefore, the metal plate is not limited to a flat case, and the separator is not limited to a flat plate.

本発明の実施例1の燃料電池用セパレータを含むセルの断面図である。It is sectional drawing of the cell containing the separator for fuel cells of Example 1 of this invention. 本発明の実施例1の燃料電池用セパレータの製造方法の、金属板と導電性シートの接合工程の断面図である。It is sectional drawing of the joining process of a metal plate and an electroconductive sheet of the manufacturing method of the separator for fuel cells of Example 1 of this invention. 本発明の実施例1の燃料電池用セパレータの製造方法の、導電性シートへのガス流路成形工程の導電性シート、金属板、型(上型が1ピースの場合)の一部の断面図である。Sectional drawing of a part of conductive sheet, metal plate, and mold (when the upper mold is one piece) in the gas flow path forming step to the conductive sheet in the method for manufacturing the fuel cell separator of Example 1 of the present invention It is. 本発明の実施例1の燃料電池用セパレータの製造方法の、導電性シートへのガス流路成形工程の導電性シート、金属板、型(上型が2ピースの場合)の一部の断面図である。Sectional drawing of a part of conductive sheet, metal plate, and mold (when the upper mold is 2 pieces) in the gas flow path forming step to the conductive sheet in the method for manufacturing the fuel cell separator of Example 1 of the present invention It is. 本発明の実施例2の燃料電池用セパレータを含むセルの断面図である。It is sectional drawing of the cell containing the separator for fuel cells of Example 2 of this invention. 本発明の実施例2の燃料電池用セパレータの製造方法の、金属板と導電性シートの接合工程の断面図である。It is sectional drawing of the joining process of a metal plate and an electroconductive sheet of the manufacturing method of the separator for fuel cells of Example 2 of this invention. 本発明の実施例2の燃料電池用セパレータの製造方法の、導電性シートへのガス流路成形工程の導電性シート、金属板、型(上型が1ピースの場合)の一部の断面図である。Sectional drawing of a part of conductive sheet, metal plate, and mold (when the upper mold is one piece) in the gas flow path forming process to the conductive sheet in the method for manufacturing the fuel cell separator of Example 2 of the present invention It is. 本発明の全実施例に適用可能な燃料電池用セパレータを組み込んだ燃料電池スタックの側面図である。1 is a side view of a fuel cell stack incorporating a fuel cell separator applicable to all embodiments of the present invention. 図8の複数セルモジュール部のセルの正面図である。It is a front view of the cell of the multiple cell module part of FIG. 比較例の燃料電池用セパレータを含むセルの断面図である。It is sectional drawing of the cell containing the separator for fuel cells of a comparative example.

符号の説明Explanation of symbols

10 (固体高分子電解質型)燃料電池
11 電解質膜
13、16 拡散層
14 電極(アノード、燃料極)
17 電極(カソード、空気極)
18 セパレータ
19 セル
20 ターミナル
21 インシュレータ
22 エンドプレート
23 スタック
24 締結部材(テンションプレート)
25 ボルト
26 冷媒流路(冷却水流路)
27 燃料ガス流路
28 酸化ガス流路
29 冷媒マニホールド(冷却水マニホールド)
30 燃料ガスマニホールド
31 酸化ガスマニホールド
32 ガスケット(たとえば、ゴムガスケット)
33 接着剤(接着剤層)
40 金属板
41 導電性シート
41a 金属板接合側
41b 反対側の面
42 ガス流路(反応ガス流路)
43 接着剤シール部
44 リブ部位
45、46、47 型
48 冷却水流路板
10 (Solid Polymer Electrolyte Type) Fuel Cell 11 Electrolyte Membranes 13 and 16 Diffusion Layer 14 Electrode (Anode, Fuel Electrode)
17 electrodes (cathode, air electrode)
18 Separator 19 Cell 20 Terminal 21 Insulator 22 End plate 23 Stack 24 Fastening member (tension plate)
25 Bolt 26 Refrigerant flow path (cooling water flow path)
27 Fuel gas passage 28 Oxidation gas passage 29 Refrigerant manifold (cooling water manifold)
30 Fuel gas manifold 31 Oxidizing gas manifold 32 Gasket (for example, rubber gasket)
33 Adhesive (adhesive layer)
40 Metal plate 41 Conductive sheet 41a Metal plate bonding side 41b Opposite surface 42 Gas flow path (reaction gas flow path)
43 Adhesive seal part 44 Rib part 45, 46, 47 Type 48 Cooling water flow path plate

Claims (6)

金属板と、
該金属板に接合された導電性シートと、
を備え、
前記導電性シートは、前記導電性シートを前記金属板に接合後に前記導電性シートを熱プレスして形成した、ガス流路および接着剤シール部を有している、
燃料電池用セパレータ。
A metal plate,
A conductive sheet bonded to the metal plate;
With
The conductive sheet has a gas flow path and an adhesive seal part formed by hot pressing the conductive sheet after joining the conductive sheet to the metal plate.
Fuel cell separator.
前記導電性シートの、前記接着剤シール部での厚さは前記反応ガス流路の流路溝底部での厚さより大である請求項1記載の燃料電池用セパレータ。   2. The fuel cell separator according to claim 1, wherein a thickness of the conductive sheet at the adhesive seal portion is larger than a thickness at a flow channel groove bottom portion of the reaction gas flow channel. 金属板に導電性シートを接合する工程と、
前記導電性シートを前記金属板に接合後、前記導電性シートに、熱プレスによりガス流路と接着剤シール部を成形する工程と、
を有する燃料電池用セパレータの製造方法。
Joining the conductive sheet to the metal plate;
After bonding the conductive sheet to the metal plate, forming a gas flow path and an adhesive seal part by hot pressing on the conductive sheet;
The manufacturing method of the separator for fuel cells which has this.
前記導電性シートのガス流路間のリブ部位が熱プレス中に受ける圧力を、燃料電池使用環境で前記リブ部位が受ける圧力以上とする請求項3記載の燃料電池用セパレータの製造方法。   The method for producing a separator for a fuel cell according to claim 3, wherein the pressure received by the rib portions between the gas flow paths of the conductive sheet during the hot pressing is equal to or higher than the pressure received by the rib portions in a fuel cell use environment. 前記導電性シートのガス流路間のリブ部位が熱プレス中に受ける温度を、燃料電池使用環境で前記リブ部位が受ける温度とほぼ同じとする請求項3記載の燃料電池用セパレータの製造方法。   The manufacturing method of the separator for fuel cells of Claim 3 which makes the temperature which the rib site | part between the gas flow paths of the said electroconductive sheet receives during a hot press substantially the same as the temperature which the said rib site | part receives in a fuel cell use environment. 熱プレス工程において、前記導電性シートの、前記接着剤シール部での厚さを前記反応ガス流路の流路溝底部での厚さより大とする請求項3記載の燃料電池用セパレータの製造方法。   4. The method for producing a fuel cell separator according to claim 3, wherein in the hot pressing step, the thickness of the conductive sheet at the adhesive seal portion is larger than the thickness at the bottom of the reaction gas flow channel. .
JP2004137272A 2004-05-06 2004-05-06 Separator for fuel cell, and its manufacturing method Pending JP2005322433A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004137272A JP2005322433A (en) 2004-05-06 2004-05-06 Separator for fuel cell, and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004137272A JP2005322433A (en) 2004-05-06 2004-05-06 Separator for fuel cell, and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2005322433A true JP2005322433A (en) 2005-11-17

Family

ID=35469552

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004137272A Pending JP2005322433A (en) 2004-05-06 2004-05-06 Separator for fuel cell, and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2005322433A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009272202A (en) * 2008-05-09 2009-11-19 Toppan Printing Co Ltd Fuel cell separator and method of manufacturing the same
JP2016110724A (en) * 2014-12-02 2016-06-20 新日鉄住金マテリアルズ株式会社 Carbon composite material for pefc separator and manufacturing method for the same
EP3439071A1 (en) * 2017-08-04 2019-02-06 Toyota Jidosha Kabushiki Kaisha Manufacturing method of separator for fuel cell
US10833336B2 (en) 2017-08-04 2020-11-10 Toyota Jidosha Kabushiki Kaisha Manufacturing method of separator for fuel cell
US11011757B2 (en) 2017-08-04 2021-05-18 Toyota Jidosha Kabushiki Kaisha Separator for fuel cell, fuel cell, and manufacturing method of separator for fuel cell
JP2021530092A (en) * 2018-07-04 2021-11-04 上海旭濟動力科技有限公司 Fuel cell equipped with a fluid-guided flow path and its manufacturing method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009272202A (en) * 2008-05-09 2009-11-19 Toppan Printing Co Ltd Fuel cell separator and method of manufacturing the same
JP2016110724A (en) * 2014-12-02 2016-06-20 新日鉄住金マテリアルズ株式会社 Carbon composite material for pefc separator and manufacturing method for the same
EP3439071A1 (en) * 2017-08-04 2019-02-06 Toyota Jidosha Kabushiki Kaisha Manufacturing method of separator for fuel cell
US10756356B2 (en) 2017-08-04 2020-08-25 Toyota Jidosha Kabushiki Kaisha Manufacturing method of separator for fuel cell
US10833336B2 (en) 2017-08-04 2020-11-10 Toyota Jidosha Kabushiki Kaisha Manufacturing method of separator for fuel cell
US11011757B2 (en) 2017-08-04 2021-05-18 Toyota Jidosha Kabushiki Kaisha Separator for fuel cell, fuel cell, and manufacturing method of separator for fuel cell
JP2021530092A (en) * 2018-07-04 2021-11-04 上海旭濟動力科技有限公司 Fuel cell equipped with a fluid-guided flow path and its manufacturing method
JP7379481B2 (en) 2018-07-04 2023-11-14 上海旭濟動力科技有限公司 Fuel cell with fluid guide channel and method for manufacturing the same

Similar Documents

Publication Publication Date Title
CA2389480C (en) Seal structure of a fuel cell
US6794079B2 (en) Fuel cell
JP5022898B2 (en) Membrane electrode assembly (MEA) for fuel cells
CN101395751B (en) Cell stack and fuel cell with the same
CA2323167C (en) Separator for a fuel cell
JP2007250353A (en) Fuel cell
KR100788270B1 (en) Separator
JP5183143B2 (en) Fuel cell
JP2005322433A (en) Separator for fuel cell, and its manufacturing method
JP3785909B2 (en) Manufacturing method of fuel cell separator
JP2012195128A (en) Gasket for polymer electrolyte fuel cell and polymer electrolyte fuel cell
WO2013012026A1 (en) Gasket for fuel cell
JP2006024404A (en) Fuel cell
US9373852B2 (en) Fuel cell stack
KR101272588B1 (en) Separator gasket for fuel cell
JP4765594B2 (en) Fuel cell
JP2006054058A (en) Separator
JP2007035455A (en) Separator for fuel cell
US20040115508A1 (en) Stacked fuel cell, stacked fuel cell manufacturing method and manufacturing device thereof
JP5443254B2 (en) Fuel cell
US20130157165A1 (en) Polymer electrolyte fuel cell
JP4569483B2 (en) Fuel cell separator
JP2003036865A (en) Fuel cell
JP4432585B2 (en) Manufacturing method of fuel cell
JP4483289B2 (en) Fuel cell stack